
Low Latency Color Segmentation on Embedded Real

Time Systems

Dirk Stichling, Bernd Kleinjohann
C-LAB. Furstenallee 11. D-33102 Paderborn. Germany

Abstract: This paper presents a color segmentation algorithm for embedded real-time

systems with a special focus on latencies. The algorithm is part of a Hardware

Software-System that realizes fast reactions on visual stimuli in highly

dynamic environments. There is furthermore the constraint to use low-cost

hardware to build the system. Our system is implemented on a RoboCup

middle size league prototype robot.

Key words: computer vision, color segmentation, embedded systems,low latency,

RoboCup

1. INTRODUCTION

Today most low-cost robotic systems navigate very slowly, e.g if you

watch a RoboCup game you will see a lot of slowly moving robots. There

are two reasons for this: At first, mostly commercially available platforms

are used. Because of their widespread usage they are built to be safe in a lot

of different areas, thus they are comparatively slow. The second reason is the

system architecture. Often PCs are used to control the robot. There are some

major drawbacks on PCs because they are not designed to be used as an

embedded real-time system. They lack special hardware to control all

sensors and actors and the operating system often has no real-time

capabilities. There often arise high latencies between an event and the

reaction of the system.

We are building a robot which is capable of navigating safely through a

RoboCup field with a speed of up to 20 kmIh. But there is one major

constraint: usage of low-cost hardware for building such the robot.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29

248 Dirk Stichling, Bernd Kleinjohann

2. APPROACH

Every robotic system consists of three major parts: The perception, the

processing and the manipulation. For each of these parts we use

microcontrollers which are specialized on their tasks. The only sensors we

use are consumer electronic analog video cameras because of their low price.

We developed a color image segmentation algorithm especially for

embedded real-time systems. During the last years a lot of color image

segmentation algorithms have been proposed [1], but only little attention has

been paid to minimizing latency.

Thus we built a system with only vision-based perception and a behavior

based control system which is directly coupled with the perception and the

actors. A good overview of behavior-based robotics is given in [4].

This paper presents a color segmentation algorithm as part of the vision

based perception of our system. The focus is on minimizing the latency of

the vision part. The algorithm meets the following requirements which

suffice for the RoboCup scenario:

It has to be able to analyze 25 frames per second

There are no predefined colors for the segmentation process.

The shape of the objects is not relevant. The algorithm should

only yield the position and size of the objects.

It has to cope with the YUV color-space because most image

hardware provide the data using this color space. Detailed

information about this color space is given on [5].

3. RELATED WORK

Somehow similar to our work is the Polly System built in 1993 at the

MIT [6]. One design goal was to use off-the-shelf low-cost hardware. So the

only sensor input was one analog camera. They realized a task-based vision

system capable of analyzing a 64x48 grey-scale image at 15 hertz. The

control system had different layers and the low-level navigation also used

behavior-based programming techniques. Newer robots have been built at

the MIT based on the Polly System using the Cheap Vision Hardware [7].

Our system uses 352x288 pixel color images as input which permits higher

flexibility and also analyzes the images with 25 Hz.

At eMU in Pittsburgh a fast color segmentation algorithm and

implementation for robots called CMVision has been developed in 2000 [8].

It can discriminate 32 different colors organized in color cubes which has to

be defined statically. So the algorithm is very sensible to changing lightning

Low Latency Color Segmentation on Embedded Real-Time Systems 249

conditions. Compared to CMVision and other fast color segmentation

algorithms our color segmentation algorithm does not use any predefined

colors.

An algorithm for fast and robust segmentation of natural color scenes has

been proposed in [9]. The algorithm called CSC (Color Structure Code) is

based on hierarchical region-growing on a special hexagonal topology. The

system is applied in two reactive applications from the field of autonomous

vehicle guidance.

Another very low-cost active VISIon system for embedded

microcontrollers has been proposed in 1997 [10]. It uses a special frame

grabber chip in conjuction with a 8-bit microcontroller.

4. METHODOLOGY

Most computer vision algorithms are divided into different steps which

are evaluated sequentially. This has two major drawbacks:

1. High latency: Because the second step of an algorithm does not

start before completion of the first step (which implies that the

full input image has already been transmitted to the main

memory) the latency is at least the sum of one image's

transmission time and the run-times of all steps (except the first

one because the first step may run in parallel to the image

transmission).

2. High memory consumption: Because each step is evaluated

individually the complete data that each step produces has to be

stored in memory.

Thus we propose a methodology that overcomes these drawbacks. The

main idea is to perform the image analysis during the image transmission

instead of doing it afterwards. To realize this we introduce two techniques:

1. Linear Processing: The camera's input image is transmitted to

the main memory top-down line-by-line. Therefore each step of

the computer vision algorithm has to work line-based only

depending on data of lines already processed.

2. Incremental Concurrency: Instead of evaluating the steps of the

algorithm sequentially for every input image the steps are

evaluated for every line of the input image. That is possible

because the Linear-Processing technique takes care of the right

data dependencies.

250 Dirk Stichling. Bernd Kleinjohann

Using these techniques the latency of the implementation may be lowered

dramatically. If the processor is fast enough the latency is as low as one

image's transmission time plus the run-times of all steps (except the fIrst

one) only for the last image line.

Because the individual steps are processed for every image line the data

for only one line has to be turned over to the next step. In some cases a step

only needs the data of the actual line, thus there is no need to store the data

of other lines which minimizes the overall memory consumption.

Section 5 depicts a color segmentation algorithm which was designed

using these techniques Linear Processing and Incremental Concurrency.

S. COLOR SEGMENTATION ALGORITHM

Using the techniques described in section 4 we designed a color

segmentation algorithm for embedded systems. The algorithm is divided into

two individual steps:

1. Line-based Region-Growing: In every scan line of the image

regions with similar color are grown from left to right.

2. Region-Merging: The regions created in the fIrst step are merged

if they are similar in color and spatial near to each other.

Region-growing and region-merging techniques are not new to computer

based image segmentation [11,12]. What's new here is the usage of these

techniques in combination with the techniques proposed in section 4.

S.l Data Structures

On embedded devices you often donl have much computation power.

Thus you need to use data structures which are easy to compute. We use

moments up to second order as region descriptors because the operations for

adding pixels to a region or merging two regions are computationally fast

and they are suffIcient to describe position and size of the regions. Moments

are often used in computer vision algorithms to describe image objects [2,3].

The defInition of the moment M(p.q) of a region is as follows:

M(p,q) = LxPyq
(x,y)E region

We use the moments M(O,O), M(1.0) and M(J,J). They describe the

number of pixels and the center of the region and are computational simple.

Low Latency Color Segmentation on Embedded Real-Time Systems 251

Additionally we need the central moments C(p,q) of a region with

being the center of the region:

C(p,q)= L(x-cx)P(y-cy)q
(x,y)eregion

We use the central moments C(J,I), C(2,O) and C(O,2). For easier

reading we use the following notation:

M(1,O) M(O,1)
a = (MO,O), c x = , c y = , v x = C(2,O), v y = C(O,2), v xy = C(1,1)

M(O,O) M(O,O)

Using these six moments every region is represented as an ellipse. The

representation as an ellipse is only for visualization and is not used for the

algorithm because ellipses are computationally difficult to handle.
The following computations show that two regions are merged very

fastIy. The data of the two regions to be merged are notated with 1\ and -.

,,_ acx +acx acy +acy
a = a + a,cx = ,cy = --='---"-

a a

" "(")2 - -(-)2 vx=vx+acx-cx +vx+acx-cx '

vy =Vy +a(cy _Cy)2 +Vy +a(cy _Cy)2,

vxy =VXY +a(cx -cx)(cy -Cy)+VXY +a(cx -cx)(cy -cy),

The computations for the merging process take constant time and do not
depend on the number of pixels of the two regions. The same holds for
adding one pixel to a region (a= 1). This is important for the WCET of this
algorithm as described in section 5.4.

Beside these six moments the average color value using the YUV color

space of all pixels of the region completes the data structure of a region. The
regions are managed using a connected list. Inside the list the regions are

sorted by the y-coordinate of the uppermost pixel of the region. The major

advantage of this kind of sorting is that during the region-growing step the

regions are automatically created in that order und during the region

merging step this ordering speeds up the search process dramatically as

explained in section 5.3.

5.2 Region-Growing

As describe before the region growing step is executed individually for
every line and from left to right. Vision hardware often provides pixels using
the YUV color space. Therefore the region-growing step only uses this color

space to avoid time consuming color space conversion of all pixels.

252 Dirk Stichling, Bernd Kleinjohann

All achromatic pixels are skipped because only colored regions are

relevant for our scenarios (It is simple to extend the algorithm to detect non

colored regions as well). We discriminate chromatic and achromatic pixels

in a way similar as proposed in [13]. Achromatic pixels are those which are

too dark, too light or are nearly grey.

When finding the first colored pixel a new region is created. Then the next

pixel to the right is visited and a decision is made whether the color is

similar to the color of the actual region. If it is similar the pixel will be added

to the region otherwise the region is finished and the algorithm skips to the

next pixel.

To have a computational simple decision whether two colors are similar

we simply use the euclidian distance of the two colors inside the YUV color

space and define a threshold for similarity.

All lines are processed this way which results in a representation as shown

in figure 1. All regions created during this step have height one because the

y-coordinate of the pixels is always the same. This implies that Vy and Vxy is 0

and Vx only depends on a and is calculated using a lookup-table. Thus all

moments are calculated very fastly. The number of pixels is needed to get a.

The sum of all x-coordinates of the pixels and one division has to be done to

calculate Cx' cy is equal to the actual line number.

Figure 1. Representation after the region-growing step

This region-growing step handles each input line individually without any

data dependability to other input lines. Therefore the requirements of the

techniques introduces in section 4 are fulfilled. Because there is no data

dependability to other input lines there is no need to store the whole input

image in memory if the algorithm is in sync with the image input hardware.

5.3 Region-Merging

After the region growing step we need to merge the created regions. We

have to compare each region with every other region whether they are spatial

near to each other and similar in color.

Low Latency Color Segmentation on Embedded Real-Time Systems 253

Figure 2. Possible approximations of an ellipse

How can we define spatial near using our data structure. The moments

can be visualized using ellipses, thus spatial near could mean overlapping

ellipses. Those calculations are computationally expensive because you need

a lot of trigonometrical operations and thus you can' do it on low-cost

embedded devices. Figure 2 shows two possible approximations of an

ellipse. On the left figure you see an approximation using axis-parallel

rectangles and on the right figure rectangles which are parallel to the main

axis of the ellipses. The former is the easiest one in respect to computation

time but also the most inaccurate one. The approximation can be provided

using a lookup-table.

We also had to compare the colors of two regions. During the region

growing step we use the YUV color space to decide whether pixels are

similar in color or not. The YUV color space is not very suitable for

comparing the colors of the regions because here higher euclidian distances

in the color space are treated as similar. That's why a color space like HSI is

more suitable. So when comparing two regions we calculate the euclidian

distance of the colors and use a threshold to decide whether to merge or not.

A problem is the time of the search process because in the simplest case

every newly created region has to be compared with every other region. So

with n regions you'll get a time cost of O(n2). That's why we sort the regions

spatially using a connected list.

For every region in the list the algorithm follows the list backwards until

the first region which lowermost pixel is higher than the uppermost pixel of

the actually processed region. Using this technique the processing time of

the region-merging part is shorten dramatically.

This region-merging step only needs the data of the line-based region

growing step of the actual image line and the previously created regions.

Therefore this step complies to the requirements introduced in 4. Figure 3

shows an example image with the segmentation result.

254 Dirk Stichling, Bernd Kleinjohann

..

a
...

Figure 3. Example image and color segmentation

5.4 WCET -Analysis

For a lot of applications real-time capabilities are needed (e.g. to hold the

image analysis in sync with the input image hardware). Therefore the Worst

Case-Execution-Times (WCET) must be known a priori.

A WCET -analysis is possible for the line-based region-growing step

because all of the following computations take constant time and the number

of pixels per line is constant and known a priori:

1. Decision whether a pixel's color is similar to the color of a region

(Euclidian distance)

2. Adding a pixel to a region's data structure (shown in 5.1)

3. Creation of a new region (Initialization of data instance); the

maximum number of regions in one line is known a priori and can

be shorten introducing a minimum length of newly created

regions.

The WCET -analysis of the region-merging step is more difficult. As

shown in section 5.1 the computation of merging two regions is independent

of the regions' data and thus the computation time is constant. The time to

compare two regions whether they are spatial near and similar in color is

constant and known a priori as well. But the number of comparisons is not

known a priori because it depends on the number of regions as already

shown in section 5.3. A maximum number of regions can be given because a

maximum number of regions for every line is known and the number of

images lines is also known. But this estimation is a lot higher than the

number of comparisons normally needed in average input images. Therefore

Low Latency Color Segmentation on Embedded Real-Time Systems 255

the region-merging step has to be optimized in the future (e.g. by using

different data structures) to yield a better WCET.

6. IMPLEMENTATION

We implemented the algorithm using a Philips TriMedia 1100 based

microcontroller board running at l00MHz. While the image hardware is

sending the input image to the main memory the CPU already does the

image analysis of the first lines. For the merging step we use the axis

parallel approximations of the ellipses because the operations for the

comparisons are fast and tests have shown that the approximation is

sufficient for most applications. The implementation needs about 500kByte

RAM at run-time. During several tests we showed that in most cases the

system was capable of processing 25 frames per second and the delay time

between start of the analog transmission of an image and the segmentation

results was less than 40ms. Table 1 shows a comparison of our algorithm

with the CMVision [8] and the CSC [9]. Latencies were not given in those

papers.

TableJ: Comparison with other color segmentation implementations

Image Size Framerate System

CMVision [8] 320x240 30 fps
30% of 350MHz

Pentium II

CSC [9] 256x256 5 fps
100% of 167MHz

SPARCCPU

Our Implementation 352x288 25 fps lOOMHz TMllOO

7. CONCLUSION

We have shown that it is possible to build a low-cost embedded vision

system which is capable of doing low latency color segmentation. Low

latency vision systems are important to build very fast acting and reacting

robots e.g. in the RoboCup scenario.

Color segmentation is one important part of a vision system but normally

that is not sufficient. So we plan to integrate edge-detection to our system in

the near future.

The color segmentation algorithm will be connected to a special behavior

based system which is also designed be have low-latencies. Crucial is the

overall response time of a system therefore the perception, the processing

256 Dirk Stichling, Bernd Kleinjohann

and the manipulation have to have low latencies. Only pure computing

power is not enough to build fast reacting systems.

8. REFERENCES

[1] W. Skarbek and A. Koschan, "Colour image segmentation - a survey" Tech. Rep. 94-32,

Technical University Berlin, 1994.

[2] C.-H. Teh and R. T. Chin, "On image analysis by the methods of moments" IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-I0, pp. 496-513,

July 1988.

[3] R. 1. Prokop and A. P. Reeves, "A survey of moment-based techniques for unoccluded

object representation and recognition" Computer Vision. Graphics. and Image Processing.
Graphical Models and Image Processing, vol. 54, pp. 438-460, Sept. 1992.

[4] R. C. Arkin, Behavior-Based Robotics. Cambridge: MIT Press, 1998.

[5] C. Poyton, "Frequently asked questions about color." Website:

http://www.inforamp.netl-poynton.

[6] I. Horswill, "Polly: A vision-based artificial agent" in Proceedings of the 11th National

Conference on Artificial Intelligence, (Menlo Park, CA, USA), pp. 824-829, AAAI Press,

1993.

[7] L. Lorigo, R. Brooks, and W. Grimson, "Visually guided obstacle avoidance in
unstructured environments" in Proc. IROS97, pp. 373-379, 1997.

[8] J. Bruce, T. Balch, and M. Veloso, "Fast and inexpensive color image segmentation for

interactive robots" in IEEElRSJ International Conf. on Intelligent Robots and Systems,
IEEE,2000.

[9] V. Rehrmann and L. Priese, "Fast and robust segmentation of natural color scenes" in

Computer Vision - ACCV 98 (R. Chin and T.-C. Pong, eds.), vol. I, (Hong Kong, China),

pp. 598-606, jan 1998.

[10] O. Wyeth, "Implementing active vision in embedded systems" in Proc. of Mechatronics

and Machine Vision in Practice 4, pp. 240-245, IEEE Computer Society Press, 1997.

[11] A. Tremeau and N. Borel, "A region growing and merging algorithm to color

segmentation", Pattern Recognition, vol. 30, no. 7, pp. 1191-1203, 1987.

[12] F. Moscheni and F. Dufaux, "Region merging based on robust statistical testing" in SPIE
Proc. VCIP'96, (Orlando, Florida), March 1996.

[13] N. Ikonomakis, K. Plataniotis, and A. Venetsanopoulos, "A region-based color image

segmentation scheme" in Proceedings of Electrical Imaging '99. vol. 3653 ofSPIE, (San

Jose, California), pp. 1202-1209, Jan 1999.

	Low Latency Color Segmentation on Embedded RealTimeSystems
	1. INTRODUCTION
	2. APPROACH
	3. RELATED WORK
	4. METHODOLOGY
	5. COLOR SEGMENTATION ALGORITHM
	5.1 Data Structures
	5.2 Region-Growing
	5.3 Region-Merging
	5.4 WCET -Analysis

	6. IMPLEMENTATION
	7. CONCLUSION
	8. REFERENCES

