
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

Low-latency and Resource-efficient Service Function Chaining

Orchestration in Network Function Virtualization

Gang Sun, Zhu Xu, Hongfang Yu, Xi Chen, Victor Chang, Athanasios V. Vasilakos

Abstract—Recently, network function virtualization

(NFV) has been proposed to solve the dilemma faced by

traditional networks and to improve network performance

through hardware and software decoupling. The

deployment of the service function chain (SFC) is a key

technology that affects the performance of virtual network

function (VNF). The key issue in the deployment of SFCs is

proposing effective algorithms to achieve efficient use of

resources. In this paper, we propose a service function

chain deployment optimization (SFCDO) algorithm based

on a breadth-first search (BFS). The algorithm first uses a

BFS based algorithm to find the shortest path between the

source node and the destination node. Then, based on the

shortest path, the path with the fewest hops is

preferentially chosen to implement the SFC deployment.

Finally, we compare the performances with the greedy and

simulated annealing (G-SA) algorithm. The experiment

results show that the proposed algorithm is optimized in

terms of end-to-end delay and bandwidth resource

consumption. In addition, we also consider the load rate of

the nodes to achieve network load balancing.

Index Terms— Network function virtualization; Service

function chain; End-to-end delay; Resource consumption

I. INTRODUCTION

With the increase in network users and the development of

services, today's telecommunication industry needs to store

and transmit large amounts of data. Hardware-based networks

cannot withstand the impact of these applications. In most

traditional networks, each network function required separate

and expensive hardware, which caused the network to become

rigid and increased network capital and operating expenses.

Network function virtualization (NFV) [1,2] technology was

proposed to solve the dilemma faced by traditional networks.

NFV is a promising and critical technology for future network

service providers [3]. Through software and hardware

decoupling and functional abstraction, network device

functions no longer rely on dedicated hardware. The hardware

resources in the network can be fully and flexibly shared. In

addition, operators can realize the rapid development and

deployment of new services. Based on actual business needs,

multiple virtual network functions (VNFs) are grouped into

service function chains (SFCs) [4-8] in a predefined order and

then deployed to the network to serve users. By running a

virtual machine (VM) that performs various functions, the

service providers can automatically start a VM whenever a

user needs a new network function, which can reduce

deployment time, capital costs and operating expenses.

An SFC is defined as a sequence of middleboxes that is

traversed by given flows in a predefined order [9]. An SFC

request can be abstracted into a directed topology. An example

of an SFC request is shown in Figure 1. The SFC consists of a

service terminal, a user, and a set of VNFs in a predefined

order connected by virtual network links. Usually, VNFs refer

to middlebox services in the network, such as deep packet

inspection (DPI), firewalls, and gateways. In Figure 1, the two

ovals represent the service terminal and the user. The hexagons

represent the VNFs. VNFs are connected by directed virtual

network links.

Fig. 1. Example of an SFC request.

SFC deployment is one of the key technologies affecting the

performance of NFV. We need to find a path between the

service terminal and the user that satisfies the requested

resource constraints to deploy VNFs and virtual network links

in the underlying physical network. Deploying a VNF requires

a certain amount of CPU resources, and deploying a virtual

network link consumes a certain amount of bandwidth

resources. Different path selections will cause different

end-to-end delays. Therefore, the deployment path choice

affects the performance of the SFC. In the process of SFC

deployment, many indicators need to be considered

simultaneously, such as resource consumption, end-to-end

delay, and load balancing. With the expansion of the network

scale and the increase in SFC requests, ensuring successful

SFC deployment is a considerable challenge. Many studies

have shown that the SFC deployment problem is an NP-hard

problem [9-11]. There is no polynomial time algorithm to solve

the problem. Usually, an efficient heuristic algorithm is used to

obtain an approximate solution.

Recently, there have been many academic studies on how to

deploy the SFC. Liu et al. [9] proposed a two-step deployment

approach, first deploying VNFs and then finding paths to

deploy virtual network links between deployed nodes. They

used a greedy algorithm to find the initial deployment scheme,

and a simulated annealing algorithm was used to optimize the

deployment scheme based on the greedy algorithm. The author

of [12] proposed the middlebox placement optimization (MPO)

algorithm, which used the ordering of the underlying topology

and the SFC to optimize the end-to-end delay of SFC

deployment.

Terminal PGWDPI FW SGW User

e
2

VNF
2

VNF
1

VNF
4

VNF
3

e
1

e
3

e
4

e
5

 Gang Sun, Zhu Xu and Hongfang Yu are with Key Lab of Optical Fiber

Sensing and Communications (Ministry of Education), University of Electronic

Science and Technology of China, Chengdu, China (e-mail:

gangsun@uestc.edu.cn; 2215766944@qq.com; yuhf@uestc.edu.cn).

Xi Chen is with School of Computer Science and Technology, Southwest

Minzu University, Chengdu, China (e-mail: chullsea@163.com).

Victor Chang is with School of Computing & Digital Technologies, Teesside

University, Middlesbrough, UK (e-mail: victorchang.research@gmail.com).

Athanasios V. Vasilakos is with Department of Computer Science, Electrical

and Space Engineering, Lulea University of Technology, Sweden (e-mail:

athanasios.vasilakos@ltu.se).

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

A. Motivation

Few previous researches have simultaneously considered

resource consumption and end-to-end delay in SFC

deployment. The increase in resource consumption can cause

network congestion and increase operating costs, and the

increase in end-to-end delay can seriously affect network

performance and user experiences. In this paper, we focus on

the SFC deployment problem. More specifically, we propose

an SFC deployment optimization (SFCDO) algorithm to

optimize both resource consumption and end-to-end delay. The

algorithm first uses a BFS to find the shortest path between the

terminal and the user. Then, based on the shortest path, the path

with the fewest hops is preferentially chosen to implement the

SFC deployment. In addition, we also consider the load

balancing problem to improve the reliability of the network. As

a result, the proposed algorithm can improve the performance

of the network, effectively reducing the deployment cost and

the end-to-end delay.

B. Research Contributions

Our main contributions are described as follows:

l We build a mathematical model of the SFC deployment

problem and propose an SFCDO algorithm that optimizes

resource consumption and end-to-end delay of the

deployment path.

l In our algorithm design process, the load balancing

problem of network nodes is considered. When selecting

the physical node to deploy the VNF, we design the optimal

selection factor (OSF) to select the node with the lowest

current load rate, distribute the load evenly on all nodes,

and achieve load balancing.

l We implement our proposed approach and compare it with

the existing algorithms through experiment. Then, we

analyze our algorithm’s performance with the compared

algorithms.

C. Structure of this Paper

The remainder of this paper is organized as follows. In

Section II, we review the related work. In Section Ⅲ, we

describe the problem in this research with some formulations.

In Section IV, we propose our heuristic algorithm. A

performance evaluation of our proposed algorithm is presented

in Section Ⅴ, and Section VI concludes this work.

II. RELATED WORK

A. SFC deployment for optimizing resource consumption

Resource consumption is an important indicator for

measuring the benefits and drawbacks of the SFC deployment

algorithm. The optimization of resource consumption can

reduce network congestion and operating costs. To reduce

resource consumption and the cost of SFC deployment, Huang

et al. [13] studied service chain deployment by exploiting two

types of correlations between network functions and devised

an approximation algorithm based on the Markov

approximation technique to decrease the implementation cost.

Liu et al. [14] studied how to adjust the SFC deployment when

the user requests dynamic changes, especially when the user

moves. They established an integer linear programming model

and a column generation model to optimize the node resources

and bandwidth resources consumed by the deployment. Sun et

al. [15] proposed a reliability-aware SFC deployment

algorithm to select a less reliable deployment solution to

achieve smaller deployment costs and obtain greater benefits

while ensuring user reliability requirements. Liang et al. [16]

proposed a dynamic orchestration mechanism for the SFC in

hybrid NFV networks. They constructed a dynamic model

SFC-D by considering selection changes and proposed an

algorithm based on the Markov renewal process (MRP) to

reduce the computing time.

Sun et al. [17] designed an SFC deployment for cloud-edge

computing. They proposed that by combining cloud computing

and edge computing, the consumption of network resources

can be effectively reduced. The reorganization of the SFC was

studied, effectively solving network congestion. The author of

[18] modeled SFC deployment as a set coverage problem and

proposed two logarithmic factor approximation algorithms.

They designed an optimization algorithm specifically for a tree

topology. Feng et al. [19] designed a fast approximation

algorithm to minimize deployment costs and modeled the

multicommodity chain flow problem on a cloud augmented

graph. They proposed a queue-length-based algorithm that

provides an O(ε) approximation in time O(1/ε). The author of

[11] presented distributed service function chaining that

coordinated these operations, distributed VNF instances of the

same function, and selected appropriate instances from typical

VNF offerings. They formulated this deployment as a mixed

integer programming (MIP) model and developed a local

search heuristic called Kariz. Extensive experiments

demonstrated that Kariz achieved an additional cost of less

than 24 percent compared with that of the MIP model.

Many researchers are studying SFC deployment in

datacenter networks. The author of [20] addressed the problem

of mapping SFCs across different datacenters with the

objective of reducing the flow processing costs. They

developed an integer linear programming formulation to

optimally deploy SFCs to multiple datacenters while adhering

to the datacenter’s capacity constraints. A novel

application-aware flow reduction (AAFR) algorithm was

proposed to reduce the cost of SFC deployment. Jia et al. [21]

investigated the dynamic placement of SFCs across

geodistributed datacenters to serve flows between the

dispersed source and destination pairs for operational cost

minimization of the service chain provider over the entire

system span. An efficient online algorithm that consists of two

components was proposed. The author of [22] found that traffic

fluctuations in large-scale datacenters (LDCs) could result in

overload and underload phenomena in SFCs. They proposed a

distributed approach based on the alternating direction method

of multipliers (ADMM) to jointly load balance the traffic and

horizontally scale up and down VNFs in LDCs with minimum

deployment and forwarding costs.

Zhong et al. [23] orchestrated SFCs across multiple

datacenters, with a goal to minimize the overall cost. An

integer linear programming model was formulated and solved

with a metaheuristic algorithm named GBAO that contained

three modules. The author of [24] proposed a multiobjective

genetic algorithm (GA) to dynamically forecast resource

utilization and energy consumption in cloud datacenters. They

formulated a multiobjective optimization problem of resource

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

allocation that considers the CPU and memory utilization of

VMs and physical machines (PMs) and the energy

consumption of the datacenter. The proposed GA forecasted

the resource requirement of the next time slot according to the

historical data in previous time slots. They further proposed a

VM placement algorithm to allocate VMs for the next time slot

based on the prediction results of the GA. The author of [25,26]

also studied the deployment of SFC in data center network, and

proposed corresponding algorithms to reduce the cost of

deployment.

B. SFC deployment for optimizing the end-to-end delay

Many researchers are working to reduce the end-to-end

delay of service chain deployments. Reducing the end-to-end

delay of deployment paths can improve network performance

and user experience. Qu et al. [27] established a

reliability-aware and delay-constrained (READ) routing

optimization framework for NFV-enabled datacenter networks.

First, a mixed integer linear program model was proposed to

reduce the end-to-end delay. Then, a heuristic algorithm was

proposed to reduce the complexity of the algorithm. Cheng et

al. [28] established the SFC deployment problem as a mixed

integer nonlinear programming model. Based on the model, a

heuristic algorithm was designed to reduce the complexity of

the algorithm to ensure the delay constraints. Can et al. [12]

proposed an MPO algorithm that utilizes the flexibility and

dynamics provided by a software-defined network (SDN) and

NFV. It can dynamically deploy a sequence of services in the

SFC to adapt real-time changing service characters. Li et al.

[29] were motivated to investigate applying the SFC in the

small satellite-based software-defined satellite networks

(SDSN) for service delivery. They introduced the structure of

the multilayer constellation-based SDSN. In addition, they

described two deployment patterns for the SFC in SDSN: the

multidomain (MD) pattern and the satellite formation (SF)

pattern. Two algorithms were proposed to reduce the delay and

packet loss rate.

Cai et al. [30] aimed to achieve a flexible service

orchestration for satellite networks with minimal end-to-end

service delays. Based on the general NFV-enabled architecture,

they built a time-varying satellite communication network

model and novel forms of SFC requests. An algorithm for

effectively deploying an SFC in a satellite network was

proposed. Lei et al. [31] proposed a stochastic prediction

model for VNF latency using random forest technology to

predict the processing time and queuing time of VNFs and

finally optimized the end-to-end delay.

The author of [32] studied SFC deployments in the cloud

network infrastructure using the multiaccess edge computing

(MEC) standard for accommodating mission critical and delay

sensitive traffic. They aimed to minimize the end-to-end

communication delay while keeping the overall deployment

cost minimal. Yang et al. [33] considered SFC deployment

based on realistic topology sensing in a fifth-generation

cloud-radio access network (C-RAN). The partial observation

Markov decision process (POMDP) was used to estimate the

whole real topology condition. They proposed a

POMDP-based SFC deployment scheme and a point-based

mingled heuristic value iteration algorithm to maximize the

utility associated with the total delay.

C. SFC deployment for load balancing

Implementing load balancing can effectively prevent

bottleneck links or bottleneck nodes from appearing in the

network. The author of [34] considered network load balancing

and server load balancing when researching SFC deployment.

They proposed a two-phase algorithm, nearest first and

local-global transformation (NF-LGT) in the datacenter

network environment. Fei et al. [35] proposed deploying VNFs

in geodistributed central offices (COs). They first selected a set

of central offices that minimized the communication cost

among the selected COs. Then, they employed a

shadow-routing-based approach, which minimized the

maximum of appropriately defined CO utilizations, to jointly

solve the VNF-CO and VNF-server assignment problem.

Hu et al. [36] proposed an SFC runtime framework

NFCompass that uses SFC reorganization technology and task

scheduling technology based on graph partitioning. They

ultimately reduced the length and complexity of the processing

SFC and achieved better load balancing. The author of [37]

considered SFC deployment in a self-organizing SDN-NFV

network. They introduced a new dynamic fine-grained

function placement and migration mechanism. The designed

algorithm considers load balancing and optimized fault

tolerance and avoids network congestion.

III. PROBLEM STATEMENT AND FORMULATION

A. Physical network model

The physical network is the underlying network responsible

for mapping the SFC. A physical network is usually composed

of a set of servers connected to the switches and physical

network links. The server has a certain computing resource,

and the link has a certain bandwidth resource. In the process of

modeling, we abstract servers as nodes and physical links as

links in the topology.

We model the physical network as 𝐺" = (𝑁" , 𝐸"), where

𝑁" = {𝑛+, 𝑛,, … , 𝑛 ." } is the set of network nodes and 𝐸" =

𝑙+, 𝑙,, … , 𝑙 1" is the set of network links. |𝑁𝑃| refers to the

number of network nodes in the network, and |𝐸𝑃| refers to the

number of physical links. A network node 𝑛4 usually refers to a

server with a certain computing resource 𝑎(𝑛4). We use 𝑐(𝑛4)

to represent the remaining computing resources of the node,

and 𝑏(𝑛4) denotes the load rate of the node. The formula for

calculating the load rate of node 𝑏(𝑛4) is:

 𝑏 𝑛4 =
8 9: ;< 9:

8(9:)
		∀	𝑛4 ∈ 𝑁" (1)

For a physical link 𝑙4 , we use 𝑎(𝑙4) to represent all

bandwidth resources, and 𝑐(𝑙4) to represent the remaining

bandwidth resources. 𝑏(𝑙4) is used to indicate the load rate of

the link. The formula for calculating the link load rate 𝑏(𝑙4) is:

𝑏 𝑙4 =
8 @: ;< @:

8(@:)
		∀	𝑙4 ∈ 𝐸" (2)

In addition, we use 𝑝(𝑛4 , 𝑛B) to represent a path from node

𝑛4 to node 𝑛B, where 𝑝(𝑛4 , 𝑛B) is a subset of 𝐸"	that contains all

the links on a path from node 𝑛4 	to 𝑛B . These are shown in

Formula (3). We assume that the nodes connected at both ends

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

of the link 𝑙4 are denoted as 𝑛@4+ , 𝑛@4, . Therefore, the

transmission delay of the link 𝑙4 is denoted as 𝑑(𝑙4) or

𝑑(𝑛@4+, 𝑛@4,). The end-to-end delay from 𝑛4 to 𝑛B is equal to the

sum of the delay of all physical links on this path and is

denoted as	𝑑 𝑛4 , 𝑛B . These are shown in Formulas (4) and (5).

For example, if 𝑝 𝑛+, 𝑛D = 𝑙+, 𝑙,, 𝑙E , 𝑙+, 𝑙,, 𝑙E ∈ 𝐸" , then

𝑑 𝑛+, 𝑛D = 𝑑 𝑙+ + 𝑑 𝑙, + 𝑑 𝑙E , where 𝑑 𝑙+ , 𝑑 𝑙, and

𝑑 𝑙E represent the delay of link 𝑙+, 𝑙, and 𝑙E, respectively.

𝑝 𝑛4 , 𝑛B = 𝑙G,… , 𝑙9 ⊆ 𝐸"		∀	𝑛4 , 𝑛B ∈ 𝑁" (3)

𝑑 𝑙4 = 𝑑 𝑛@4+, 𝑛@4, 		∀	𝑙4 ∈ 𝐸" (4)

𝑑 𝑛4 , 𝑛B = 𝑑(𝑙I)@J∈K(9:,9L)
		∀	𝑛4 , 𝑛B ∈ 𝑁" (5)

B. SFC request model

The SFC request is composed of a set of VNFs and links

according to the actual needs of users. The VNF requests a

certain computing resource, and the virtual network link

requests a certain bandwidth resource. The remaining

resources of the deployed node or link must be greater than the

requested resources. In addition, the VNF has strict order

requirements. The traffic flow must traverse from the terminal

to the user in the predefined order. The SFC can be regarded as

a singly linked list.

Now, we present a formal model to describe the SFC. Let

𝐿𝑖𝑠𝑡QRS = {𝐺Q+, 𝐺Q,, … , 𝐺Q|T4UVWXY|
} denote the set of SFCs,

where |𝐿𝑖𝑠𝑡QRS| represents the number of SFCs. We model one

SFC request as a directed weight graph 𝐺Q = (𝑁Q, 𝐸Q), where

𝑁Q = 	 {𝑣𝑛𝑓+, 𝑣𝑛𝑓,, … , 𝑣𝑛𝑓|.Q|} is represented as the set of

VNFs in the SFC, and 𝐸Q = 	 𝑒+, 𝑒,, … , 𝑒 1Q represents the set

of virtual network links. |𝑁𝑆| and |𝐸𝑆| represent the number

of VNFs and links in the SFC, respectively. Deploying a VNF

𝑣𝑛𝑓4 requires a certain amount of computing resources 𝑟(𝑣𝑛𝑓4).

Similarly, deploying a virtual network link 𝑒4 requires a certain

amount of bandwidth resources 𝑟(𝑒4). Each SFC has a known

source node and destination node, denoted by 𝑆 and 𝐷 ,

respectively. The source node and the destination node

represent the terminal and the user, respectively. Besides,

VNFs should be traversed in the predefined order. We denote it

as 𝐶ab = 	 {𝑣𝑛𝑓+ → 𝑣𝑛𝑓, → ⋯ → 𝑣𝑛𝑓|.Q|}.

C. SFC deployment

In our problem setting, the underlying physical network and

SFC request information are given as inputs. Through the

heuristic algorithm, a physical path that satisfies the resource

constraint is outputted to deploy the SFC. In other words, SFC

deployment finds some physical nodes to deploy the VNFs and

some links to map the virtual network links between the known

source node and the destination node. However, the quality of

the deployment path has a great impact on deployment costs

and the end-to-end delay. Our goal is to find an optimal

deployment scheme that minimizes total end-to-end delay and

total bandwidth consumption.

For an SFC 𝐺Q = (𝑁Q, 𝐸Q), we denote DS = {DSg, DSh} as

the scheme of SFC deployment, where DSg =

	{DSg 𝑣𝑛𝑓+ , 𝐷𝑆. 𝑣𝑛𝑓, , … , 𝐷𝑆.(𝑣𝑛𝑓|.Q|)} records the

deployment scheme of VNFs and DSh =

	{DSh 𝑒+ , DSh 𝑒, , … , DSh(𝑒|1Q|)} records the deployment

scheme of virtual network links. The SFC deployment

procedure can be formulated as follows.

(1) VNF deployment

The deployment process of VNFs ca be formulated as

follows:

𝐷𝑆.: 𝑁Q
								jQk								

𝑁l (6)

𝐷𝑆. 𝑣𝑛𝑓4 ∈ 𝑁l				∀𝑣𝑛𝑓4 ∈ 𝑁Q (7)

𝑐 𝐷𝑆. 𝑣𝑛𝑓4 ≥ 𝑟 𝑣𝑛𝑓4 				∀𝑣𝑛𝑓4 ∈ 𝑁Q (8)

In Formula (6), 𝑁l ⊂ 𝑁" denotes the set of physical network

nodes which host all VNFs. As shown in Formula (7),

𝐷𝑆. 𝑣𝑛𝑓4 records the physical node that host the VNF 𝑣𝑛𝑓4.

In the process of deployment, since the physical network

resources are limited, some resource constraints must be met.

For the deployment of VNFs, Formula (8) is a constraint to

ensure that the computing resources requested by the VNF

cannot be greater than the remaining computing resources of

the physical node.

𝑍 𝑣𝑛𝑓4 , 𝑛B ∈ 0,1 	∀𝑣𝑛𝑓4 ∈ 𝑁Q, ∀𝑛B ∈ 𝑁" (9)

𝑍 𝑣𝑛𝑓4 , 𝑛B = 1		∀𝑣𝑛𝑓4 ∈ 𝑁U
|."|

Br+ (10)

𝑍 𝑣𝑛𝑓4 , 𝑛B = 1		∀𝑛B	 ∈ 𝑁"
|.Q|

4r+ (11)

𝑍 𝑣𝑛𝑓4 , 𝑛Bs9t:∈.WuW∈T4UVWXY
×

𝑟 𝑣𝑛𝑓4 ≤ 𝑎 𝑛B 		∀𝑛B ∈ 𝑁Q (12)

Formula (9) indicates that 𝑍 𝑣𝑛𝑓4 , 𝑛B 	is a binary variable

that can be equal to only 0 or 1. If 𝑍 𝑣𝑛𝑓4 , 𝑛B = 1, the 𝑖-th

VNF 𝑣𝑛𝑓4 is deployed on the physical node 𝑛B , otherwise

𝑍 𝑣𝑛𝑓4 , 𝑛B = 0. Formulas (10) and (11) guarantee that a VNF

can be deployed on only one physical network node and that a

physical network node only hosts one VNF for an SFC.

Formula (12) ensures that the request resources of all VNFs

deployed on the node 𝑛B can not exceed all resources of this

node.

(2) Virtual network link deployment

𝐷𝑆1: 𝐸Q
								jQx							

𝐸l (13)

𝐷𝑆1 𝑒4 ∈ 𝐸l		∀𝑒4 ∈ 𝐸Q (14)

𝑐 𝑙B ≥ 𝑟 𝑒4 		∀𝑒4 ∈ 𝐸Q@L∈jQx(y:)

G49
 (15)

 In Formula (13), 𝐸l denotes the set of physical paths for

hosting all virtual network links and each physical path is a

subset of 𝐸Q. As shown in Formula (14), 𝐷𝑆1 𝑒4 	records the

physical path that host the virtual network link 𝑒4 . For the

deployment of the virtual network link, the bandwidth resource

requested by the virtual network link cannot be greater than the

remaining bandwidth resources of the physical link, which is

described in Formula (15).

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

𝑌 𝑒4 , 𝑙B ∈ 0,1 		∀𝑒4 ∈ 𝐸Q, ∀𝑙B ∈ 𝐸" (16)

𝑌 𝑒4 , 𝑙By:∈1WuW∈T4UVWXY
×𝑟 𝑒4 ≤ 𝑎 𝑙B 		∀𝑙B ∈ 𝐸" (17)

𝑃U{<< = 𝑁𝑈𝑀U{<</|𝐿𝑖𝑠𝑡U{<<| (18)

Formula (16) indicates that 𝑌 𝑒4 , 𝑙B 	is a binary variable that

can be equal to only 0 or 1. If 𝑌 𝑒4 , 𝑙B = 1, the 𝑖-th virtual

network link 𝑒4 is deployed on the physical link 𝑙B, otherwise

𝑌 𝑒4 , 𝑙B = 0. However, different from node deployment, since

a virtual network link can map multiple physical links, the

sum	𝑌 𝑒4 , 𝑙B of is not required to be 1. Formula (17) ensures

that the request bandwidth resources of all virtual network

links deployed on the physical link 𝑙B can not exceed all

bandwidth resources of this link. Finally, we define the success

rate of the SFC deployment, which is equal to the number of

successfully deployed SFCs divided by the number of SFCs in

a set. As shown in Formula (18), 𝑁𝑈𝑀U{<< represents the

number of successfully deployed SFCs. 𝑃U{<< is the success

rate of the SFC deployment.

(3) SFC deployment example

We show an example of SFC deployment in Figure 2. An

SFC request is shown in Figure 2(a); the source node is 𝐴, and

the destination node is 𝐺. The SFC contains two VNFs. Each

of them has a certain computing resource request. The VNFs

are connected by a directed virtual network link, and each

virtual network link has a certain bandwidth resource request.

In Figure 2(b), we assume that the underlying network

resources meet the resource constraints, and show two

different deployment schemes marked with red dashed lines

and blue dashed lines. The bandwidth consumption of the red

path is 5 + 7 + 8 + 8 = 28, and the bandwidth consumption

of the blue path is 5 + 7 + 8 = 20. In addition, since the red

path has more hops than those of the blue path, the end-to-end

delay of the red path is greater than that of the blue path. This

example explains that deploying different paths, and especially

the hop count of the path, has a large impact on the cost and the

end-to-end delay. Therefore, it is important to investigate this

problem and design an algorithm that outputs an optimized

SFC deployment scheme.

Fig. 2. Example of an SFC deployment.

D. Optimization goals

In this paper, we explore three performance metrics: the

end-to-end delay, bandwidth consumption and the load rate of

nodes. The end-to-end delay reflects the performance of the

network application and affects the user's experience, so we

expect it to be minimized. Network operators, except the total

bandwidth consumption, are minimized to prevent network

congestion and reduce operating costs. When the network load

is concentrated on some nodes, bottleneck nodes occur in the

network, which affects the deployment of the following SFC.

Therefore, we distribute the load across all nodes as much as

possible for load balancing.

(1) The end-to-end delay

The end-to-end delay of the deployment path can be

formulated as follows:

𝐷𝑒𝑙𝑎𝑦uW = 𝑑(𝑙B)@L∈jQ(y:)y:∈1W
		∀	𝐺Q ∈ 𝐿𝑖𝑠𝑡QRS (19)

𝐷𝑒𝑙𝑎𝑦V�V = 𝑑	(𝑙B)@L∈jQ(y:)y:∈1WuW∈T4UVWXY
 (20)

 In Formula (19), on the left side of the equal sign, 𝐷𝑒𝑙𝑎𝑦uW

represents the end-to-end delay of the entire SFC. On the right

side of the equal sign, the inner summation represents the

end-to-end delay of the deployment path on which the virtual

network link	𝑒4 is deployed. The end-to-end delay of the entire

chain is equal to the sum of the delay of all deployment paths.

In Formula (20), 𝐷𝑒𝑙𝑎𝑦V�V represents the total end-to-end

delay of a set of SFCs. On the right side of the equal sign is the

sum of the end-to-end delay of every SFC in the set 𝐿𝑖𝑠𝑡QRS .

One of our goals is to minimize 𝐷𝑒𝑙𝑎𝑦V�V.

(2) Bandwidth resource consumption

The calculation expression for bandwidth resource

consumption is similar to the end-to-end delay:

𝐵𝑎𝑛𝑑uW = 𝑟(𝑒4)@L∈jQ(y4)y:∈1W
		∀	𝐺Q ∈ 𝐿𝑖𝑠𝑡QRS (21)

𝐵𝑎𝑛𝑑V�V = 𝑟(𝑒𝑖)@L∈jQ(y:)y:∈1WuW∈T4UVWXY
 (22)

In Formula (21), on the left side of the equal sign, 𝐵𝑎𝑛𝑑uW

represents the whole bandwidth consumption of one SFC. On

the right side of the equal sign, the inner summation represents

the bandwidth consumption of the deployment path on which

one virtual network link is deployed. The bandwidth

consumption of the entire chain equals the sum of the

bandwidth consumption of all deployment paths. In Formula

(22), 𝐵𝑎𝑛𝑑V�V represents the total bandwidth consumption of a

set of SFCs. On the right side of the equal sign, it is the sum of

the bandwidth consumption of every SFC in the set 𝐿𝑖𝑠𝑡QRS .

One of our goals is to minimize 𝐵𝑎𝑛𝑑V�V.

(3) The load rate of the nodes

Here, we mainly consider the load rate of nodes in the

physical network.

𝐿𝑜𝑎𝑑9��y = {𝑏(𝑛4)}9:∈.�
G8� (23)

Formula (23) represents the maximum load rate of the nodes

in the physical network. As shown in the formula, the

maximum node load rate is equal to the maximum load rate of

all nodes in the physical network.

A vnf
1

vnf
2 G

e
1

r(vnf
1
)=6 r(vnf

2
)=7

r(e
1
)=5

A

B

C

D F

E

G

(a)

(b)

vnf
1

e
2

e
3

r(e
2
)=7 r(e

3
)=8

e
1

e
1

vnf
1

e
2

e
2

e
3

e
3

e
3

vnf
2

vnf
2

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

In summary, our optimization goal is to minimize

end-to-end delay and bandwidth consumption and to minimize

the maximum load rate of nodes. In addition, the symbols used

in the problem statement and formulation are summarized in

Table 1.

TABLE 1

The Symbols Used in the Problem Statement and Formulation

Symbol Description

𝐺" The physical network

𝑁" The set of the physical nodes in the network

𝐸" The set of the physical links in the network

|𝑁𝑃| The number of physical nodes

|𝐸𝑃| The number of physical links

𝑎(𝑛4) All computing resources of the node 𝑛4

𝑐 𝑛4 								 The remaining resources of the node 𝑛4

𝑏(𝑛4) The load rate of the node 𝑛4

𝑎 𝑙4 All band width resources of the link 𝑙4

𝑐 𝑙4 The remaining resources of the link 𝑙4

𝑏 𝑙4 The load rate of the link 𝑙4

𝑝(𝑛4 , 𝑛B) A path from node 𝑛4 to node 𝑛B

𝑑(𝑛4 , 𝑛B) The delay from node 𝑛4 to node 𝑛B

𝑑 𝑙4 The delay of the link 𝑙4

𝑑 𝑛@4+, 𝑛@4, The delay of the link (𝑛@4+, 𝑛@4,)

𝐿𝑖𝑠𝑡QRS The set of SFCs

𝐺Q The SFC request

𝑁Q																							 The set of VNFs

𝐸Q The set of virtual network links

|𝑁𝑆| The number of VNFs in the SFC

𝐸𝑆 				 The number of virtual links in the SFC

r 𝑣𝑛𝑓4 				 The requested computing resources for 𝑣𝑛𝑓4

r 𝑒4 						 The requested bandwidth resources for 𝑒4

𝑆 The source node for an SFC

D The destination node for an SFC

𝐶ab The order constraints of VNFs

𝐷𝑆 The scheme of SFC deployment

𝐷𝑆. The scheme of VNF deployment

𝐷𝑆1 The scheme of virtual network link deployment

𝐷𝑆. 𝑣𝑛𝑓4 					 The physical node on which 𝑣𝑛𝑓4 is deployed

𝐷𝑆1(𝑒4) The set of physical links on which 𝑒4 is deployed

𝑍 𝑣𝑛𝑓4 , 𝑛B A binary variable, if 𝑣𝑛𝑓4 	is deployed on node

 𝑛B, Z 𝑣𝑛𝑓4 , 𝑛B = 1, otherwise Z 𝑣𝑛𝑓4 , 𝑛B = 0

𝑌 𝑒4 , 𝑙B A binary variable, if 𝑒4 	is deployed on the link

 𝑙B, 𝑌 𝑒4 , 𝑙B = 1, otherwise 𝑌 𝑒4 , 𝑙B = 0

𝑁𝑈𝑀U{<< The number of successfully deployed SFCs

𝑃U{<< The success rate of the SFC deployment

𝐷𝑒𝑙𝑎𝑦V�V The end-to-end delay for an SFC

𝐵𝑎𝑛𝑑V�V The bandwidth consumption for an SFC

𝐿𝑜𝑎𝑑9��y The maximum node rate for all nodes

IV. ALGORITHM DESIGN

As seen from the previous examples, the performance of

SFC deployment is largely determined by the length of the

deployment path. Therefore, we designed an algorithm to

deploy the SFC based on the shortest path between the source

node and the destination node. The algorithm is divided into

two phases. The first phase is the sequence traversal of the

network topology based on a BFS. The length of the shortest

path between the source node and the destination node is found.

Then, we compare the length of the shortest path with the

length of the SFC. Three different comparison results are

obtained. Different deployment strategies are adopted based on

the comparison results.

A. Breadth-first search

The algorithm introduced in this section calls the BFS

algorithm between the source node where the service terminal

is located and the destination node where the user is located. It

realizes the sequence traversal between the source node and the

destination node, generates a breadth-first tree, and finds the

length of the shortest path between two nodes. The details are

shown in Algorithm 1.

Algorithm 1 requires the input of information of the physical

network topology, which is usually stored in an adjacency list.

In addition, the source and destination nodes of an SFC are

known. This algorithm outputs the length of the shortest path

between the source node and the destination node. The

two-dimensional node distribution of different hops between

the two nodes is also outputted.

During the initialization process, we set up 𝑞𝑢𝑒𝑢𝑒 to follow

the first-in, first-out criteria and set it as empty. In addition, we

initialize a two-dimensional list 𝑙𝑖𝑠𝑡+, a one-dimensional list

𝑙𝑖𝑠𝑡, , and two count variables 𝑐𝑜𝑛+ , 𝑐𝑜𝑛, . 𝑐𝑜𝑛+ is used to

record the number of nodes in the current hop, and 𝑐𝑜𝑛,

records the number of nodes in the next hop. 𝑙𝑒𝑛𝑔𝑡ℎ is used to

record the length of the shortest path between the source and

destination nodes.

Line 2 pushes the source node 𝑆 into 𝑞𝑢𝑒𝑢𝑒. When 𝑞𝑢𝑒𝑢𝑒

is not empty, we iteratively search for the next physical node to

deploy the VNF in the network topology. Line 4 obtains a node

from the head of 𝑞𝑢𝑒𝑢𝑒 and marks it as 𝑇. After this, add 𝑇

into 𝑙𝑖𝑠𝑡, and mark the node 𝑇 as already visited. 𝑐𝑜𝑛+ is

decremented by 1. If 𝑇 is the destination node, it represents

that we found the shortest path between the source node and

the destination node. Then, 𝑙𝑖𝑠𝑡, is added into 𝑙𝑖𝑠𝑡+ , and

𝑙𝑒𝑛𝑔𝑡ℎ is decremented by 1. After doing this, Algorithm 1

completes the task and returns 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑙𝑖𝑠𝑡+. If 𝑇 is not the

destination node, we need to traverse the adjacency nodes of 𝑇.

If the adjacency node 𝑉 of 𝑇 has not been visited, 𝑉 is put into

the head of 𝑞𝑢𝑒𝑢𝑒, and then 𝑐𝑜𝑛,	is incremented by 1.

If 𝑐𝑜𝑛+ is equal to 0, it means that all the nodes in the current

hop have been traversed. 𝑙𝑖𝑠𝑡, is added to 𝑙𝑖𝑠𝑡+, and then 𝑙𝑖𝑠𝑡,

is set as empty to record the nodes in the next hop. Let 𝑐𝑜𝑛+ be

equal to 𝑐𝑜𝑛, and 𝑐𝑜𝑛, be set to 0. 𝑙𝑒𝑛𝑔𝑡ℎ is incremented by

1.

Algorithm 1: Breadth-First Search based Algorithm (BFS)

Input: (1) Physical network 𝐺" = (𝑁" , 𝐸").

 (2) The source node 𝑆.

 (3) The destination node 𝐷.

Output: The length of the shortest path between two nodes;

the two-dimensional list 𝐿𝑖𝑠𝑡 < 𝐿𝑖𝑠𝑡 < 𝑛4 >> that records the

distribution of nodes with different hops.

1: Initialization:	𝑞𝑢𝑒𝑢𝑒 = ∅, 𝐿𝑖𝑠𝑡 < 𝐿𝑖𝑠𝑡 < 𝑛4 >> 𝑙𝑖𝑠𝑡+ =

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

	∅, 𝐿𝑖𝑠𝑡 < 𝑛4 > 𝑙𝑖𝑠𝑡, = 	∅, 𝑐𝑜𝑛+ = 1, 𝑐𝑜𝑛, = 0, 𝑙𝑒𝑛𝑔𝑡ℎ =

0;

2: push 𝑆 into the 𝑞𝑢𝑒𝑢𝑒;

3: while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅, do

4: Remove a node from the queue and mark it as 𝑇;

5: Add 𝑇 into 𝑙𝑖𝑠𝑡,;

6: Mark 𝑇 as already visited;

7: 𝑐𝑜𝑛+ = 𝑐𝑜𝑛+ − 1;

8: if 𝑇 is 𝐷, do

9: Add 𝑙𝑖𝑠𝑡, into 𝑙𝑖𝑠𝑡+;

10: 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛𝑔𝑡ℎ + 1;

11: return 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑙𝑖𝑠𝑡+.

12: end if

13: for the node 𝑉 ∈ T neighbor nodes, do

14: if 𝑉 is not visited, do

15: Push 𝑉 into the 𝑞𝑢𝑒𝑢𝑒;

16: 𝑐𝑜𝑛, = 𝑐𝑜𝑛, + 1;

17: end if

18: end for

19: if 𝑐𝑜𝑛1 equals 0, do

20: Add 𝑙𝑖𝑠𝑡, into 𝑙𝑖𝑠𝑡+;

21: 𝑙𝑖𝑠𝑡, = 	∅;

22: 𝑐𝑜𝑛+ = 𝑐𝑜𝑛,;

23: 𝑐𝑜𝑛, = 0;

24: 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛𝑔𝑡ℎ + 1;

25: end if

26: end while

To facilitate a better understanding of the algorithm, we

demonstrate an example of a BFS based algorithm in Figure 3.

The example shows the state of the underlying network

topology and the key parameters in the algorithm after each

iteration. The simple network topology consists of 6 physical

nodes and 7 physical links. We perform a BFS based algorithm

between the source node 𝑠 and the destination node 𝑑. Figure

3(a) shows that after the initialization process, the source node

𝑠 is added into 𝑞𝑢𝑒𝑢𝑒, and all parameters are set to their initial

values. In Figure 3(b), the node 𝑠 is removed from 𝑞𝑢𝑒𝑢𝑒 and

marked as already visited in the topology (whenever a node is

removed from 𝑞𝑢𝑒𝑢𝑒, we mark it as already visited and mark

its hop count in the topology. For example, we mark 𝑠 as 1 in

the topology). We can discover the nodes 𝑟 and 𝑤 by

traversing the adjacent nodes of 𝑠 and adding them into	𝑞𝑢𝑒𝑢𝑒.

Since 𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25

to update the state of these parameters.

In Figure 3(c), node 𝑟 is removed from 𝑞𝑢𝑒𝑢𝑒 and added

to	𝑙𝑖𝑠𝑡,. No new nodes are found by traversing the adjacent

nodes of node 𝑟. In Figure 3(d), the current node is 𝑤; we can

find nodes 𝑡 and 𝑥 by traversing the adjacent nodes of node 𝑤.

Since 𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25

to update the state of these parameters. Next, node 𝑡 is

removed from 𝑞𝑢𝑒𝑢𝑒. After adding 𝑡 into 	𝑙𝑖𝑠𝑡,, we scan its

adjacent nodes and discover node 𝑑 . Node 𝑑 is added into

𝑞𝑢𝑒𝑢𝑒 and 𝑐𝑜𝑛, is incremented by 1. These are all shown in

Figure 3(e). In Figure 3(f), 𝑥 is removed from 𝑞𝑢𝑒𝑢𝑒. Since

𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25 to

update the state of these parameters. In the last figure, node 𝑑

is removed from 𝑞𝑢𝑒𝑢𝑒. Because 𝑑 is the destination node, we

add 	𝑙𝑖𝑠𝑡, into 	𝑙𝑖𝑠𝑡+ and 𝑙𝑒𝑛𝑔𝑡ℎ is incremented by 1. Finally,

𝑙𝑖𝑠𝑡+ and 𝑙𝑒𝑛𝑔𝑡ℎ are returned.

Fig. 3. An example of BFS.

After ensuring that the physical network topology is

connected, by calling the BFS algorithm between the source

node and the destination node, we can easily find the length of

the shortest path between the source node and the destination

node. The node distribution of different hops between two

nodes can be obtained. We use these output results to introduce

the strategy of SFC deployment in Algorithm 2.

B. SFC deployment based on BFS

Through Algorithm 1, we can obtain the length of the

shortest path between the source node and the destination node

and the node distribution of different hops between the two

nodes. By comparing the length of the shortest path with the

1 2 3

2 3 4

s w x

r t d

queue

list2

s

r , w

t , x

d

list1

(g)

value

d

0

4

0

T

con1
con2

length

1 2 3

2 3

s w x

r t d

queue

list2

s

r , w

t , x

list1

(f)

value

x

0

3

0

T

con1
con2

length

d

1 2

2 3

s w x

r t d

queue

t

list2

s

r , w

list1

(e)

value

t

1

2

1

T

con1
con2

length

x , d

1 2

2

s w x

r t d

queue

list2

s

r , w

list1

(d)

value

w

2

2

0

T

con1
con2

length

t , x

1

2

s w x

r t d

queue

r

list2

s

list1

(c)

value

r

1

1

0

T

con1
con2

length

w

1

s w x

r t d

queue

list2

s

list1

(b)

value

s

2

1

0

T

con1
con2

length

r , w

s w x

r t d

queue

list2

list1

(a)

value

null

1

0

0

T

con1
con2

length

s

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

length of the SFC, we can obtain three different results; namely,

the length of the shortest path is equal to, less than or greater

than the length of the SFC. Based on these three different

results, three different deployment scenarios can be generated.

In the process of deployment, we start from the layer where the

destination node is located and iteratively search for the next

physical network node in the upper layer or the current layer to

deploy the necessary VNF. While the VNF is being deployed,

the connected virtual network link is also deployed.

𝑂𝑆𝐹	 𝑛I = 𝜆×𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I) + 1 − 𝜆 ×

𝑏 𝑛I + 𝑏	 𝑛< , 𝑛I 	∀𝑛I∈QaS ¡¢£ (24)

𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I) =
� 9¤,9J

G8� � 9¤,9¥ ,∀9¥∈QaS ¡¢£
 (25)

When selecting a physical node to deploy the current VNF

that needs to be deployed, we design an optimal selection

factor 𝑂𝑆𝐹 𝑛I for a physical node 𝑛I . The calculation

method of 𝑂𝑆𝐹 𝑛I is shown in Formula (24), where 𝑛< is the

last physical node that has been selected. At the beginning of

the algorithm, 𝑛< is the destination node. 𝜆 is a weight

parameter. The end-to-end delay and the load rate are weighted

together to obtain an optimal selection factor 𝑂𝑆𝐹. Increasing

the value of 𝜆 can increase the weight of the end-to-end delay

at the time of selection to achieve a smaller end-to-end delay.

In the following experiments, we change the value of 𝜆 to

observe its effect on performance.

 The formula for calculating 𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I) is shown in

Formula (25). 𝑛G is a node in the set of candidate nodes, which

is represented by 𝑆𝑂𝐶9��y. The candidate nodes are the nodes

that connect with node 𝑛< in the upper layer or the current

layer.	𝑑(𝑛< , 𝑛I) is the delay of the link that is connected by the

nodes 𝑛< and 𝑛I, and the denominator is the maximum delay

among all candidate links. 𝑏(𝑛I) is the load rate of the node 𝑛I,

and 𝑏(𝑛< , 𝑛I) is the load rate of the link connected by the

nodes 𝑛< and 𝑛I . Dividing 𝑑(𝑛< , 𝑛I) by the maximum delay

allows the load rate to have greater weight when selecting

nodes. We select the node with the minimum optimal selection

factor 𝑂𝑆𝐹 that satisfies the resource constraint in Formulas (8)

and (15) to deploy the current VNF (link). More details are

shown in Algorithm 2.

Algorithm 2: SFC deployment based on a BFS

Input: (1) Physical network 𝐺" = (𝑁" , 𝐸");

 (2) An SFC request 𝐺Q = (𝑁Q, 𝐸Q), the source node 𝑆

and the destination node 𝐷;

 (3) 𝑙𝑒𝑛𝑔𝑡ℎ that records the length of the shortest path

between 𝑆 and 𝐷 and the two-dimensional list 𝑙𝑖𝑠𝑡1

that records the distribution of nodes with different

hops.

Output: The deployment solution 𝐷𝑆.

1: Initialization:	𝐷𝑆 = 𝐷 ,𝐿K8V¦ = 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿QRS = 𝑁𝑆 , 𝑛U = 𝐷;

2: while 𝑛U ≠ 𝑆, do

3: if 𝐿K8V¦ = 𝐿QRS ,do

4: Remove the last VNF in the set of VNFs 𝑁Q;

5: Find a physical node 𝑛I in the node distribution set

of the previous hop that meets both node and link

resource constraints and has minimal 𝑂𝑆𝐹;

6: if find a physical node 𝑛I, do

7: 𝑛U = 𝑛I;

8: 𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I;

9: 𝐿K8V¦ = 	𝐿K8V¦ − 1;

10: 𝐿QRS = 	𝐿QRS − 1;

11 else

12: return 𝐷𝑆.

13: end if

14: else if 𝐿K8V¦ > 𝐿QRS ,do

15: Find the link 𝑒 with the smallest bandwidth resource

request in the 𝐸Q , and the bandwidth resource

consumption is 𝑟(𝑒);

16: Expand the |𝐿K8V¦ − 𝐿QRS| links that request

𝑟 𝑒 	bandwidth resources in the SFC. The node

request resource between the links is set to 0. After

doing this, 𝐿K8V¦ is equal to 𝐿QRS;

17: else if 𝐿K8V¦ < 𝐿QRS ,do

18: Remove the last VNF in the set of VNFs 𝑁Q;

19: Find a physical node 𝑛I in the node distribution set

of the current hop, which meets both node and link

resource constraints and has minimal 𝑂𝑆𝐹;

20: if fine a physical node 𝑛I,do

21: 𝑛U = 𝑛I;

22: 𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I;

23: 𝐿QRS = 	𝐿QRS − 1;

24: else

25: Find a physical node 𝑛I in the node distribution

set of the previous hop that meets both node and

link resource constraints and has minimal 𝑂𝑆𝐹;

26: if find a physical node 𝑛I, do

27: 𝑛U = 𝑛I; 𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I;

28: 𝐿K8V¦ = 	𝐿K8V¦ − 1;

29: 𝐿QRS = 	𝐿QRS − 1;

30: else

31: return 𝐷𝑆.

32: end if

33: end if

34: end if

35: end while

36: return 𝐷𝑆

Algorithm 2 requires the inputs of the underlying physical

network topology and an SFC request containing the source

node and the destination node. The results derived by

Algorithm 1 containing the length of the shortest path and the

node distribution with different hops between the source node

and the destination node is also needed. Finally, the

deployment scheme of this SFC is outputted. Algorithm 2 finds

a physical node to deploy the current VNF each iteration until

the source node is found, or the algorithm ends because there

are not enough underlying resources.

We compare the size of 𝐿K8V¦ and 𝐿QRS each time.

According to three different comparison results, three different

deployment scenarios are obtained. When 𝐿K8V¦ is equal to

𝐿QRS , we look for a physical node in the node distribution of the

previous hop to deploy the current VNF. The node is required

to satisfy node and link resource constraints and has a

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

minimum 𝑂𝑆𝐹.

If 𝐿K8V¦ is greater than 𝐿QRS , the length of the shortest path

will be greater than the length of the SFC. In this case, there are

redundant nodes and links. Therefore, we extend the length of

the SFC, adding nodes and links so that 𝐿K8V¦ is equal to 𝐿QRS .

The added virtual links need to consume a certain amount of

bandwidth resources, so we choose to expand the virtual

network link requesting the least bandwidth resources in the

SFC. The added virtual network nodes do not need to consume

redundant computing resources.

When 𝐿K8V¦ is smaller than 𝐿QRS , the current SFC cannot be

deployed in the shortest path. We need to find other nodes

between the nodes in the shortest paths. In each iteration, we

first try to find the physical node in the node distribution of the

current hop and then find the physical node in the node

distribution of the previous hop. 𝐷𝑆 is used to record the

deployment scheme. After the algorithm ends, we can compare

the SFC and the deployment scheme to determine whether the

deployment is successful, and the resource consumption

caused by the deployment is calculated.

To facilitate a better understanding of the algorithm, we

demonstrate an example of SFC deployment in Figure 4.

Figure 4(a) shows the outputs of Algorithm 1, including

information about the underlying physical topology, the length

of the shortest path between nodes 𝑠 and 𝑑 , and the node

distribution of different hop counts 𝑙𝑖𝑠𝑡+. Figure 4(b) shows an

SFC request that contains two VNFs and three virtual network

links. We show the end-to-end delay and load rate of all

physical links in Figure 4(c). In Figure 4(d), the current load

rate of all nodes is given.

Fig. 4. An example of SFC deployment based on BFS.

To find a path between node 𝑠 and 𝑑 to deploy the SFC, we

start from the destination node 𝑑. Here, we assume that both

the underlying node resources and link resources satisfy the

resource constraints. Since the length of the SFC is equal to the

length of the shortest path between two nodes, we search the

nodes from the upper layer of 𝑑. As you can see in 𝑙𝑖𝑠𝑡+, there

are two candidate nodes, 𝑡 and 𝑥. The optimal selection factor

𝑂𝑆𝐹 for the two nodes is given in Figure 4(e). The optimal

selection factor of node 𝑥 is smaller than that of node 𝑡, so we

choose node 𝑥 to deploy the current VNF 𝑣𝑛𝑓, . While

deploying VNFs, virtual network links are also deployed.

Next, starting from node 𝑥, we look for the next physical

node to deploy 𝑣𝑛𝑓1. The candidate nodes are 𝑟 and 𝑤. Since

the node 𝑟 is not a neighbor of node 𝑥, we can choose only

node 𝑤 to deploy 𝑣𝑛𝑓+ . Finally, we find the source node 𝑠.

This SFC is deployed successfully. The deployment path of the

SFC is 𝑠 → 𝑤 → 𝑥 → 𝑑. Figure 4(f) shows the scheme of the

SFC deployment.

Algorithm 2 deploys the SFC based on a BFS. The algorithm

first considers the shortest path between the source node and

the destination node and preferentially selects the path with

fewer hops to deploy the SFC. Because the length of the

deployed path is closely related to the end-to-end delay and

bandwidth consumption, the algorithm can optimize these two

performance metrics. In addition, the load balancing of the

network is also considered in the process of designing the

algorithm. The associated algorithm experiments are described

in the next section.

C. Complexity analysis

The proposed SFCDO algorithm consists of Algorithm 1 and

Algorithm 2. In a physical network topology, we assume that

there are |𝑁𝑃| nodes and |𝐸𝑃| links. We analysis the time

complexity of our proposed SFCDO algorithm as follows:

l Algorithm 1 uses BFS search method between the source

node and the destination node. The algorithm ensures that

each node enters and pops a queue at most one time.

Therefore, the total time to operate on the queue is

𝑂(|𝑁𝑃|) . We use an adjacent list to store the network

topology. Because the algorithm only scans the adjacency

list of the node when it is dequeued, each adjacency list is

scanned at most once. The sum of the lengths of all adjacent

lists is 𝜃(|𝐸𝑃|), and the total time for scanning the adjacent

lists is 𝑂(|𝐸𝑃|). Therefore, the complexity of Algorithm 1

is 𝑂(𝑁𝑃 + |𝐸𝑃|).

l For Algorithm 2, when 𝐿K8V¦ ≥ 𝐿QRS , each node and link

are scanned at most once, so the algorithm complexity is

𝑂(𝑁𝑃 + |𝐸𝑃|) . When 𝐿K8V¦ < 𝐿QRS ，the algorithm

complexity is 𝑂(2 ∗ (𝑁𝑃 + |𝐸𝑃|)). Therefore, the time

complexity of Algorithm 2 is 𝑂(𝑁𝑃 + |𝐸𝑃|).
In summary, for the deployment of an SFC, the time

complexity of our SFCDO algorithm is 𝑂(𝑁𝑃 + |𝐸𝑃|).

1 2 3

2 3 4

s w x

r t d

s

r,w

t,x

d

list1

e1

r(vnf1)=6 r(vnf2)=7

r(e1)=5 r(e2)=7 r(e2)=8

l1 l2 l3 l4 l5 l6
l3l2

l4

l5

l6
 l7

l7 OSF(λ=0.5)

OSF=(100/100)+0.4+0.45=1.85

OSF=(40/100)+0.3+0.5=1.2

t

x

s

d(li) 70 50 40 60 100 80 40

b(li) 0.2 0.4 0.5 0.3 0.45 0.5 0.5

(a)

(b)

(c) (e)

(f)

w x d

vnf1

vnf2

s vnf1 dvnf2

s r w t d x

b(ni) 0.1 0.1 0.4 0.4 0.2 0.3

(d)

l1

e2 e3

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

V. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce the experiment

environment and some key parameter settings. Then, we

compare the proposed algorithm with an algorithm in an

existing paper. The author of [9] proposed a G-SA algorithm.

The algorithm first used the greedy algorithm to initially

deploy the VNFs and then used a simulated annealing

algorithm to optimize the results obtained by the greedy

algorithm. The algorithm in [9] is a typical two-step algorithm

that first deploys VNFs and then finds paths between deployed

nodes. This algorithm wasted the underlying network

resources and introduced a relatively high end-to-end delay.

We will show and analyze the results of the performance

comparison.

A. Experiment environment and settings

In the experiment, we use OpenStack to build testbeds to

evaluate different deployment algorithms. OpenStack is a

cloud operating system that controls large pools of compute,

storage, and networking resources. Through openstack, we can

configure the resources in the underlying physical network and

the request resources of the SFC. Similar with Ref. [38], we

conduct the experiment on a typical Chinese network topology.

An example of a physical network topology is shown in Figure

5. The network topology has 55 nodes, and the average degree

of each node is about 4.

Fig. 5. An example of a physical network topology.

 Similar with Ref. [17], we assume that each node has 2000

computing resources, each link has 2000 Mbps bandwidth

resources, and the end-to-end delay of each link follows a

uniform distribution, U (30, 130). In the experiment, we

generate 500 SFC requests per group. The length of each SFC

is uniformly distributed, U (4, 6). The computing resources

requested by each VNF follow a uniform distribution, U (10,

20). The bandwidth resources requested by each virtual

network link are subject to a uniform distribution, U (10, 20).

For fairness, we use the same network topology and parameters

when comparing the two algorithms.

B. Experiment results and analysis

In the process of comparing the performance of the

algorithms, the main performance indicators we focus on are

end-to-end delay, bandwidth consumption of deployed links,

and network load balancing. Based on the environment

introduced in Part A, we analyze the three indicators

separately.

To further investigate the influence of different algorithms

on the end-to-end delay, we study the distribution of the

end-to-end delay of each SFC. We plot the result in Figure 6.

The abscissa is the end-to-end delay, and the ordinate is the

sum of the proportions of the end-to-end delay, which is less

than the abscissa. As shown in the figure, the performance gap

between the SFCDO algorithm and the G-SA algorithm is

large. The end-to-end delay of the SFCDO algorithm is mainly

concentrated between 160-690 ms, while the G-SA algorithm

is mainly concentrated between 200-1130 ms. Compared to the

G-SA algorithm, SFCDO has a shorter end-to-end delay,

mainly because SFCDO deploys the SFC based on the shortest

path between the source node and the destination node. Our

proposed algorithm preferentially selects the physical path

with fewer hops, so the end-to-end delay is optimized.

0 200 400 600 800 1000 1200 1400 1600

0.0

0.2

0.4

0.6

0.8

1.0

P
[r

at
io

<
x
]

The end-to-end delay (ms)

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 6. The distribution of end-to-end delay.

In addition, we compare the end-to-end delay with a

changing 𝜆 parameter. As the 𝜆 increases, the end-to-end delay

is continuously optimized because the influence of the

end-to-end delay in the optimal selection factor is increasing,

so it tends to choose a link with a smaller end-to-end delay.

Figure 7 shows the distribution of bandwidth consumption.

The abscissa represents the bandwidth consumption of the

deployment, and the ordinate is the sum of the proportions of

bandwidth consumption, which is less than the abscissa. For

bandwidth consumption, the SFCDO algorithm is mainly

concentrated between 35 and 120 Mbps, while the G-SA

algorithm is concentrated between 40 and 302 Mbps. Because

both bandwidth consumption and end-to-end delay are

determined by the number of hops of the deployment path,

bandwidth consumption is optimized as end-to-end delay when

we prefer the path with the fewest hops to deploy the SFC.

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

P
[r

at
io

<
x
]

The bandwidth consumption (Mbps)

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 7. The distribution of bandwidth consumption.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

We also observe changes in bandwidth consumption while

changing the 𝜆 parameter. As shown in Figure 7, increasing the

value of 𝜆 is not significant for changes in bandwidth

consumption. This is because bandwidth consumption is

mainly determined by the length of the deployment path and

the bandwidth resources requested by the virtual network link,

do not interact with	𝜆.

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

P
[r

at
io

<
x

]

The load rate of the node (%)

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 8. The distribution of load rate of the node.

To further investigate the influence of different algorithms

on the load rate, we studied the distribution of the load rate of

the nodes. The result is shown in Figure 8. In the figure, the

abscissa represents the load rate of the node, and the ordinate is

the sum of the proportions of the load rate, which is less than

the abscissa. It can be seen that 80 percent of the nodes have no

load in the G-SA algorithm, and the network load is mainly

concentrated on 20 percent of nodes. In the SFCDO algorithm,

95 percent of the load rate of the nodes is concentrated below

60 percent. Nodes with high load rates rarely occur because in

the design process of the SFCDO algorithm, we consider the

load rate of the node and use it as one of the factors for the

selection of nodes. The G-SA algorithm deploys the VNF on a

certain node as much as possible, resulting in excessive load

concentration.

In addition, we compare the load rate with changing 𝜆

parameters. As 𝜆 decreases, the load rate is continuously

optimized because the influence of the load rate in the optimal

selection factor is increasing, so it tends to choose a node with

a smaller load rate.

In addition to performing the experiment in the environment

described in section A, we also attempt experiments under

different network parameters. To investigate the adaptability of

the two algorithms to different network parameters, we change

the number of SFCs and the length of the SFCs. We compare

and analyze the performances of the two algorithms. The

results show that the proposed algorithm is still optimized in

terms of end-to-end delay and bandwidth resource

consumption. The rest of the experiment results are shown.

Figure 9 is a diagram showing the change in the average

end-to-end delay of the deployment path in the case of

changing the number of SFCs. In the figure, the abscissa

represents the number of SFCs, and the ordinate represents the

average end-to-end delay. As the number of SFCs increases,

the SFCDO algorithm has good stability. The average

end-to-end delay fluctuates within only a small range. The

average end-to-end delay is maintained at approximately 395

ms. However, for the G-SA algorithm, the average end-to-end

delay increases as the number of SFCs increases. The average

end-to-end delay of the G-SA algorithm is always greater than

that of the SFCDO algorithm. In addition, we used different 𝜆

parameters to observe the average end-to-end delay variation.

As shown in Figure 9, as the 𝜆 parameter increases, the

average end-to-end delay decreases, which shows that we can

obtain a smaller end-to-end delay by adjusting the 𝜆 parameter.

100 200 300 400 500 600 700 800 900

400

450

500

550

600

A
v
er

ag
e

en
d
-t

o
-e

n
d
 d

el
ay

 o
f

S
F

C
 (

m
s)

The number of SFCs

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 9. Average end-to-end delay for different numbers of

SFCs.

We show the change in average bandwidth consumption in

the case of changing the number of SFCs in Figure 10. In the

figure, the abscissa represents the number of SFCs, and the

ordinate represents the average bandwidth consumption. It can

be seen that with the increase in the number of SFCs, the

bandwidth consumption of the SFCDO algorithm remains

basically unchanged, and average end-to-end delay is

maintained at approximately 72 Mbps. However, for the G-SA

algorithm, average bandwidth consumption increases as the

number of SFCs increases. The average bandwidth

consumption of the G-SA algorithm is always greater than that

of the SFCDO algorithm. In addition, as shown in the figure,

there is no change in the average bandwidth consumption as

the 𝜆 parameter changes.

100 200 300 400 500 600 700 800 900
60

70

80

90

100

110

120

130

A
v

er
ag

e
b

an
d

w
id

th
 c

o
n

su
m

p
ti

o
n

 o
f

S
F

C
 (

M
b

p
s)

The number of SFCs

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 10. Average bandwidth consumption for different

numbers of SFCs.

To investigate the influence of different parameters on the

performance, we study the change in the average end-to-end

delay and bandwidth consumption when changing the length of

the SFCs. We plot these results in Figure 11 and Figure 12,

respectively. In Figure 11, the abscissa represents the length of

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

the SFC, and the ordinate represents the average end-to-end

delay of the deployment paths. As the length of the SFC

increases, the end-to-end delays of the two algorithms both

increase, because as the length of the SFC increases, the length

of the deployment path also increases, so the average

end-to-end delay will also increase. However, as shown in the

figure, the growth rate of the SFCDO algorithm is less than that

of G-SA, and the end-to-end delay of SFCDO is always

smaller than that of the G-SA algorithm. Therefore, the

SFCDO algorithm is significantly optimized for end-to-end

delay. In addition, as the 𝜆 parameter increases, the average

end-to-end delay is slightly optimized.

2 3 4 5 6 7 8 9 10 11
300

400

500

600

700

800

900

1000

1100

A
v
er

ag
e

en
d
-t

o
-e

n
d
 d

el
ay

 o
f

S
F

C
 (

m
s)

The length of SFC

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 11. Average end-to-end delay of SFC.

In Figure 12, the abscissa represents the length of the SFC,

and the ordinate represents the average bandwidth

consumption. As the length of the SFC increases, the

bandwidth consumption of the two algorithms both increase,

which is the same as the end-to-end delay. As shown in the

figure, the growth rate of the SFCDO algorithm is also less

than that of G-SA, and the end-to-end delay of SFCDO is

always smaller than that of the G-SA algorithm. Compared

with the G-SA algorithm, the SFCDO algorithm also optimizes

bandwidth consumption. However, as the λ parameter

increases, the average bandwidth consumption remains

unchanged.

2 3 4 5 6 7 8 9 10 11
50

75

100

125

150

175

200

225

250

A
v
er

ag
e

b
an

d
w

id
th

 c
o
n
su

m
p
ti

o
n
 o

f
S

F
C

 (
M

b
p
s)

The length of SFC

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

Fig. 12. Average bandwidth consumption of SFC.

VI. CONCLUSION

In this paper, we study the efficient SFC deployment

problem in NFV. The key issue in the SFC deployment

problem is how to achieve efficient use of the underlying

physical resources and effectively reduce the end-to-end delay

of the deployment path. We introduced recent research on

service chain deployment issues and proposed mathematical

models for SFC deployment. For the proposed mathematical

model, we propose an SFC deployment algorithm SFCDO

based on a BFS. The algorithm deploys the SFC based on the

shortest path between the source node and the destination node

and preferentially selects the path with the shortest hops to

implement the deployment. In addition, we compare the

proposed algorithm with the G-SA algorithm. The experiment

results show that the SFCDO algorithm can effectively reduce

the end-to-end delay of the deployment path and reduce the

bandwidth resource consumption by up to 40% and 49%,

respectively. In addition, the algorithm also considers the load

rate of the nodes and achieves load balancing.

In the future work, we are going to study the network

security problem in the service function chain deployment, and

propose corresponding deployment algorithms to ensure the

security of the network while further improving the utilization

of network resources.

ACKNOWLEDGEMENT

This research was partially supported by the National Natural

Science Foundation of China (61571098), the 111 Project

(B14039).

REFERENCES

[1] Sun G, Zhu G, Liao D, et al. Cost-Efficient Service Function

Chain Orchestration for Low-Latency Applications in NFV

Networks. IEEE Systems Journal, Early Access, 2018.

[2] Sun G, Li Y, Liao D, et al. Service function chain orchestration

across multiple domains: A full mesh aggregation approach.

IEEE Transactions on Network and Service Management, 2018,

15(3): 1175-1191.

[3] Sun G, Chang V, Yang G, et al. The cost-efficient deployment of

replica servers in virtual content distribution networks for data

fusion. Information Sciences, 2018, 432: 495-515.

[4] Zhang S, Wang Y, Li W, et al. Service failure diagnosis in service

function chain. IEEE 19th Asia-Pacific Network Operations and

Management Symposium, 2017: 70-75.

[5] Phan T V, Ngo L H, Huong T T, et al. AQA 2: An analytical

QoS-assessment approach for service function chaining in cloud

environment. IEEE International Conference on Advanced

Technologies for Communications, 2017: 21-26.

[6] Imagane K, Kanai K, Katto J, et al. Performance evaluations of

multimedia service function chaining in edge clouds. IEEE

Annual Consumer Communications & Networking Conference,

2018: 1-4.

[7] Gunleifsen H, Kemmerich T. Security requirements for service

function chaining isolation and encryption. IEEE 17th

International Conference on Communication Technology, 2017:

1360-1365.

[8] Mirjalily G, Zhiquan L U O. Optimal Network Function

Virtualization and Service Function Chaining: A Survey. Chinese

Journal of Electronics, 2018, 27(4): 704-717.

[9] Liu J, Li Y, Zhang Y, et al. Improve service chaining performance

with optimized middlebox placement. IEEE Transactions on

Services Computing, 2017, 10(4): 560-573.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2937110, IEEE Internet of

Things Journal

[10] Sun G, Chen Z, Yu H, et al. Online Parallelized Service Function

Chain Orchestration in Data Center Networks. IEEE Access,

2019,7(1): 100147-100161.

[11] Ghaznavi M, Shahriar N, Kamali S, et al. Distributed service

function chaining. IEEE Journal on Selected Areas in

Communications, 2017, 35(11): 2479-2489.

[12] Ouyang C, Wei Y, Leng S, et al. Service chain performance

optimization based on middlebox deployment. IEEE

International Conference on Communication Technology, 2017:

1947-1952.

[13] Huang H, Li P, Guo S, et al. Near-Optimal Deployment of

Service Chains by Exploiting Correlations between Network

Functions. IEEE Transactions on Cloud Computing, 2017.

[14] Liu J, Lu W, Zhou F, et al. On dynamic service function chain

deployment and readjustment. IEEE Transactions on Network

and Service Management, 2017, 14(3): 543-553.

[15] Sun G, Xu Z, Yu H, et al. Toward SLAs Guaranteed Scalable

VDC Provisioning in Cloud Data Centers. IEEE Access, 2019,

7(1): 80219-80232.

[16] Liang X, Huang X, Li D, et al. Dynamic Orchestration

Mechanism of Service Function Chain in Hybrid NFV Networks.

IEEE Asia Communications and Photonics Conference, 2018:

1-3.

[17] Sun G, Li Y, Li Y, et al. Low-Latency Orchestration for

Workflow-Oriented Service Function Chain in Edge Computing.

Future Generation Computer Systems, 2018, 85: 116-128.

[18] Tomassilli A, Giroire F, Huin N, et al. Provably efficient

algorithms for placement of service function chains with

ordering constraints. Université Côte d'Azur, CNRS, I3S,

France; Inria Sophia Antipolis, 2018.

[19] Feng H, Llorca J, Tulino A M, et al. Approximation algorithms

for the NFV service distribution problem. IEEE INFOCOM,

2017: 1-9.

[20] Nadig D, Ramamurthy B, Bockelman B, et al. Optimized Service

Chain Mapping and reduced flow processing with Application

Awareness. IEEE Conference on Network Softwarization and

Workshops, 2018: 303-307.

[21] Jia Y, Wu C, Li Z, et al. Online scaling of NFV service chains

across geo-distributed datacenters. IEEE/ACM Transactions on

Networking, 2018, 26(2): 699-710.

[22] Tashtarian F, Varasteh A, Montazerolghaem A, et al. Distributed

VNF scaling in large-scale datacenters: An ADMM-based

approach. IEEE International Conference on Communication

Technology, 2017: 471-480.

[23] Zhong X, Wang Y, Qiu X. Service function chain orchestration

across multiple clouds. China Communications, 2018, 15(10):

99-116.

[24] Tseng F H, Wang X, Chou L D, et al. Dynamic Resource

Prediction and Allocation for Cloud Data Center Using the

Multiobjective Genetic Algorithm. IEEE Systems Journal, 2018,

12(2): 1688-1699.

[25] Sun G, Liao D, Bu S, et al. The Efficient Framework and

Algorithm for Provisioning Evolving VDC in Federated Data

Centers. Future Generation Computer Systems, 2017, 73: 79-89.

[26] Sun G, Liao D, Zhao D, et al. Live migration for multiple

correlated virtual machines in cloud-based data centers. IEEE

Transactions on Services Computing, 2018, 11(2): 279-291.

[27] Qu L, Assi C, Shaban K, et al. A reliability-aware network

service chain provisioning with delay guarantees in nfv-enabled

enterprise datacenter networks. IEEE Transactions on Network

and Service Management, 2017, 14(3): 554-568.

[28] Cheng Y, Yang L, Zhu H. Deployment of service function chain

for NFV-enabled network with delay constraint. IEEE

International Conference on Electronics Technology, 2018:

383-386.

[29] Li T, Zhou H, Luo H, et al. Service function chain in small

satellite-based software defined satellite networks. China

Communications, 2018, 15(3): 157-167.

[30] Cai Y, Wang Y, Zhong X, et al. An approach to deploy service

function chains in satellite networks. IEEE/IFIP Network

Operations and Management Symposium, 2018: 1-7.

[31] Lei T H, Hsu Y T, Wang I C, et al. Deploying QoS-assured

service function chains with stochastic prediction models on

VNF latency. IEEE Conference on Network Function

Virtualization and Software Defined Networks, 2017: 1-6.

[32] Leivadeas A, Falkner M, Lambadaris I, et al. Balancing Delay

and Cost in Virtual Network Function Placement and Chaining.

IEEE Conference on Network Softwarization and Workshops

(NetSoft), 2018: 433-440.

[33] Yang Y, Chen Q, Zhao G, et al. The Stochastic-Learning-Based

Deployment Scheme for Service Function Chain in Access

Network. IEEE Access, 2018, 6: 52406-52420.

[34] Thai M T, Lin Y D, Lai Y C. A joint network and server load

balancing algorithm for chaining virtualized network functions.

IEEE International Conference on Communications, 2016: 1-6.

[35] Fei X, Liu F, Xu H, et al. Towards load-balanced VNF

assignment in geo-distributed NFV Infrastructure. IEEE/ACM

25th International Symposium on Quality of Service, 2017: 1-10.

[36] Hu Y, Li T. Enabling Efficient Network Service Function Chain

Deployment on Heterogeneous Server Platform. IEEE

International Symposium on High Performance Computer

Architecture, 2018: 27-39.

[37] Kwang-Man K O, Mansoor A M, Ahmad R, et al. Efficient

Deployment of Service Function Chains (SFCs) in a

Self-Organizing SDN-NFV Networking Architecture to Support

IOT. IEEE International Conference on Ubiquitous and Future

Networks, 2018: 650-653.

[38] Sun G, Yu H, Anand V, et al. A cost efficient framework and

algorithm for embedding dynamic virtual network requests[J].

Future Generation Computer Systems, 2013, 29(5): 1265-1277.

