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Abstract—Recently, network function virtualization 

(NFV) has been proposed to solve the dilemma faced by 

traditional networks and to improve network performance 

through hardware and software decoupling. The 

deployment of the service function chain (SFC) is a key 

technology that affects the performance of virtual network 

function (VNF). The key issue in the deployment of SFCs is 

proposing effective algorithms to achieve efficient use of 

resources. In this paper, we propose a service function 

chain deployment optimization (SFCDO) algorithm based 

on a breadth-first search (BFS). The algorithm first uses a 

BFS based algorithm to find the shortest path between the 

source node and the destination node. Then, based on the 

shortest path, the path with the fewest hops is 

preferentially chosen to implement the SFC deployment. 

Finally, we compare the performances with the greedy and 

simulated annealing (G-SA) algorithm. The experiment 

results show that the proposed algorithm is optimized in 

terms of end-to-end delay and bandwidth resource 

consumption. In addition, we also consider the load rate of 

the nodes to achieve network load balancing. 

Index Terms— Network function virtualization; Service 

function chain; End-to-end delay; Resource consumption 

I.  INTRODUCTION 

With the increase in network users and the development of 

services, today's telecommunication industry needs to store 

and transmit large amounts of data. Hardware-based networks 

cannot withstand the impact of these applications. In most 

traditional networks, each network function required separate 

and expensive hardware, which caused the network to become 

rigid and increased network capital and operating expenses. 

Network function virtualization (NFV) [1,2] technology was 

proposed to solve the dilemma faced by traditional networks. 

NFV is a promising and critical technology for future network 

service providers [3]. Through software and hardware 

decoupling and functional abstraction, network device 

functions no longer rely on dedicated hardware. The hardware 

resources in the network can be fully and flexibly shared. In 

addition, operators can realize the rapid development and 

deployment of new services. Based on actual business needs, 

multiple virtual network functions (VNFs) are grouped into 

service function chains (SFCs) [4-8] in a predefined order and 

then deployed to the network to serve users. By running a 

virtual machine (VM) that performs various functions, the 

service providers can automatically start a VM whenever a 

user needs a new network function, which can reduce 

deployment time, capital costs and operating expenses.  

An SFC is defined as a sequence of middleboxes that is 

traversed by given flows in a predefined order [9]. An SFC 

request can be abstracted into a directed topology. An example 

of an SFC request is shown in Figure 1. The SFC consists of a 

service terminal, a user, and a set of VNFs in a predefined 

order connected by virtual network links. Usually, VNFs refer 

to middlebox services in the network, such as deep packet 

inspection (DPI), firewalls, and gateways. In Figure 1, the two 

ovals represent the service terminal and the user. The hexagons 

represent the VNFs. VNFs are connected by directed virtual 

network links. 

 

Fig. 1. Example of an SFC request. 

SFC deployment is one of the key technologies affecting the 

performance of NFV. We need to find a path between the 

service terminal and the user that satisfies the requested 

resource constraints to deploy VNFs and virtual network links 

in the underlying physical network. Deploying a VNF requires 

a certain amount of CPU resources, and deploying a virtual 

network link consumes a certain amount of bandwidth 

resources. Different path selections will cause different 

end-to-end delays. Therefore, the deployment path choice 

affects the performance of the SFC. In the process of SFC 

deployment, many indicators need to be considered 

simultaneously, such as resource consumption, end-to-end 

delay, and load balancing. With the expansion of the network 

scale and the increase in SFC requests, ensuring successful 

SFC deployment is a considerable challenge. Many studies 

have shown that the SFC deployment problem is an NP-hard 

problem [9-11]. There is no polynomial time algorithm to solve 

the problem. Usually, an efficient heuristic algorithm is used to 

obtain an approximate solution. 

Recently, there have been many academic studies on how to 

deploy the SFC. Liu et al. [9] proposed a two-step deployment 

approach, first deploying VNFs and then finding paths to 

deploy virtual network links between deployed nodes. They 

used a greedy algorithm to find the initial deployment scheme, 

and a simulated annealing algorithm was used to optimize the 

deployment scheme based on the greedy algorithm. The author 

of [12] proposed the middlebox placement optimization (MPO) 

algorithm, which used the ordering of the underlying topology 

and the SFC to optimize the end-to-end delay of SFC 

deployment. 
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A. Motivation 

Few previous researches have simultaneously considered 

resource consumption and end-to-end delay in SFC 

deployment. The increase in resource consumption can cause 

network congestion and increase operating costs, and the 

increase in end-to-end delay can seriously affect network 

performance and user experiences. In this paper, we focus on 

the SFC deployment problem. More specifically, we propose 

an SFC deployment optimization (SFCDO) algorithm to 

optimize both resource consumption and end-to-end delay. The 

algorithm first uses a BFS to find the shortest path between the 

terminal and the user. Then, based on the shortest path, the path 

with the fewest hops is preferentially chosen to implement the 

SFC deployment. In addition, we also consider the load 

balancing problem to improve the reliability of the network. As 

a result, the proposed algorithm can improve the performance 

of the network, effectively reducing the deployment cost and 

the end-to-end delay.  

B. Research Contributions 

Our main contributions are described as follows: 

l We build a mathematical model of the SFC deployment 

problem and propose an SFCDO algorithm that optimizes 

resource consumption and end-to-end delay of the 

deployment path. 

l In our algorithm design process, the load balancing 

problem of network nodes is considered. When selecting 

the physical node to deploy the VNF, we design the optimal 

selection factor (OSF) to select the node with the lowest 

current load rate, distribute the load evenly on all nodes, 

and achieve load balancing. 

l We implement our proposed approach and compare it with 

the existing algorithms through experiment. Then, we 

analyze our algorithm’s performance with the compared 

algorithms. 

C. Structure of this Paper 

The remainder of this paper is organized as follows. In 

Section II, we review the related work. In Section Ⅲ, we 

describe the problem in this research with some formulations. 

In Section IV, we propose our heuristic algorithm. A 

performance evaluation of our proposed algorithm is presented 

in Section Ⅴ, and Section VI concludes this work. 

II.  RELATED WORK 

A. SFC deployment for optimizing resource consumption 

Resource consumption is an important indicator for 

measuring the benefits and drawbacks of the SFC deployment 

algorithm. The optimization of resource consumption can 

reduce network congestion and operating costs. To reduce 

resource consumption and the cost of SFC deployment, Huang 

et al. [13] studied service chain deployment by exploiting two 

types of correlations between network functions and devised 

an approximation algorithm based on the Markov 

approximation technique to decrease the implementation cost. 

Liu et al. [14] studied how to adjust the SFC deployment when 

the user requests dynamic changes, especially when the user 

moves. They established an integer linear programming model 

and a column generation model to optimize the node resources 

and bandwidth resources consumed by the deployment. Sun et 

al. [15] proposed a reliability-aware SFC deployment 

algorithm to select a less reliable deployment solution to 

achieve smaller deployment costs and obtain greater benefits 

while ensuring user reliability requirements. Liang et al. [16] 

proposed a dynamic orchestration mechanism for the SFC in 

hybrid NFV networks. They constructed a dynamic model 

SFC-D by considering selection changes and proposed an 

algorithm based on the Markov renewal process (MRP) to 

reduce the computing time. 

Sun et al. [17] designed an SFC deployment for cloud-edge 

computing. They proposed that by combining cloud computing 

and edge computing, the consumption of network resources 

can be effectively reduced. The reorganization of the SFC was 

studied, effectively solving network congestion. The author of 

[18] modeled SFC deployment as a set coverage problem and 

proposed two logarithmic factor approximation algorithms. 

They designed an optimization algorithm specifically for a tree 

topology. Feng et al. [19] designed a fast approximation 

algorithm to minimize deployment costs and modeled the 

multicommodity chain flow problem on a cloud augmented 

graph. They proposed a queue-length-based algorithm that 

provides an O(ε) approximation in time O(1/ε). The author of 

[11] presented distributed service function chaining that 

coordinated these operations, distributed VNF instances of the 

same function, and selected appropriate instances from typical 

VNF offerings. They formulated this deployment as a mixed 

integer programming (MIP) model and developed a local 

search heuristic called Kariz. Extensive experiments 

demonstrated that Kariz achieved an additional cost of less 

than 24 percent compared with that of the MIP model. 

Many researchers are studying SFC deployment in 

datacenter networks. The author of [20] addressed the problem 

of mapping SFCs across different datacenters with the 

objective of reducing the flow processing costs. They 

developed an integer linear programming formulation to 

optimally deploy SFCs to multiple datacenters while adhering 

to the datacenter’s capacity constraints. A novel 

application-aware flow reduction (AAFR) algorithm was 

proposed to reduce the cost of SFC deployment. Jia et al. [21] 

investigated the dynamic placement of SFCs across 

geodistributed datacenters to serve flows between the 

dispersed source and destination pairs for operational cost 

minimization of the service chain provider over the entire 

system span. An efficient online algorithm that consists of two 

components was proposed. The author of [22] found that traffic 

fluctuations in large-scale datacenters (LDCs) could result in 

overload and underload phenomena in SFCs. They proposed a 

distributed approach based on the alternating direction method 

of multipliers (ADMM) to jointly load balance the traffic and 

horizontally scale up and down VNFs in LDCs with minimum 

deployment and forwarding costs. 

Zhong et al. [23] orchestrated SFCs across multiple 

datacenters, with a goal to minimize the overall cost. An 

integer linear programming model was formulated and solved 

with a metaheuristic algorithm named GBAO that contained 

three modules. The author of [24] proposed a multiobjective 

genetic algorithm (GA) to dynamically forecast resource 

utilization and energy consumption in cloud datacenters. They 

formulated a multiobjective optimization problem of resource 
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allocation that considers the CPU and memory utilization of 

VMs and physical machines (PMs) and the energy 

consumption of the datacenter. The proposed GA forecasted 

the resource requirement of the next time slot according to the 

historical data in previous time slots. They further proposed a 

VM placement algorithm to allocate VMs for the next time slot 

based on the prediction results of the GA. The author of [25,26] 

also studied the deployment of SFC in data center network, and 

proposed corresponding algorithms to reduce the cost of 

deployment. 

B. SFC deployment for optimizing the end-to-end delay 

Many researchers are working to reduce the end-to-end 

delay of service chain deployments. Reducing the end-to-end 

delay of deployment paths can improve network performance 

and user experience. Qu et al. [27] established a 

reliability-aware and delay-constrained (READ) routing 

optimization framework for NFV-enabled datacenter networks. 

First, a mixed integer linear program model was proposed to 

reduce the end-to-end delay. Then, a heuristic algorithm was 

proposed to reduce the complexity of the algorithm. Cheng et 

al. [28] established the SFC deployment problem as a mixed 

integer nonlinear programming model. Based on the model, a 

heuristic algorithm was designed to reduce the complexity of 

the algorithm to ensure the delay constraints. Can et al. [12] 

proposed an MPO algorithm that utilizes the flexibility and 

dynamics provided by a software-defined network (SDN) and 

NFV. It can dynamically deploy a sequence of services in the 

SFC to adapt real-time changing service characters. Li et al. 

[29] were motivated to investigate applying the SFC in the 

small satellite-based software-defined satellite networks 

(SDSN) for service delivery. They introduced the structure of 

the multilayer constellation-based SDSN. In addition, they 

described two deployment patterns for the SFC in SDSN: the 

multidomain (MD) pattern and the satellite formation (SF) 

pattern. Two algorithms were proposed to reduce the delay and 

packet loss rate. 

Cai et al. [30] aimed to achieve a flexible service 

orchestration for satellite networks with minimal end-to-end 

service delays. Based on the general NFV-enabled architecture, 

they built a time-varying satellite communication network 

model and novel forms of SFC requests. An algorithm for 

effectively deploying an SFC in a satellite network was 

proposed. Lei et al. [31] proposed a stochastic prediction 

model for VNF latency using random forest technology to 

predict the processing time and queuing time of VNFs and 

finally optimized the end-to-end delay. 

The author of [32] studied SFC deployments in the cloud 

network infrastructure using the multiaccess edge computing 

(MEC) standard for accommodating mission critical and delay 

sensitive traffic. They aimed to minimize the end-to-end 

communication delay while keeping the overall deployment 

cost minimal. Yang et al. [33] considered SFC deployment 

based on realistic topology sensing in a fifth-generation 

cloud-radio access network (C-RAN). The partial observation 

Markov decision process (POMDP) was used to estimate the 

whole real topology condition. They proposed a 

POMDP-based SFC deployment scheme and a point-based 

mingled heuristic value iteration algorithm to maximize the 

utility associated with the total delay. 

C. SFC deployment for load balancing 

Implementing load balancing can effectively prevent 

bottleneck links or bottleneck nodes from appearing in the 

network. The author of [34] considered network load balancing 

and server load balancing when researching SFC deployment. 

They proposed a two-phase algorithm, nearest first and 

local-global transformation (NF-LGT) in the datacenter 

network environment. Fei et al. [35] proposed deploying VNFs 

in geodistributed central offices (COs). They first selected a set 

of central offices that minimized the communication cost 

among the selected COs. Then, they employed a 

shadow-routing-based approach, which minimized the 

maximum of appropriately defined CO utilizations, to jointly 

solve the VNF-CO and VNF-server assignment problem. 

Hu et al. [36] proposed an SFC runtime framework 

NFCompass that uses SFC reorganization technology and task 

scheduling technology based on graph partitioning. They 

ultimately reduced the length and complexity of the processing 

SFC and achieved better load balancing. The author of [37] 

considered SFC deployment in a self-organizing SDN-NFV 

network. They introduced a new dynamic fine-grained 

function placement and migration mechanism. The designed 

algorithm considers load balancing and optimized fault 

tolerance and avoids network congestion. 

III.  PROBLEM STATEMENT AND FORMULATION 

A. Physical network model 

The physical network is the underlying network responsible 

for mapping the SFC. A physical network is usually composed 

of a set of servers connected to the switches and physical 

network links. The server has a certain computing resource, 

and the link has a certain bandwidth resource. In the process of 

modeling, we abstract servers as nodes and physical links as 

links in the topology. 

We model the physical network as 𝐺" = (𝑁" , 𝐸"), where 

𝑁" = {𝑛+, 𝑛,, … , 𝑛 ." } is the set of network nodes and 𝐸" =

𝑙+, 𝑙,, … , 𝑙 1"  is the set of network links. |𝑁𝑃| refers to the 

number of network nodes in the network, and |𝐸𝑃| refers to the 

number of physical links. A network node 𝑛4 usually refers to a 

server with a certain computing resource 𝑎(𝑛4). We use 𝑐(𝑛4) 

to represent the remaining computing resources of the node, 

and 𝑏(𝑛4) denotes the load rate of the node. The formula for 

calculating the load rate of node 𝑏(𝑛4) is: 

 𝑏 𝑛4 =
8 9: ;< 9:

8(9:)
		∀	𝑛4 ∈ 𝑁"                                             (1) 

For a physical link 𝑙4 , we use 𝑎(𝑙4)  to represent all 

bandwidth resources, and 𝑐(𝑙4)  to represent the remaining 

bandwidth resources. 𝑏(𝑙4) is used to indicate the load rate of 

the link. The formula for calculating the link load rate 𝑏(𝑙4) is: 

𝑏 𝑙4 =
8 @: ;< @:

8(@:)
		∀	𝑙4 ∈ 𝐸"                                                  (2) 

In addition, we use 𝑝(𝑛4 , 𝑛B) to represent a path from node 

𝑛4 to node 𝑛B, where 𝑝(𝑛4 , 𝑛B) is a subset of 𝐸"	that contains all 

the links on a path from node 𝑛4 	to 𝑛B . These are shown in 

Formula (3). We assume that the nodes connected at both ends 
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of the link 𝑙4  are denoted as 𝑛@4+ , 𝑛@4, . Therefore, the 

transmission delay of the link 𝑙4  is denoted as 𝑑(𝑙4)  or 

𝑑(𝑛@4+, 𝑛@4,). The end-to-end delay from 𝑛4 to 𝑛B is equal to the 

sum of the delay of all physical links on this path and is 

denoted as	𝑑 𝑛4 , 𝑛B . These are shown in Formulas (4) and (5). 

For example, if 𝑝 𝑛+, 𝑛D = 𝑙+, 𝑙,, 𝑙E , 𝑙+, 𝑙,, 𝑙E ∈ 𝐸" , then 

𝑑 𝑛+, 𝑛D = 𝑑 𝑙+ + 𝑑 𝑙, + 𝑑 𝑙E , where 𝑑 𝑙+ , 𝑑 𝑙,  and 

𝑑 𝑙E  represent the delay of link 𝑙+, 𝑙, and 𝑙E, respectively. 

𝑝 𝑛4 , 𝑛B = 𝑙G,… , 𝑙9 ⊆ 𝐸"		∀	𝑛4 , 𝑛B ∈ 𝑁"                          (3) 

𝑑 𝑙4 = 𝑑 𝑛@4+, 𝑛@4, 		∀	𝑙4 ∈ 𝐸"                                             (4) 

𝑑 𝑛4 , 𝑛B = 𝑑(𝑙I)@J∈K(9:,9L)
		∀	𝑛4 , 𝑛B ∈ 𝑁"                        (5) 

B. SFC request model 

The SFC request is composed of a set of VNFs and links 

according to the actual needs of users. The VNF requests a 

certain computing resource, and the virtual network link 

requests a certain bandwidth resource. The remaining 

resources of the deployed node or link must be greater than the 

requested resources. In addition, the VNF has strict order 

requirements. The traffic flow must traverse from the terminal 

to the user in the predefined order. The SFC can be regarded as 

a singly linked list. 

Now, we present a formal model to describe the SFC. Let 

𝐿𝑖𝑠𝑡QRS = {𝐺Q+, 𝐺Q,, … , 𝐺Q|T4UVWXY|
}  denote the set of SFCs, 

where |𝐿𝑖𝑠𝑡QRS| represents the number of SFCs. We model one 

SFC request as a directed weight graph 𝐺Q = (𝑁Q, 𝐸Q), where 

𝑁Q = 	 {𝑣𝑛𝑓+, 𝑣𝑛𝑓,, … , 𝑣𝑛𝑓|.Q|}  is represented as the set of 

VNFs in the SFC, and 𝐸Q = 	 𝑒+, 𝑒,, … , 𝑒 1Q  represents the set 

of virtual network links. |𝑁𝑆| and |𝐸𝑆| represent the number 

of VNFs and links in the SFC, respectively. Deploying a VNF 

𝑣𝑛𝑓4 requires a certain amount of computing resources 𝑟(𝑣𝑛𝑓4). 

Similarly, deploying a virtual network link 𝑒4 requires a certain 

amount of bandwidth resources 𝑟(𝑒4). Each SFC has a known 

source node and destination node, denoted by 𝑆  and 𝐷 , 

respectively. The source node and the destination node 

represent the terminal and the user, respectively. Besides, 

VNFs should be traversed in the predefined order. We denote it 

as 𝐶ab = 	 {𝑣𝑛𝑓+ → 𝑣𝑛𝑓, → ⋯ → 𝑣𝑛𝑓|.Q|}.  

C. SFC deployment 

In our problem setting, the underlying physical network and 

SFC request information are given as inputs. Through the 

heuristic algorithm, a physical path that satisfies the resource 

constraint is outputted to deploy the SFC. In other words, SFC 

deployment finds some physical nodes to deploy the VNFs and 

some links to map the virtual network links between the known 

source node and the destination node. However, the quality of 

the deployment path has a great impact on deployment costs 

and the end-to-end delay. Our goal is to find an optimal 

deployment scheme that minimizes total end-to-end delay and 

total bandwidth consumption. 

For an SFC 𝐺Q = (𝑁Q, 𝐸Q), we denote DS = {DSg, DSh} as 

the scheme of SFC deployment, where DSg =

	{DSg 𝑣𝑛𝑓+ , 𝐷𝑆. 𝑣𝑛𝑓, , … , 𝐷𝑆.(𝑣𝑛𝑓|.Q|)}  records the 

deployment scheme of VNFs and DSh =

	{DSh 𝑒+ , DSh 𝑒, , … , DSh(𝑒|1Q|)}  records the deployment 

scheme of virtual network links. The SFC deployment 

procedure can be formulated as follows. 

(1) VNF deployment 

The deployment process of VNFs ca be formulated as 

follows: 

𝐷𝑆.: 𝑁Q
								jQk								

𝑁l                                                            (6) 

𝐷𝑆. 𝑣𝑛𝑓4 ∈ 𝑁l				∀𝑣𝑛𝑓4 ∈ 𝑁Q                                              (7) 

𝑐 𝐷𝑆. 𝑣𝑛𝑓4 ≥ 𝑟 𝑣𝑛𝑓4 				∀𝑣𝑛𝑓4 ∈ 𝑁Q                                (8) 

In Formula (6), 𝑁l ⊂ 𝑁" denotes the set of physical network 

nodes which host all VNFs. As shown in Formula (7), 

𝐷𝑆. 𝑣𝑛𝑓4  records the physical node that host the VNF 𝑣𝑛𝑓4. 

In the process of deployment, since the physical network 

resources are limited, some resource constraints must be met. 

For the deployment of VNFs, Formula (8) is a constraint to 

ensure that the computing resources requested by the VNF 

cannot be greater than the remaining computing resources of 

the physical node. 

𝑍 𝑣𝑛𝑓4 , 𝑛B ∈ 0,1 	∀𝑣𝑛𝑓4 ∈ 𝑁Q, ∀𝑛B ∈ 𝑁"                            (9) 

𝑍 𝑣𝑛𝑓4 , 𝑛B = 1		∀𝑣𝑛𝑓4 ∈ 𝑁U
|."|

Br+                                          (10) 

𝑍 𝑣𝑛𝑓4 , 𝑛B = 1		∀𝑛B	 ∈ 𝑁"
|.Q|

4r+                                          (11) 

𝑍 𝑣𝑛𝑓4 , 𝑛Bs9t:∈.WuW∈T4UVWXY
×  

𝑟 𝑣𝑛𝑓4 ≤ 𝑎 𝑛B 		∀𝑛B ∈ 𝑁Q     (12) 

Formula (9) indicates that 𝑍 𝑣𝑛𝑓4 , 𝑛B 	is a binary variable 

that can be equal to only 0 or 1. If 𝑍 𝑣𝑛𝑓4 , 𝑛B = 1, the 𝑖-th 

VNF 𝑣𝑛𝑓4  is deployed on the physical node 𝑛B , otherwise 

𝑍 𝑣𝑛𝑓4 , 𝑛B = 0. Formulas (10) and (11) guarantee that a VNF 

can be deployed on only one physical network node and that a 

physical network node only hosts one VNF for an SFC. 

Formula (12) ensures that the request resources of all VNFs 

deployed on the node 𝑛B can not exceed all resources of this 

node. 

(2) Virtual network link deployment 

𝐷𝑆1: 𝐸Q
								jQx							

𝐸l                                                             (13) 

𝐷𝑆1 𝑒4 ∈ 𝐸l		∀𝑒4 ∈ 𝐸Q                                                       (14) 

𝑐 𝑙B ≥ 𝑟 𝑒4 		∀𝑒4 ∈ 𝐸Q@L∈jQx(y:)

G49
                                      (15) 

    In Formula (13), 𝐸l  denotes the set of physical paths for 

hosting all virtual network links and each physical path is a 

subset of 𝐸Q. As shown in Formula (14), 𝐷𝑆1 𝑒4 	records the 

physical path that host the virtual network link 𝑒4 . For the 

deployment of the virtual network link, the bandwidth resource 

requested by the virtual network link cannot be greater than the 

remaining bandwidth resources of the physical link, which is 

described in Formula (15). 
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𝑌 𝑒4 , 𝑙B ∈ 0,1 		∀𝑒4 ∈ 𝐸Q, ∀𝑙B ∈ 𝐸"                                   (16) 

𝑌 𝑒4 , 𝑙By:∈1WuW∈T4UVWXY
×𝑟 𝑒4 ≤ 𝑎 𝑙B 		∀𝑙B ∈ 𝐸"        (17) 

𝑃U{<< = 𝑁𝑈𝑀U{<</|𝐿𝑖𝑠𝑡U{<<|                                               (18) 

Formula (16) indicates that 𝑌 𝑒4 , 𝑙B 	is a binary variable that 

can be equal to only 0 or 1. If 𝑌 𝑒4 , 𝑙B = 1, the 𝑖-th virtual 

network link 𝑒4 is deployed on the physical link 𝑙B, otherwise 

𝑌 𝑒4 , 𝑙B = 0. However, different from node deployment, since 

a virtual network link can map multiple physical links, the 

sum	𝑌 𝑒4 , 𝑙B  of is not required to be 1. Formula (17) ensures 

that the request bandwidth resources of all virtual network 

links deployed on the physical link 𝑙B  can not exceed all 

bandwidth resources of this link. Finally, we define the success 

rate of the SFC deployment, which is equal to the number of 

successfully deployed SFCs divided by the number of SFCs in 

a set. As shown in Formula (18), 𝑁𝑈𝑀U{<<  represents the 

number of successfully deployed SFCs. 𝑃U{<<  is the success 

rate of the SFC deployment. 

(3) SFC deployment example 

We show an example of SFC deployment in Figure 2. An 

SFC request is shown in Figure 2(a); the source node is 𝐴, and 

the destination node is 𝐺. The SFC contains two VNFs. Each 

of them has a certain computing resource request. The VNFs 

are connected by a directed virtual network link, and each 

virtual network link has a certain bandwidth resource request. 

In Figure 2(b), we assume that the underlying network 

resources meet the resource constraints, and show two 

different deployment schemes marked with red dashed lines 

and blue dashed lines. The bandwidth consumption of the red 

path is 5 + 7 + 8 + 8 = 28, and the bandwidth consumption 

of the blue path is 5 + 7 + 8 = 20. In addition, since the red 

path has more hops than those of the blue path, the end-to-end 

delay of the red path is greater than that of the blue path. This 

example explains that deploying different paths, and especially 

the hop count of the path, has a large impact on the cost and the 

end-to-end delay. Therefore, it is important to investigate this 

problem and design an algorithm that outputs an optimized 

SFC deployment scheme. 

 
Fig. 2. Example of an SFC deployment. 

D. Optimization goals 

In this paper, we explore three performance metrics: the 

end-to-end delay, bandwidth consumption and the load rate of 

nodes. The end-to-end delay reflects the performance of the 

network application and affects the user's experience, so we 

expect it to be minimized. Network operators, except the total 

bandwidth consumption, are minimized to prevent network 

congestion and reduce operating costs. When the network load 

is concentrated on some nodes, bottleneck nodes occur in the 

network, which affects the deployment of the following SFC. 

Therefore, we distribute the load across all nodes as much as 

possible for load balancing. 

(1) The end-to-end delay 

The end-to-end delay of the deployment path can be 

formulated as follows: 

𝐷𝑒𝑙𝑎𝑦uW = 𝑑(𝑙B)@L∈jQ(y:)y:∈1W
		∀	𝐺Q ∈ 𝐿𝑖𝑠𝑡QRS             (19) 

𝐷𝑒𝑙𝑎𝑦V�V = 𝑑	(𝑙B)@L∈jQ(y:)y:∈1WuW∈T4UVWXY
                   (20) 

 In Formula (19), on the left side of the equal sign, 𝐷𝑒𝑙𝑎𝑦uW 

represents the end-to-end delay of the entire SFC. On the right 

side of the equal sign, the inner summation represents the 

end-to-end delay of the deployment path on which the virtual 

network link	𝑒4 is deployed. The end-to-end delay of the entire 

chain is equal to the sum of the delay of all deployment paths. 

In Formula (20), 𝐷𝑒𝑙𝑎𝑦V�V  represents the total end-to-end 

delay of a set of SFCs. On the right side of the equal sign is the 

sum of the end-to-end delay of every SFC in the set 𝐿𝑖𝑠𝑡QRS . 

One of our goals is to minimize 𝐷𝑒𝑙𝑎𝑦V�V. 

(2) Bandwidth resource consumption 

The calculation expression for bandwidth resource 

consumption is similar to the end-to-end delay: 

𝐵𝑎𝑛𝑑uW = 𝑟(𝑒4)@L∈jQ(y4)y:∈1W
		∀	𝐺Q ∈ 𝐿𝑖𝑠𝑡QRS              (21) 

𝐵𝑎𝑛𝑑V�V = 𝑟(𝑒𝑖)@L∈jQ(y:)y:∈1WuW∈T4UVWXY
                    (22) 

In Formula (21), on the left side of the equal sign, 𝐵𝑎𝑛𝑑uW 

represents the whole bandwidth consumption of one SFC. On 

the right side of the equal sign, the inner summation represents 

the bandwidth consumption of the deployment path on which 

one virtual network link is deployed. The bandwidth 

consumption of the entire chain equals the sum of the 

bandwidth consumption of all deployment paths. In Formula 

(22), 𝐵𝑎𝑛𝑑V�V represents the total bandwidth consumption of a 

set of SFCs. On the right side of the equal sign, it is the sum of 

the bandwidth consumption of every SFC in the set 𝐿𝑖𝑠𝑡QRS . 

One of our goals is to minimize 𝐵𝑎𝑛𝑑V�V. 

(3) The load rate of the nodes 

Here, we mainly consider the load rate of nodes in the 

physical network. 

𝐿𝑜𝑎𝑑9��y = {𝑏(𝑛4)}9:∈.�
G8�                                                    (23) 

Formula (23) represents the maximum load rate of the nodes 

in the physical network. As shown in the formula, the 

maximum node load rate is equal to the maximum load rate of 

all nodes in the physical network. 
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In summary, our optimization goal is to minimize 

end-to-end delay and bandwidth consumption and to minimize 

the maximum load rate of nodes. In addition, the symbols used 

in the problem statement and formulation are summarized in 

Table 1. 

TABLE 1 

The Symbols Used in the Problem Statement and Formulation 

Symbol          Description 

𝐺"        The physical network 

𝑁"        The set of the physical nodes in the network 

𝐸"                 The set of the physical links in the network 

|𝑁𝑃|            The number of physical nodes 

|𝐸𝑃|           The number of physical links 

𝑎(𝑛4)           All computing resources of the node 𝑛4 

𝑐 𝑛4 								   The remaining resources of the node 𝑛4 

𝑏(𝑛4)           The load rate of the node 𝑛4 

𝑎 𝑙4            All band width resources of the link 𝑙4 

𝑐 𝑙4            The remaining resources of the link 𝑙4 

𝑏 𝑙4             The load rate of the link 𝑙4 

𝑝(𝑛4 , 𝑛B)      A path from node 𝑛4 to node 𝑛B 

𝑑(𝑛4 , 𝑛B)     The delay from node 𝑛4 to node 𝑛B 

𝑑 𝑙4             The delay of the link 𝑙4 

𝑑 𝑛@4+, 𝑛@4,  The delay of the link (𝑛@4+, 𝑛@4,) 

𝐿𝑖𝑠𝑡QRS   The set of SFCs 

𝐺Q                 The SFC request 

𝑁Q																							 The set of VNFs 

𝐸Q                The set of virtual network links 

|𝑁𝑆|             The number of VNFs in the SFC 

𝐸𝑆 				           The number of virtual links in the SFC 

r 𝑣𝑛𝑓4 				     The requested computing resources for 𝑣𝑛𝑓4 

r 𝑒4 						      The requested bandwidth resources for 𝑒4 

𝑆                  The source node for an SFC 

D                The destination node for an SFC 

𝐶ab  The order constraints of VNFs 

𝐷𝑆 The scheme of SFC deployment 

𝐷𝑆.  The scheme of VNF deployment 

𝐷𝑆1  The scheme of virtual network link deployment 

𝐷𝑆. 𝑣𝑛𝑓4 					 The physical node on which 𝑣𝑛𝑓4 is deployed 

𝐷𝑆1(𝑒4)          The set of physical links on which 𝑒4 is deployed 

𝑍 𝑣𝑛𝑓4 , 𝑛B     A binary variable, if 𝑣𝑛𝑓4 	is deployed on node  

 𝑛B, Z 𝑣𝑛𝑓4 , 𝑛B = 1, otherwise Z 𝑣𝑛𝑓4 , 𝑛B = 0 

𝑌 𝑒4 , 𝑙B   A binary variable, if 𝑒4 	is deployed on the link  

 𝑙B, 𝑌 𝑒4 , 𝑙B = 1, otherwise 𝑌 𝑒4 , 𝑙B = 0 

𝑁𝑈𝑀U{<<   The number of successfully deployed SFCs 

𝑃U{<<  The success rate of the SFC deployment 

𝐷𝑒𝑙𝑎𝑦V�V      The end-to-end delay for an SFC 

𝐵𝑎𝑛𝑑V�V       The bandwidth consumption for an SFC 

𝐿𝑜𝑎𝑑9��y     The maximum node rate for all nodes 

IV. ALGORITHM DESIGN 

As seen from the previous examples, the performance of 

SFC deployment is largely determined by the length of the 

deployment path. Therefore, we designed an algorithm to 

deploy the SFC based on the shortest path between the source 

node and the destination node. The algorithm is divided into 

two phases. The first phase is the sequence traversal of the 

network topology based on a BFS. The length of the shortest 

path between the source node and the destination node is found. 

Then, we compare the length of the shortest path with the 

length of the SFC. Three different comparison results are 

obtained. Different deployment strategies are adopted based on 

the comparison results. 

A. Breadth-first search 

The algorithm introduced in this section calls the BFS 

algorithm between the source node where the service terminal 

is located and the destination node where the user is located. It 

realizes the sequence traversal between the source node and the 

destination node, generates a breadth-first tree, and finds the 

length of the shortest path between two nodes. The details are 

shown in Algorithm 1. 

Algorithm 1 requires the input of information of the physical 

network topology, which is usually stored in an adjacency list. 

In addition, the source and destination nodes of an SFC are 

known. This algorithm outputs the length of the shortest path 

between the source node and the destination node. The 

two-dimensional node distribution of different hops between 

the two nodes is also outputted. 

During the initialization process, we set up 𝑞𝑢𝑒𝑢𝑒 to follow 

the first-in, first-out criteria and set it as empty. In addition, we 

initialize a two-dimensional list 𝑙𝑖𝑠𝑡+, a one-dimensional list 

𝑙𝑖𝑠𝑡, , and two count variables 𝑐𝑜𝑛+ , 𝑐𝑜𝑛, . 𝑐𝑜𝑛+  is used to 

record the number of nodes in the current hop, and 𝑐𝑜𝑛, 

records the number of nodes in the next hop. 𝑙𝑒𝑛𝑔𝑡ℎ is used to 

record the length of the shortest path between the source and 

destination nodes. 

Line 2 pushes the source node 𝑆 into 𝑞𝑢𝑒𝑢𝑒. When 𝑞𝑢𝑒𝑢𝑒 

is not empty, we iteratively search for the next physical node to 

deploy the VNF in the network topology. Line 4 obtains a node 

from the head of 𝑞𝑢𝑒𝑢𝑒 and marks it as 𝑇. After this, add 𝑇 

into 𝑙𝑖𝑠𝑡, and mark the node 𝑇  as already visited. 𝑐𝑜𝑛+ is 

decremented by 1. If 𝑇 is the destination node, it represents 

that we found the shortest path between the source node and 

the destination node. Then, 𝑙𝑖𝑠𝑡, is added into 𝑙𝑖𝑠𝑡+ , and 

𝑙𝑒𝑛𝑔𝑡ℎ is decremented by 1. After doing this, Algorithm 1 

completes the task and returns 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑙𝑖𝑠𝑡+. If 𝑇 is not the 

destination node, we need to traverse the adjacency nodes of 𝑇. 

If the adjacency node 𝑉 of 𝑇 has not been visited, 𝑉 is put into 

the head of 𝑞𝑢𝑒𝑢𝑒, and then 𝑐𝑜𝑛,	is incremented by 1. 

If 𝑐𝑜𝑛+ is equal to 0, it means that all the nodes in the current 

hop have been traversed. 𝑙𝑖𝑠𝑡, is added to 𝑙𝑖𝑠𝑡+, and then 𝑙𝑖𝑠𝑡, 

is set as empty to record the nodes in the next hop. Let 𝑐𝑜𝑛+ be 

equal to 𝑐𝑜𝑛, and 𝑐𝑜𝑛, be set to 0. 𝑙𝑒𝑛𝑔𝑡ℎ is incremented by 

1. 

Algorithm 1: Breadth-First Search based Algorithm (BFS) 

Input: (1) Physical network 𝐺" = (𝑁" , 𝐸"). 

    (2) The source node 𝑆. 

    (3) The destination node 𝐷. 

Output: The length of the shortest path between two nodes; 

the two-dimensional list 𝐿𝑖𝑠𝑡 < 𝐿𝑖𝑠𝑡 < 𝑛4 >> that records the 

distribution of nodes with different hops. 

1: Initialization:	𝑞𝑢𝑒𝑢𝑒 = ∅, 𝐿𝑖𝑠𝑡 < 𝐿𝑖𝑠𝑡 < 𝑛4 >> 𝑙𝑖𝑠𝑡+ =
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	∅, 𝐿𝑖𝑠𝑡 < 𝑛4 > 𝑙𝑖𝑠𝑡, = 	∅, 𝑐𝑜𝑛+ = 1, 𝑐𝑜𝑛, = 0, 𝑙𝑒𝑛𝑔𝑡ℎ =

0; 

2: push 𝑆 into the 𝑞𝑢𝑒𝑢𝑒; 

3: while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅, do 

4: Remove a node from the queue and mark it as 𝑇; 

5: Add 𝑇 into 𝑙𝑖𝑠𝑡,; 

6:     Mark 𝑇 as already visited; 

7:     𝑐𝑜𝑛+ = 𝑐𝑜𝑛+ − 1; 

8:     if 𝑇 is 𝐷, do 

9:          Add 𝑙𝑖𝑠𝑡, into 𝑙𝑖𝑠𝑡+; 

10:        𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛𝑔𝑡ℎ + 1; 

11:        return 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑙𝑖𝑠𝑡+. 

12:   end if 

13:   for the node 𝑉 ∈ T neighbor nodes, do 

14:        if 𝑉 is not visited, do 

15:               Push 𝑉 into the 𝑞𝑢𝑒𝑢𝑒; 

16:               𝑐𝑜𝑛, = 𝑐𝑜𝑛, + 1; 

17:        end if 

18:   end for 

19:   if 𝑐𝑜𝑛1 equals 0, do 

20:        Add 𝑙𝑖𝑠𝑡, into 𝑙𝑖𝑠𝑡+; 

21:        𝑙𝑖𝑠𝑡, = 	∅; 

22:        𝑐𝑜𝑛+ = 𝑐𝑜𝑛,; 

23:        𝑐𝑜𝑛, = 0; 

24:        𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛𝑔𝑡ℎ + 1; 

25:   end if 

26: end while 

To facilitate a better understanding of the algorithm, we 

demonstrate an example of a BFS based algorithm in Figure 3. 

The example shows the state of the underlying network 

topology and the key parameters in the algorithm after each 

iteration. The simple network topology consists of 6 physical 

nodes and 7 physical links. We perform a BFS based algorithm 

between the source node 𝑠 and the destination node 𝑑. Figure 

3(a) shows that after the initialization process, the source node 

𝑠 is added into 𝑞𝑢𝑒𝑢𝑒, and all parameters are set to their initial 

values. In Figure 3(b), the node 𝑠 is removed from 𝑞𝑢𝑒𝑢𝑒 and 

marked as already visited in the topology (whenever a node is 

removed from 𝑞𝑢𝑒𝑢𝑒, we mark it as already visited and mark 

its hop count in the topology. For example, we mark 𝑠 as 1 in 

the topology). We can discover the nodes 𝑟  and 𝑤  by 

traversing the adjacent nodes of 𝑠 and adding them into	𝑞𝑢𝑒𝑢𝑒. 

Since 𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25 

to update the state of these parameters. 

In Figure 3(c), node 𝑟 is removed from 𝑞𝑢𝑒𝑢𝑒 and added 

to	𝑙𝑖𝑠𝑡,. No new nodes are found by traversing the adjacent 

nodes of node 𝑟. In Figure 3(d), the current node is 𝑤; we can 

find nodes 𝑡 and 𝑥 by traversing the adjacent nodes of node 𝑤. 

Since 𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25 

to update the state of these parameters. Next, node 𝑡  is 

removed from 𝑞𝑢𝑒𝑢𝑒. After adding 𝑡 into 	𝑙𝑖𝑠𝑡,, we scan its 

adjacent nodes and discover node 𝑑 . Node 𝑑  is added into 

𝑞𝑢𝑒𝑢𝑒 and 𝑐𝑜𝑛, is incremented by 1. These are all shown in 

Figure 3(e). In Figure 3(f), 𝑥 is removed from 𝑞𝑢𝑒𝑢𝑒. Since 

𝑐𝑜𝑛+ is equal to 0, the algorithm performs lines 19 to 25 to 

update the state of these parameters. In the last figure, node 𝑑 

is removed from 𝑞𝑢𝑒𝑢𝑒. Because 𝑑 is the destination node, we 

add 	𝑙𝑖𝑠𝑡, into 	𝑙𝑖𝑠𝑡+ and 𝑙𝑒𝑛𝑔𝑡ℎ is incremented by 1. Finally,

𝑙𝑖𝑠𝑡+ and 𝑙𝑒𝑛𝑔𝑡ℎ are returned. 

 

Fig. 3. An example of BFS. 

After ensuring that the physical network topology is 

connected, by calling the BFS algorithm between the source 

node and the destination node, we can easily find the length of 

the shortest path between the source node and the destination 

node. The node distribution of different hops between two 

nodes can be obtained. We use these output results to introduce 

the strategy of SFC deployment in Algorithm 2. 

B. SFC deployment based on BFS 

Through Algorithm 1, we can obtain the length of the 

shortest path between the source node and the destination node 

and the node distribution of different hops between the two 

nodes. By comparing the length of the shortest path with the 
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length of the SFC, we can obtain three different results; namely, 

the length of the shortest path is equal to, less than or greater 

than the length of the SFC. Based on these three different 

results, three different deployment scenarios can be generated. 

In the process of deployment, we start from the layer where the 

destination node is located and iteratively search for the next 

physical network node in the upper layer or the current layer to 

deploy the necessary VNF. While the VNF is being deployed, 

the connected virtual network link is also deployed. 

𝑂𝑆𝐹	 𝑛I = 𝜆×𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I) + 1 − 𝜆 × 

𝑏 𝑛I + 𝑏	 𝑛< , 𝑛I 	∀𝑛I∈QaS ¡¢£        (24) 

𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I) =
� 9¤,9J

G8� � 9¤,9¥ ,∀9¥∈QaS ¡¢£
                         (25) 

When selecting a physical node to deploy the current VNF 

that needs to be deployed, we design an optimal selection 

factor 𝑂𝑆𝐹 𝑛I  for a physical node 𝑛I . The calculation 

method of 𝑂𝑆𝐹 𝑛I  is shown in Formula (24), where 𝑛< is the 

last physical node that has been selected. At the beginning of 

the algorithm, 𝑛<  is the destination node. 𝜆  is a weight 

parameter. The end-to-end delay and the load rate are weighted 

together to obtain an optimal selection factor 𝑂𝑆𝐹. Increasing 

the value of 𝜆 can increase the weight of the end-to-end delay 

at the time of selection to achieve a smaller end-to-end delay. 

In the following experiments, we change the value of 𝜆  to 

observe its effect on performance. 

 The formula for calculating 𝑑𝑒𝑙𝑎𝑦�8Vy(𝑛I)  is shown in 

Formula (25). 𝑛G is a node in the set of candidate nodes, which 

is represented by 𝑆𝑂𝐶9��y. The candidate nodes are the nodes 

that connect with node 𝑛<  in the upper layer or the current 

layer.	𝑑(𝑛< , 𝑛I) is the delay of the link that is connected by the 

nodes 𝑛< and 𝑛I, and the denominator is the maximum delay 

among all candidate links. 𝑏(𝑛I) is the load rate of the node 𝑛I, 

and 𝑏(𝑛< , 𝑛I) is the load rate of the link connected by the 

nodes 𝑛<  and 𝑛I . Dividing 𝑑(𝑛< , 𝑛I) by the maximum delay 

allows the load rate to have greater weight when selecting 

nodes. We select the node with the minimum optimal selection 

factor 𝑂𝑆𝐹 that satisfies the resource constraint in Formulas (8) 

and (15) to deploy the current VNF (link). More details are 

shown in Algorithm 2. 

Algorithm 2: SFC deployment based on a BFS 

Input: (1) Physical network 𝐺" = (𝑁" , 𝐸"); 

   (2) An SFC request 𝐺Q = (𝑁Q, 𝐸Q), the source node 𝑆 

and the destination node 𝐷; 

    (3) 𝑙𝑒𝑛𝑔𝑡ℎ that records the length of the shortest path 

between 𝑆 and 𝐷 and the two-dimensional list 𝑙𝑖𝑠𝑡1 

that records the distribution of nodes with different 

hops. 

Output: The deployment solution 𝐷𝑆. 

1: Initialization:	𝐷𝑆 = 𝐷 ,𝐿K8V¦ = 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿QRS = 𝑁𝑆 , 𝑛U = 𝐷; 

2: while 𝑛U ≠ 𝑆, do 

3:  if 𝐿K8V¦ = 𝐿QRS ,do 

4:  Remove the last VNF in the set of VNFs 𝑁Q; 

5: Find a physical node 𝑛I in the node distribution set 

of the previous hop that meets both node and link 

resource constraints and has minimal 𝑂𝑆𝐹; 

6:        if find a physical node 𝑛I, do 

7:     𝑛U = 𝑛I; 

8:            𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I; 

9:         𝐿K8V¦ = 	𝐿K8V¦ − 1; 

10: 𝐿QRS = 	𝐿QRS − 1; 

11 else 

12: return 𝐷𝑆. 

13: end if 

14:  else if 𝐿K8V¦ > 𝐿QRS ,do 

15: Find the link 𝑒 with the smallest bandwidth resource 

request in the 𝐸Q , and the bandwidth resource 

consumption is 𝑟(𝑒); 

16: Expand the |𝐿K8V¦ − 𝐿QRS|  links that request 

𝑟 𝑒 	bandwidth resources in the SFC. The node 

request resource between the links is set to 0. After 

doing this, 𝐿K8V¦ is equal to 𝐿QRS; 

17:  else if 𝐿K8V¦ < 𝐿QRS ,do 

18: Remove the last VNF in the set of VNFs 𝑁Q; 

19: Find a physical node 𝑛I in the node distribution set 

of the current hop, which meets both node and link 

resource constraints and has minimal 𝑂𝑆𝐹; 

20:  if fine a physical node 𝑛I,do 

21:  𝑛U = 𝑛I; 

22:  𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I; 

23:  𝐿QRS = 	𝐿QRS − 1; 

24:  else 

25: Find a physical node 𝑛I in the node distribution 

set of the previous hop that meets both node and 

link resource constraints and has minimal 𝑂𝑆𝐹; 

26: if find a physical node 𝑛I, do 

27:  𝑛U = 𝑛I;  𝐷𝑆 = 𝐷𝑆 ∪ 𝑛I; 

28:                𝐿K8V¦ = 	𝐿K8V¦ − 1; 

29: 𝐿QRS = 	𝐿QRS − 1; 

30:  else 

31:  return 𝐷𝑆. 

32:  end if 

33:        end if 

34:  end if 

35: end while 

36: return 𝐷𝑆 

Algorithm 2 requires the inputs of the underlying physical 

network topology and an SFC request containing the source 

node and the destination node. The results derived by 

Algorithm 1 containing the length of the shortest path and the 

node distribution with different hops between the source node 

and the destination node is also needed. Finally, the 

deployment scheme of this SFC is outputted. Algorithm 2 finds 

a physical node to deploy the current VNF each iteration until 

the source node is found, or the algorithm ends because there 

are not enough underlying resources. 

We compare the size of 𝐿K8V¦  and 𝐿QRS  each time. 

According to three different comparison results, three different 

deployment scenarios are obtained. When 𝐿K8V¦  is equal to 

𝐿QRS , we look for a physical node in the node distribution of the 

previous hop to deploy the current VNF. The node is required 

to satisfy node and link resource constraints and has a 
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minimum 𝑂𝑆𝐹. 

If 𝐿K8V¦ is greater than 𝐿QRS , the length of the shortest path 

will be greater than the length of the SFC. In this case, there are 

redundant nodes and links. Therefore, we extend the length of 

the SFC, adding nodes and links so that 𝐿K8V¦ is equal to 𝐿QRS . 

The added virtual links need to consume a certain amount of 

bandwidth resources, so we choose to expand the virtual 

network link requesting the least bandwidth resources in the 

SFC. The added virtual network nodes do not need to consume 

redundant computing resources. 

When 𝐿K8V¦ is smaller than 𝐿QRS , the current SFC cannot be 

deployed in the shortest path. We need to find other nodes 

between the nodes in the shortest paths. In each iteration, we 

first try to find the physical node in the node distribution of the 

current hop and then find the physical node in the node 

distribution of the previous hop. 𝐷𝑆  is used to record the 

deployment scheme. After the algorithm ends, we can compare 

the SFC and the deployment scheme to determine whether the 

deployment is successful, and the resource consumption 

caused by the deployment is calculated. 

To facilitate a better understanding of the algorithm, we 

demonstrate an example of SFC deployment in Figure 4. 

Figure 4(a) shows the outputs of Algorithm 1, including 

information about the underlying physical topology, the length 

of the shortest path between nodes 𝑠  and 𝑑 , and the node 

distribution of different hop counts 𝑙𝑖𝑠𝑡+. Figure 4(b) shows an 

SFC request that contains two VNFs and three virtual network 

links. We show the end-to-end delay and load rate of all 

physical links in Figure 4(c). In Figure 4(d), the current load 

rate of all nodes is given. 

 

Fig. 4. An example of SFC deployment based on BFS. 

To find a path between node 𝑠 and 𝑑 to deploy the SFC, we 

start from the destination node 𝑑. Here, we assume that both 

the underlying node resources and link resources satisfy the 

resource constraints. Since the length of the SFC is equal to the 

length of the shortest path between two nodes, we search the 

nodes from the upper layer of 𝑑. As you can see in 𝑙𝑖𝑠𝑡+, there 

are two candidate nodes, 𝑡 and 𝑥. The optimal selection factor 

𝑂𝑆𝐹 for the two nodes is given in Figure 4(e). The optimal 

selection factor of node 𝑥 is smaller than that of node 𝑡, so we 

choose node 𝑥  to deploy the current VNF 𝑣𝑛𝑓, . While 

deploying VNFs, virtual network links are also deployed. 

Next, starting from node 𝑥, we look for the next physical 

node to deploy 𝑣𝑛𝑓1. The candidate nodes are 𝑟 and 𝑤. Since 

the node 𝑟 is not a neighbor of node 𝑥, we can choose only 

node 𝑤 to deploy 𝑣𝑛𝑓+ . Finally, we find the source node 𝑠. 

This SFC is deployed successfully. The deployment path of the 

SFC is 𝑠 → 𝑤 → 𝑥 → 𝑑. Figure 4(f) shows the scheme of the 

SFC deployment. 

Algorithm 2 deploys the SFC based on a BFS. The algorithm 

first considers the shortest path between the source node and 

the destination node and preferentially selects the path with 

fewer hops to deploy the SFC. Because the length of the 

deployed path is closely related to the end-to-end delay and 

bandwidth consumption, the algorithm can optimize these two 

performance metrics. In addition, the load balancing of the 

network is also considered in the process of designing the 

algorithm. The associated algorithm experiments are described 

in the next section. 

C. Complexity analysis 

The proposed SFCDO algorithm consists of Algorithm 1 and 

Algorithm 2. In a physical network topology, we assume that 

there are |𝑁𝑃|  nodes and |𝐸𝑃|  links. We analysis the time 

complexity of our proposed SFCDO algorithm as follows: 

l Algorithm 1 uses BFS search method between the source 

node and the destination node. The algorithm ensures that 

each node enters and pops a queue at most one time. 

Therefore, the total time to operate on the queue is 

𝑂(|𝑁𝑃|) . We use an adjacent list to store the network 

topology. Because the algorithm only scans the adjacency 

list of the node when it is dequeued, each adjacency list is 

scanned at most once. The sum of the lengths of all adjacent 

lists is 𝜃(|𝐸𝑃|), and the total time for scanning the adjacent 

lists is 𝑂(|𝐸𝑃|). Therefore, the complexity of Algorithm 1 

is 𝑂( 𝑁𝑃 + |𝐸𝑃|). 

l For Algorithm 2, when 𝐿K8V¦ ≥ 𝐿QRS , each node and link 

are scanned at most once, so the algorithm complexity is 

𝑂( 𝑁𝑃 + |𝐸𝑃|) . When 𝐿K8V¦ < 𝐿QRS  ，the algorithm 

complexity is 𝑂(2 ∗ ( 𝑁𝑃 + |𝐸𝑃|)). Therefore, the time 

complexity of Algorithm 2 is 𝑂( 𝑁𝑃 + |𝐸𝑃|). 
In summary, for the deployment of an SFC, the time 

complexity of our SFCDO algorithm is 𝑂( 𝑁𝑃 + |𝐸𝑃|). 
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V.  EXPERIMENT RESULTS AND ANALYSIS 

In this section, we first introduce the experiment 

environment and some key parameter settings. Then, we 

compare the proposed algorithm with an algorithm in an 

existing paper. The author of [9] proposed a G-SA algorithm. 

The algorithm first used the greedy algorithm to initially 

deploy the VNFs and then used a simulated annealing 

algorithm to optimize the results obtained by the greedy 

algorithm. The algorithm in [9] is a typical two-step algorithm 

that first deploys VNFs and then finds paths between deployed 

nodes. This algorithm wasted the underlying network 

resources and introduced a relatively high end-to-end delay. 

We will show and analyze the results of the performance 

comparison. 

A. Experiment environment and settings 

In the experiment, we use OpenStack to build testbeds to 

evaluate different deployment algorithms. OpenStack is a 

cloud operating system that controls large pools of compute, 

storage, and networking resources. Through openstack, we can 

configure the resources in the underlying physical network and 

the request resources of the SFC. Similar with Ref. [38], we 

conduct the experiment on a typical Chinese network topology. 

An example of a physical network topology is shown in Figure 

5. The network topology has 55 nodes, and the average degree 

of each node is about 4. 

 

Fig. 5. An example of a physical network topology. 

    Similar with Ref. [17], we assume that each node has 2000 

computing resources, each link has 2000 Mbps bandwidth 

resources, and the end-to-end delay of each link follows a 

uniform distribution, U (30, 130). In the experiment, we 

generate 500 SFC requests per group. The length of each SFC 

is uniformly distributed, U (4, 6). The computing resources 

requested by each VNF follow a uniform distribution, U (10, 

20). The bandwidth resources requested by each virtual 

network link are subject to a uniform distribution, U (10, 20). 

For fairness, we use the same network topology and parameters 

when comparing the two algorithms. 

B. Experiment results and analysis 

In the process of comparing the performance of the 

algorithms, the main performance indicators we focus on are 

end-to-end delay, bandwidth consumption of deployed links, 

and network load balancing. Based on the environment 

introduced in Part A, we analyze the three indicators 

separately. 

To further investigate the influence of different algorithms 

on the end-to-end delay, we study the distribution of the 

end-to-end delay of each SFC. We plot the result in Figure 6. 

The abscissa is the end-to-end delay, and the ordinate is the 

sum of the proportions of the end-to-end delay, which is less 

than the abscissa. As shown in the figure, the performance gap 

between the SFCDO algorithm and the G-SA algorithm is 

large. The end-to-end delay of the SFCDO algorithm is mainly 

concentrated between 160-690 ms, while the G-SA algorithm 

is mainly concentrated between 200-1130 ms. Compared to the 

G-SA algorithm, SFCDO has a shorter end-to-end delay, 

mainly because SFCDO deploys the SFC based on the shortest 

path between the source node and the destination node. Our 

proposed algorithm preferentially selects the physical path 

with fewer hops, so the end-to-end delay is optimized. 
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Fig. 6. The distribution of end-to-end delay. 

In addition, we compare the end-to-end delay with a 

changing 𝜆 parameter. As the 𝜆 increases, the end-to-end delay 

is continuously optimized because the influence of the 

end-to-end delay in the optimal selection factor is increasing, 

so it tends to choose a link with a smaller end-to-end delay. 

Figure 7 shows the distribution of bandwidth consumption. 

The abscissa represents the bandwidth consumption of the 

deployment, and the ordinate is the sum of the proportions of 

bandwidth consumption, which is less than the abscissa. For 

bandwidth consumption, the SFCDO algorithm is mainly 

concentrated between 35 and 120 Mbps, while the G-SA 

algorithm is concentrated between 40 and 302 Mbps. Because 

both bandwidth consumption and end-to-end delay are 

determined by the number of hops of the deployment path, 

bandwidth consumption is optimized as end-to-end delay when 

we prefer the path with the fewest hops to deploy the SFC.  
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Fig. 7. The distribution of bandwidth consumption. 
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We also observe changes in bandwidth consumption while 

changing the 𝜆 parameter. As shown in Figure 7, increasing the 

value of 𝜆  is not significant for changes in bandwidth 

consumption. This is because bandwidth consumption is 

mainly determined by the length of the deployment path and 

the bandwidth resources requested by the virtual network link, 

do not interact with	𝜆. 
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Fig. 8. The distribution of load rate of the node. 

To further investigate the influence of different algorithms 

on the load rate, we studied the distribution of the load rate of 

the nodes. The result is shown in Figure 8. In the figure, the 

abscissa represents the load rate of the node, and the ordinate is 

the sum of the proportions of the load rate, which is less than 

the abscissa. It can be seen that 80 percent of the nodes have no 

load in the G-SA algorithm, and the network load is mainly 

concentrated on 20 percent of nodes. In the SFCDO algorithm, 

95 percent of the load rate of the nodes is concentrated below 

60 percent. Nodes with high load rates rarely occur because in 

the design process of the SFCDO algorithm, we consider the 

load rate of the node and use it as one of the factors for the 

selection of nodes. The G-SA algorithm deploys the VNF on a 

certain node as much as possible, resulting in excessive load 

concentration. 

In addition, we compare the load rate with changing 𝜆 

parameters. As 𝜆  decreases, the load rate is continuously 

optimized because the influence of the load rate in the optimal 

selection factor is increasing, so it tends to choose a node with 

a smaller load rate. 

In addition to performing the experiment in the environment 

described in section A, we also attempt experiments under 

different network parameters. To investigate the adaptability of 

the two algorithms to different network parameters, we change 

the number of SFCs and the length of the SFCs. We compare 

and analyze the performances of the two algorithms. The 

results show that the proposed algorithm is still optimized in 

terms of end-to-end delay and bandwidth resource 

consumption. The rest of the experiment results are shown. 

Figure 9 is a diagram showing the change in the average 

end-to-end delay of the deployment path in the case of 

changing the number of SFCs. In the figure, the abscissa 

represents the number of SFCs, and the ordinate represents the 

average end-to-end delay. As the number of SFCs increases, 

the SFCDO algorithm has good stability. The average 

end-to-end delay fluctuates within only a small range. The 

average end-to-end delay is maintained at approximately 395 

ms. However, for the G-SA algorithm, the average end-to-end 

delay increases as the number of SFCs increases. The average 

end-to-end delay of the G-SA algorithm is always greater than 

that of the SFCDO algorithm. In addition, we used different 𝜆 

parameters to observe the average end-to-end delay variation. 

As shown in Figure 9, as the 𝜆  parameter increases, the 

average end-to-end delay decreases, which shows that we can 

obtain a smaller end-to-end delay by adjusting the 𝜆 parameter. 
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Fig. 9. Average end-to-end delay for different numbers of 

SFCs. 

We show the change in average bandwidth consumption in 

the case of changing the number of SFCs in Figure 10. In the 

figure, the abscissa represents the number of SFCs, and the 

ordinate represents the average bandwidth consumption. It can 

be seen that with the increase in the number of SFCs, the 

bandwidth consumption of the SFCDO algorithm remains 

basically unchanged, and average end-to-end delay is 

maintained at approximately 72 Mbps. However, for the G-SA 

algorithm, average bandwidth consumption increases as the 

number of SFCs increases. The average bandwidth 

consumption of the G-SA algorithm is always greater than that 

of the SFCDO algorithm. In addition, as shown in the figure, 

there is no change in the average bandwidth consumption as 

the 𝜆 parameter changes. 

100 200 300 400 500 600 700 800 900
60

70

80

90

100

110

120

130

A
v

er
ag

e 
b

an
d

w
id

th
 c

o
n

su
m

p
ti

o
n

 o
f 

S
F

C
 (

M
b

p
s)

The number of SFCs

 SFCDO (λ=0.8)

 SFCDO (λ=0.5)

 SFCDO (λ=0.2)

 G-SA

 

Fig. 10. Average bandwidth consumption for different 

numbers of SFCs. 

To investigate the influence of different parameters on the 

performance, we study the change in the average end-to-end 

delay and bandwidth consumption when changing the length of 

the SFCs. We plot these results in Figure 11 and Figure 12, 

respectively. In Figure 11, the abscissa represents the length of 
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the SFC, and the ordinate represents the average end-to-end 

delay of the deployment paths. As the length of the SFC 

increases, the end-to-end delays of the two algorithms both 

increase, because as the length of the SFC increases, the length 

of the deployment path also increases, so the average 

end-to-end delay will also increase. However, as shown in the 

figure, the growth rate of the SFCDO algorithm is less than that 

of G-SA, and the end-to-end delay of SFCDO is always 

smaller than that of the G-SA algorithm. Therefore, the 

SFCDO algorithm is significantly optimized for end-to-end 

delay. In addition, as the 𝜆 parameter increases, the average 

end-to-end delay is slightly optimized. 
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Fig. 11. Average end-to-end delay of SFC. 

In Figure 12, the abscissa represents the length of the SFC, 

and the ordinate represents the average bandwidth 

consumption. As the length of the SFC increases, the 

bandwidth consumption of the two algorithms both increase, 

which is the same as the end-to-end delay. As shown in the 

figure, the growth rate of the SFCDO algorithm is also less 

than that of G-SA, and the end-to-end delay of SFCDO is 

always smaller than that of the G-SA algorithm. Compared 

with the G-SA algorithm, the SFCDO algorithm also optimizes 

bandwidth consumption. However, as the λ  parameter 

increases, the average bandwidth consumption remains 

unchanged. 
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Fig. 12. Average bandwidth consumption of SFC. 

VI.  CONCLUSION 

In this paper, we study the efficient SFC deployment 

problem in NFV. The key issue in the SFC deployment 

problem is how to achieve efficient use of the underlying 

physical resources and effectively reduce the end-to-end delay 

of the deployment path. We introduced recent research on 

service chain deployment issues and proposed mathematical 

models for SFC deployment. For the proposed mathematical 

model, we propose an SFC deployment algorithm SFCDO 

based on a BFS. The algorithm deploys the SFC based on the 

shortest path between the source node and the destination node 

and preferentially selects the path with the shortest hops to 

implement the deployment. In addition, we compare the 

proposed algorithm with the G-SA algorithm. The experiment 

results show that the SFCDO algorithm can effectively reduce 

the end-to-end delay of the deployment path and reduce the 

bandwidth resource consumption by up to 40% and 49%, 

respectively. In addition, the algorithm also considers the load 

rate of the nodes and achieves load balancing. 

In the future work, we are going to study the network 

security problem in the service function chain deployment, and 

propose corresponding deployment algorithms to ensure the 

security of the network while further improving the utilization 

of network resources. 
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