
Received July 24, 2019, accepted August 31, 2019, date of publication September 11, 2019, date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940525

Low-Latency Adaptive Ordered Statistic
Decoding of Polar Codes

KANGJIAN QIN, (Member, IEEE), AND ZHAOYANG ZHANG , (Member, IEEE)
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, Zhejiang University, Hangzhou, China

Corresponding author: Zhaoyang Zhang (ning_ming@zju.edu.cn)

This work was supported in part by the China Scholarship Council, in part by the National Key Research and Development Program of

China under Grant 2018YFB1801104, and in part by the National Natural Science Foundation of China under Grant 61725104 and

Grant 61631003.

ABSTRACT Deploying polar codes in ultra-reliable low-latency communication (URLLC) is of critical

importance and is currently receiving tremendous attention in both academia and industry. However, most

of the state of the art polar codes decoders like progressive bit-flipping decoder (PBF) and successive

cancellation list (SCL) decoder, involve strong data dependencies and suffer from huge decoding delay.

This contradicts the low-latency requirement in URLLC. To address such issue, this paper appeals to the

parallel computing and proposes an adaptive ordered statistic decoder (OSD). In particular, we first propose

a novel codeword searching metric which proves to be hardware-friendly, and an adaptive OSD algorithm

is then developed to adaptively rule out the unpromising codewords, thus significantly reducing the latency.

Secondly, to further reduce the computational complexity of the proposed algorithm, we decompose the

current code sequence into several independent subcodes, and by handling these subcodes with concatenated

adaptive OSDs, a good trade-off between decoding latency and complexity can be achieved. Finally,

numerical results show that the proposed adaptive OSD outperforms the conventional decoders in terms

of block error rate (BLER) and decoding latency.

INDEX TERMS Low latency decoding, ordered statistic decoding, polar codes.

I. INTRODUCTION

Ultra-reliable and low-latency communication (URLLC) is

one of the most important scenarios in 5G communications

and beyond. Different from the current 4G system, where

block error rates (BLERs) are typical around 10−2 and

time-tolerant retransmission mechanisms like HARQ can be

adopted, URLLC requires more stringent BLER (from 10−9

to 10−5) which has to be achieved within millisecond order

(see Fig. 1) [2]. However, the current coding schemes cannot

properly handle the conflict between reliability and latency.

As such, new coding methods that meet both requirements

become an emerging research trend.

Polar codes [3], as the coding scheme for control channel

of enhanced mobile broadband (eMBB) in 5G [4], seem

to be a promising candidate for URLLC. With progres-

sive bit-flipping (PBF) decoding [5], superior BLER perfor-

mance can be achieved with low complexity in high SNR

regime. With cyclic redundancy check (CRC) aided succes-

The associate editor coordinating the review of this manuscript and
approving it for publication was Yi Fang.

sive cancellation list (CA-SCL) decoder [6]–[8], polar codes

outperform state-of-the-art turbo and low-density parity-

check (LDPC) codes under short block length. Although

short block length can reduce the end-to-end (E2E) transmis-

sion latency, however, huge decoding latency still prevents

existing SC-based decoders from being deployed in URLLC.

To solve this, a simplified successive cancellation decoder

was first proposed in [9] to simultaneously decode all rate-

1 and rate-0 constituent codes. However, the latency gain

of such method is highly dependent on the distribution of

unfrozen bits. To overcome this limitation, precomputation

technique was introduced in [10], [11], where 50% decoding

latency was saved at the cost of twice extra memory. Similar

trade-off was presented in [12], where lower decoding delay

is achieved but higher complexity is required. To preserve

the complexity, a stage-reduced SC decoding algorithm and

its low-latency architecture were introduced in [13]. Subse-

quently, a double thresholding algorithm and a split reduc-

tion method were proposed to further improve the latency

performance of CA-SCL decoders in [14] and [15], respec-

tively. Albeit significantly reducing the decoding latency,

134226 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0003-2346-6228

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

FIGURE 1. URLLC key performance indicators.

the aforementioned SC-based decoders still suffer from data

dependency, which means one data bit can only be decoded

until all its former bits are derived. In this sense, the decoding

latency inevitably increases with the block length.

To avoid such data dependency, ordered statistic

decoder (OSD) was proposed. Invoking a different decoding

structure, OSD is well suitable for parallel implementation

and is able to concurrently estimate all polar codeword

bits. This parallel computing nature dramatically reduces

the decoding latency. For lower BLER, a level-l OSD was

developed [17]. It allows at most l-level reprocessing, yet

increasing the decoding delay and complexity. The authors

in [18] proposed to use a Gaussian threshold to eliminate

the unpromising candidate codewords, thus consuming fewer

clock cycles (CCs). However, such threshold is empirical, and

it incurs an error floor in high signal-to-noise ratio (SNR)

regime, which is definitely unacceptable in URLLC

systems.

To address the issues above, an adaptive OSD algorithm is

developed in this paper. Specifically, a codeword searching

metric is carefully designed. We show that the codeword

with minimum searching metric turns out to be the most

promising candidate. On this basis, codewords with large

metric are considered unpromising and should be eliminated.

Based on this searching metric, the adaptive OSD can easily

rule out the unpromising candidates throughout the tested

codewords and simplify the decoding procedure. For this

reason, the decoding latency is greatly decreased. To fur-

ther reduce the computational complexity, we propose to

decompose the current test codeword into several indepen-

dent subcodes with smaller block length, and decode them

with concatenated adaptive OSDs. Due to the reduced code-

word dimension, the computational complexity of adaptive

OSD is further decreased, and a good trade-off between

decoding complexity and latency can be achieved. Numerical

results validate that the proposed adaptive OSD decoder out-

performs the existing decoders in terms of decoding latency

and BLER.

Our main contributions are summarized as follows:

• A novel codeword searching metric is proposed, which

proves to minimize the decoding error. Moveover,

the proposed metric can be realized with only additive

operation, thus is well suitable for hardware implemen-

tation.

• An adaptive OSD algorithm, aiming to adaptively ruling

out the unpromising candidate codewords, is developed.

Due to the reduced number of test codewords, the decod-

ing latency is dramatically decreased.

• Low complexity implementation of adaptive OSD is

investigated, which further reduces the complexity of

overall decoding process. In addition, a concatenated

adaptive OSD is proposed, which achieves a good

trade-off between decoding complexity and latency.

The remainder of this paper is organized as follows.

In Section II, the preliminaries of polar codes are briefly

reviewed. a codeword searching metric and an adaptive OSD

algorithm are introduced in Section III. In Section IV, a con-

catenated adaptive OSD scheme is proposed. Section V gives

the relevant numerical results and performance analysis. And

finally, Section VI concludes the work.

II. PRELIMINARIES

To better understand the decoding latency, we first briefly

review the encoding and decoding procedures of polar codes.

Then, SC and SCL decoders are expounded in detail, after

which their decoding latencies are also investigated.

A. POLAR CODES

We use aN1 to denote a sequence (a1, a2, . . . , aN). For polar

codes with block length N = 2n and kernel F2 =

[

1 0

1 1

]

,

we denote uN1 as the information sequence, and a polar code-

word cN1 is obtained by cN1 = uN1 BNF
⊗n
2 , where ‘⊗’ denotes

the Kronecker product and BN is a permutation matrix.

A coding rate R = K/N means that a set A ⊂ {1, 2, . . . ,N }

of cardinality K is selected as the information set (see [3]),

and thus uN1 consists of K unfrozen bits uA and N −K frozen

bits uAc (all frozen bits are assumed to be zero codewords

in this paper if not specified). The split-channel is defined

as W
(i)
N (yN1 , ui−11 |ui) =

∑

uNi+1∈X
N−i

1
2N−1

WN (y
N
1 |u

N
1), and the

Bhattacharyya parameter Z (W
(i)
N) is computed to select the

K most reliable split-channels to transmit unfrozen bits. For

more details, we refer the reader to [3].

B. SC AND SCL DECODING

The received sequence from a transmitted codeword cN1
is represented as yN1 . With these values, the information

sequence uN1 can be estimated using a SC decoder. Since

the decoder already knows the frozen bits, it only needs to

estimate unfrozen bits using

ûi =

{

0, L(ûi) ≥ 0

1, L(ûi) < 0
(1)

VOLUME 7, 2019 134227

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

FIGURE 2. A decoding process for polar codes with N = 8.

where

L(ûi) , ln
W

(i)
N (yN1 , ûi−11 |ui = 0)

W
(i)
N (yN1 , ûi−11 |ui = 1)

(2)

is the log-likelihood ratio (LLR) corresponding to ûi. With

the butterfly network shown in Fig. 2, we denote the LLR

from the underlying channel as Ln,i, and L0,i = L(ûi) is LLR

from the bit-channelW
(i)
N . For other LLR that passes through

in Fig. 2, it is denoted by Ll,i, where l and i correspond to the

index of the decoding stage and the row, respectively. Then

all these LLRs can be calculated using

Ll,i =







f (Ll+1,i;Ll+1,i+2l) if
⌈

i
2l

⌉

is odd

g(v̂l,i−2l ;Ll+1,i−2l ;Ll+1,i) if
⌈

i
2l

⌉

is even
(3)

where v̂ is a modulo-2 partial sum of intermediate decoded

bits, 0 ≤ l < n, 1 ≤ i ≤ N . Function f and g are defined as:

f (α, β) , ln

(

eα+β + 1

eα + eβ

)

, (4)

g(α, β, v̂) , (−1)v̂α + β, (5)

respectively.

Note that the value of v̂ is required in g function. This

introduces strong data dependencies in SC decoding, which

further increases latency. The scheduling of SC decoding

for polar codes in Fig. 2 is illustrated in Fig. 3. For polar

codes with block-length N = 2n, there are n decoding

stages. At some stage l, a maximum of 2l LLR values can

be simultaneously obtained. To finish the decoding, a stage

indexed by l need to be activated 2n−l times, and each can be

done in one CC. As such, the total number of CCs needed for

SC decoding is

τSC =

n−1
∑

l=0

2n−l = 2N − 2, (6)

FIGURE 3. The scheduling for a SC decoder with N = 8.

which means the decoding latency linearly increases with the

block-length in SC decoding.

For SCL decoding, similar logic can be used. However,

a SCL decoder with a list size of L inspects both options for

the estimate of any unfrozen bit ui, and a sorting operation

is performed to select at most L most promising decoding

paths from 2L expanded paths [6]. Assuming that all the L

candidate paths are decoded in parallel, and the sorting pro-

cess of 2L paths can be done with 2L log2(2L) comparisons

using well studied merge sort algorithm [19]. With sufficient

hardware parallelization, the sorting latency is assumed to be

one clock cycle in this paper. Then the decoding latency of

SCL decoding is approximated by the sum of (6) and the

latency for the sorting processes. For polar codes with block-

length N and coding rate R, the decoding latency under SCL

decoding with a list size of L can be approximated as follows

τSCL = 2N − 2+ NR− log2 L (7)

One should note that, data transmitted in URLLC usemuch

shorter block-length to reduce the E2E latency, which leads

to a higher coding rate for the same size of information.

In this regard, the decoding latency for a SCL decoder is much

higher than that of SC decoder.

III. ADAPTIVE ORDERED STATISTIC DECODING

To avoid the data dependency involved in SC decoding,

the parallel computing feature of OSD is firstly exploited to

simultaneously decode all bits in a codeword. Then, we pro-

pose a novel codeword searching metric which efficiently

finds the most likely codeword. Finally, an adaptive OSD

decoding scheme is developed.

A. OSD AND L-LEVEL OSD

Different from the SC-based decoders whose decoding laten-

cies extend linearly with the block-length, the OSD provides

a low-latency implementation of decoding by virtue of its

parallel computing for all codeword bits. For a given received

sequence yN1 , we first define a permutation function λ1 which

reorders yN1 according to their absolute values of LLR. Using

the obtained λ1, we can permute the columns of generator

matrix G to get G′ = λ1(G), where G is a K × N submatrix

134228 VOLUME 7, 2019

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

of BNF
⊗n
2 obtained by removing the rows in BNF

⊗n
2 corre-

sponding toAc. Next, a new K ×N matrixG′′ is constructed

from the permuted matrix G′, whose first K columns are the

K most reliable independent (MRI) columns ofG′, while the

rest columns are generated using the rest N − K columns

of G′. Note that this operation can also be defined as a

permutation function λ2, i.e., G
′′ = λ2(G

′), which means

G′′ can be obtained from G using one permutation function

λ = λ1λ2 by G′′ = λ(G). Finally, the systematic form of G′′

is denoted by Gs = [I,P], where I and P are identity matrix

and check matrix, respectively.

For decoding, the OSD concurrently performs hard deci-

sion on the first K components of λ(yN1) to get aK1 , and for

ease of exposition, aK1 is referred to as the MRI sequence

in this paper. Then if there is no erroneous hard decision

in MRI sequence, the final estimated codeword ĉN1 can be

reconstructed in one shot decoding by

ĉN1 = λ−1(aK1 Gs) (8)

However, there are wrong hard decisions due to the channel

noise. To achieve lower BLER, a l-level (1 ≤ l ≤ K) OSD

allows at most l level reprocessing. At the i-th (1 ≤ i ≤ l)

level, the decoder flips i bits of aK1 . Such reprocessing is

equivalent to adding an error pattern eK1 upon aK1 in binary

field. We use ĉN1 (e
K
1) to represent the candidate codeword

corresponding to a test error pattern eK1 . After all the possible

candidate codewords are tested, the decoder selects the code-

word ĉN1 (e
K
1) which has the smallest Euclidean distance with

yN1 as the final output. For notational simplicity, the vector eK1
in ĉN1 (e

K
1) is omitted throughout the rest of this paper.

B. DECODING LATENCY OF L-LEVEL OSD

Note that there is no data dependency when decoding bits

in a candidate codeword ĉN1 , and all codeword bits can be

derived concurrently under the matrix transposition in (8).

To obtain the permutation function λ, one needs first to sort

the original received sequence yN1 according to their absolute

LLR values, and this process can be done with N log2 N

comparisons whose latency is assumed to be one clock cycle

under adequate parallelization. Then, the overall process of

transformingG′ toGs can be realized by N ·min(K ,N −K)2

binary operations with Gaussian elimination. Nevertheless,

two levels of parallelism are possible, yielding K steps of at

mostK independent summations, each summation consisting

of N independent binary additions. One should note that

such matrix computation can be accomplished with sufficient

hardware parallelization so its latency is negligible. Thus the

dominant factor of decoding latency for a l-level OSD is the

number of error patterns that are reprocessed, which can be

approximated by

τOSDlevel=l =

l
∑

i=0

(

K

i

)

(9)

To reduce the number of candidate error patterns, Gaus-

sian threshold was introduced for OSD [18], where only

FIGURE 4. Area division using 3σ Gaussian thresholds.

most reliable independent symbols with low confidences are

flipped. Binary phase shift keying (BPSK) modulation under

memoryless AWGN channel is considered for the ensuing

analysis. Then the received symbol can be expressed by

yi = xi + ni, where xi = 1 − 2ci, and ni is a Gaussian

random variable with mean zero and variance σ 2 = N0
2
.

On this basis, the probability density function (PDF) of the

received symbols, i.e.,N (1, σ) andN (−1, σ), can be divided

by Gaussian thresholds like |yth| = ±(3σ − 1), into 3 areas

as shown in Fig. 4.

Given a received symbol lying in Area 3, there is a high

probability that the transmitted symbol is +1 because the

probability that the symbol −1 falls into Area 3 is rather

small. Similarly, for received symbols in Area 1, they also

have a high confidence. In this sense, we only need to

consider the error patterns that flip the symbols in Area 2.

Apparently, the smaller the absolute value of the threshold is,

the less error patterns will be considered. This decreases the

decoding latency while increasing the BLER performance.

It is shown in [18] that when a threshold of |yth| = ±(3σ −1)

is adopted, this Gaussian threshold based OSD needs only

10% clock cycles of (9) at a SNR of 1.5 dB.

Nevertheless, there are some drawbacks that prevent the

above scheme from being deployed in URLLC.

• For the threshold-based OSD, there is a fixed non-zero

probability of missing out a true error pattern, which

causes an error floor in high SNR region, and this is

unbearable in URLLC.

• One has to experimentally determine the Gaussian

threshold, and the optimal trade-off between the BLER

performance and decoding complexity can hardly be

found. (see [18]).

• The above Gaussian threshold is based on real number,

however, the received symbols and their corresponding

LLRs are quantized into fixed-point values in a practical

decoder, and it makes the above Gaussian threshold

scheme invalid.

VOLUME 7, 2019 134229

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

C. A NOVEL CODEWORD SEARCHING METRIC

To avoid the drawbacks of threshold-based OSD, a novel

codeword searching metric is firstly proposed. For a given

error pattern eK1 , its associated reconstructed codeword and

corresponding BPSK modulated sequence are denoted by ĉN1
and mN1 , respectively. Then the Euclidean distance between

the received sequence yN1 and mN1 can be computed by

d(mN1 , yN1) =

N
∑

i=1

(1+ y2i)− 2

N
∑

i=1

miyi (10)

As
∑N

i=1(1+ y
2
i) is a constant for a certain y

N
1 ,

∑N
i=1 miyi is

commonly used as a cost function to replace the Euclidean

distance, and the codeword which maximizes
∑N

i=1 miyi is

taken as the final estimation.

However, the multiply operations involved in cost function

are impractical for hardware realization. By denoting the i-th

element in yN1 and ĉN1 as yi and ĉi, respectively, and h(·)

denotes the hard decision function, we give the following

proposition which sheds light on our main result.

Proposition 1: Given that all codewords have the same

a priori probability, then finding a codeword that minimizes

the decoding error is equivalent to searching a codeword that

minimizes the metric in (11).

M

(

ĉN1

)

,
∑

1≤i≤N
ĉi 6=h(yi)

|yi| (11)

Proof: For whole candidate codewords, the probability

of decoding error is minimized by finding a codeword ĉN1
which maximizes the a posteriori probability P(cN1 |y

N
1) over

the codebook C as follows

ĉN1 = argmax
cN1 ∈C

P(cN1 |y
N
1) (12)

Since we restrict to memoryless AWGN channel, and all

codewords are equiprobable, (12) is equivalent to

ĉN1 = argmax
cN1 ∈C

N
∑

i=1

lnP(yi|ci) (13)

Note that yN1 is a determined sequence in one certain trans-

mission, thus
∑N

i=1 lnP(yi|1) is a constant, which means

ĉN1 = argmax
cN1 ∈C

N
∑

i=1

lnP(yi|ci)−

N
∑

i=1

lnP(yi|1)

= argmax
cN1 ∈C

N
∑

i=1

ln
P(yi|ci)

P(yi|1)
= argmax

cN1 ∈C

N
∑

i=1

(1− ci)Li

= argmax
cN1 ∈C

N
∑

i=1

1

2
(1− 2ci)Li +

1

2

N
∑

i=1

Li (14)

Note that Li =
2yi
σ 2 for AWGN channels, thus 1

2

∑N
i=1 Li is

determined once yN1 is determined. This leads us to

ĉN1 = argmax
cN1 ∈C

N
∑

i=1

1

2
(1− 2ci)Li

= argmax
cN1 ∈C

N
∑

i=1

|Li| −
∑

1≤i≤N
ĉi 6=h(yi)

2|Li|

= argmin
cN1 ∈C

∑

1≤i≤N
ĉi 6=h(yi)

|Li| (15)

Finally, we have

ĉN1 = argmin
cN1 ∈C

∑

1≤i≤N
ĉi 6=h(yi)

|yi| (16)

which completes the proof.

Remarks: To calculate M
(

ĉN1
)

, one only needs less than

N additions. Since nomultiplication is involved, the proposed

searching metric can be efficiently implemented in hardware.

We further note that, a promising candidate codeword ĉN1
should have a smallerM

(

ĉN1
)

value according to the Propo-

sition 1, which motivates us to skip codewords whose metric

values are large. Specially, if current candidate codeword

has a larger searching metric value compared to the former

tested one, then such candidate codeword is considered to be

unpromising and should be ruled out.

D. ADAPTIVE OSD

Capitalize on the above codeword searching metric, an algo-

rithm is developed to adaptively eliminate the unpromising

candidate codeword, so as to avoid the drawbacks caused by

Gaussian threshold in Section III-B.

Note that given an test error pattern eK1 , its corresponding

candidate codeword is ĉN1 (e
K
1), which can be computed by

adding eK1 [I,P] to ĉ
N
1 (0

K
1). We refer to c̃N1 = eK1 [I,P] as the

codeword error pattern. On this basis, the searching metric

can be decomposed into two parts

M

(

ĉN1

)

=
∑

1≤i≤K
ei=1

|ỹi| +
∑

K+1≤i≤N
c̃i=1

|ỹi|

= D(eK1)+R(eK1) (17)

where ỹi is the i-th element of ỹN1 = λ(yN1), and ei and c̃i is the

i-th element of eK1 and c̃N1 = eK1 [I,P], respectively. The first

part of (17) is referred to as the determined part of searching

metric, and is denoted by D(eK1), which can be determined

directly according to the current test error pattern eK1 . While

the second part is the redundancy part, denoted by R(eK1),

whose value can be calculated according to the redundancy

part of codeword error pattern, i.e., c̃Nk+1.

Although the codeword searching metric M
(

ĉN1
)

can be

efficiently computed given the reconstructed codeword ĉN1 ,

however, to reconstruct ĉN1 , its codeword error pattern c̃
N
1 has

134230 VOLUME 7, 2019

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

to be computed. Note that D(eK1) can be calculated directly

using eK1 , and it is more desirable to get R(eK1) without

any reconstruction in terms of hardware implementation.

To this end, we propose to estimate R(eK1) using D(eK1)

as follows

R̂(eK1) = D(eK1)

∑

K+1≤i≤N |ỹi|
∑

1≤i≤K |ỹi|
(18)

In this regard, themetric associated with the current candidate

codeword ĉN1 can be efficiently estimated using

M̂

(

ĉN1

)

= D(eK1)+ R̂(eK1) (19)

Since a candidate codeword ĉN1 with smallerM(ĉK1) value

is more likely to be the codeword that has been transmitted,

whereas the codeword that possesses the largestM(ĉK1) value

so far is considered to be unpromising and should be dis-

carded, we discard ĉN1 (or its corresponding test error pattern

eK1) if M̂(ĉN1) is greater than the metric value of current most

likely codeword.

To implement the adaptive OSD, we use CRC to judge

if the current candidate codeword is correct. The algorithm

starts by checking the candidate codeword with test error pat-

tern 0K1 , if it passes the CRC check, then the algorithm returns

the current codeword and stops; otherwise, at most
∑l

i=1

(

K
i

)

reprocessing is required. The reprocessing procedure checks

the remaining test error pattern in a level-by-level manner,

i.e., start from patterns with hamming weight 1 to weight l.

For a certain level, the error pattern with larger decimal

value is checked first. The overall algorithm is summarized

as Algorithm 1.

Algorithm 1 Adaptive OSD Decoding

Input: the received sequence yN1
Output: the decoded codeword ĉN1

1 max_level = l, cur_level = 0, eK1 = 0K1
2 ĉN1 ← OSD(yN1 , eK1)

// Initialization

3 while CRC(ĉN1) = failure and cur_level < l do

4 cur_level=cur_level+1

5 M
(

ĉN1
)

= D(eK1)+R(eK1)

6 M∗
(

ĉN1
)

←M
(

ĉN1
)

7 enumerate the {eK1 |
∑K

i=1 ei = cur_level}

8 select an untested eK1 from {eK1 } in ascending order

of
∑K

i=1 2
K−iei

9 calculate M̂
(

ĉN1
)

= D(eK1)+ R̂(eK1)

10 if M̂
(

ĉN1
)

> M∗
(

ĉN1
)

then

11 go to step 8

12 else

13 ĉN1 ← OSD(yN1 , eK1)

14 go to step 3

15 return ĉN1

IV. LOW COMPLEXITY IMPLEMENTATION

Although the adaptive OSD is designed to expurgate the

unnecessary codeword reprocessing, however, in each repro-

cessing episode, there are Gaussian eliminations that dom-

inate the complexity. In this section, we first propose to

decompose the current code sequence into several indepen-

dent subcodes, due to the reduced codeword dimension,

the implementation complexity of adaptive OSD can be

reduced. On this basis, a concatenated adaptive OSD is finally

developed, which achieves a good trade-off between decod-

ing latency and complexity.

A. POLAR DECOMPOSITION

Proposition 2: For a polar code with block lengthN = 2n,

it can be decomposed into an outer code consisting of 2k (0 ≤

k ≤ (n − 1)) independent subcodes with block length 2n−k ,

and an inner code consisting of 2n−k independent subcodes

with block length 2k .

Proof: For a polar code cN1 = uN1 BNF
⊗n
2 with block

length N = 2n, its generation matrix GN = BNF
⊗n
2 can be

decomposed as follows

GN = BN

(

(B−1N/MGN/M)⊗ (B−1M GM)
)

= BN (B
−1
N/M ⊗ B−1M)(GN/MGM)

= BN (B
−1
N/M ⊗ B−1M)(GN/M ⊗ EM)(EN/M ⊗GM),

(20)

where the second and the third equalities come from the fact

that (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D), and EM denotes the

M × M identity matrix where M = 2k . By defining the

permutation matrix 8N
1
= BN (B

−1
N/M ⊗ B−1M), (20) can be

recast as

GN = (EM ⊗GN/M)8N (EN/M ⊗GM), (21)

where the term on the L.H.S. of 8N indicates the outer code,

which consists of M = 2k independent subcodes with block

length N/M = 2n−k ; and the term on the R.H.S of 8N

indicates the inner code, which consists of N/M = 2n−k

independent subcodes with block length M = 2k .

Remarks: The decomposition dose not change the polar

codeword, however, we can exploit the independency of

decomposed inner subcodes to concurrently compute the

M = 2k soft input for adaptive OSD. And each adap-

tive OSD faces a decoding problem that is 1/M of origi-

nal one. In this regard, the overall complexity is reduced.

This motivates us to use adaptive OSD to decode outer sub-

codes, and use SC decoder to generate the soft messages for

adaptive OSD.

B. CONCATENATED ADAPTIVE OSD

With polar decomposition, a concatenated adaptive OSD

scheme is developed to further reduce the implementation

complexity. We illustrate this scheme in Fig. 5.

VOLUME 7, 2019 134231

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

FIGURE 5. The concatenation of adaptive OSD.

For a received sequence yN1 , its corresponding codeword

is decomposed into 2n−k inner subcodes and 2k outer sub-

codes. SC decoders are used to generate message Lk,i as

the input to adaptive OSD (Lk,i is the i-th LLR at level k

in a data flow graph like Fig. 2). In particular, for a given

SC decoder-j, (1 ≤ j ≤ 2n−k), the LLR of its first bit

can be computed given y
j·2k

(j−1)·2k+1
. Due to the independency

of inner subcodes, {Lk,1,Lk,2k+1 , . . . ,Lk,N−2k+1} can be

obtained concurrently in one clock cycle. Under the permuta-

tion function 8N , we have {L(v
(1)
1),L(v

(1)
2), . . . ,L(v

(1)

2n−k
)} =

{Lk,1,Lk,2k+1 , . . . ,Lk,N−2k+1} as the soft input to the adap-

tive OSD-1 in Fig. 5. With Algorithm 1, the adap-

tive OSD-1 outputs û2
n−k

1 , and the intermediate codeword

{v̂
(1)
1 , v̂

(1)
2 , . . . , v̂

(1)

2n−k
} can be computed. Using these interme-

diate codewords, the SC decoder-j (1 ≤ j ≤ 2n−k) can com-

pute the soft value of the second bit using v̂
(1)
j and y

j·2k

(j−1)·2k+1
,

which produces {L(v
(2)
1),L(v

(2)
2), . . . ,L(v

(2)

2n−k
)}, and Adap-

tive OSD-2 could be activated in a similar manner as Adaptive

OSD-1. Such process is continued until all information bits

are decoded. This scheme is summarized as Algorithm 2.

We note that the first for-loop in line 2, it corresponds to the

serial decoding process of 2k concatenated adaptive OSDs,

whereas the second for-loop corresponds to the decoding

process for 2n−k independent inner subcodes, which can be

operated concurrently. Although the codeword dimension for

some adaptive OSD-i is reduced from 2n to 2n−k , however, for

each concatenated adaptive OSD component, it can only be

activated until all its former component OSDs have derived

their estimations. This increases decoding latency compared

to Algorithm 1, thus there is a trade-off between decod-

ing latency and complexity to implement the concatenated

adaptive OSD.

C. THE TRADE-OFF BETWEEN DECODING

LATENCY AND COMPLEXITY

For all SC decoders in Fig. 5, they can be activated simul-

taneously. As introduced in Section II, the latency of SC

Algorithm 2 Concatenated Adaptive OSD Decoding

Input: k (0 ≤ k ≤ (n− 1)), the received sequence yN1
Output: the estimated message ûN1

1 Decompose the current codeword into 2n−k inner

subcodes and 2k outer subcodes.

2 for i← 1; i ≤ 2k ; i← i+ 1 do

3 for j← 1; j ≤ 2n−k ; j← j+ 1 do

4 L(v
(i)
j)← SC decoder-j(y

j·2k

(j−1)·2k+1
, v

(i−1)
j)

5 ui2
n−k

(i−1)2n−k+1
←

Adaptive OSD-i(L(v
(i)
1),L(v

(i)
2), . . . ,L(v

(i)

2n−k
))

6 {v
(i)
1 , v

(i)
2 , . . . , v

(i)

2n−k
} ← ui2

n−k

(i−1)2n−k+1
·G2n−k

7 return ûN1 =
⋃

i={1,2,...2k }

ui2
n−k

(i−1)2n−k+1

FIGURE 6. The Clock cycles required by adaptive OSD and SC decoder
with block-length N = 32, 64 and 128 versus Eb/N0 for coding rates
R = 0.5, 0.75.

decoding for a polar code with block length M = 2k is

(2M − 2) clock cycles, whereas the overall complexity of

SC decoding part is N
M
· O(M log2 M). For the adaptive

134232 VOLUME 7, 2019

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

FIGURE 7. The BLER achieved by the adaptive OSD and CA-SCL with a list size of 8 under coding rate R = 0.5, 0.75 versus Eb/N0 for
block-length N = 32, 64 and 128.

OSD part, its complexity is dominated by the sorting of

received sequence and matrix diagonalization operations.

Note that the size of input sequence for an adaptive OSD

is reduced from N to N/M , and there are at most N/M

information bits in ui2
n−k

(i−1)2n−k+1
(i = 1, 2, . . . 2k) for each

adaptive OSD, then we can estimate the decoding complexity

for a level-0 adaptive OSD by O(N
M
log2

N
M
) + O(N/M)3.

For a level-l adaptive OSD, at most
∑l

i=0

(

N/M
i

)

clock

cycles are required given sufficient hardware parallelization,

and the proposed concatenated adaptive OSD works in a

serial manner where the current OSD-i (i = 1, 2, . . . 2k)

must wait until OSD-1∼OSD-(i-1) have decoded their inter-

mediate codewords {v
(1)
1 , . . . , v

(1)

2n−k
, . . . , v

(i−1)
1 , . . . , v

(i−1)

2n−k
}.

Therefore, the decoding latency for all M adaptive OSD

decoders can be estimated by M ·
∑l

i=0

(

N/M
i

)

. By adding

the latency of SC decoding part, the overall decoding latency

of Algorithm 2 is at most (2M − 2)+M ·
∑l

i=0

(

N/M
i

)

.

Remarks: For each adaptive OSD component, the average

clock cycle is strictly smaller than
∑l

i=0

(

N/M
i

)

, and is close to

1 at high SNR regime (see Fig. 6). Thus the decoding latency

of Algorithm 2 is positively correlated with the value of M .

For lower decoding latency, smallerM value shall be selected.

Specially, when M = 20 = 1, the Algorithm 2 degrades

to the Algorithm 1. By choosing an appropriate M value,

Algorithm 2 achieves a good trade-off between complexity

and decoding latency.

V. SIMULATION RESULTS AND COMPARISONS

In this section, we investigate two key performance indica-

tors (KPIs) of polar decoding in URLLC, i.e., transmission

reliability and decoding latency. The reliability feature is

evaluated by the BLER performance of the proposed adaptive

OSD, whereas the decoding latency is characterized by the

consumed clock cycles. Like commonly deployed in URLLC

transmissions, we use short block-length polar codes with

medium to high coding rates. In particular, to construct polar

codes, we adopt the off-line construction scheme introduced

in [20]. Also, all polar codes are concatenated with a 8-bits

CRCwhose generator polynomial is g(D) = D8+D5+D4+1

(see [21]). In this sense, the information rate of a codeword

is R′ = K−8
N

while the coding rate seen by a polar decoder is

R = K/N .

A. DECODING LATENCY ANALYSIS

The average clock cycles used by the proposed adaptive

OSD are numerically compared with conventional SC-based

decoders under block-length N = {32, 64, 128} and cod-

ing rates R = {0.5, 0.75} in Fig. 6. To be more specific,

we use standard SC decoder [3] as the benchmark for it

has the consistent decoding latency compared to its other

SC-based counterparts, e.g., CA-SCL decoders. In addition,

the max_level in Algorithm 1 is set to 3 in this paper

to meet the requirement of ultra-reliable transmission in

URLLC.

For standard SC decoders, their decoding latency relate

only to the block-length. However, the latency of Algorithm 1

relates not only to the block-length, but also to the working

SNR and coding rate. For a certain coding rate, we can

observe that the proposed adaptive OSD adapts to the current

SNR in the sense that, more error patterns are tested when

the working SNR is low, whereas for moderate or high SNR,

the adaptive OSD can find the actual error pattern within

much smaller clock cycles that are close to 1. On the other

hand, for a certain working SNR, a higher coding rate means

a larger search space, thus resulting more clock cycles.

VOLUME 7, 2019 134233

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

FIGURE 8. The BLER achieved by the adaptive OSD and CA-SCL with a list size of 32 under coding rate R = 0.5, 0.75 versus Eb/N0
for block-length N = 32, 64 and 128.

Nevertheless, as the working SNR approaches to the

decoding threshold where BLER = 10−3 (as annotated

in Fig. 6), the clock cycles used by the adaptive OSD drop

dramatically, and even drop to that of ‘‘one-shot’’ decoding.

This makes the proposed adaptive OSD practical in URLLC

systems, where low SNR regime is actually not a regime of

interest because the decoder will not be activated due to high

BLER.

B. ERROR CORRECTING PERFORMANCE

We compare the BLER performance between the proposed

decoder and the state of the art CA-SCL decoders in Fig. 7

and Fig. 8. Specially, list sizes of L = {8, 32} are used in

CA-SCL decoders to meet the requirement of ultra-reliable

transmission.

In Fig. 7, the BLER performance achieved by the pro-

posed adaptive OSD is compared with CA-SCL decoder

with a list size of L = 8. One can observe that, the pro-

posed adaptive OSD outperforms the CA-SCL decoder for

various block-lengths under L = 8. Moreover, such gain

becomes more obvious as the block-length getting smaller.

It is reasonable since a smaller block-length means that a

smaller number of erroneous hard decision will happen in

the most reliable independent symbols. On the other hand,

small block-length causes insufficient polarization of the

split-channels for polar codes, which could increase its error

probability under CA-SCL decoder. Additionally, the gap

between CA-SCL decoder and our scheme under high coding

rate is larger than that under moderate coding rates, which

further indicates that the proposed adaptive OSD is more

suitable for decoding polar codes with high coding rates and

short block-lengths.

For larger list sizes, similar conclusions can be drawn from

Fig. 8. However, the gap between CA-SCL and our scheme

becomes narrow. This is practical, because for a CA-SCL

decoder with a list size of 32, it yields the best BLER perfor-

mance over its SC-based counterparts [8]. Nonetheless, for

higher coding rates and shorter block-length cases, the pro-

posed adaptive OSD still successfully competes the CA-SCL

decoder, and therefore is more preferable for URLLC

scenarios.

VI. CONCLUSION

Capitalizing on the parallelizable nature of ordered statistic

decoding, this paper firstly exploits a l-level OSD to avoid the

data dependency involved in conventional SC-based decod-

ing. Secondly, for the efficiency of hardware implementation,

a novel codeword searching metric is developed, and we

prove that the codeword with minimal metric value happens

to be the codeword that minimizes the decoding error. For this

reason, codewords with large metric value are considered to

be unpromising and should be excluded. An adaptive OSD

algorithm is then proposed following this sense. To further

reduce the overall decoding complexity, we propose to divide

the current codeword into several independent inner sub-

codes and outer subcodes. By handling these subcodes with

concatenated adaptive OSD, a trade-off between decoding

latency and complexity can be achieved. Finally, two key

performance indicators of polar decoding in URLLC are

evaluated through consumed clock cycles and BLER, respec-

tively.We show that for messages with short block-length and

high coding rate, the proposed adaptive OSD outperforms the

state of the art CA-SCL decoders, and thus is more suitable

for URLLC use case.

134234 VOLUME 7, 2019

K. Qin, Z. Zhang: Low-Latency Adaptive OSD of Polar Codes

ACKNOWLEDGMENT

This article was presented in part at Globecom 2018 [1].

REFERENCES

[1] K. Qin and Z. Zhang, ‘‘Adaptive ordered statistic decoding of polar codes

for URLLC systems,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),

Dec. 2018, pp. 1–6.

[2] Study on Scenarios and Requirements for Next Generation Access Tech-

nologies, document TR 138 913, 3GPP, 2017.

[3] E. Arıkan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE

Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[4] Chairmans Notes, document 3GPP TSG RAN WG1 #87, 2016.

[5] Z. Zhang, K. Qin, L. Zhang, and G. T. Chen, ‘‘Progressive bit-flipping

decoding of polar codes: A critical-set based tree search approach,’’ IEEE

Access, vol. 6, pp. 57738–57750, 2018.

[6] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Aug. 2011, pp. 1–5.

[7] K. Chen, K. Niu, and J. R. Lin, ‘‘List successive cancellation decoding of

polar codes,’’ Electron. Lett., vol. 48, no. 9, pp. 500–501, Apr. 2012.

[8] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[9] A. Alamdar-Yazdi and F. R. Kschischang, ‘‘A simplified successive-

cancellation decoder for polar codes,’’ IEEECommun. Lett., vol. 15, no. 12,

pp. 1378–1380, Dec. 2011.

[10] C. Zhang, B. Yuan, and K. K. Parhi, ‘‘Reduced-latency SC polar decoder

architectures,’’ in Proc. IEEE ICC, Jun. 2012, pp. 3471–3475.

[11] C. Zhang and K. K. Parhi, ‘‘Low-latency sequential and overlapped archi-

tectures for successive cancellation polar decoder,’’ IEEE Trans. Signal

Process., vol. 61, no. 10, pp. 2429–2441, May 2013.

[12] B. Li, H. Shen, D. Tse, and W. Tong, ‘‘Low-latency polar codes via hybrid

decoding,’’ in Proc. 8th Int. Symp. Turbo Codes Iterative Inf. Process.

(ISTC), Aug. 2014, pp. 223–227.

[13] X. Liu, J. Sha, C. Zhang, and Z. Wang, ‘‘A stage-reduced low-latency

successive cancellation decoder for polar codes,’’ in Proc. IEEE Int. Conf.

Digit. Signal Process. (DSP), Jul. 2015, pp. 258–262.

[14] Y. Fan, J. Chen, C. Xia, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, ‘‘Low-

latency list decoding of polar codes with double thresholding,’’ in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,

pp. 1042–1046.

[15] Y. Fan, C. Xia, J. Chen, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, ‘‘A low-

latency list successive-cancellation decoding implementation for polar

codes,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 303–317,

Feb. 2016.

[16] Early Termination for Polar Codes, document 3GPP TSGRAN WG1

Meeting #89, R1-1708644, Qualcomm, May 2017.

[17] M. P. C. Fossorier and S. Lin, ‘‘Soft-decision decoding of linear block

codes based on ordered statistics,’’ IEEE Trans. Inf. Theory, vol. 41, no. 5,

pp. 1379–1396, Sep. 1995.

[18] D. Wu, Y. Li, X. Guo, and Y. Sun, ‘‘Ordered statistic decoding for

short polar codes,’’ IEEE Commun. Lett., vol. 20, no. 6, pp. 1064–1067,

Jun. 2016.

[19] Merge Sort. Accessed: Jul. 2019. [Online]. Available: https://en.wikipedia.

org/wiki/Merge_sort

[20] Construction Schemes for Polar Codes, document 3GPP TSG RAN WG1

Meeting #89, R1-1701702, Huaewi, HiSilicon, Feb. 2017.

[21] J. G. Proakis, Digital Communications. New York, NY, USA:

McGraw-Hill, 1995.

KANGJIAN QIN received the B.S. degree in

telecommunication engineering from the College

of Telecommunication Engineering, Xidian Uni-

versity, Xi’an, China, in 2015. He is currently

pursuing the Ph.D. degree with the College of

Information Science and Electronic Engineer-

ing, Zhejiang University, Hangzhou, China. His

research interests include 5G communications and

channel coding.

ZHAOYANG ZHANG (M’02) received the Ph.D.

degree from Zhejiang University, Hangzhou,

China, in 1998.

He is currently a Qiushi Distinguished Pro-

fessor with Zhejiang University. He has coau-

thored more than 300 peer-reviewed international

journal and conference articles, including seven

conference best articles. His current research inter-

ests include the fundamental aspects of wireless

communications and networking, such as infor-

mation theory and coding, networked signal processing and distributed

learning, AI-empowered communications and networking, and synergetic

sensing, communication, and computation in the Internet of Things. He was

awarded the National Natural Science Fund for Outstanding Young Schol-

ars, in 2017. He is serving as an Editor for the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON COMMUNICATIONS, and

the IET Communications and has served as the General Chair, the TPC

Co-Chair, or the Symposium Co-Chair for WCSP 2013/2018, the Globe-

com 2014 Wireless Communications Symposium, and the VTC-Spring

2017 Workshop HMWC. He also served as a Keynote Speaker for several

international conferences and workshops, such as APCC 2018 and VTC-Fall

2017 Workshop NOMA.

VOLUME 7, 2019 134235

	INTRODUCTION
	PRELIMINARIES
	POLAR CODES
	SC AND SCL DECODING

	ADAPTIVE ORDERED STATISTIC DECODING
	OSD AND L-LEVEL OSD
	DECODING LATENCY OF L-LEVEL OSD
	A NOVEL CODEWORD SEARCHING METRIC
	ADAPTIVE OSD

	LOW COMPLEXITY IMPLEMENTATION
	POLAR DECOMPOSITION
	CONCATENATED ADAPTIVE OSD
	THE TRADE-OFF BETWEEN DECODING LATENCY AND COMPLEXITY

	SIMULATION RESULTS AND COMPARISONS
	DECODING LATENCY ANALYSIS
	ERROR CORRECTING PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	KANGJIAN QIN
	ZHAOYANG ZHANG

