
1

Low-Latency C-RAN: A Next-Generation Wireless

Approach
Hong Ren, Student Member, IEEE, Nan Liu, Member, IEEE, Cunhua Pan, Member, IEEE, Maged Elkashlan,

Member, IEEE, Arumugam Nallanathan, Fellow, IEEE, Xiaohu You, Fellow, IEEE and Lajos Hanzo, Fellow, IEEE

Abstract—Cloud radio access networking (C-RAN) constitutes
a promising architecture for next-generation systems. Beneficial
centralized signal processing techniques can be realized under
the C-RAN architecture. Furthermore, given the recent rapid
development of cloud computing, the C-RAN architecture is an
ideal platform for supporting network function virtualization
(NFV), software-defined networking (SDN) and artificial intel-
ligence (AI). However, most of the existing contributions on C-
RAN are mainly focused on the physical layer issues. The next-
generation networks are expected to support compelling wireless
applications satisfying diverse delay requirements, such as ultra-
reliable and low-latency communications (URLLC), etc. Hence,
we invoke the effective capacity theory for statistical delay-
bounded QoS provision in C-RAN architectures, where the delay
is taken into account. Based on the system model proposed, we
conceive sophisticated power allocation schemes for maximizing
the effective capacity of both single-user and multi-user scenarios.
Our simulation results show that a low delay outage probability
can be guaranteed by appropriately choosing the delay exponent.
Furthermore, our simulation results demonstrate that the pro-
posed algorithm significantly outperforms the existing algorithms
in terms of the achievable effective capacity. Finally, some open
research challenges are highlighted.

Index Terms—URLLC, C-RAN, 5G, Delay, Effective Capacity.

I. INTRODUCTION

Due to the substantially increased data volumes, the fifth-

generation (5G) cellular networks are expected to significantly

exceed the data throughput of 4G systems [1]. Massive MIMO

systems constitute a promising technique of achieving this am-

bitious goal by exploiting the high degrees of spatial freedom

[2], and have attracted substantial research attention. However,

in centralized deployments the performance of massive MIMO

systems tends to be limited by the correlated fading of

antennas. This issue can be dealt with by deploying a large

number of geographically distributed antennas for the sake of

maintaining the benefits of massive MIMO. Furthermore, both

H. Ren was with the Southeast University, Nanjing, China. (e-
mail:renhong@seu.edu.cn). She is now with the Queen Mary University of
London, London E1 4NS, U.K. N. Liu and X. You are with the Southeast
University, Nanjing, China. (e-mail:{nanliu, xhyu}@seu.edu.cn). C. Pan,
M. Elkashlan and A. Nallanathan are with the Queen Mary University of
London, London E1 4NS, U.K. (Email:{c.pan, maged.elkashlan, a.nallanathan
}@qmul.ac.uk). L. Hanzo is with the School of Electronics and Computer
Science, University of Southampton, Southampton, SO17 1BJ, U.K. (e-
mail:lh@ecs.soton.ac.uk).

This work is partially supported by the National Natural Science Foundation
of China under Grants 61571123 and 61521061, the Research Fund of
National Mobile Communications Research Laboratory, Southeast University
(No. 2018A03).

L.Hanzo would like to acknowledge the financial support of the European
Research Council, Advanced Fellow grant Beam-Me-Up.

the link quality and cell coverage are dramatically improved by

this distributed architecture, since the average access distance

of each user is significantly reduced. This is the so-called

cloud radio access network (C-RAN) concept [3], which is

a promising network architecture capable of achieving the

ambitious next-generation goals.

However, most of the existing literature devoted to the C-

RAN concept is focused on the physical layer issues and the

system performance evaluation is mainly based on the con-

cept of classic Shannon capacity. Although this information-

theoretic framework is eminently suitable for analyzing the

single-user link-efficiency, it gives no cognizance to the delay

from data-link layer. One of the most challenging 5G opera-

tional models is constituted by ultra-reliable and low-latency

communications (URLLC) [4] conceived for supporting tactile

Internet applications [5], vehicle-to-vehicle communications

[6], remote control of industrial manufacturing, etc. These

applications have stringent end-to-end delay requirements (say

around 1 ms). Additionally, some popular multimedia services,

such as seamless lip-synchronized video conferencing and

interactive gaming also impose stringent delay requirements.

Hence, research attention also has to be dedicated to data-

link layer by considering these delay requirements. It is of

paramount importance to account for the quality of service

(QoS) requirements quantified in terms of delay when design-

ing next-generation transmission schemes.

Due to the highly time-varying wireless channel condi-

tions, it is quite a challenge to guarantee deterministic delay-

bounded QoS requirements for these compelling applications.

Fortunately, the statistical delay-bounded QoS theory has

been proven to be a powerful tool of handling the delay

requirements of near-real-time traffic. More specifically, we

can control the data rate of the incoming stream for ensuring

that the delay-outage probability is always below a certain

threshold. For example, in the Long Term Evolution (LTE)

Advanced standard, the probability that the delay of online

gaming is higher than 50 ms should be kept below 2% [7].

To facilitate the analysis of statistical delay QoS performance,

Wu et al. introduced the important notion of effective capacity,

which represents the maximum constant packet arrival rate that

can be supported by the system, whilst satisfying a maximum

delay-outage probability constraint.

The rest of this paper is organized as follows. We briefly

introduce the C-RAN architecture and show that C-RANs con-

stitute an ideal platform of supporting salient paradigms, such

as network function virtualization (NFV), software-defined

networking (SDN) and artificial intelligence (AI) aided system
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optimization. We then introduce the effective-capacity-based

statistical delay-bounded QoS provision concept into the C-

RAN architecture and propose a dynamic power allocation

algorithm that can adapt both to the delay requirements and

to the channel conditions. We provide simulation results for

quantifying the benefits of our proposed algorithm and show

that extremely tight delay requirements can be met by using

our proposed algorithm. Finally, we conclude with some future

research challenges.

II. C-RAN ARCHITECTURE

The C-RAN architecture is shown in Fig. 1, which is

composed of three parts:

1) Radio remote heads (RRHs) randomly located over the

coverage area;

2) Baseband unit (BBU) pool with powerful cloud comput-

ing capability in a data center;

3) High-speed low-latency fronthaul links that connect the

RRHs to the CPU.

The main feature of C-RANs is that the signal processing

tasks of each small cell base station (BS) are migrated to the

BBU pool, which is responsible for all the baseband signal

processing, such as coordinated multi-point (CoMP) trans-

mission, centralized resource allocation, joint user scheduling,

data flow control, etc. The conventional full-functionality small

BSs are replaced by low-cost RRHs, which are only used

for low-complexity transmission and reception. Due to its

low-complexity functionality, its size is smaller than that of

the conventional small-cell BSs and can be readily installed

on lamp-posts and building walls, hence imposing a low

maintenance cost. In Fig. 1, the C-RAN is expected to support

diverse applications, such as augmented reality (AR) based

tele-conferencing, drone-based parcel delivery [8], tactile In-

ternet, vehicular communication, smart factory support, etc.

Apart from the benefits of the air interface layer, this

network architecture also enjoys further benefits at the net-

work level. For example, compelling techniques, such as

network function virtualization, software-defined networking

and artificial intelligence, can be realized in this centralized

architecture.

1) Network Function Virtualization: Through NFV, some

network functions are separated from the conventional

hardware infrastructure and can run on the cloud-

computing infrastructure in the BBU pool with all the

high-complexity power-thirsty signal processing tasks

executed there. The main benefit of NFV is that so-

phisticated network functionalities can be dynamically

supported depending on the near-instantaneous network

state [1]. Additionally, new services can be created for

discerning customers. More details about the NFV can

be found in [9].

2) Software-Defined Networking: The SDN philosophy is

at the heart of intelligent programmable networks. The

key feature of SDN is that the control as well as

data planes are decoupled, hence the network becomes

more flexible in terms of supporting intelligent fu-

ture applications. The key merit of this technology is

the partitioning of network functionalities into separate

software platforms, hence configuring the services by

sophisticated programmable controllers. This technology

is more amenable to employment in C-RANs, since the

BBU pool is responsible for the whole suite of net-

working services. Its computing resources can be adap-

tively assigned and controlled through programmable

controllers in the BBU pool.

3) Artificial Intelligence: User-centric clustering and proac-

tive caching constitute a pair of key enabling tech-

niques in C-RANs, which can be supported by ma-

chine learning. For user-centric clustering, each user

is cooperatively served by several of its nearby RRHs,

which may indeed eliminate the cell-edge interference,

provided that the near-instantaneous network conditions

are known. However, this method may be unable to

meet the stringent delay requirement of 5G, because

excessive time is required for estimating the prevalent

network state and to calculate the corresponding optimal

cluster set for each user. This issue can be mitigated

by using AI techniques [10]. Specifically, the BBU

pool can store the users’ historic data, such as their

locations, the requested service, mobility pattern and

speed, service demand profiles, channel characteristics,

etc. By using machine learning techniques, these data

can be analyzed and beneficially exploited. Then, one

can predict the user’s future locations, service request

and even their channel information. Hence the future

cluster of each user can be determined in advance,

leading to low-latency predictive clustering algorithms.

In C-RANs, the BBU pool is responsible for supporting

the entire network. Hence, the AI-aided C-RAN is ca-

pable of forming globally optimal user-centric clusters.

By contrast, the conventional cellular network is only

capable of providing locally optimal solutions, since

its operation is based on local information. Another

promising technique in C-RANs is content caching. By

caching the popular contents at the RRHs, the contents

requested by the users can be directly transmitted from

the nearby RRHs to the users, rather than fetching

it from the core network. Hence, the access latency

of the contents can be significantly reduced, therefore

the fronthaul traffic is alleviated, which constitutes the

bottleneck of C-RANs. The key question in cache-aided

C-RAN is, which contents file should be cached in

which RRH. This large-scale matching problem can also

be solved by using AI techniques. For example, by

analysing the users’ history of requesting files from the

BBU pool, machine learning is capable of calculating

the file-popularity in support of this content placement

problem.

Hence, the C-RAN architecture is an ideal platform of support-

ing the above low-delay techniques. In the following section,

we introduce the effective capacity theory for statistical delay-

bounded QoS provision over C-RAN.
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Fig. 1. Illustration of a 5G C-RAN architecture.

Fig. 2. The statistical QoS provisioning over the 5G C-RAN.
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III. THE EFFECTIVE CAPACITY THEORY OF STATISTICAL

DELAY-BOUNDED QOS GUARANTEE OVER C-RAN

The delay-bounded architecture of C-RANs is shown in

Fig. 2. Each user’s data stream is entered into its first-in-first-

out (FIFO) buffer at a constant arrival rate of µk (measured

in bit/s). At the data-link layer, the upper-layer packets are

partitioned into transmission frames and then each frame will

be mapped to bit-streams at the physical layer. Then, the BBU

pool calculates the transmission rate required and the power to

be assigned to each user according to their delay requirements

and to their channel state information (CSI) received via the

feedback channel. Finally, the users’ data streams are read

out of the FIFO buffer and sent to all RRHs for transmission

over the wireless channel at the service rates requested. The

RRHs are assumed to be equipped with a single antenna. A

block fading channel is considered, whose complex channel

envelope is fixed during each transmission frame, and it is

independently faded over different time frames.

We first introduce the important notion of the delay expo-

nent θ that establishes the relationship between the maximum

queue length and the buffer overflow probability, assuming that

different users have different delay requirements characterized

by θk, k = 1, · · · ,K. For the C-RAN architecture of Fig. 2,

the buffer overflow probability of the kth user is approximated

by eθkQth,k , where θk and Qth,k are the delay exponent and the

maximum buffer length of user k. Hence, the delay exponent

θk reflects the decay rate of the buffer overflow probability. A

higher θk corresponds to a faster overflow decay rate, which

implies that the system is capable of meeting a more stringent

delay requirement for user k. By contrast, a lower θk leads to

a slower buffer overflow decay rate, which represents a looser

delay requirement for user k. In the extreme case of θk → ∞,

the system cannot tolerate any delay, which corresponds to

an extremely tight delay requirement for user k. On the other

hand, when θk → 0, an arbitrarily long delay can be tolerated

by user k.

The probability that the delay is longer than a maximum

bound of Dmax can be approximated as [11]

P out
delay = Pr {Delay ≥ Dmax} ≈ εe−θµDmax , (1)

where ε is the probability that the buffer is non-empty. In

general, the delay-violation probability of P out
delay has to be

extremely low for the ULLRC services.

Based on the above discussions, we now introduce the

important concept of effective capacity proposed by Wu et al.

[11], which is defined as the maximum constant transmission

frame arrival rate that the system can support, while satisfying

a maximum delay-outage probability constraint. The effective

capacity of user k is expressed as [11]

EC(θk) = −
1

θk
log(E{e−θkRk}), (2)

where E denotes the expectation operator, Rk is the in-

stantaneous data rate of user k that is given by Rk =

TfBlog2

(

1 +
∑I

i=1 pi,kαi,k

)

with Tf , B, pi,k and αi,k de-

noting the fixed length of each transmitted frame, the system

bandwidth, the transmit power and channel gains from RRH

i to user k, respectively. For simplicity, the multiuser inter-

ference is not considered here. If the delay-bound violation

probability is P out
delay, one should limit the incoming data rate

to a maximum of µk = EC(θk).
In conventional wireless communication systems, most of

the contributions mainly focus on the ergodic capacity maxi-

mization problem, which ignores the delay requirement. By

contrast, we aim for designing delay-bounded strategies to

maximize the sum of the effective capacity of all users

under the particular reqirement of all users. Specifically, we

formulate the sum effective capacity maximization problem

under the following constraints:

1) Each RRH has its individual average power constraint;

2) Each RRH is also subject to a specific peak power

constraint.

The first constraint is closely related to the long-term power

budget, while the second one is imposed for guaranteeing that

the instantaneous power remains within the linear range of

practical power amplifiers.

A. Single-user Case

We first study the single user case to glean initial insights.

Due to the complex expression of the effective capacity, most

of the existing contributions have been focused on the power

allocation of single-transmitter scenarios, where only a single

sum-power constraint is imposed. The optimal solution to this

problem can be readily derived, which obeys a water-filling-

like format. By contrast, in a C-RAN, all RRHs are subject to

their individual power constraints, since the power cannot be

shared among the RRHs. Hence the conventional optimization

method is no longer applicable and the power allocation of

each RRH will no longer be the water-filling solution.

Hence we turn to convex optimization theory and derive

the optimal power allocation in closed-form for the C-RAN

scenario, which depends not only on the channel conditions,

but also on the delay requirements. For the special case of a

single RRH, the power allocation lends itself to the conven-

tional water-filling solution. For the general case associated

with multiple RRHs, the solutions reveal that the RRHs with

higher channel gains have higher priorities to transmit with

full power.

We can also find the closed-form solution for two extreme

cases, namely when the delay exponent θ becomes zero and

infinity. For the first case, the original optimization problem

reduces to the conventional ergodic capacity maximization

problem and its power allocation solution only depends on

the channel conditions. For the latter case, the system cannot

tolerate any delay and the optimal power allocation for each

RRH reduces to the channel inversion associated with a fixed

data rate.

B. Multiuser Case

Due to the powerful computational capability of the BBU

pool, the C-RAN will serve multiple users. However, the

expression of effective capacity is much more complex than

that of the conventional Shannon capacity. The power control
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Fig. 3. Delay-outage probability versus delay exponent θ for various values
of Dmax for our proposed algorithm.

problem of the multiuser case is much more challenging to

solve. To simplify the analysis, we assumed that all the RRHs

transmit orthogonal signals to the different users in order to

avoid the multiuser interference. Additionally, the peak power

constraints are ignored for simplicity. In this case, we are able

to obtain the optimal power allocation solution for each user

in closed-form.

IV. PERFORMANCE EVALUATIONS

We performed simulations to evaluate the performance of

our proposed power allocation scheme for a statistical delay-

bounded C-RAN architecture deployed within a square area

of 2 km × 2 km. We adopted the Nakagami-m block-

fading subsuming the Rayleigh, Rician and the additive white

Gaussian noise (AWGN) channel. The simulation results are

based on the following parameters: Time frame of length

Tf = 0.04 ms; system bandwidth of B = 5 MHz; the average

power constraint and peak power constraint of each RRH are

set to P avg = 0.5 W and P peak = 1 W, respectively; the

Nakagami fading parameter is set to m = 2; the path-loss

model is given by PLi,k = 148.1 + 37.6log10di,k (dB) [7],

where di,k is the distance between the ith RRH and the kth

user measured in km; the noise power density is set as -174

dBm/Hz.

A. Single-user Case

We first consider the single-user case, where the user is

located at the center of our C-RAN network. Let us assume

that there are two RRHs with their coordinates randomly

chosen as [−600, 800] and [900, 946] that is measured in meter.

Fig. 3 shows the delay-outage probability versus the delay

exponent θ for our proposed power control algorithm. Three

different values of the maximum delay threshold Dmax are

tested, namely, Dmax = 2, 1, 0.5 ms. The rate of incoming

data streams is set as µ = EC(θ). As illustrated in Fig. 3,

the delay-outage probability decreases rapidly with the delay

exponent θ, since a higher θ implies a more stringent delay

requirement. As expected, a higher Dmax leads to a lower

delay outage probability. When Dmax = 1 ms, the delay

outage probability achieved by our proposed algorithm can be

as low as 3.5×10−12, when θ is chosen as θ = 10−1.8, which

satisfies the stringent delay requirement of URLLC [4], while

for the case of Dmax = 2 ms, the delay-outage probability

can reach 10−15 when θ is set as θ = 10−2. Hence, the delay

exponent can be adaptively set to satisfy the diverse delay

requirements.

Next, we compare our algorithm to the following existing

algorithms in terms of the achievable effective capacity:

1) Nearest RRH serving algorithm: As the terminology

suggests, this algorithm assigns the nearest RRH to serve

the user and the algorithm developed in [12] for simple

point-to-point systems is used for solving the power

allocation problem. This algorithm is provided to show

the gains gleaned from cooperative transmission in C-

RANs.

2) Constant power allocation algorithm: The transmit

power of each RRH is set to its average power limit

P avg. This algorithm is used for showing the benefits of

dynamic power allocation in the face of different channel

conditions.

3) Independent power allocation algorithm: In this al-

gorithm, each RRH independently optimizes its own

transmission power purely based on its own channel

conditions. This algorithm is provided for demonstrating

the merits of optimizing the power allocation according

to the joint channel conditions.

4) Ergodic capacity maximization algorithm: This algo-

rithm maximizes the classic ergodic capacity for the user

without incorporating the delay requirement.

5) Channel inversion algorithm: In this algorithm, the

power allocation of each RRH is proportional to the

channel inversion. This algorithm supports a constant

transmission data rate.

Fig. 4 shows the normalized EC performance (which is

the effective capacity divided by B and Tf ) for the different

algorithms versus versus the delay exponent θ. As illustrated in

Fig. 4, the effective capacity achieved by all algorithms (except

the channel algorithm) decreases with the delay exponent θ.

Intuitively, a higher θ corresponds to a more stringent delay

requirement and lower delay-outage probability requirement.

Then, the maximum arrival rate that can be supported should

be reduced for satisfying the stringent delay requirements. It is

observed from this figure that our algorithm has a much better

performance than the other algorithms, especially for high

delay exponents. It is interesting to see that the performance of

the ergodic capacity maximization algorithm approaches that

of our proposed algorithm for low delay exponent θ, while

it performs much worse than ours for a high θ. This can be

explained as follows. When θ is small, the delay requirement
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Fig. 4. Normalized EC for various algorithms vs delay exponent θ for a
single user.

is loose and then maximizing the effective capacity is ap-

proximately equivalent to maximizing the ergodic capacity,

leading to similar performances for these two algorithms.

However, for high θ, the delay requirement is very strict,

which has to be taken into consideration when designing the

transmission strategy, but this is not considered by the ergodic

capacity maximization algorithm, hence resulting in a much

worse performance. By using cooperative transmission among

two different RRHs, the proposed algorithm has much better

performance than the ‘Nearest RRH serving algorithm’, where

only one RRH is applied for transmission. For example, when

θ = 10−2, the performance gain is up to 0.6 bit/s/Hz. Since

our proposed algorithm aims to optimize the power allocation

according to the joint conditions of channel gains and delay

exponents, the performance of our proposed algorithm signifi-

cantly outperforms the ‘Constant power allocation algorithm’,

where the power is kept fixed all the time. By optimizing the

power allocation according to the joint channel conditions, our

proposed algorithm achieves much higher normalized effective

capacity than the ‘Independent Power Allocation Algorithm’.

As expected, the ‘Channel Inversion’ method has the worst

performance across a wide range of θ values since it aims to

provide constant data rate for various channel conditions.

B. Multiuser Case

Finally, in Fig. 5, we consider the multiuser case, where

there are two users having the coordinates given by [−100, 0]
and [0, 100], respectively. It is assumed that there are four

RRHs located at [650, 650], [−650, 650], [−650,−650], and

[650,−650]. We compare our proposed algorithm to the er-

godic capacity maximization algorithm in terms of the sum

effective capacity performance. A similar performance trend

Fig. 5. The sum normalized EC vs delay exponent θ for our proposed
algorithm and the ergodic capacity maximization algorithm, when supporting
two users by four RRHs located at [650, 650], [−650, 650], [−650,−650],
and [650,−650].

has been observed to that of the single-user scenario of

Fig. 4. For example, both algorithms have almost the same

performance for low delay exponent θ, while our proposed

algorithm outperforms the ergodic capacity maximization for

high delay exponent θ and the performance gain increases

with θ. In addition, we also compare the proposed algorithm

with two other algorithms, namely, the ‘Nearest RRH serving

algorithm’ and the ‘Constant power allocation algorithm’. For

the former algorithm, each user is served by its nearest RRH,

while for the latter algorithm, the instaneous transmit power

for each RRH is set to its average power limit P avg, and the

instaneous transmit power assigned by each RRH to each user

is equal. It is seen from this figure that our proposed algorithm

significantly outperforms these two algorithms. Specifically,

the performance gain achieved by our proposed algorithm

over these two algorithms are 2.8 bit/s/Hz and 1.5 bit/s/Hz,

respectively, and the performance gain keeps almost fixed over

all the delay exponent θ. By exploiting the multiuser diversity,

the normalized EC achieved by the proposed algorithm for the

two-user case is much larger than that of the single-user case.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We first highlighted the C-RAN architecture that consists of

three components: the BBU pool, fronthaul links and RRHs.

Centralized signal processing techniques can be relied upon

by the C-RAN architecture, such as CoMP transmission, joint

user scheduling and data flow control, etc. Additionally, the

emerging techniques of NFV, SDN and AI can be intrinsically

integrated with the C-RAN architecture. Then, we highlighted

the effective capacity theory conceived for statistical delay-

bounded C-RANs, where the delay requirement was incor-
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porated. Under the cross-layer C-RAN model, we proposed

power allocation schemes for maximizing the sum effective

capacity for both the single-user case and multiuser case

considered. The simulation results showed that by appro-

priately choosing the delay exponent θ, the delay outage

probability can be reduced below 10−9, which is appealing

for URLLC. Furthermore, the simulation results obtained also

showed that our proposed algorithm significantly outperforms

the existing algorithms in terms of the achievable effective

capacity, especially in the case of stringent delay requirements.

However, substantial further research is required for delay-

bounded C-RAN networks.

Interference Management: In this paper, we considered

the idealized interference-free scenario, which typically leads

to a convex optimization problem. However, when each RRH

is equipped with multiple antennas, several users can be

simultaneously served in the same time and frequency slot by

adopting powerful beamforming techniques, which addition-

ally improves the effective capacity performance. This kind of

optimization problem becomes non-convex and hard to solve

even for the simple Shannon capacity expression. The complex

expression of the effective capacity makes the optimization

problem challenging to solve, which needs further investiga-

tion in the future.

Limited Fronthaul Capacity: Due to their simple function-

alities, RRHs can be densely deployed at low implementational

cost [13]. Traditionally, the fronthaul links are usually fixed

links, such as optical fibers or high-speed Ethernet. However,

in densely deployed C-RANs, laying cables imposes high

installation operational and maintenance costs. Hence, wireless

communication links, such as millimeter wave (mmWave)

transmission, are promising in this scenario. However, the

available bandwidth is much lower even at mmWave frequen-

cies than that of the fixed links. Hence, the limited fronthaul

capacity should be taken into account when designing cross-

layer operation.

Other Delay Sources: This paper only considered the

queueing delay in the BBU pool. However, if the C-RAN is

expected to cover a large area, then the propagation delay of

the fronthaul links should also be taken into consideration.

Furthermore, non-negligible time is required for calculating

the power allocation for each user. In contrast to the LTE

network, where the delays can be ignored, in URLLC the

stringent delay requirements have to be carefully considered

by future research. In this paper, we only focus on the

delay incurred from the data-link layer. However, the delay

incurred by the upper layer beyond the data-link layer should

also be taken into account, such as routing and the access

to a number of virtualized network functions. Furthermore,

some more advanced user scheduling algorithms with low-

complexity should also be developed to satisfy the stringent

delay requirements.

Short Packet Transmission: In this paper, we adopted

Shannon’s capacity for guantifying the instantaneous data rate

in (2), which is accurate when the blocklength of channel

codes is sufficiently large. However, in URLLC applications,

short packets are preferred. Hence Shannon’s capacity cannot

be approached. She et al. mentioned this issue in [14] and

introduced an approximate achievable data rate expression at

a finite blocklength, which takes into account the transmission

error probability. However, the resource allocation optimiza-

tion problem based on this modified capacity expression does

not lead to a convex optimization problem, which needs further

investigation.

Energy efficiency issue: This paper focuses on the EC

maximization problem. However, energy efficiency, defined as

the ratio of data rate to total power consumption [15], is a

key performance metric in the fifth generations (5G) cellular

networks, and EE-oriented transmission design by considering

the delay requirements needs further study.
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