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Abstract. The processing time required by a cryptographic primitive
implemented in hardware is an important metric for its performance but
it has not received much attention in recent publications on lightweight
cryptography. Nevertheless, there are important applications for cost ef-
fective low-latency encryption. As the first step in the field, this paper
explores the low-latency behavior of hardware implementations of a set
of block ciphers. The latency of the implementations is investigated as
well as the trade-offs with other metrics such as circuit area, time-area
product, power, and energy consumption. The obtained results are re-
lated back to the properties of the underlying cipher algorithm and, as
it turns out, the number of rounds, their complexity, and the similarity
of encryption and decryption procedures have a strong impact on the
results. We provide a qualitative description and conclude with a set of
recommendations for aspiring low-latency block cipher designers.

1 Introduction

As cryptography is becoming ever more pervasive in modern technology, new ap-
plications regularly emerge. Some of these new applications also introduce new
requirements on the implementation such as ultra fast response times. Appli-
cations such as Car2X communication (e.g. automotive road tolling, intelligent
transport systems), high speed networking (optical links), and secure storage
devices (e.g. memories, solid-state disks, super-speed USB 3.0), just to name a
few, all require an instant response. Besides these there are also applications
that require moderately high throughput but have limited maximum clock fre-
quencies, e.g. FPGA, or strict area requirements that preclude the use of highly
pipelined architectures.

Cryptographic primitive design is a balancing act between several aspects
such as cryptographic strength, implementation cost, execution speed, power
consumption, etc. Which trade-offs are the right ones to make is determined by
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Fig. 1. Typical trade-offs in cryptography

the application. In the past, different applications have led to different corners
of the design space to be explored. The most important of these are depicted in
Fig. 1.

Government applications have typically favored cryptographic strength over
aspects such as cost and speed, although these aspects usually do play an impor-
tant role in selection processes like the former AES competition [1] and currently
the SHA-3 competition [31]. The use of these algorithms in applications such as
mainframe systems has resulted in the development of high throughput imple-
mentations, both in hardware and software.

More recently the advent of RFID and other wireless technologies sparked an
interest in a new field: low-power and low-cost cryptography. The first primitives
to be explored were stream ciphers, for example in the eSTREAM project [15],
followed by a whole range of block ciphers such as tea [37], noekeon [13],
mini-aes [12], mcrypton [29], sea [36], hight [23], desxl [27], clefia [35],
present [9], mibs [24], katan/ktantan [10], printcipher [26], klein [18],
led [20], piccolo [34], and others. The field has recently been expanded by the
introduction of several new low-cost hash functions such as dm-present [20],
keccak-f[400]/-f[200] [7, 25], quark [6], photon [19], and spongent [8].

We have identified a new range of applications; those that require very fast
response times and for which there is no established research field yet. Note
that although most of the high-speed implementations available in literature do
achieve tremendous throughput, their response time is generally not that fast.
This is due to their extensive use of pipelining which enables them to process
multiple messages at the same time, but in order to encrypt a single message
block, this type of implementation still needs multiple clock cycles, i.e. typically
more than 20. An example of this is a recent work from Mathew et al. [30],
presenting a reconfigurable AES encrypt/decrypt hardware accelerator targeted
for content-protection in high-performance microprocessors which, manufactured
in 45 nm CMOS technology, achieves 53 Gb/s throughput. Another example
comes from Hodjat and Verbauwhede [22] where area-throughput trade-offs of a
fully pipelined AES implementation are described and a throughput of 30 Gb/s
to 70 Gb/s is achieved.

In other words, a high throughput is usually achieved by common signal pro-
cessing techniques such as pipelining and parallel processing, while achieving
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a low latency, on the other hand, still remains a challenge. As a consequence
one could ask the following questions: What is the minimum achievable latency
for a given security level? Do designs that inherently have lower latency also
achieve higher throughput when implemented in a pipelined fashion? And does
“lightweight” necessarily mean “light + wait?” These are all interesting ques-
tions and as it seems there are a lot of compelling reasons to take a closer look
at the latency behavior of cryptographic primitives.

Our Contribution. We introduce the new field of low-latency encryption; high-
light the differences with lightweight and classical cryptography, and by bringing
several important applications to light we try to motivate further research in this
field.

We identify several well-known lightweight block ciphers as possible candi-
dates to yield low-latency implementations. By examining this set of ciphers in
the context of low-latency encryption, our work provides the first results in the
field. We therefore develop a framework that examines the low-latency behavior
of cryptographic primitives on the following aspects:

• Minimal achievable latency.
• Its impact on the circuit size.
• Its impact on the power and energy consumption.

We link the collected data to the cipher design decisions and show that results are
strongly influenced by their properties. More specifically, the number of rounds,
the round’s complexity (e.g. the S-box size, MDS (Maximum Distance Separable)
matrices defined over different fields versus binary matrix), and the similarity
of encryption and decryption procedures have a significant influence on the al-
gorithm’s performance. Our work concludes with a set of recommendations for
aspiring low-latency block cipher designers.

Organization of the Paper. The remainder of this paper is organized as fol-
lows. In Section 2, we provide a short description of the block ciphers we have
chosen to investigate. Our contributions – the implementation results, compar-
isons, and discussion – are presented in Sections 3 and 4. We first investigate
the minimum achievable latency in Section 3.1 and then evaluate the impact
optimization for low latency has on area in Section 3.2. Our study continues by
combining the two previously described metrics in section Section 3.3 where the
results for the time-area product are presented and in Section 3.4, we have a
closer look at the impact low-latency implementations have on the power and
energy consumption. We elaborate more on our results and conclude in Section 4.

2 Preliminaries

There are many algorithms to choose from for a comparative study of low-
latency behavior, but in order to draw meaningful conclusions about hardware
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performance a set of candidate algorithms should be chosen with similar proper-
ties. We therefore focus on algorithms that are expected to result in low-latency
implementations. Since hardware implementations of hash functions generally
require more area to implement [16] and stream ciphers usually need a large
number of initialization rounds [11, 21] we chose to focus on block ciphers only.
Furthermore, it is expected that lightweight block ciphers yield good results in
terms of implementation cost, even in a fully-unrolled implementation. Besides
latency as our primary goal, we consider silicon area as a very important factor
in practical implementations of encryption algorithms and, therefore, we restrict
our candidates to lightweight block ciphers but include aes as the reference ci-
pher. In order to reduce the number of candidates to a manageable number, we
further restrict the set to ciphers with the well-studied SPN structure.

This results in the following list of seven lightweight SPN block ciphers:
aes [14,32], klein [18], led [20], mcrypton [29], mini-aes [12], noekeon [13],
present [9]. We provide a brief description of each cipher and refer for more
details to their original descriptions in the literature.

AES [14,32], designed by Daemen and Rijmen in 1997, has become not only
a NIST standard but also the most used block cipher nowadays. The cipher
has not been considered lightweight until the work of Feldhofer et al. [17] who
provided the smallest implementation at the time, requiring only 3400 GE.1 aes
is an iterated block cipher with a block-size of 128 bits and three possible key
lengths of 128, 192, and 256 bits. In this work, we consider only the 128-bit key
version which consists of 10 rounds. The word size is 8 bits, i.e. the data elements
are considered as elements of the field GF(28). Each round of aes consists of
the following operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
The operation SubBytes (S-layer) is defined as the simultaneous application of
the S-Box (inversion in GF(28)) to each element of the state. The permutation
layer (P-layer) consists of ShiftRows andMixColumns operations. The ShiftRows
operation is defined as the simultaneous left rotation of the row i of the state by
i positions. The MixColumns operation pre-multiplies each column of the state
by an MDS matrix defined over GF(28). The KeySchedule derives the round
key from the secret key, by applying once the S-Box and some simple linear
operations. Finally, AddRoundKey XORs the round key to the current state.

NOEKEON [13] is a 128-bit block cipher with a 128-bit key, proposed by
Daemen, Peeters, Van Assche, and Rijmen in 2000. noekeon is a self-inverse,
bit-sliced cipher and can be considered as the predecessor of modern lightweight
block ciphers. It has 16 rounds and each of them consists of the following op-
erations: Theta, Pi1, Gamma, and Pi2. The operation Gamma is an involutive
non-linear mapping (S-layer), in which S-boxes operate independently on 32 4-
bit tuples. Pi1 and Pi2 perform simple cyclic shifts. Theta is a linear mapping
that first XORs the working key to the state and then performs a simple linear
transformation of the state. Therefore, Theta acts partially as AddRoundKey

1 The current smallest implementation of AES comes from Poschmann et al. [33] and
consumes only 2400 GE, which is comparable to the size of some of the first proposed
lightweight block ciphers.
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and, together with Pi1 and Pi2, forms the P-layer of the cipher. The KeySched-

ule is very simple – a so-called working key is derived from the secret key and
then XORed to the state at each round. For the encryption procedure, the work-
ing key is simply equal to the secret key. Note that the self-inverse property of
the cipher has big advantages when both encryption and decryption need to be
implemented on the same circuit.

MINI-AES [12], or a small scale variant of aes, has been described by Cid,
Murphy, and Robshaw in 2005 in order to provide a suitable framework for
comparing different cryptanalytic methods. In this paper, we consider a 10-
round mini-aes with a block-size of 64 bits, a key length of 64 bits, and a word
size of 4 bits. The main difference between aes and the version of mini-aes we
chose to examine is that the S-box and the MDS matrix are defined over the
field GF(24). Therefore, the selected instance of mini-aes can be considered as
a lightweight version of the aes cipher.

MCRYPTON [29] is a 64-bit block cipher supporting three different key
length (64, 96, and 128 bits), designed by Lim and Korkishko in 2006 and is one of
the first lightweight SPN block ciphers. Each round of mcrypton consists of the
following operations: NonLinear Substitution γ, Column-wise bit Permutation π,
Column-to-row Transposition τ , and Key Addition σ. The operation γ (S-layer)
consists of 16 nibble-wise substitutions using four 4-bit S-boxes (S0, S1, S2, S3,
all affine equivalents to the inversion in GF(24) and such that S2 = S−1

0 and
S3 = S−1

1 ). The P-layer consists of π and τ operations. The π operation is an
involutional bit-wise matrix multiplication. The τ operation simply transposes
the state and is thus an involution. The KeySchedule is simple and consists of two
stages: a round key generation through a nonlinear S-box transformation and a
key variable update through a simple rotation. Finally, the σ operation XORs
the round key to the state. Independent of the key length, mcrypton always
uses 12 rounds with a slightly different KeySchedule. Note that decryption and
encryption can share most of the round operations and that the KeySchedule

allows a direct derivation of the last round key.
PRESENT [9], designed by Bogdanov et al., was proposed in 2007 and es-

tablished itself as one of the most prominent lightweight block ciphers. It has
recently been adopted as a standard in ISO/IEC 29192-2. The 31-round cipher
has a block-size of 64 bits and comes with an 80-bit or 128-bit key. Each round
of present consists of the following operations: sBoxLayer, pLayer and Ad-

dRoundKey. The sBoxLayer is defined as the simultaneous application of a very
light 4-bit S-Box to each nibble of the state. The pLayer is a simple bitwise
permutation. The KeySchedule rotates the key variable, XORs a constant and
applies the S-box to the key variable. AddRoundKey XORs the 64 most signifi-
cant bits of the key variable to the state. Note that the pLayer provides a rather
slow diffusion of the cipher, which results in the considerably high number of
rounds.

KLEIN [18] is a rather young lightweight cipher proposed by Gong, Nikova,
and Law in 2010. It is a block cipher with a fixed 64-bit block-size and a vari-
able key length of 64, 80 or 96 bits. Each round of the cipher consists of the
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following operations: SubNibbles, RotateNibbles, MixNibbles, and AddRoundKey.
The operation SubNibbles (S-layer) is defined as the simultaneous application
of an involutive 4-bit S-Box to each element of the state. The P-layer consists
of RotateNibbles and MixNibbles operations. The RotateNibbles operation ro-
tates the state two bytes to the left. The MixNibbles coincides with the aes
MixColumns operation, i.e. pre-multiplies each column of the state by an MDS
matrix defined over GF(28). The KeySchedule derives the round key from the se-
cret key, by applying two S-Boxes and some simple linear operations. Finally, the
AddRoundKey XORs the round key to the state. klein-64/80/96 uses 12/16/20
rounds respectively.

LED [20], designed by Guo, Peyrin, Poschmann, and Robshaw in 2011, is
one of the most recent lightweight ciphers. It is a nibble-based 64-bit block
cipher with two variants taking 64-bit and 128-bit keys. Each round of led
consists of the following operations: AddConstants, SubCells, ShiftRows, and
MixColumnsSerial. Once every 4 rounds the AddRoundKey operation is applied.
The SubCells (S-layer) reuses the present S-box and applies it to each 4-bit
element of the state.MixColumnsSerial uses an MDS matrix defined over GF(24)
for linear diffusion that is suitable for compact serial implementation since it
can be represented as a power of a very simple binary matrix. AddConstants
XORs a constant to the state at each round. ShiftRows operates by rotating
row i of the array state by i cell positions to the left. AddConstants, ShiftRows,
and MixColumnsSerial form the P-layer of the cipher. The 64-bit key variant
consists of 32 rounds while the 128-bit key variant consists of 48 rounds. The
cipher has no KeySchedule, meaning the same key is XORed to the state using
AddRoundKey, once every 4 rounds.

The resulting set of block ciphers represents a wide spectrum of building
blocks for the S-layer, P-layer, and the key schedule. In summary, aes is (the
only) byte-oriented block cipher (i.e. byte-based S- and P-layers) with an MDS
P-layer; noekeon has a nibble-based S-layer, a bit-based P-layer and it is a self-
inverse bit-sliced cipher; mini-aes is a nibble-oriented cipher (i.e. nibble-based
S- and P-layers) with an MDS P-layer; mcrypton has a nibble-based S-layer,
a bit-wise matrix for the P-layer with a specific key schedule; present has a
nibble-based S-layer and a very simple bit permutation for the P-layer; klein
has a nibble-based S-layer and a byte-based MDS P-layer (equivalent to aes);
finally, led is a nibble-oriented block cipher (i.e. nibble-based S- and P-layers)
with an MDS P-layer and no key schedule.

Note that klein and aes share the sameMDS matrix; led and present share
the same S-layer; mini-aes and led have different nibble oriented MDS matrices;
and the S-layer of mini-aes and mcrypton are close (affine equivalents) to
each other. Therefore, we have a variety of building blocks: bit-, nibble- and
byte-oriented blocks; different complexity of S-boxes; either simple matrices, the
MDS ones, or just a simple permutation as the P-layer. All this allows us to
investigate how different elements influence the overall performance when low-
latency encryption is the ultimate goal.
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3 Hardware Evaluation

In this section, we provide an extensive hardware evaluation of the seven block
ciphers which we identified in the previous section. Besides the cryptographic
properties of a cipher, the chosen architecture has a significant influence on the
overall performance. As our goal is to evaluate designs with the lowest achiev-
able latency, we mainly focus on 1-cycle and 2-cycle based architectures. More
specifically, a 1-cycle based architecture represents a fully-unrolled architecture
which requires a single clock cycle for its execution. Similarly, a 2-cycle based
architecture needs two clock cycles in order to execute its computation. Since
the term low-latency implies a low number of clock cycles for the algorithm ex-
ecution (recall the systems with a limited clock frequency), we do not evaluate
architectures that require three or more clock cycles.

We then distinguish between encryption (ENC) only and encryp-
tion/decryption (ENC/DEC) architectures. Moreover, as will become apparent
later, some of the implemented ciphers benefit from the inherent similarities
between encryption and decryption datapaths. In these cases, we also provide
figures for a more compact but still slightly slower implementation that shares
the datapath. Figure 2 depicts all the evaluated architectures, however for read-
ability we only report results for (ENC/DEC) architectures. The results for the
architectures supporting encryption only are provided in Appendix B.

The presented results are obtained in 90 nm CMOS technology, synthesized
with the Cadence RTL compiler version 10.10-p104. In order to have a better
overview on the hardware performance, we always provide figures for both time-
constrained and unconstrained designs. By time-constrained, we mean a design
that achieves the minimum possible critical path at the expense of a large area
overhead. An unconstrained design consumes the minimum possible area with
the drawback of being a slower circuit. In both cases, this only refers to the
synthesis tool constraints and not to the actual RTL code, which in fact remains
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Fig. 2. Six evaluated architectures: (a) 1-cycle based, ENC-only. (b) 2-cycle based,
ENC-only. (c) 1-cycle based, ENC/DEC. (d) 2-cycle based, ENC/DEC. (e) 1-cycle
based, ENC/DEC, shared datapath. (f) 2-cycle based, ENC/DEC, shared datapath.
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Fig. 3. Number of rounds of the tested ciphers

the same. The code of all designs is written in Verilog and tested against the
available test vectors. The data showing the implementation results is provided
in Table 1, Appendix A.

Although we rank the ciphers according to their hardware performance, we
do not attempt to define the most efficient one with respect to all evaluated
criteria. We believe that depending on the application requirements, the selection
of the most efficient design could be based on any of the following criteria: area,
latency, time-area product, power, or energy. Moreover, if more than one criterion
influences the final decision, we believe that it is rather trivial to combine the
presented data and obtain a unique benchmark. As the evaluated ciphers provide
different security levels, there is no easy way to fairly compare them against each
other. While it is rather obvious that a cipher with a block-size of 64 bits will
perform better in terms of area than one with 128 bits, the influence of the key
length remains rather vague. With this evaluation, we bring to light the influence
of similar and other design decisions on the final hardware performance.

Recall that all the evaluated ciphers have a block-size of 64 bits, except aes
and noekeon which have a 128-bit block-size. Some ciphers support different
key lengths and therefore we evaluate 128-bit key aes; 64-bit, 80-bit, and 96-bit
key klein; 64-bit and 128-bit led; 64-bit, 96-bit, and 128-bit key mcrypton;
64-bit key mini-aes; 128-bit key noekeon; and 80-bit and 128-bit key present.
Finally, as most of the obtained results will be highly correlated with the number
of cipher rounds, we provide Fig. 3, which visualizes this metric.

3.1 Latency

We define latency as a measure of time needed for a certain design to complete a
defined (computational) task. In our context, the computational task is defined
as an encryption of a single message block and the latency is calculated as:

Latency = N · tcp ,

where N is the number of clock cycles needed for the encryption of a single
message block and tcp is the critical path of the circuit. In order to highlight the
difference between latency and throughput, we outline that the latency truly de-
pends on the inherent properties of a cryptographic algorithm, while the through-
put does not – it can be simply increased using the common signal processing
techniques such as pipelining and parallel computations.
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Figure 4 shows the minimum achievable latency for the ENC/DEC module
of all the evaluated ciphers. noekeons-128 denotes a noekeon implementation
with a shared datapath for encryption and decryption, and it is clearly marked
in gray to set it apart from the other designs. The figure further reveals that, in
general, there is only a slight advantage of 1-cycle based architectures over 2-cycle
based ones, but minimal latency is obtained with a 1-cycle based architecture
as expected. The designs that show the highest performance are certainly mini-
aes and mcrypton (all key lengths). Being around 30 % slower, klein-64 is
the third best candidate. The lowest performance comes from led-128, which is
more than 5 times slower than mini-aes. aes, for example, achieves 70 % slower
critical path than mini-aes.

What is interesting to observe is that the latency of certain designs, i.e. klein
and led, depends on the key length, while for others, i.e. mcrypton and pre-
sent, this is not the case. This links directly to the number of rounds, which in
case of klein and led increases for larger key lengths, while it remains constant
for mcrypton and present (recall Fig. 3).

In Appendix B, we provide the results for ENC-only architectures (see Fig. 12)
The results show that the performance of certain designs, e.g. klein-64 and mini-
aes, certainly degrades when the decryption path is embedded into the design.
In order to explain this in more detail, we provide Fig. 5 where we depict the
average latency per round of each cipher for both ENC-only and ENC/DEC
architectures. It is easy to see that the decryption datapath of aes, klein,
and mini-aes is considerably slower than that of the encryption. To a lesser
extent this also holds for led, mcrypton, and present. noekeon is the only
cipher that does not suffer from this property. We also observe a clear correlation
between the average latency per round and the complexity of the round.

An unconstrained design of present, on the other hand, shows a somewhat un-
expected result. Its unconstrainedENC-only architecture (seeFig. 12,AppendixB)
seems to be slower than its ENC/DEC architecture. This result is explained by the
fact that, when unconstrained, the synthesis tool optimizes designs for area while
the timing is less important. When time-constrained, however, the synthesis tool
makes a significant effort to optimize for timing and therefore the ENC/DEC ar-
chitecture of present becomes slower than its ENC-only architecture.

Fig. 4. Minimum latency [ns] for ENC/DEC module: (a) Time-constrained. (b) Un-
constrained.
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Fig. 5. Average latency [ns] per round: (a) Time-constrained. (b) Unconstrained.

Fig. 6. Minimum area [kGE] for ENC/DEC module: (a) Time-constrained. (b) Un-
constrained.

Finally, we note that the ratio between the latency of the unconstrained and
time-constrained designs ranges from 2.63 for aes (ENC/DEC) to only 1.30 for
noekeon (ENC-only, Fig. 12, Appendix B), which illustrates the elasticity of
the design’s latency.

3.2 Area

Similar to the previous subsection, we first provide results for the circuit size of
all the evaluated cipher variants. Secondly, we elaborate on the area per round
distribution, where we observe several interesting results. Note that the area is
expressed in gate equivalence (GE) units, representing the relative size of the
circuit compared to a simple 2-input NAND gate.

Figure 6 illustrates the area for ENC/DEC architectures. In contrast to the
latency figures, the advantage for 2-cycle based architectures is clear: 2-cycle
based architectures consume approximately half of the area of the 1-cycle based
architectures. We also observe a significant correlation between the number of
cipher rounds and the circuit size. mini-aes and mcrypton again show the
best result, followed by the approximately 25 % larger klein-64 implementation.
present comes as the next one with about 60 % overhead. Not surprisingly, the
largest circuit size is shown by aes, which is more than 9 times larger than
mini-aes. From the lightweight ciphers, led-128 consumes the biggest area and
it is more than 4 times larger than mini-aes.

An interesting property can be observed in noekeon where due to their in-
herent similarity the datapaths for encryption and decryption can be shared.
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Fig. 7. Average area [GE] per round: (a) Time-constrained. (b) Unconstrained.

Denoted with noekeons-128 (grayed) in Fig. 6 it can be seen that an imple-
mentation with shared datapath results in significant area savings (about 50 %),
while not influencing the latency as much, i.e. only about 5 % increase (recall
Fig. 4). A similar observation, still to a lesser degree, is true for mcrypton.
When implemented with a shared datapath (not depicted) this results in about
30 % area savings with about 20 % timing overhead compared to the results
depicted in Fig. 4. Although encryption and decryption look quite similar for
mcrypton, two layers of multiplexors per round are needed in the shared dat-
apath in order to choose the correct S-boxes. This extra logic multiplied by the
unrolling factor results in quite a significant latency and area overhead for the
total design.

Figure 7, which illustrates the average area per round for each cipher (ex-
cept aes, since its round size goes well beyond the other values – 23 kGE for
unconstrained and 37 kGE for time-constrained), shows that present has the
smallest round amongst all ciphers, which is not surprising, as its round consists
of an S-layer and a very light P-layer (wiring only). The P-layers of other ciphers
involve more complex operations such as multiplication with an MDS matrix for
mini-aes, for example, or variations thereof for other ciphers. Note also that the
average area per round of noekeon is relatively large. This is due to its block
size of 128 bits; twice that of the other ciphers. This only confirms our initial
assumption that both the number of cipher rounds and their complexity have a
significant influence on hardware performance.

There are a number of observations about the area per round distribution
that we illustrate here using klein-80 as an example (see Fig. 8); although the
same observation holds to a higher or lesser extent for most of the evaluated
ciphers. The first is that due to the higher complexity of decryption, the critical
path passes through the decryption datapath, which therefore becomes consid-
erably larger than the encryption datapath when time-constrained. noekeon is
the only cipher exempt from this effect, while the effect is barely noticeable in
the case of led. When constraints are relaxed, this effect naturally fades away,
although remaining slightly noticeable even in unconstrained implementations.

Another observation that can be made for both time-constrained and uncon-
strained implementations, and holds over all the evaluated ciphers, is the consid-
erably smaller area taken by the last few rounds of an unrolled design. For example
in the time-constrained implementation of klein-80, the last round is more than
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Fig. 8. Area distribution [GE] per round of klein-80: (a) Time-constrained. (b) Un-
constrained.

25 % smaller in size than the largest (in this case the second) round. For all other
ciphers this difference always remains above 20 %. This phenomenon is explained
by the fact that the logic gates used in the last rounds require considerably lower
driving strength since they drive less logic than the middle rounds and can there-
fore be smaller. We further address this observation in Section 4.

The third observation that could be drawn from Fig. 8 is a noticeable swing
in area in the first 13 rounds of the time-constrained klein-80 implementation
(similar observation holds for all other ciphers as well). This is however an effect
introduced by the synthesis tool and is caused by insertion of a significant number
of buffer cells in order to strengthen (and thus speed up) the signal propagation
throughout the combinational network of the circuit which happens periodically,
several rounds after each other.

The ratio between the size of time-constrained and unconstrained designs
spans the range from 1.66 for klein-80 to 2.22 for noekeons. This ratio defines
the elasticity of the design’s area and is an indication of the overhead in area
needed to achieve the smallest possible critical path of the design.

3.3 Time-Area Product

Although it is a simple combination of the two previously described metrics, we
still provide graphs for the time-area product as this is an often used criterion
for selecting the final implementation. Figure 9 illustrates the time-area product
for the ENC/DEC architecture.

Again, the highest performance with respect to this criterion is shown by
mini-aes and all the versions of mcrypton. With more than 60 % overhead,
klein-64 takes the third place, while the lowest performance is again shown by
led-128. For all the tested ciphers it holds that the 2-cycle based architecture
provides between 40 % and 45 % more efficiency with respect to this metric.

When moving from unconstrained to time-constrained designs the highest gain
is shown by AES with 40 % decrease of the time-area product, while noekeons
achieves even a negative gain with 8 % increase of the time-area product. In gen-
eral this ratio (time-area of unconstrained versus time-area of time-constrained
designs) ranges between 0.85 and 1.00 which reflects in a rather small overall
improvement.
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Fig. 9. Minimum time-area product [ms·GE] for ENC/DEC module: (a) Time-
constrained. (b) Unconstrained.

3.4 Power and Energy

The results for the average power consumption are obtained by taking into ac-
count the switching activity of the circuit and are based on synthesis results.
While accurate power measurement is only possible once the circuit is manufac-
tured, we believe that our estimates are still reliable when it comes to comparing
the power consumption between different designs. We note here that the term
average is relative, since we consider designs with very low latency. Therefore,
when considering a fully unrolled design (1-cycle), the average power is mea-
sured, and hence averaged, over a single clock cycle which in fact reflects the
instantaneous power consumption. For the 2-cycle based designs, the power is
averaged over two clock cycles. In order to eliminate the data dependency, we
average the power consumption over 100 random vector inputs for each mea-
surement.

Since the power consumption is linearly related to the operating frequency,
this metric directly influences the value of the measured power. Our strategy of
setting the operating frequency is simple in this case – we set the frequency as the
reciprocal of the critical path. Therefore, the power consumption of each design
is measured during its shortest possible execution time. The energy consumption
is normalized over the number of processed bits, i.e. the message block-size, and
calculated as:

E =
P · Latency

B
=

P ·N · tcp

B
,

where P is the average power, N is the number of clock cycles needed for the
encryption of a single message block, tcp is the critical path of the circuit, and
B is the message block-size.

Figures 10 – 11 illustrate the power and energy consumption, respectively.
The most power and energy efficient designs are again mini-aes, mcrypton,
and klein-64, while led consumes the most. Surprisingly, a large design such
as aes consumes much less energy than most of the lightweight ciphers. This in
fact relates to the number of rounds, which in case of aes is only 10, as well as
to its block size of 128 bits (energy is normalized over the block size).
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Fig. 10. Power consumption [µW] for ENC/DEC module: (a) Time-constrained. (b)
Unconstrained.

Fig. 11. Energy consumption [fJ/bit] for ENC/DEC module: (a) Time-onstrained. (b)
Unconstrained.

4 Discussion and Conclusions

The ciphers we have evaluated within our framework are mainly designed for
lightweight applications. They were not designed to satisfy the low-latency re-
quirement imposed by new applications. Therefore, some of the ciphers which
provide very good lightweight properties, e.g. led and present, demonstrate
quite a low hardware performance when it comes to the low-latency behavior.
Still, we believe that by looking at the solutions offered by lightweight cryptog-
raphy and understanding how their inherent properties influence the low-latency
behavior one makes the very first step towards building an efficient low-latency
cryptographic primitive. We summarize our results and give some guidelines for
designing low-latency algorithms. In this context, we mainly address hardware
properties of the algorithms.

S-Box. aes is the only cipher with an 8-bit S-box which is significantly larger
than the 4-bit S-boxes used by the other ciphers. In theory, a cryptographically
strong 8-bit S-box is on average 32 times larger than a cryptographically strong
4-bit S-box. In practice, due to the characteristics of standard cell libraries, this
ratio is smaller but remains around 20. This fact strongly encourages the use of
cryptographically strong 4-bit (or even 3-bit) S-boxes where possible. We stress
here that even among the 4-bit (or 3-bit) S-boxes there are significant differences
in circuit size [28].

Number of Rounds. Although both led and present use 4-bit S-boxes, thus
having a relatively lightweight round, the number of rounds they consist of is
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considerably large (see Fig. 3). When a design is (partially) unrolled, the number
of rounds becomes a significant factor in the algorithm’s performance. While
this is obvious in the context of the circuit’s latency, once we target low-latency
design, also the area overhead becomes significant. This implies a higher power
and energy consumption as well. We therefore suggest to minimize the number
of rounds of the cryptographic algorithm.

Round Complexity. An interesting conclusion comes from comparing for ex-
ample the mini-aes and present algorithms. While the present round is very
lightweight (it consist of the S-layer and the P-layer, which is in fact only wiring
in hardware), the algorithm still needs a relatively large number of rounds in or-
der to achieve good cryptographic properties. mini-aes, on the other hand, has
only 10 rounds and achieves good cryptographic properties by having a heavier
P-layer, i.e. an MDS matrix, which efficiently increases the number of active S-
boxes at low-cost. To illustrate, the P-layer of mini-aes is about 30 % larger than
its S-layer and therefore 10 rounds of mini-aes versus 31 rounds of present seem
to be a very good design choice. We, therefore, suggest to reduce the number of
rounds at the cost of (slightly) heavier round. Finding a lightweight P-layer with
good cryptographic properties is of a high importance here. Similar to mini-aes,
mcrypton demonstrates a very good selection for the P-layer (a bitwise matrix
multiplication) while klein’s P-layer (a byte oriented MDS) seems to be rather
heavy.

Key Schedule. When comparing klein and led on one side with mcrypton
and present on the other, we observe that the number of rounds of klein
and led increases with the key length, which is certainly an undesired property.
This is not the case with mcrypton and present where the number of rounds
remains constant even if the key length changes. Additionally, led and noekeon
ciphers come without key schedule, i.e. the same round key is used in all rounds.
Although the key schedule is not within the critical path, this feature reduces the
complexity of the circuit and it is, therefore, beneficial for the implementation
cost of low-latency designs.

Heterogenous Constructions. As we already observed in Fig. 8, the last few
rounds of the unrolled implementations are smaller in area than the middle
ones. This leads to an interesting conclusion: we suggest to design cryptographic
primitives with heterogenous rounds. Namely, designing the algorithm such that
the last few rounds are more complex, and thus larger in area, would reduce the
number of rounds and reduce the complexity of the whole design. This would,
obviously, have consequences for lightweight (round-based) implementation of
the algorithm, but here we only consider the low-latency requirements. To further
illustrate this observation, we provide Fig. 17 in Appendix C, where the area
per round distribution is given for the present-80 block cipher assuming several
different timing constraints.

Encryption and Decryption Procedures. Although Fig. 8 shows only the
results for klein, it illustrates a trend common to all ciphers (except noe-
keon). The figure clearly shows that there is a noticeable imbalance between the
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encryption and decryption datapaths for most of the tested ciphers. The expla-
nation of this phenomenon is rather simple. Most of the ciphers are designed
with the efficiency of the encryption procedure in mind. Therefore, the S-box
and the P-layer are often chosen such that their complexity is smaller than that
of their inverses. This fact indeed favors the approach of noekeon, where the
same hardware resources can be reused for both encryption and decryption.
This approach not only saves a significant amount of area, but also reduces the
latency of the implementation. We also observe that although mcrypton has
(nearly) involutional layers there is a non-negligible cost to reuse them for both
encryption an decryption (due to the required insertion of multiplexors).

Conclusion. We have introduced the domain of low-latency encryption, clearly
distinguishing it from the domains of lightweight and conventional encryption.
Six well-known lightweight SPN block ciphers, including aes, were selected based
on their properties and identified as possible candidates to yield good low-latency
behavior. We evaluated their hardware performance within the context of low-
latency encryption, thereby providing the first results in the field. It has been
shown that the obtained results (i.e. latency, area, power, and energy consump-
tion) are strongly influenced by the design properties such as the number of
rounds, the round’s complexity, and the similarity between encryption and de-
cryption procedures. We hope that our results will inspire others to design new
and efficient low-latency cryptographic primitives.
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A Hardware Performance (Data)

In Table 1, we summarize hardware figures for all the tested block ciphers. The
best (smallest) values in each column are marked in bold. Since all the values
are obtained based on synthesis results, we believe that the metrics including
area, latency, and time-area product are estimated with a good accuracy. On
the other hand, we believe that accurate power and energy estimation can only
be done after place and route is performed and, therefore, we do not provide a
detailed report on these two metrics.
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Table 1. Hardware performance of all the tested ciphers (90 nm CMOS, synthesis
results)

Time-constrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 14.8 218.1 3.227 17.8 366.6 6.525 16.6 118.1 1.961 20.2 191.8 3.874
klein-64 11.2 29.0 0.325 15.3 48.2 0.737 12.2 14.6 0.179 16.4 24.9 0.409
klein-80 14.8 39.0 0.577 20.3 63.7 1.293 15.8 19.6 0.310 21.4 32.6 0.697
klein-96 18.4 48.6 0.893 25.3 79.9 2.021 19.6 24.5 0.481 26.4 41.3 1.089
led-64 30.9 62.0 1.917 31.2 128.7 4.014 32.2 32.2 1.038 32.8 63.5 2.081
led-128 46.0 93.4 4.296 46.6 193.1 8.999 47.4 47.9 2.269 48.2 96.0 4.625
mcrypton-64 9.7 22.5 0.218 9.8 41.3 0.405 10.4 11.7 0.124 10.8 20.9 0.225

mcrypton-96 9.7 22.7 0.221 9.8 40.4 0.396 10.4 12.1 0.126 10.8 21.1 0.228
mcrypton-128 9.7 23.2 0.225 9.8 41.4 0.406 10.4 12.1 0.125 11.0 21.0 0.231
mini-aes-64 8.6 23.0 0.198 9.9 40.0 0.396 10.4 12.5 0.130 12.0 22.0 0.265
noekeon-128 14.9 50.0 0.745 14.8 102.5 1.517 16.6 26.1 0.433 17.0 49.6 0.844
noekeons-128 - - - 15.5 49.5 0.768 - - - 17.4 27.1 0.471
present-80 14.3 36.9 0.528 14.8 72.3 1.070 16 19.2 0.308 16.4 37.6 0.616
present-128 14.3 38.1 0.544 14.7 73.8 1.084 16 19.6 0.313 16.6 37.1 0.615

Unconstrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 45.5 103.6 4.715 46.6 232.2 10.820 43 62.3 2.677 51.6 122.0 6.293
klein-64 20.4 11.8 0.240 31.9 28.8 0.918 25.2 7.7 0.194 35.2 15.7 0.553
klein-80 26.9 15.7 0.422 42.1 38.2 1.610 32.2 10.1 0.325 46.0 20.7 0.951
klein-96 33.5 19.7 0.659 53.1 47.9 2.544 39.6 12.6 0.500 57.0 25.8 1.470
led-64 68.8 24.5 1.688 68.5 58.9 4.038 71 14.8 1.053 71.0 29.7 2.109
led-128 102.5 36.6 3.754 100.6 88.1 8.858 103.2 21.9 2.258 105.0 44.1 4.629
mcrypton-64 20.2 11.7 0.235 20.7 20.6 0.427 22 6.6 0.146 23.4 11.3 0.264
mcrypton-96 19.9 11.8 0.235 20.1 20.8 0.418 21 6.8 0.143 22.6 11.5 0.259

mcrypton-128 20.2 12.0 0.242 20.0 21.0 0.419 21.2 7.0 0.148 22.8 11.6 0.265
mini-aes-64 19.6 9.4 0.184 20.9 23.0 0.481 21.6 6.7 0.145 25.8 13.0 0.335
noekeon-128 27.6 21.3 0.587 27.9 51.6 1.438 32.4 13.8 0.446 33.0 26.6 0.878
noekeons-128 - - - 31.8 22.3 0.710 - - - 33.6 15.1 0.507
present-80 36.6 15.0 0.548 31.0 34.8 1.078 33.6 9.2 0.308 36.0 18.9 0.682
present-128 35.9 15.7 0.564 30.8 36.3 1.117 33.6 9.7 0.327 34.2 20.0 0.685

L – Latency [ns]
A – Area [kGE]

T-A – Time-Area product [ms×GE]
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B Hardware Performance for ENC-Only Modules

Fig. 12. Minimum latency [ns] for ENC-only module: (a) Time-constrained. (b) Un-
constrained.

Fig. 13. Minimum area [kGE] for ENC-only module: (a) Time-constrained. (b) Un-
constrained.

Fig. 14. Minimum time-area product [ms·GE] for ENC-only module: (a) Time-
constrained. (b) Unconstrained.

Fig. 15. Power consumption [µW] for ENC-only module: (a) Time-constrained. (b)
Unconstrained.



446 M. Knežević, V. Nikov, and P. Rombouts

Fig. 16. Energy consumption [fJ/bit] for ENC-only module: (a) Time-constrained. (b)
Unconstrained.

C Area per Round Distribution of present-80 ENC-Only

Fig. 17. Area [GE] per round distribution of the present-80 ENC-only architecture
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