
Low-Latency Event-Based Visual Odometry

Andrea Censi Davide Scaramuzza

Abstract— The agility of a robotic system is ultimately limited
by the speed of its processing pipeline. The use of a Dynamic
Vision Sensors (DVS), a sensor producing asynchronous events
as luminance changes are perceived by its pixels, makes it pos-
sible to have a sensing pipeline of a theoretical latency of a few
microseconds. However, several challenges must be overcome:
a DVS does not provide the grayscale value but only changes
in the luminance; and because the output is composed by a
sequence of events, traditional frame-based visual odometry
methods are not applicable. This paper presents the first visual
odometry system based on a DVS plus a normal CMOS camera
to provide the absolute brightness values. The two sources of
data are automatically spatiotemporally calibrated from logs
taken during normal operation. We design a visual odometry
method that uses the DVS events to estimate the relative
displacement since the previous CMOS frame by processing
each event individually. Experiments show that the rotation can
be estimated with surprising accuracy, while the translation can
be estimated only very noisily, because it produces few events
due to very small apparent motion.

I. INTRODUCTION

Perception is still the main problem for high-performance

robotics. Once the perception problem is assumed solved, for

example by the use of external motion-capture systems, then

established control techniques allow for highly performing

systems [1]. Such performance, however, is not achievable

with onboard sensors such as CMOS cameras [2] or laser

rangefinders [3]. The achievable agility of a robotic platform

depends on the speed of its processing pipeline (the series

of data acquisition plus data processing); more precisely, it

is important that the pipeline offers high sampling rate as

well as low latency. At the state of the art, the latency of a

CMOS-based pipeline is at a minimum in the order of 50-

250 ms and the sampling rate is in the order of 15-30 Hz. To

obtain more agile robots, we need to switch to faster sensors.
One possible alternative is to use a Dynamic Vision Sensor

(DVS) [4]. This is the first commercially available product

belonging to a new class of “neuromorphic” sensors [5, 6].

In contrast to a normal CMOS camera, the DVS output

is a sequence of asynchronous events rather than regular

frames. Each pixel produces an event when the perceived

luminance increases and decreases under a certain threshold.

This computation is done using an analog circuit, whose

biases can be tuned to change the sensitivity of the pixels and

other dynamic properties. The events are then timestamped

and made available to the application using a digital circuit.

Each event is a tuple 〈tk, 〈xk, yk〉, pk〉, where the scalar

tk is the timestamp of the event, the coordinates 〈xk, yk〉
identify the pixel that triggered the event, and the value

A. Censi is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology. He was supported by NSF/NRI
(#1405259) and DARPA/MSEE (#FA8650-11-1-7156). D. Scaramuzza is
with the Department of Informatics, University of Zurich. He was supported
by the SNSF (project #200021-143607, “Swarm of Flying Cameras”) and
the National Centre of Competence in Research Robotics.

(a) Camera frame
(b) DVS events + grayscale from camera

Fig. 1. We present a visual odometry algorithm that uses low-latency
brightness change events from a Dynamic Vision Sensor (DVS) and the data
from a normal camera to provide the absolute brightness values.

pk ∈ {+1,−1} is the event polarity, which is the sign of the

brightness change. DVS-based solutions have been proposed

for optic flow reconstruction [7, 8], stereo [9], particle-filter

based localization and mapping [10–12], active-landmark-

based pose tracking [13].

Contribution: In this work, we investigate the use of

a DVS for visual odometry, together with a regular CMOS

camera. The DVS can only sense motion: no events are

generated if nothing moves in the scene and the camera is

stationary. Furthermore, this sensor has currently a very low

resolution: 128 × 128 pixels. These two limitations might

eventually be removed by undergoing research efforts aimed

at adding the possibility of sensing static luminance signals

and increasing the resolution [14, 15]. In any case, a DVS

alone cannot be the only sensor on board of a robot, but

rather it needs to be integrated with conventional sensors. We

envision an architecture in which agile behavior is obtained by

a low-latency control action that uses the data from a sensor

like the DVS, while, at slower time-scales, other tasks, such

as SLAM, are performed based on slower traditional sensors.

Therefore, we try to combine the DVS events with the low

frequency data from a normal CMOS camera (hereafter, just

“camera”) that can provide the absolute brightness value that

it is not sensed by the DVS (Fig. 1b).

The first challenge is to extrinsically calibrate the two

sensors. We devise an unsupervised spatiotemporal calibra-

tion technique that is able to create an accurate virtual

sensor, notwithstanding several approximations due to the

two devices having different resolutions, unsynchronized

timestamps, different focus centers for the optical systems, etc.

Having created this new “virtual” sensor, which provides low-

frequency frames and low-latency events, we design an event-

based visual odometry method. Most visual odometry methods

are based on detecting and tracking “features” (or “interest

points”) across frames [16]. These approaches cannot be used

directly with a DVS, unless the DVS is used to simulate a

normal camera, for example by accumulating events in a slice

of time and then use it as a “frame” 1 or if the feature tracking

problem is defined in the spatiotemporal domain [17–19]. Our

goal is to process each event independently as to provide the

minimum latency possible.

Outline: Section II describes the camera-to-DVS calibra-

tion method. Because we need to use the camera to provide

the absolute brightness values that cannot be observed from

the DVS alone, calibration in this context means to find for

each DVS pixel the corresponding pixel in the camera frame.

Calibration is done offline from recorded logs during normal

operation of the system (no calibration patterns are necessary).

Section III describes an event-based visual odometry

method. We use the DVS events to estimate the relative

displacement with respect to the pose where the previous

low-frequency frame was acquired. Because the DVS is fast,

we can assume that the motion is small, and, thus, decompose

the problem along each degree of freedom. Our method is

similar in spirit to Markov localization, in the sense that each

event is used to define a likelihood function to weigh the

current relative motion estimate.

Section IV illustrates experiments for the case of pure

rotation. In spite of the various approximations implied by

using the camera’s data to supply the missing brightness value

for the DVS, the system is quite precise and achieves a drift

that is small compared with the DVS resolution (1 pixel/°).

The system is robust to motion blur. Failures are observed

when the majority of the events are due to other objects in

the field of view rather than self-motion, and if the rotation

is so fast that more than a half field of view moves between

successive camera frames.

Section V describes the problem of estimating translation,

assuming that the low-frequency images are provided together

with the range image (either provided natively by a sensor

such as a Kinect or estimated using a SLAM algorithm). The

algorithm for translation is mostly the same as for rotation,

but the results are quite noisy. Our analysis suggests that this

is an intrinsic limitation of the DVS: because the sensor only

detects changes and has a relatively poor resolution, it cannot

be used to estimate translation reliably because translation

produces relatively small apparent motion.

Finally, Section VI wraps up and discusses future work.

Notation: We use standard differential geometry nota-

tion [20]. S
2 is the unit sphere, the set of vectors in R

3

that have unit length. An element of S2 is denoted as s and

called a direction. A direction identifies a pixel of a calibrated

camera (we do not use image-space coordinates). An image,

or frame, is a differentiable function y : S2 → R on the visual

sphere. The gradient ∇y is a function on the visual sphere

that takes values on the tangent space of the sphere: fixed a

point s ∈ S
2, ∇y(s) is a vector in R

3 that is perpendicular

to s. The inner product of two vectors in R
3 is 〈a, b〉; their

cross product is a× b. For a vector a ∈ R
3, the quantity a×

is the skew-symmetric 3× 3 matrix such that a×b = a× b.
“Exp” is the matrix exponential and “Log” is the principal

logarithm.

1Incidentally, this is what we do for visualization purposes (Fig. 1b).

II. SPATIOTEMPORAL CAMERA/DVS CALIBRATION

Assuming a small baseline between the two sensors, we

can use the CMOS camera to supply the absolute brightness

values in the DVS field of view. The goal of calibration is to

find for each DVS pixel the camera pixel that points in the

same direction. We describe an offline calibration method that

works with logs taken during the system’s normal operation,

without the need of special calibration patterns or procedures.

The basic idea is that pixels pointing in the same direction

see “changes” at the same time, so that a properly defined

similarity function captures the spatial relationships between

pixels even if they belong to different sensors. The basic

principle is thus similar to calibration by correlation (see [21]

and references therein), but applied to different sensors, and

with opportune changes due to the special nature of the DVS

data.

The most important assumption of this method is that there

is a small baseline between the two sensors; more precisely,

the baseline must be negligible with respect to the size of

the environment. For example, suppose that (as in our setup)

the baseline is b ≃ 0.01m and the minimum distance to an

obstacle is d = 2m. The direction of the projection of a

point of an obstacle on the two sensors can at most differ by

b/d ≃ 0.5°. In our case this is an acceptable approximation

because each DVS pixel covers ≃ 1°.

The calibration method has three phases:

1) The first phase consists in a coarse time synchronization

of the two data sequences. This is needed because the

DVS events are timestamped with its own internal clock.

2) The second phase consists in a coarse spatial calibra-

tion. The output of this phase is an approximate guess

for the position of each DVS pixel in the camera frame.

3) The third phase is an optimization phase that refines

the results of the individual pixels to obtain a globally-

consistent solution.

A. Coarse time synchronization

Because the DVS uses its own internal clock and timestamp,

the first step needed is the temporal synchronization of the

two data streams. If two sensors point (approximately) in

the same direction, then they will see (approximately) the

same “changes”. If we can define two related signals that

quantify the changes for the two sensors, then the delay

between the two time series is found as the maximum of

the cross-correlation between those signals. When large data

logs are available, the result is very robust even if the two

sensors do not perceive exactly the same part of the scene.

The only delicate part is taking care of the fact that the two

streams are not equally spaced in time, so that they need to

be resampled to a common sampling rate ∆.

For the DVS events, whose timestamps sequence is tk, for

each time t, define the function ft as the number of events

detected in the interval [t−∆, t+∆] (Fig. 2a):

ft = |{tk | t−∆ ≤ tk ≤ t+∆}|. (1)

Let the data from the camera be a sequence of tuples

〈ti, yi〉, where ti is the timestamp, yi : S
2 → R is the image

(here defined as a function on the visual sphere). Let ẏi be

the discrete approximation to the derivative of the image:

ẏi = (yi+1 − yi−1/(ti+1 − ti−1). Define the total intensity

of the change ci as the 1-norm of ẏi over the visual field:

ci = ∫S2 |ẏi(s)| ds. Finally, for each time t, define gt as the

mean intensity for images in the interval [t − ∆, t + ∆]
(Fig. 2b):

gt = mean{ci | t−∆ ≤ ti ≤ t+∆}. (2)

The correction τ between the two series is the one that

minimizes the mismatch between gt and ft+τ . To obtain both

robustness and efficiency, we use a multi-scale analysis, in

which we start with a large sampling interval ∆ and a large

search domain for τ , and then iteratively reducing both.
This method can be used to synchronize other data streams,

as long as one can find a signal that correlates with motion and

events generations (e.g., angular velocity for the odometry).

B. Coarse spatial calibration

At this point, we assume that the two streams of data are

coarsely aligned temporally, and we want to find, for each

DVS pixel, a guess of the corresponding pixel for the camera.

This will be just a coarse guess that will be refined later.
Let us use the index a ∈ A to label the DVS pixels, and

the index b ∈ B for the camera pixels. We will define a

similarity measure S(a, b), then, for each a, we will choose

the corresponding b̂(a) as the pixel b that maximizes the

similarity:

b̂(a) = argmax
b∈B

S(a, b).

In analogy with ft defined in (1), for each pixel a define

the function ft(a) as the number of events produced observed

by that pixel in the interval [t−∆, t+∆]. In analogy with

gt defined in (2), define gt(b) as the average intensity of

the brightness change ẏ seen by the camera at pixel b in the

interval [t−∆, t+∆]. The similarity S(a, b) is the correlation

in time between ft(a) and gt(b):

S(a, b) = corr(ft(a), gt(b)).

This similarity is very simple to implement and can be

computed with a streaming algorithm in one pass. There

are other possible choices for the similarity involving other

signals (such as the intensity of the spatial gradient) and

other distances between time series (such as the information

distance), though this simplest choice seems to work well

enough.
If we computed S(a, b) for each pair of pixel the memory

requirements would be prohibitive, because it would be in

the order of O(ρ21ρ
2
2) where ρ1, ρ2 are the resolutions (in

pixels/degrees) of the two sensors. Therefore, we compute

this similarity using only a subset of the DVS pixels; in our

case, we use a 16× 16 subgrid of the 128× 128 frame.
Fig. 3 shows some examples of the similarity S(a, b),

computed on several logs for a total of ~35 minutes. Note

that the similarity is ambiguous in the vertical direction. This

is due to the properties of the environment, which, in this

case, has many vertical features.
It might happen that the DVS pixel has no corresponding

point in the camera frame, because it corresponds to pixels

that are outside of the frame. In this case the similarity has

typically multiple minima (Fig. 3d). A simple confidence

measure can quantify this fact. If b̂(a) is the maximum, a

(a) DVS event rate (log scale)

(b) Magnitude of image intensity changes (log scale)

(c) Angular velocity (IMU)

motion in visual field

30°/s

100k events/s

Fig. 2. Synchronization between data streams from different sensors is
achieved by computing the offset that maximally superimposes signals that
correlate with motion and changes in the visual field.

(a) S(a1, b) (b) S(a2, b) (c) S(a3, b)

(d) S(a4, b) (e) S(a5, b) (f) S(a6, b)

Fig. 3. A first guess for the position of each DVS pixel a in the image
space of the camera is obtained by computing the similarity function S(a, b),
here represented in grayscale for four example pixels, among which one that
does not have a correspondence.

confidence level is the ratio of S(a, b̂(a)) and the average

S(a, b):

wa = S(a, b̂(a)) /
∑

bS(a, b).

This confidence measure allows us to distinguish pixels with

and without a correspondence by thresholding w(a). The

pixels with a low confidence level are marked as invalid and

excluded from the successive phases.

C. Spatial refinement

Due to noise and ambiguity, the guess obtained indepen-

dently for each pixel can be rather noisy (Fig. 4a). This last

spatial refinement phase is an optimization step that finds a

globally consistent solution for all pixels together (Fig. 4b).

Using a standard approach, we define an energy function

E = Edata + αEmodel that consist of two terms: the data

term forces the pixels to have the position previously found,

weighted by their confidence level, and the model term

encourages the pixels to be in a regular grid. The two terms

are weighted by a constant α > 0 that quantifies our trust in

the model.

1) Data term: This part is best described using image

coordinates for the camera frame. For each DVS pixel, we

found the corresponding pixel b̂(a) in the camera frame.

Call pa
0 ∈ R

2 the position of that pixel, and wa the confidence

level. The data term is readily written as

Edata({p
a}) =

∑

a∈A

wa‖pa − p
a
0‖

2.

2) Model term: The model term should enforce the prior

knowledge that we have for the sensor topology. Let us

consider the case where the pixels are in a grid, though

the procedure can be adapted to different topologies.
For each pixel a ∈ A let neig(a) ⊂ A be the set of the

neighbors of a in the grid. Because of the grid assumptions,

all neighbors in neig(a) should be equidistant from a. The

constraint is that, for any two neighbors a1, a2 ∈ neig(a),
the points p

a1 and p
a2 are equidistant from p

a:

‖pa1 − p
a‖ = ‖pa2 − p

a‖. (3)

We enforce the (soft) constraint by including a penalty to be

minimized, such as |‖pa1 −p
a‖2−‖pa2 −p

a‖2|. The model

term sums the penalty over all pixels and their neighbors:

Emodel({p
a}) =

∑

a∈A

∑

a1,a2∈neig(a)

|‖pa1 − p
a‖2 −‖pa2 − p

a‖2|.

While this penalty function is simple and serves its purpose,

it is unclear whether this is the best penalty function for our

constraint (3). In general, for any soft constraint to be imposed,

one can find an infinite number of penalty functions, and

different penalty functions have widely different properties in

term of convergence basins, robustness to outliers, etc. [22].
3) Optimization: The energy function just defined is not

convex, though it appears to be “convex enough” to be

minimized using general-purpose algorithms. Of the standard

methods readily available in Numpy, the quasi-Newton BFGS

method [23, p. 198] gave the quickest convergence (25

iterations if choosing α = 0.1). The results are shown in

Fig. 4b.
4) Interpolation: We have so far derived the solution for a

subset of the DVS pixels at the corners of a grid. The last step

consists in interpolating the result to the rest of the pixels.
The simplest way to interpolate is by using barycentric

coordinates. Create a triangulation of the DVS frame using

the known grid points. For each pixel whose position is still

to be found, the solution is given by averaging the solution

of the vertex of the enclosing triangle.
Suppose m ∈ R

2 are the image coordinates of the pixel

in question, and m1,m2,m3 ∈ R
2 are the coordinates of

the vertices. The barycentric coordinates λ1, λ2, λ3 are the

solution of the equation m = λ1m1 + λ2m2 + λ3m3 with

the constraint λ1 + λ2 + λ3 = 1.
Once the barycentric coordinates have been found using

standard formulas2, the position p is found by interpolating

the solutions of the vertices p
1,p2,p3:

p = λ1p
1 + λ2p

2 + λ3p
3.

2Letting mi = 〈xi, yi〉 and m = 〈x, y〉 then

(

λ1

λ2

)

=

(

x1 − x3 x2 − x3

y1 − y3 y2 − y3

)

−1
(

x− x3

y − y3

)

and λ3 = 1− λ2 − λ1. The matrix above is invertible if and only if the
three points are not collinear.

III. EVENT-BASED ROTATION ESTIMATION

This section describes a visual odometry method that uses

the DVS events together with the camera frames. It uses the

low-frequency frames as an instantaneous “map” in which to

localize based on the events. The method preserves the low-

latency nature of the data because each event can be processed

individually. Localizing simultaneously with respect to two

successive frames allows the method to keep track of the

global pose. This section focuses on estimating rotation;

Section V discusses translation.

Our design goal of a completely asynchronous event-based

method prevents using traditional techniques based on feature

tracking. In principle, it is possible to extract features from

the events: for example, by accumulating events in a time

slice and considering their histogram as an image frame,

it is possible to see segment features (Fig. 1b). However,

this implies accepting additional latency (as events must be

accumulated) and is not a robust strategy (for small motions

and few events, features cannot be reliably detected).

The basic idea of the method is to estimate the relative

motion from the last low-frequency frame, by defining the

likelihood that an event can be observed given a certain motion.

Because of the sensor’s low latency, we can assume that the

motion is “small” and we can estimate each degree of freedom

independently (i.e., pitch can be estimated independently from

yaw and roll) and so we need relatively little computation

for processing each event. More in detail, we keep track of a

probability distribution relative to the motion for each degree

of freedom. Each event can be used to define a likelihood

function for the motion that is compatible with seeing that

particular event. Clearly, a single event contains very little

and ambiguous information, but accumulating the information

in a series of events will lead to a precise and robust estimate.

In the spirit of Markov localization [24], we can apply a

motion model in between events if one is available (i.e. we

know the sensor is attached to a robot with known dynamics).

A. Single event vs fixed-event-rate processing

We will describe the method as purely event-based, to

highlight that, in principle, it can be implemented asyn-

chronously, perhaps at the hardware level. However, for

the current implementations, and the foreseeable future, the

computation is done with a packet of events, and optimized

using vectorization techniques. First, there is a practical

constraint: the DVS uses a USB hardware interface and

several events are transmitted per packets, though each event

has its own hardware-generated timestamp. In addition to this

(a) Before optimization (b) After optimization

Fig. 4. Coordinates of the DVS pixels in the camera’s image space, before
and after optimization (Section II-C). Red pixels (corresponding to directions
outside the camera frame) are marked as invalid and ignored.

constraint, the microsecond latency that the DVS achieves

is unnecessary for robotic platforms: the goal of estimation

is control, and the time constants of a flying, or wheeled,

robot, or plane, or insect, is hardly faster than 1 millisecond,

so there are diminishing returns under that threshold.

Choosing a processing frequency is not straightforward. For

a conventional sensor there is a clear trade-off: a high sampling

rate corresponds to more precise estimation at the cost of

more computation required. With the DVS, the trade-off is

different, because the event rate is variable and proportional

to the magnitude of the motion; in the limit, without motion,

no events are generated. Therefore, processing events at a

fixed frequency is either wasteful or inaccurate depending

on the situation. A simple heuristics that seems to work

well is fixed event-rate processing: we accumulate events in

packets, and then process them once a given size is reached.

For example, in our experimental setup, using the threshold

1000 events/packet corresponds to about 500 Hz processing

for 720 °/s rotations. We conjecture that this fixed-event-rate

strategy uses the least computation for a given expected error.

B. Estimating relative rotation

1) Events and frames: We use the subscript k for the events,

and the subcript i for the low-frequency frames. The two

series of timestamps are {ti}i∈N and {tk}k∈N. Neither stream

is assumed equispaced in time, and they are not assumed to

be accurately synchronized.3 As previously defined, the frame

data is a sequence of tuples 〈ti, yi〉, where yi : S
2 → R is a

function defined on (a subset of) the visual sphere. The event

data is a series of tuples 〈tk, pk, sk〉, where pk ∈ {+1,−1}
is the polarity and sk ∈ S

2 is the direction of the pixel of

the visual sphere, which we use directly instead of the image

coordinates. (Using sk implies that the sensor is calibrated.)

2) Reference frame: Let us choose convenient reference

frames. Suppose that we have received the i-th frame at time

ti and at time t > ti we want to localize with respect to that

frame. If qt ∈ SO(3) is the attitude at time t, we want to

recover the relative attitude q−1
ti

qt. It is simpler to reformulate

everything in relative spatiotemporal coordinates, by letting

qti = Id and ti = 0, so that qt is the relative attitude with

respect to the previous image obtained at t = 0.

3) Approximating the likelihood for generic rotation: We

first derive the formulas for the case of a generic rotation

qt ∈ SO(3); later, we will particularize them to the case in

which the rotation is constrained to be around a given axis.

The basic observation is that an event must be generated by

some spatial gradient in the image—if the image has uniform

brightness, no event can be generated by motion. Suppose

that at time tk ≥ 0 we receive the event 〈tk, pk, sk〉. We

take this as evidence that at time tk, there was a a nonzero

gradient in direction sk. This implies that, if qtk ∈ SO(3)
is the current rotation, there should be a nonzero spatial

gradient in the image yi in direction q−1
tk

sk. Therefore, the

event sk is compatible with the current motion being qtk
only if ∇yi(q

−1
tk

sk) 6= 0. A single event cannot disambiguate

3In our particular experimental setup, we discovered we had to work
around this problem because the images were timestamped by ROS, with
considerable userspace jitter, rather than directly at the driver or hardware
level. Because this seems to be a likely common problem, we set as a design
goal to not rely on precise synchronization of frames and events.

the motion, therefore we need to accumulate evidence from

successive events. This is the basic idea; the next few

paragraphs make it more precise.
Formally, we find an approximation to the likeli-

hood p(〈tk, sk〉 | qtk , yi). The simplest model of the DVS is

that an event is triggered with probability proportional to |ẏ|.
Using the optic flow equation, the derivative ẏ is proportional

to the angular velocity ω and the gradient ∇y:

ẏt(s) = 〈s×∇yt(s), ωt〉 =
〈

ω×s,∇yt(s)
〉

. (4)

Assuming a small motion of constant velocity (ωt = ω0), the

rotation qt is the matrix exponential of ω×
o t: qt = Exp(ω×

o t),
and, conversely, the velocity ω is the matrix logarithm of qt:

ω×
0 = 1

t
Log(qt). (5)

Combining (4) and (5) we obtain that ẏt(s) =
1
t
〈Log(qt)s,∇yt(s)〉 . Therefore, the likelihood of seeing the

event 〈tk, pk, sk〉 assuming the current pose is qt is

p(〈tk, sk〉 |qtk, yi)≃
1
tk

∣

∣

〈

Log(qtk)q
−1
tk
sk,∇yi(q

−1
tk
sk)

〉∣

∣ . (6)

Once we have defined this likelihood function we can

implement a Bayesian filter. However, it would be terribly

inefficient to iterate over the entire space SO(3) for each event.

Assuming small motion, we can decompose the problem over

each degree of freedom.
4) Simplification for one degree of freedom: Fix a rotation

axis described by a unit vector u ∈ S
2. Assuming that the

sensor only rotates along u, we can write the rotation qt as

a function of the angle θt along that axis:

qt = Exp(θtu
×). (7)

The angle θt is going to be the parametrization for the rotation.

Rewriting (6) using (7), we obtain that p(〈tk, pk〉 | θtk , yi) ≃

1
tk

∣

∣

〈

Log(qtk)q
−1
tk

sk,∇yi(q
−1
tk

sk)
〉
∣

∣

= {Using (7)}
1
tk

∣

∣

〈

Log(Exp(θtu
×))Exp(θtu

×)−1sk,∇yi(Exp(θtu
×)−1sk)

〉∣

∣

= {Log(Exp(x)) = x, for small x}
1
tk

∣

∣

〈

θtu
×Exp(θtu

×)−1sk,∇yi(Exp(θtu
×)−1sk)

〉∣

∣

= {Exp(u×)−1 = Exp(−u×)}
1
tk

∣

∣

〈

θtu
×Exp(−θtu

×)sk,∇yi(Exp(−θtu
×)sk)

〉∣

∣

= {
〈

a×b, c
〉

= −bTa×c}
|θt|
tk

∣

∣

〈

Exp(−θtu
×)sk, u

×∇yi(Exp(−θtu
×)sk)

〉
∣

∣ . (8)

Equation (8) can be rewritten in a simpler form. Because

Exp(−θtu
×)sk appears twice, we refactor this term as the

function ϕu(θ, s) that rotates s of −θ around the axis u:

ϕu : S1 × S
2 → S

2,

θ, s 7→ Exp(−θu×)s.

To further simplify (8), define the function Ψu
y (x) as

Ψu
y : S2 → R,

x 7→
〈

x, u×∇yi(x)
〉

. (9)

With this compact notation, the likelihood approximation is

p(〈tk, sk〉 | θtk , yi) =
|θt|
tk

|Ψu
y (ϕ

u(θt, sk))|. (10)

The function Ψu
y gives all that is needed to know about

the image yi: it is the intensity of the gradient that counts

towards generating spike events for the direction of interest u.

This function needs to be computed only once per image, and,

with further manipulation, it can be written as the absolute

value of a linear combination of the gradients in image space.

The term |θt|/tk in (10) is the absolute value of the

angular velocity: with a change of variable, we could express

everything using the angular velocity, but using the relative

rotation gives a more intuitive formulation overall.

The term ϕ(θt, sk), seen as a function of θt, describes an

arc in the visual sphere. Crucially, this is the only quantity

that depends on the event, through the direction sk. Algorith-

mically, this implies that, given an event in direction sk, we

need to iterate over θ, and trace an arc in image space, and

the likelihood for θ is given by evaluating Ψu
y at ϕ(θt, sk).

C. Filtering and tracking

Tracking the relative motion with respect to the last received

frame is an instance of a Bayesian filter:

1) Initialization: Wait for yi. Compute Ψu
yi

. Set initial

distribution for p(θ0) to a uniform distribution.

2) For each new event 〈tk, pk, sk〉 received:

a) Prediction: Evolve the probability distribution

using a motion model p(θtk | θtk−1
).

b) Update: Weight the probability distribution using

the likelihood given by (10).

As mentioned before, while we could consider each event indi-

vidually, it might be preferable to process events packets, and

optimize the evaluation of (10) using vectorized operations.

The last block that we need for a complete algorithm is

defining what happens when a new frame yi+1 is received.

To keep track of the global pose, we need to find the relative

pose between yi and yi+1. This can be done by running the

localization filter above independently for the two images

concurrently; once the DVS is localized with respect to both

images, the relative motion between the two images can be

estimated, a global state variable can be updated with the

global pose, and the oldest image discarded.

D. Further refinements

1) Using the polarity information: We can use the event

polarity pk to improve the likelihood approximation (6). The

constraint is that the polarity pk must be the sign of the bright-

ness variation ẏ. Starting from (4) and redoing similar steps

as before, we obtain that sgn(ẏ) = sgn(θtΨy(ϕ(θt, sk))).
Thus, in absence of noise, the position θtk is compatible with

the event only if

pk = sgn(θtΨy(ϕ(θt, sk))). (11)

To take into account noise and other unmodelled phenomena

(such as objects that move of independent motion, thus not

conforming to (4)) we soften this constraint. The constraint

is respected if the product pk(θtΨy(ϕ(θt, sk))) is positive,

thus a robust likelihood function can be compactly written as

p(〈tk, sk, pk〉 | θtk , yi) = H(pk
θt
tk
|Ψy(ϕ(θt, sk))), (12)

where H : R → R
+ is a function that implements a soft

threshold, such as H(x) = c+x for x > 0, and H(x) = c > 0

for x < 0. The constant c depends on the noise level. (An

interesting extension would be learning H from data.)

2) Subpixel maxima detection: Finally, we mention a

simple trick regarding how to compute the maximum of

the probability distribution of θ when an unimodal output

is needed, for visualization (as in the experiment section)

or for further processing. The resolution of the probability

distribution for θ is the resolution of the sensor, which

is 1 pixel/° for our setup. If we only extract the maximum of

the buffer (θ̂t = argmax p(θt)), then the answer suffers from

a discretization of 1 pixel/°. A better approach is to fit a local

Gaussian-plus-constant approximation to the distribution, and

use the mean of the fitted Gaussian as the unimodal guess.

IV. EXPERIMENTS

We set up the DVS + camera system on a TurtleBot.

The robot has, in theory, only two degrees of freedom

(rotation on the yaw axis, and forward translation), due to

the nonholonomic dynamics. However, in practice, it is quite

unstable on its two wheels, so that it wobbles back and forth

when it starts a translational motion—and our method does

detect this oscillatory pitch movement.

For the quantitative evaluation we focus on yaw, so that

we can use the robot’s odometry for evaluating the precision.

In the following the packet size is set to 1000 events/packet.

In general, in our partially engineered test environment rich

in horizontal gradient (Fig. 5a) the method is quite robust, and

the only failures (where the maxima of the distribution is far

from the ground truth) happen when most of the field of view

is covered by dynamic objects (Fig. 5c). Dynamic objects

bring two kinds of nuisances: first, they create additional

confusing events in the DVS data; second, they are not good

references in the camera frames.

The drift, as evaluated with the odometry, is in the order

of 1% of the total rotation. This is measured for slow motions,

as for fast motions the odometry tends to be unreliable, as

there is wheel slippage when the robot makes abrupt motions

(Fig. 6). Rotation estimation is robust even in the presence

of translation (Fig. 7).

Choosing slightly different event packet sizes does not

change the estimate much (Fig. 8), except that choosing 500

events/packets (Fig. 8a) instead of 2000 (Fig. 8c) gives a 4

times more frequent update.

The precision that we achieve is much smaller than the

sensor resolution, thanks to the subpixel trick explained in

Section III-D.2. The effect can be clearly seen for the data in

Fig. 8d, where it is not used, and the discretization corresponds

to the sensor resolution.

V. ESTIMATING TRANSLATION

We were not able to produce consistently precise estimates

of translational motion. Nonetheless, for completeness, we

describe what we tried and the partial success we obtained.

The basic problem for estimating translation is that in

the robot localization scenario the apparent motion due to

translation is much smaller that the apparent motion due to

rotation. Suppose the robot moves forward at velocity v =
1m/s. The largest apparent motion is if an object is orthogonal

to the motion vector; as for the distance, suppose that the

robot keeps a safe distance of d = 2m from the environment.

(a) Frame and events. (b) Events re-aligned
 given the estimate.

(c) Failure due to
 moving objects.

Fig. 5. Panel a shows a typical input, with the events superimposed with
the grayscale image. Panel b shows the same events artificially rotated by the
estimated θt. Panel c shows a quasi-failure state, in which moving objects
do not provide a reliable reference image to match the events.

1.0°

-8.9°

2.1°

2.1°

90°

odometry estimate

truth
0°

Fig. 6. Odometry (black) vs estimate (red) compared with ground truth.
The estimate drift is 1° after a 180° rotation (~0.005%). In this case, the
odometry drift is larger (8.9°) because of wheels slippage.

(a) Forward velocity (odometry)

(b) Angular velocity (odometry)

0.3 m/s

(c) Odometry heading (black) and estimated heading (red)

0°

-415°
-441°

30°/s

Fig. 7. Rotation estimation is robust even in the presence of translation.

(a) 500 events/packet

(d) Without using subpixel

 estimation (Section III.D.2)

(c) 2000 events/packet

(e) Without using polarity

 information (Section III.D.1)

(b) 1000 events/packet

frames

packets
rotation

time

0.7s0

0

8°

rotation

time

0.7s0

0

8°

Fig. 8. Effect of changing different parameters. The figure show the low-
latency heading estimation in the first part of the trajectory shown in Fig. 6.
Black dots mark the estimation corresponding to the low-frequency frames.
The “wobbliness” is due to the imprecise timestamp of the frames. Panels
a, b, c show the effect of changing the packet size (500, 1000, and 2000
events/packets, respectively). Panel d shows the effect of not using subpixel
maxima extraction (Section III-D.2): the discretization corresponds to the
sensor resolution. Finally, panel e shows the effect of not using the polarity
information (Section III-D.1).

Then the apparent motion is at most v/d = 0.5 rad/s = 30°/s.

For a pixel spread of 1°, it takes 1°/30°/s = 0.03s to have

an apparent motion of 1 pixel. This is one order of magnitude

less of what we expect for rotation; a rotation rate of 360°/s
is easily achieved. We conclude that the DVS with its current

spatial resolution can reliably detect translational motion only

at frame rates, for which a normal camera would suffice.

This suggests that in a robot architecture the DVS should

be used only for estimating and compensating fast rotations,

while estimation of translation should be done more using

traditional sensor and visual odometry pipelines. Nevertheless,

we discuss how translation can be recovered by adapting the

method previously described.

A. Variation of the rotation estimation procedure

For recovering translation, we also need to know the depth

data attached to the luminance data. This can be obtained

from the sensor itself (e.g., for a Kinect) or estimated using

a visual odometry technique. Let di : S
2 → R

+ be the range

image attached to the intensity image yi.
For the purpose of estimating translation, we can assume

that rotation has already been estimated and compensated.

(It is easy to compensate the rotation by simply rotating the

DVS events, as in Fig. 5a–b.) The analogous relation to (4)

for translational motion with velocity vt ∈ R
3 is

ẏt(s) =
1

di(s)
〈∇yt(s), vt〉 . (13)

As before, assume we are estimating the translation along one

axis, so that the relative position with respect to the previous

image is xtu where u ∈ S
2 is a fixed direction and xt is a

scalar coordinate (analogous of θt). We can redo all passages

that led to (10), obtaining a similar result for the likelihood:

p(〈tk, sk〉 | xtk , yi) =
|xtk

|

tk
|Ψy(γ

u
d (xt, sk))|. (14)

Instead of the function ϕu, we have an analogous function

γu
d (x, s) that describes the apparent motion of a feature point

in direction s under the translation x in direction u:

γu
d : R× S

2 → S
2,

x, s 7→ (di(s)s− xu)/‖di(s)s− xu‖.

Based on this equation we can adapt the algorithm described

in Section III with the simple substitution of ϕu with γu
d .

In our setup, this method gave essentially unusable results

because of the extremely small apparent motion. However, it

might prove useful in situations of low angular velocity and

high translational velocity, such as the automotive scenario.

B. Estimating instantaneous translational velocity

The methods presented so far assumed that the motion

was small but finite, in the sense that θ and x are small but

nonzero. An alternative is to directly make an infinitesimal

motion assumption; in the sense of assuming x = 0 and

estimating the velocity v = ẋ.

The optic flow equation (13), assuming that we know

y, d, and ẏ, is a linear equation in the unknown v. This

relation is usually useless in frame-based processing, because

the derivative ẏt(s) must be obtained by discrete difference

of successive images, thus losing the infinitesimal motion

assumptions; however, in our scenario, we can approximate

(a) Linear velocity (from odometry)

(b) Estimated linear velocity from DVS data

0.3 m/s

Fig. 9. Estimation of translation velocity using the method in Section V-B
gives mostly the correct sign, but overall a very noisy signal. This data
was computed using a constant-depth assumption, in a scenario where this
hypothesis is mostly correct.

the derivative ẏ by accumulating the events, rather than

differentiating the frames.

Experimentally, we find that we are able to estimate reliably

the sign of the velocity but the estimate is quite noisy (Fig. 9).

Apart from the small apparent motion problem mentioned

before, another factor that might become relevant is that the

DVS (from which we estimate ẏ) and the camera (from which

we estimate ∇y) are not exactly sampling the exact light field

as they have different sensitivity; at the very least, we need

to allow for a nonlinear scaling of the intensities. Further

development of the sensor to provide also a grayscale signal

might improve these results [14, 15].

VI. CONCLUSIONS

This paper described a low-latency visual odometry method

based on the fusion of the events data from a Dynamic

Vision Sensor (DVS) and the absolute brightness levels

provided by a normal CMOS camera. The two sensors

are automatically spatiotemporally calibrated, based on the

computation of similarity statistics from logs obtained from

the normal operation of the system. Our visual odometry

method preserves the low-latency nature of the data, as the

information from each event can be processed individually

to update the current estimate. We showed that, in spite of

the high spatial discretization of the sensor, and the various

approximations implied from the fusion of the two sensors’

data, our method recovers fast rotations with a relatively

small drift. Translation cannot be reliably estimated, due to

the small apparent motion that produces in a typical robotic

setting. This suggests to use the DVS for estimating and

compensating fast rotational motion, and estimate translation

with a conventional architecture.

Future algorithmic work consists in integrating this method

in a complete SLAM system. There is much theoretical work

to do as well. We have justified our conclusions regarding the

precision achievable using back-of-the-envelope calculations,

but it would be desirable to have precise formulas that give

the achievable accuracy from a mathematical model of the

DVS events generation process as well as intrinsic/extrinsic

parameters. Similarly, it would be interesting to have a solid

mathematical justification of the advantages of fixed-event-

rate processing as opposed to other strategies.

Acknowledgments: Thanks to Jonas Strubel, Matia Pizzoli, and
Christian Forster for their help in capturing the data, and to Carolin
Baez for careful proofreading.

REFERENCES

[1] S. Lupashin and R. D’Andrea. “Adaptive fast open-loop maneuvers for
quadrocopters”. In: Auton. Robots 33.1-2 (2012). DOI: 10.1007/s10514-
012-9289-9.

[2] S. Weiss, D. Scaramuzza, and R. Siegwart. “Monocular-SLAM-based
navigation for autonomous micro helicopters in GPS-denied environ-
ments”. In: Journal of Field Robotics 28.6 (2011). ISSN: 1556-4967.
DOI: 10.1002/rob.20412.

[3] S. Shen, N. Michael, and V. Kumar. “Autonomous multi-floor indoor
navigation with a computationally constrained MAV”. In: Int. Conf. on
Robotics and Automation. 2011. DOI: 10.1109/ICRA.2011.5980357.

[4] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128× 128 120 dB 15
µs Latency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE
J. of Solid-State Circuits 43.2 (2008). DOI: 10.1109/JSSC.2007.914337.

[5] S.-C. Liu and T. Delbruck. “Neuromorphic sensory systems”. In: Current
Opinion in Neurobiology (2010). DOI: 10.1016/j.conb.2010.03.007.

[6] T Delbruck, B Linares-Barranco, E Culurciello, and C Posch. “Activity-
driven, event-based vision sensors”. In: IEEE International Symposium
on Circuits and Systems (ISCAS). Paris, France, 2010. ISBN: 1424453089.
DOI: 10.1109/ISCAS.2010.5537149.

[7] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan.
“Asynchronous Frameless Event-based Optical Flow”. In: Neural Net-
works 27 (2012). DOI: 10.1016/j.neunet.2011.11.001.

[8] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi.
“Event-Based Visual Flow”. In: IEEE Transactions on Neural Networks
and Learning Systems 25.2 (2014). DOI: 10.1109/TNNLS.2013.2273537.

[9] P. Rogister, R. Benosman, S.-H. Ieng, P. Lichtsteiner, and T. Delbruck.
“Asynchronous Event-Based Binocular Stereo Matching”. In: IEEE
Transactions on Neural Networks and Learning Systems 23.2 (2012).
ISSN: 2162-237X. DOI: 10.1109/TNNLS.2011.2180025.

[10] D. Weikersdorfer and J. Conradt. “Event-based particle filtering for
robot self-localization”. In: Int. Conf. on Robotics and Biomimetics.
2012. DOI: 10.1109/ROBIO.2012.6491077.

[11] D. Weikersdorfer, R. Hoffmann, and J. Conradt. “Simultaneous Local-
ization and Mapping for Event-Based Vision Systems”. In: Computer
Vision Systems. Ed. by M. Chen, B. Leibe, and B. Neumann. Vol. 7963.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
DOI: 10.1007/978-3-642-39402-7_14.

[12] R. Hoffmann, D. Weikersdorfer, and J. Conradt. “Autonomous indoor
exploration with an event-based visual SLAM system”. In: Europ. Conf.
on Mobile Robots. 2013. DOI: 10.1109/ECMR.2013.6698817.

[13] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza. “Low-
latency localization by Active LED Markers tracking using a Dynamic
Vision Sensor”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Tokyo,Japan, 2013. DOI: 10.1109/IROS.
2013.6696456.

[14] C. Posch, D. Matolin, and R. Wohlgenannt. “A QVGA 143 dB Dynamic
Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video
Compression and Time-Domain CDS”. In: IEEE Journal of Solid-State
Circuits 46.1 (2011). DOI: 10.1109/JSSC.2010.2085952.

[15] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck. “A 240×
180 120db 10mw 12µs-latency sparse output vision sensor for mobile
applications”. In: Int. Image Sensor Workshop (IISW). 2013.

[16] D. Scaramuzza and F. Fraundorfer. “Visual Odometry [Tutorial]”. In:
Robotics and Automation Magazine 18.4 (2011). DOI: 10.1109/MRA.
2011.943233.

[17] T. Delbruck and P. Lichtsteiner. “Fast sensory motor control based
on event-based hybrid neuromorphic-procedural system”. In: IEEE
International Symposium on Circuits and Systems. 2007. DOI: 10.1109/
ISCAS.2007.378038.

[18] J Conradt, M. Cook, R Berner, P Lichtsteiner, R. J. Douglas, and
T Delbruck. “A pencil balancing robot using a pair of AER dynamic
vision sensors”. In: IEEE International Symposium on Circuits and
Systems (ISCAS). 2009. DOI: 10.1109/ISCAS.2009.5117867.

[19] M. Hofstetter. “Temporal Pattern-Based Active Marker Identification
and Tracking Using a Dynamic Vision Sensor”. Master thesis. Institue
of Neuroinformatics, ETH Zurich, 2012.

[20] M. do Carmo. Riemannian Geometry. Birkhauser, 1994.
[21] A. Censi and D. Scaramuzza. “Calibration by correlation using metric

embedding from non-metric similarities”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2013). DOI: 10.1109/TPAMI.
2013.34.

[22] P. de la Puente. “Probabilistic mapping with mobile robots in structured
environments”. PhD thesis. Universidad Politécnica de Madrid—ETSI
Industriales, 2012.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.
[24] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,

2005. ISBN: 0262201623.

