
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

Electrical Engineering & Computer Science 
Faculty Publications 

Electrical Engineering & Computer Science 
Department 

10-2-2012 

Low Latency Fault Tolerance System Low Latency Fault Tolerance System 

Wenbing Zhao 
Cleveland State University, w.zhao1@csuohio.edu 

P. M. Melliar-Smith 
University of California, pmms@ece.ucsb.edu 

L. E. Moser 
University of California, moser@ece.ucsb.edu 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub 

 Part of the Electrical and Computer Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Repository Citation Repository Citation 

Zhao, Wenbing; Melliar-Smith, P. M.; and Moser, L. E., "Low Latency Fault Tolerance System" (2012). 

Electrical Engineering & Computer Science Faculty Publications. 264. 

https://engagedscholarship.csuohio.edu/enece_facpub/264 

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science 
Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer 
Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/264?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Low Latency Fault Tolerance System

Wenbing Zhao1, P. M. Melliar-Smith2,∗ and L. E. Moser2

1Department of Electrical and Computer Engineering,

Cleveland State University, Cleveland, OH 44115, USA
2Department of Electrical and Computer Engineering, University of California,

Santa Barbara, CA 93106, USA
∗Corresponding author: pmms@ece.ucsb.edu

The low latency fault tolerance (LLFT) system provides fault tolerance for distributed applications

within a local-area network, using a leader–follower replication strategy. LLFT provides application-

transparent replication, with strong replica consistency, for applications that involve multiple

interacting processes or threads. Its novel system model enables LLFT to maintain a single consistent

infinite computation, despite faults and asynchronous communication. The LLFT messaging protocol

provides reliable, totally ordered message delivery by employing a group multicast, where the message

ordering is determined by the primary replica in the destination group. The leader-determined

membership protocol provides reconfiguration and recovery when a replica becomes faulty and when

a replica joins or leaves a group, where the membership of the group is determined by the primary

replica. The virtual determinizer framework captures the ordering information at the primary replica

and enforces the same ordering of non-deterministic operations at the backup replicas. LLFT does not

employ a majority-based, multiple-round consensus algorithm and, thus, it can operate in the common

industrial case where there is a primary replica and only one backup replica. The LLFT system

achieves low latency message delivery during normal operation and low latency reconfiguration and

recovery when a fault occurs.

Keywords: distributed systems; leader–follower replication; membership; message ordering; software fault

tolerance; strong replica consistency; virtual synchrony

1. INTRODUCTION

The low latency fault tolerance (LLFT) system provides fault

tolerance for distributed applications, using a highly optimized

leader–follower replication strategy, to achieve substantially

lower latency and more rapid responses than existing group

communication systems. LLFT provides fault tolerance for

distributed applications over a local-area network, as in a single

data center, cluster or cloud, rather than over a wide-area

network, such as the Internet.

LLFT provides application-transparent replication, with

strong replica consistency, for applications that involve multiple

interacting processes or threads. LLFT supports client–server

applications where server processes and even client processes

are replicated, and multiple-tier applications where middle-tier

processes are replicated.

As in other fault tolerance systems, the replicas of a process

form a process group. One replica in the group is the primary,

and the other replicas are the backups. The primary multi-

casts messages to a destination group over a virtual connection.

The primary in the destination group orders the messages, per-

forms the operations, produces ordering information for non-

deterministic operations and supplies that ordering information

to its backups. Thus, the backups can perform the same oper-

ations in the same order and obtain the same results as the

primary. If the primary fails, a new primary is chosen deter-

ministically and the new primary determines the membership

of the group.

LLFT operates within the usual asynchronous model, but

with timing-based fault detectors. In LLFT, the processing

and communication are asynchronous, but the fault detectors

impose timing bounds, so that timing faults do indeed occur. The

assumptions of eventual reliable communication and sufficient

replication enable LLFT to maintain a single consistent infinite

computation, despite crash, timing and partitioning faults (but

not Byzantine faults).

LLFT uses the leader–follower strategy to establish a total

order of messages, to establish a consistent group mem-

bership, and to render non-deterministic operations virtually



deterministic. It does not use a majority-based, multiple-round

consensus algorithm based on the unreliable failure detectors of

Chandra and Toueg [1] to circumvent the impossibility result of

Fischer et al. [2]. Thus, it can operate in the common industrial

case where there are only two replicas (the primary and a single

backup), which industry regards as the typical case [3].

1.1. Properties of LLFT

The LLFT system provides fault tolerance for distributed

applications within a local-area network, with the following

properties.

Strong replica consistency. The LLFT system replicates

the processes of an application, and maintains strong replica

consistency within an infinite computation. If a fault occurs,

LLFT provides reconfiguration and recovery while maintaining

virtual synchrony [4, 5], including transfer of state from an

existing replica to a new replica and synchronization of the new

replica with the existing replicas. The application continues

to run without loss of processing or messages, and without

disruption to its state. LLFT maintains consistency not only

between the replicas in the same group but also between the

replicas in different groups that communicate.

Low latency. The LLFT system achieves low latency

message delivery during normal operation, and low latency

reconfiguration and recovery when a fault occurs. It provides

fault tolerance for the applications with minimal overhead in the

response times seen by the clients. LLFT achieves low latency

by design because, during normal operation, the primary makes

the decisions on the order in which operations are performed,

and because after a fault the new primary makes the decisions on

the new membership and on recovery from the fault. Moreover,

the replicated processes of the applications interact with each

other directly, without an intermediate daemon process and

without additional context switches.

Transparency and ease-of-use. The LLFT system provides

fault tolerance that is transparent to the application, for both

crash and timing faults but not Byzantine faults. The application

is unaware that it is replicated, and is unaware of faults.

Applications programmed using transmission control protocol

(TCP) socket application programming interfaces (APIs), or

middleware such as Java remote method invocation (RMI), can

be replicated without modifications to the applications. The

application programs require no extra code for fault tolerance,

and the application programmers require no special skills

in fault tolerance programming. The application program is

identical to that of a non-fault-tolerant unreplicated application.

1.2. Architectural components of LLFT

The LLFT system comprises three main architectural

components, each of which employs novel techniques. These

three components, which are integrated into the complete LLFT

system, are described briefly below.

Low latency messaging protocol. The low latency messaging

protocol provides reliable, totally ordered, message delivery by

communicating message ordering information from the primary

replica to the backup replicas in a group. It ensures that, in the

event of a fault, a backup has, or can obtain, the messages and

the ordering information that it needs to reproduce the actions

of the primary. The replicated applications interact with each

other directly, via a group multicast.

Leader-determined membership protocol. The leader-

determined membership protocol ensures that the members of

a group have a consistent view of the membership set and of

the primary replica in the group. It effects a membership change

and a consistent view more quickly than other membership pro-

tocols, by selecting a new primary deterministically, based on

the precedences and ranks (defined in Section 2.3) of the back-

ups in the group and by avoiding the need for a majority-based,

multiple-round consensus algorithm.

Virtual determinizer framework. The virtual determinizer

framework renders the replicas of an application virtually

deterministic by recording the order and results of each non-

deterministic operation at the primary, and by guaranteeing

that the backups obtain the same results in the same order

as the primary. The virtual determinizer framework has

been instantiated for major sources of non-determinism,

including multithreading, time-related operations and socket

communication.

1.3. Novel aspects of LLFT

To achieve low latency and strong replica consistency, LLFT

makes extensive use of the leader–follower approach. The

messaging protocol, the membership protocol and the virtual

determinzer framework are all based on the leader–follower

approach. Although other researchers [6, 7] have used the

leader–follower approach previously, LLFT introduces several

novel aspects, which are highlighted below.

Immediate processing and immediate replies. In commercial

and industrial distributed systems, one of the most important

performance metrics is the latency or response time seen by

the client. In LLFT, application messages can be processed

by the primary replica in the destination group as soon as it

receives them, because the primary determines the message

order, unlike consensus-based, total-ordering protocols that

require one or more rounds of message exchange before a

message can be ordered, delivered and processed. Moreover,

in LLFT, application messages can be transmitted immediately,

unlike static sequencer or rotating sequencer protocols where

a message must wait for sequencing before the message can

be transmitted. Immediate processing and immediate replies

substantially reduce the latency of the messaging protocol,

described in Section 3.

Continued operation during partitioning. An inevitable

conflict exists between the requirements of Consistency,

Availability and Partitioning, presented by the consistency



availability partitioned theorem [8], which states that a system

can provide any two of these three properties but not all three.

Some systems exclude the possibility of partitioning. Other

systems permit partitioning but ensure consistency by allowing

continued operation in only one component of the partitioned

system. Unfortunately, such systems sometimes preclude

continued operation even though processors are available. In

commercial and industrial distributed systems, the risk of

partitioning is real and the system must continue to operate even

when partitioned. The price that LLFT pays to ensure continued

operation and to avoid blocking during partitioning is the risk of

inconsistency between processes in different components of the

partition. When communication is restored, consistency must be

reestablished [9, 10]. Reestablishment of consistency is usually

not computationally expensive, but it is application-specific and

requires custom application programming.

LLFT continues to operate when the system partitions,

with perhaps several components of the partition operating

temporarily with no communication between them. Using

eventual reliable communication and sufficient replication

assumptions (defined in Sections 2.1 and 2.2) and a novel

precedence mechanism (defined in Section 2.3), LLFT ensures

that, when communication is restored, one of the components

dominates the other components, only the primary replica in the

dominant component continues to operate as the primary and

a single infinite sequence of operations is established for the

group, as described in Section 2.6.

Reflection of ordering information. The latency of typical

primary-backup systems is adversely affected because the

primary replica cannot send the response to the client or

the remote group until the response and associated ordering

information have been sent to, and acknowledged by, the backup

replicas. Sending a response immediately to the client, followed

by failure of the primary, might result in the backup replicas

being unable to reproduce that response.

LLFT introduces novel mechanisms that allow a primary

replica to send application messages directly to remote groups

without first sending them to the backup replicas in its local

group, which substantially reduces the latency. In LLFT, the

primary replica communicates message ordering and other

ordering information, needed by the backup replicas in its

local group, by piggybacking the ordering information onto

a message that it sends to the remote group. At the remote

group, the ordering information is reflected back to the backup

replicas in the primary’s group, by piggybacking the ordering

information onto the acknowledgment for the message, as

described in Section 3.3. After the failure of the primary replica,

when a new primary replica assumes the leadership of the group,

it communicates with each remote group to obtain all of the

ordering information that contributed to the messages sent to

the remote groups by the old primary replica.

Buffer management. LLFT introduces novel group water-

mark and timestamp watermark mechanisms for buffer man-

agement, as described in Section 3.4. A replica must buffer each

message that it originates and receives, until it knows that it will

no longer need the message, either to retransmit the message in

response to a negative acknowledgment or to process the mes-

sage if the primary replica becomes faulty and it becomes the

new primary replica.

Leader-determined fault detection. In LLFT, each backup

replica monitors the primary replica to detect faults in the

primary. The backups are ordered by rank, and the fault

detection timeouts are adjusted so that a backup earlier in rank

order detects the failure of the primary before a backup later

in rank order, as described in Section 4. This novel timeout

mechanism reduces the probability that two backups both claim

to be the new primary, if the primary fails.

Leader-determined membership. The LLFT membership

protocol, described in Section 4, determines a new primary

replica and forms a new membership quickly, unlike multiple-

round membership protocols. On detecting that the primary

replica is faulty, a backup declares itself to be the new pri-

mary and forms a new membership immediately, substantially

reducing the delay to resumption of application processing. In

addition to faster recovery, the LLFT membership protocol can

operate with the primary and only a single backup, which is typ-

ical in commercial and industrial systems. In contrast, majority-

based, consensus-based membership protocols require multiple

backup replicas.

Sanitization of non-deterministic operations. In LLFT, the

primary in the destination group produces ordering information

for sanitizing non-deterministic operations, and supplies that

ordering information to its backups, so that they can perform

the same operations in the same order. In particular, the virtual

determinizer framework introduces novel data structures: the

OrderInfo queue at the primary and, for each operation O,

the O. OrderInfo queue at the backups, described in Section 5.

These data structures provide a uniform representation for

sanitizing different kinds of non-deterministic operations to

render the operations virtually deterministic.

2. BASIC CONCEPTS

2.1. System model

LLFT operates in an asynchronous distributed system that

comprises one or more applications running on multiple

processors and communicating over a local-area network, such

as an Ethernet.An application consists of one or more processes,

possibly multithreaded with shared data, that interact with

each other. Clients that run outside the local-area network are

supported via a gateway. Such clients are typically pure clients

that are not replicated, whereas the gateway is replicated.

In the underlying asynchronous system, a process that is non-

faulty completes a computation, and there is no explicit bound

on the time taken to complete the computation. The processes

communicate via messages using an unreliable, unordered

message delivery protocol, such as user datagram protocol



(UDP) multicast, and there is no explicit bound on the time

taken to communicate a message. However, LLFT uses fault

detectors that impose implicit timing bounds on the computation

and communication in the form of timeouts. The timeouts

are local to a processor, and LLFT does not require clocks

that are synchronized across multiple processors. Like other

researchers [11], we adopt the assumption of eventual reliable

communication, i.e. if a message is transmitted repeatedly, it is

eventually received by the intended destinations.

2.2. Fault model

The LLFT system replicates application processes to protect the

application against various types of faults, in particular:

(i) Crash fault: A process does not produce any further

results.

(ii) Timing fault: A process does not produce, or

communicate, a result within a timing constraint

imposed by the LLFT fault detectors.

LLFT does not handle Byzantine process faults. LLFT allows

processes to recover but, when a process recovers, it is regarded

as a new process with a new identity (birthId).

LLFT also handles communication network faults, including

message loss, communication loss and partitioning faults.

Partitioning faults are transient, and the eventual healing

of partitioning faults is guaranteed by the eventual reliable

communication assumption.

To achieve liveness and termination of the algorithms, LLFT

uses fault detectors based on timeouts.1 The fault detectors

are necessarily unreliable, and the timeouts are a measure of

how unreliable the fault detectors are. Process crash faults and

network partitioning faults are detected as timing faults by the

fault detectors. When we say that a process becomes faulty, we

mean that it is determined to be faulty by a fault detector.

LLFT does not assume that a majority of the processes in

a group are non-faulty, as do [1, 6, 12]. Rather, LLFT adopts

the assumption of sufficient replication, i.e. in each successive

membership of an infinite computation, there exists at least one

replica that does not become faulty.

2.3. Process groups

As shown in Fig. 1, the replicas of a process form a process group

(virtual process). Each process group has a unique identifier

(group id). The group id is mapped by LLFT to a virtual port

on which the group sends and receives messages, as discussed

in Section 2.4.

Each process group has a group membership that consists of

the replicas of the process. The membership is a subset of a

1According to the authoritative definitions of fault, error and failure [13],

these detectors are correctly referred to as fault detectors, despite the common

usage of the term failure detectors.

pool of potential members, that changes as faulty processes are

removed, repaired and returned to the pool. Typically, different

members of a process group run on different processors.

One of the members in a process group is the primary replica,

and the other members in the group are the backup replicas. The

primary replica is the member that formed the group.

The precedence of a member of a group is determined by

the order in which the member joins the group, as described in

Section 4. The primary replica has the lowest precedence of any

member in the group. The precedences of the backup replicas

determine the order of succession to become the new primary,

if the current primary becomes faulty.

In addition to the concept of precedence, LLFT also uses

the concept of rank. The rank of the primary replica is 1,

and the ranks of the backup replicas are 2, 3, . . .. The ranks

determine the fault detection timeouts, as described in Section 4.

Each membership change that introduces a new primary

replica constitutes a new primary view with a primary view

number. Each member of a process group must know the

primary replica in its group. The members of a sending group

do not need to know which member of a destination group is

the primary.

2.4. Virtual connections

The LLFT system introduces the novel, elegant idea of a virtual

connection, which is a natural extension of the point-to-point

connection of TCP.

A virtual connection is a communication channel over which

messages are communicated between two endpoints, where

each endpoint is a process group. A virtual connection is a

full-duplex communication channel between the two endpoints.

A sender uses UDP multicast to send messages to a destination

group over the virtual connection.

A virtual port (group id) identifies the source (destination)

group from (to) which the messages are sent (delivered) over

the virtual connection.All members of a group listen on the same

virtual port, and members of different groups listen on different

virtual ports. The groups need to know the virtual ports (group

ids) of the groups with which they are communicating, just as

with TCP.

A process group can be an endpoint of more than one virtual

connection, as shown in Fig. 1. Typically, there are multiple

process groups, representing multiple applications running on

different processors and interacting over the network, but there

might be only two process groups and one virtual connection.

2.5. Replication

The LLFT system supports two types of leader–follower

replication, namely:

(i) Semi-active replication: The primary orders the

messages it receives, performs the operations and



FIGURE 1. Process groups interacting over virtual connections.

provides ordering information for non-deterministic

operations to the backups. A backup receives and logs

incoming messages, performs the operations according

to the ordering information supplied by the primary and

logs outgoing messages, but does not send outgoing

messages.

(ii) Semi-passive replication: The primary orders the

messages it receives, performs the operations and

provides ordering information for non-deterministic

operations to the backups. In addition, the primary

communicates state updates to the backups. A backup

receives and logs incoming messages, and installs the

state updates, but does not perform the operations and

does not produce outgoing messages.

Semi-passive replication uses fewer processing resources than

does semi-active replication; however, it incurs greater latency

for reconfiguration and recovery, if the primary becomes faulty.

To maintain strong replica consistency, it is necessary to

sanitize (mask) non-deterministic operations not only for semi-

active replication but also for semi-passive replication. For

example, consider requests from two clients that are processed

concurrently using semi-passive replication. Processing the

request from the first client updates a data item. Processing

the request from the second client updates the same data item,

where the interaction between the processing of the two requests

is non-deterministic. The request processing completes, and the

primary sends replies to the clients. The primary then fails

before it sends its updates to the backups. The processing

of the requests from the two clients is repeated at the new

primary. However, the non-deterministic interactions between

the processing of the two requests is encoded in the replies

sent to the clients. The processing of the requests at the new

primary must repeat the same non-deterministic interactions, if

the correct results are to be obtained.

If a group of replicas becomes partitioned, LLFT ensures that

only one component of the partition, referred to as the primary

component and determined by the precedence of the primary,

survives in an infinite sequence of consecutive primary views

of the group. Within the primary component, LLFT maintains

virtual synchrony [4, 5], i.e. if the primary fails, the new primary

must advance to the state of the old primary, and the state known

to the remote groups of its connections, before the old primary

failed. The processes of the other components might terminate

operations and must reapply for admission to the membership.

Care must be taken to recover those operations and to restore

consistency [9, 10]. LLFT pays this price to ensure continued

operation and to avoid blocking during partitioning.

2.6. Correctness properties

The novel safety and liveness properties of LLFT, based

on the above system model, are stated below. Traditionally,

safety and liveness properties are strictly separated. However,

in a system that might incur a communication partitioning

fault with subsequent recovery from that partitioning, safety

necessarily depends on liveness.While the system is partitioned,

even complete knowledge of all processes does not suffice

to determine which of the competing branches is a transient

side branch that will be pruned when the partition is healed.

Thus, the safety properties for LLFT are defined in terms of an

infinite sequence of consecutive primary views, as assured by

the liveness properties. The proofs of correctness can be found

in the Appendix. A discussion of the assumptions of the model,

relative to these properties, is included below.

2.6.1. Safety properties

For each process group:

(i) At most one infinite sequence of consecutive primary

views exists. Each of those consecutive primary views

has a unique consecutive primary view number and a

single primary replica.

(ii) At most one infinite sequence of operations in an

infinite sequence of consecutive primary views exists.

(iii) In semi-active (semi-passive) replication, for a

member in a view of the infinite sequence of



consecutive primary views, the sequence of operations

(states) of that member is a consecutive subsequence

of the infinite sequence of operations (states) of the

group.

2.6.2. Liveness properties

For each process group:

(i) At least one infinite sequence of consecutive primary

views exists.

(ii) At least one infinite sequence of operations in an

infinite sequence of consecutive primary views exists.

LLFT imposes implicit bounds on the computation time

and the communication time in the form of tunable timeout

parameters of the fault detectors. Owing to the asynchrony of

the system, those bounds might be violated, which might lead to

a replica’s being regarded as having incurred a timing fault and

being (mistakenly) removed from the membership. The choice

of fault detection timeouts is an important design decision.

In practice, the fault detection timeout values are determined

experimentally under high-load conditions.

With the assumption of eventual reliable communication

(i.e. if a message is transmitted repeatedly, it is eventually

received), a replica that is mistakenly removed from the

membership eventually receives a message indicating that it

has been removed. The replica then applies for readmission to

the membership, as a new process with a new identity. Without

the eventual reliable communication assumption, a mistakenly

removed replica might not receive those messages and, thus,

might not apply for readmission.

With the assumption of sufficient replication (i.e. each group

contains enough replicas such that, in each primary view, there

exists a replica that does not become faulty), the sequence of

operations of a group is infinite. Without that assumption, the

sequence of operations of a group might be finite.

The LLFT system model differs from the models of

other researchers with respect to asynchrony. Two examples

are Cristian and Fetzer’s timed asynchronous distributed

systems model [14] and Fetzer’s perfect failure detection

in timed asynchronous systems model [15]. In LLFT, the

processing and the communication are asynchronous, but fault

detectors are used to impose timing bounds on the processing

and communication, so that timing faults do indeed occur.

The eventual reliable communication assumption does not

imply a bound on communication delays, but it ensures

that transient partitions of the system will be detected. The

sufficient replication assumption allows LLFT to define a

single consistent infinite computation, despite asynchronous

communication delays. In contrast, Cristian and Fetzer [14]

define a �F stability property to ensure progress, which

complicates the pure asynchronous model. Fetzer’s model [15]

does not require �F stability; rather, it employs a majority

partition variant or a primary partition variant, neither of which

ensures a single consistent infinite computation.

3. LOW LATENCY MESSAGING PROTOCOL

The LLFT messaging protocol converts the unreliable,

unordered message delivery service of UDP multicast into a

reliable, totally ordered message delivery service between two

group endpoints, just as TCP converts the unreliable message

delivery service of internet protocol unicast into a reliable,

totally ordered message delivery service between two individual

endpoints.

The messaging protocol provides the following services for

the application messages:

(i) Reliable message delivery: All non-faulty members in

a group receive each message that is multicast to the

group on a connection.

(ii) Total ordering of messages: All non-faulty members

in a group deliver the messages to the application in

the same sequence.

(iii) Buffer management: When a message no longer needs

to be retransmitted (because the intended destinations

have received it), the source and the destinations

remove the message from their buffers.

In addition, the messaging protocol helps to maintain

virtual synchrony [4, 5] in the event of a membership (view)

change when a member joins or leaves the group, either

voluntarily or due to the member’s failure and subsequent

recovery, as described in Section 4. The messaging protocol

also incorporates flow control mechanisms to ensure that

processing in the primary receiver, and in its backups, can keep

up with the primary sender, and that buffer space does not

become exhausted. The messaging protocol introduces novel

mechanisms, including piggybacking and reflection of ordering

information, and group watermarks for buffer management, as

described below.

3.1. Data structures

3.1.1. Message types and message header

The types of messages used by the messaging protocol are

shown at the left of Fig. 2 and are illustrated in Fig. 3.

A Request or Reply message can be either a synchronous

blocking request or reply message, or an asynchronous one-way

message.

The fields of the message header are shown at the right of

Fig. 2. The msgSeqNum field is non-zero if and only if the

message is a Request or Replymessage. Such messages are

inserted into the sent list at the sender and the received list at the

destination. The ack field acknowledges not only the acknowl-

edged message but also prior messages from the primary.

3.1.2. Variables

For each connection, the messaging protocol uses the variables

shown at the left of Fig. 4. The message sequence number

is used by a member of the destination group to ensure that



FIGURE 2. The message types and the message header fields used by the Messaging Protocol.

FIGURE 3. Message exchange between a client group C and a server

group S.

it has received all messages from the sending group on the

connection. When a member acknowledges the message with

sequence number receivedUpToMsn, it indicates that it has

received all messages with sequence numbers less than or equal

to that sequence number. The variables shown at the right of

Fig. 4 are discussed in Section 3.4 on buffer management.

Figure 5 shows the variables used for ordering non-

deterministic operations, the OrderInfo struct and

the MsgOrder struct. The opaque field stores different

OrderInfo for different message types. The ordering infor-

mation is discussed in more detail in Section 5 on the virtual

determinizer framework.

3.2. Reliable message delivery

Reliable message delivery requires that all non-faulty members

in a group receive each message that is multicast to the group

on a connection. The mechanisms that LLFT uses to provide

reliable message delivery are the msgSeqNum, ackViewNum

and ack fields in the message header and the FirstAck,

SecondAck and Nack messages. Reliable message delivery

is described below in terms of a Request from a client group

C to a server group S, and is illustrated in Fig. 3. The same

considerations apply for a Reply from a server group S to a

client group C. The pseudocode for the messaging protocol is

given in Fig. 6.

The primary in group C multicasts messages originated by

the application to a group S over a virtual connection. It stores

the message in the sent list for the connection (lines 15–

17), and retransmits a message in the sent list if it does

not receive an acknowledgment for the message sufficiently

promptly (as determined by a timeout) (lines 45–46). A backup

in group C creates and logs (but does not multicast) messages

originated by the application. Restricting the actions of the

backup in this way reduces the amount of network traffic.

The primary in group S includes, in the header (ack field)

of each application message it multicasts to group C on the

connection, the message sequence number of the last application

message it received without a gap from group C on that

connection (line 10). If the primary in group S does not have

a message to multicast sufficiently promptly (as determined by

a timeout), it multicasts a FirstAck message containing the

acknowledgment (lines 47–48).



FIGURE 4. Variables used for each connection and global variables used for buffer management.

FIGURE 5. Variables used for ordering non-deterministic operations,

the OrderInfo struct and the MsgOrder struct.

On receiving an application message, the primary (or a

backup) in group S first checks whether the precedence in the

message is greater than the precedence of its own primary.

If so, it abandons its current membership, resets its state and

rejoins the group membership containing the primary of higher

precedence (lines 18–20). Otherwise, the primary (or a backup)

in group S inserts the application messages it receives on

the connection into the received list for the connection

(lines 25, 31), and updates its receivedUpToMsn variable

(last message received without a gap) (line 32). If the replica

detects a gap in the message sequence numbers (lines 22–25),

it creates a placeholder for the missing message, and inserts a

corresponding entry into the nack list. When the replica

receives a retransmitted message and it has a placeholder for

the message, it replaces the placeholder with the message and,

otherwise, discards the message (lines 26–30).

If a backup in group C receives a FirstAck message

and the backup application has generated the message

that the FirstAck acknowledges, the backup responds

with a SecondAck message (lines 60–68). On receiving

the SecondAck message, the primary in group S stops

retransmitting the FirstAck message (lines 70–71).

If the primary in group C receives too many FirstAck

messages from the primary in group S, acknowledging a

message that the primary in group C sent, then the primary

in group S has not received a SecondAck from the backups

in group C. Consequently, the primary in group C invokes the

intra-group flow control mechanisms to slow down, so that the

backups in group C can catch up (lines 65–66).

The primary (or a backup) in group S multicasts a Nack

message on the connection (lines 49–52), if it determines that

it has not received a message from the primary in group C on a

connection, i.e.

(i) The primary (or the backup) in group S sees a gap

in the message sequence numbers of the messages it

received (line 24) or

(ii) A backup in group S receives a SecondAckmessage

that contains an ack for a message that it has not

received (line 72) or

(iii) A backup in group S receives a message from the

primary in group S that orders a message that the

backup has not received.

If the primary in group S does not have a message to

multicast on an inter-group connection sufficiently promptly

(as determined by a timeout), it multicasts a KeepAlive

message to indicate the liveness of the connection (lines 54–55).

The primary and each backup in group S periodically exchange

Heartbeatmessages on the intra-group connection (lines 56–

59), so that each knows that the other has not failed.

3.3. Total ordering of messages

To maintain strong replica consistency among the replicas in a

group, all of the replicas must process the same messages in the

same order to obtain the same results. In LLFT, that order is

determined by the primary replica, thus avoiding the delays

associated with multiple-round consensus algorithms. The

primary replica must communicate that ordering information,

directly or indirectly, to the backup replicas. LLFT ensures

that if a primary replica fails and a backup replica becomes

the new primary, then the new primary has sufficient ordering

information to maintain consistency for each connection

between its group and another group.

This requirement that the backup replicas have ordering

information is usually ensured by having the primary replica

transmit the ordering information to the backup replicas,

and by having the backup replicas acknowledge the ordering



FIGURE 6. Pseudocode for the messaging protocol.

information, before the primary replica transmits a message

over a connection to another group. However, doing so causes

significant delay and increases the latency of responding to

messages between groups.



Instead, in LLFT, the primary replica in group C piggybacks

on each message it originates and sends on a connection the

ordering information for messages it sent and received on the

connection since the last message it sent on the connection. It

also piggybacks on the message other ordering information, as

described in Section 5. When the primary in group S receives

the ordering information, it reflects the ordering information

back to group C in its next multicast message. Thus, a backup in

group C does not receive the ordering information directly from

the primary in group C, but reflected by the primary in group S.

The primary in group C piggybacks the ordering information on

each message it sends until it receives that information reflected

back to it.

The piggybacking and reflection mechanisms described

above operate in both directions over the connection to ensure

that both sets of backup replicas receive ordering information

from their own primary replica. These mechanisms allow

the primary to send a reply to a client without first sending

ordering information or state updates to its own backups, which

significantly reduces the latency.

In contrast to existing protocols for consistent message

ordering within groups [4, 16–18], LLFT does not maintain an

order that is stable across the replicas in a group. Instead, LLFT

maintains consistency by having the primary replica determine

the order, while it continues to operate. If the primary replica

fails, the new primary replica determines the order, based on

ordering information obtained from the primary replicas of the

other groups. That ordering information extends the history of

the group in a manner that is consistent with the information

held by the other groups.

3.4. Buffer management

A replica in a group must retain each message that it originates

and receives, until it knows that it will no longer need the

message, either to retransmit the message in response to a

negative acknowledgment or to process the message if the

primary becomes faulty and it becomes the new primary.

LLFT uses novel group watermark and timestamp

watermark mechanisms for buffer management. The

myTimestampWatermark variable contains the mini-

mum of the timestamps of the messages that the primary or a

backup received on all of its connections. A backup puts the

value of the myTimestampWatermark variable into the

back field of a control message that it sends to its primary.

The myGroupWatermark variable contains the minimum

timestamp watermark of the group, i.e. the minimum of the

primary’s own myTimestamp Watermark and all of its

backups’ myTimestampWatermarks. The primary puts

the value of myGroupWatermark into the back field of a

message that it multicasts. The primary (a backup) in a group

maintains an array remoteGroupWatermark[] that stores

the latest group watermarks received from the remote groups

of its connections.

As shown in Fig. 6 (lines 76–84), a replica that sends a

message on a connection garbage-collects the message if the

timestamp in the message header is less than or equal

to the remoteGroupWatermark. A replica that receives

and delivers a message garbage-collects the message if the

timestamp in the message header is less than or equal to

the myGroupWatermark for that replica’s group.

4. LEADER-DETERMINED MEMBERSHIP

PROTOCOL

LLFT addresses the problem of determining a new membership

set for a process group, when a fault occurs or when a member

joins or leaves the group, and the problem of maintaining a

consistent view of the membership. Other existing membership

protocols [6, 12] use a two-phase commit algorithm with a

majority of replicas that vote for a membership, to achieve

consensus agreement and to avoid a split-brain situation in

which competing memberships are formed.

In the presence of unreliable communication that results in

network partitioning, it is difficult or expensive to eliminate

the risk of competing memberships. If partitioning occurs,

some of the members might form a new membership,

while other members continue to operate with the existing

membership. This situation can be avoided only if every

value communicated is subjected to a majority vote of the

members, as is done in aircraft flight control systems such

as SIFT [19]. Under conditions of unreliable communication

and partitioning, it is undesirable to degenerate into multiple

competing memberships, but it is also undesirable to fail to form

a membership. Our objectives are to ensure that a membership

is formed, to detect partitions and to reestablish a consistent

state when the partition heals.

The LLFT leader-determined membership protocol makes

a deterministic choice of the new primary replica. The new

primary replica determines the addition (removal) of the

backups to (from) the membership, and their precedences

and ranks, as described below. Thus, it operates faster than a

multiple-round consensus algorithm [1], which is important

because application processing is suspended while the new

membership is being formed. The membership protocol ensures

that all of the members have the same primary, the same

membership set and the same primary view number.

The precedence of a member of a group is the order in

which the member joins the group. If a member becomes

faulty and later rejoins the group, it joins as a new member

and, thus, has a new precedence. The primary adds a new

member to the membership as a backup, and assigns to the

backup the next precedence in the sequence for its primary

view. Thus, a backup added later to the primary view has a

higher precedence. To ensure unique precedence values, even

if two backups are admitted to two distinct primary views

while the system is transiently partitioned, the precedence of



a new backup is qualified by the precedence of the primary.

Consequently, the precedence of a member of a group is

actually a sequence of precedence numbers. Theoretically, such

a sequence could become lengthy but, in practice, it does

not, because the sequence can be pruned when the primary

determines that potential members of the group are indeed

members. The precedence is important because it determines the

order of succession of the backups to become the new primary,

if the current primary becomes faulty.

The rank of the primary replica is 1, and the ranks of the

backup replicas are 2, 3, . . .. When a new primary forms a

new membership or adds a new backup to the membership, it

assigns ranks to the backup(s) in the order of their precedences.

The rank of a member can change when another member is

removed from the group, whereas the precedence of a member

is assigned when it joins the group and does not change while it

is a member. The ranks of the members are consecutive, whereas

the precedences might not be.

The ranks determine the timeouts for detection of faults in the

primary and the backups.The backup with rank 2 operates a fault

detector to determine that the primary is faulty. The backup with

rank 3 operates a fault detector to determine that the primary

is faulty and also that the backup with rank 2 is faulty, because

the backup with rank 2 did not determine that the primary is

faulty.

To reduce the probability of a race condition in which two

backups both claim to be the next new primary, the fault

detection timeouts for the backups increase with increasing

rank, a novel technique introduced by LLFT. For example, the

timeout of the fault detector of the backup with rank 2 might

be 10 ms to allow time for the backup to detect that the primary

has become faulty, whereas the timeout of the fault detector of

the backup with rank 3 might be longer, say 30 ms, allowing

10 ms of inaction by the primary, 10 ms of inaction by the

backup with rank 2 and an additional 10 ms for skew between

the timeouts of the two backups. The successively longer fault

detection timeouts for backups of higher ranks make it quite

unlikely that their timeouts will expire, unless all of the lower

rank backups are indeed faulty. However, it might still happen

that two backups both propose to become the new primary.

The fault detection timeouts must be chosen carefully.

Timeouts that are too long cause unnecessary delays after a

fault, whereas timeouts that are too short cause membership

churn and readmission of members to the group, which can

also increase latency. In practice, appropriate timeout values

are determined experimentally under high-load conditions.

If the system is not partitioned, the backup with lower

precedence detects that there is a membership whose primary

has higher precedence. The backup with lower precedence

gives up and the backup with higher precedence continues. For

example, if the backup with rank 2 and the backup with rank

3 both propose to become the new primary, the backup with

rank 3 overrides the backup with rank 2 because the backup

with rank 3 has higher precedence.

If the system is partitioned, LLFT continues to operate

transiently in two (or more) components of the partition,

instead of blocking operations in some components as

would occur in a strict primary component model. When

communication is restored, one component will dominate the

other component(s) because the precedence of its primary

is higher. The operations, performed while the system is

partitioned, must be reconciled. The dominated component is

then pruned, and the dominant component continues to operate

as the primary, with reconciliation of states as described below.

Reconciliation of states following the partition is addressed in

prior work [9], which merges the sequences of write operations

from the various components of the partition. Similarly, our

work [10] on fulfillment transactions within the dominant

component repeats the operations of the dominated component,

with automatic reconcilation of inconsistencies in simple cases

and a framework for handling more difficult cases in which

the components performed inconsistent actions. In contrast,

while the system is partitioned, the Bayou system [20] provides

tentative and committed write operations and application-

specific reconciliation of conflicting writes. In all of these

approaches, compensation operations might affect other groups,

directly or transitively.

Membership changes that correspond to a change of the

primary constitute a view change, referred to as a primary view

change. When the primary view changes, the proposed new

primary adjusts the members’ ranks, and resets the message

sequence number to one on each of its connections.

The backups must change the primary view at the same virtual

synchrony point as the primary. To this end, the new primary

produces ordering information for the primary view change and

multicasts that ordering information to the backups. A backup

changes to the new primary view when it has received all of

the messages, performed all of the operations that were ordered

before the virtual synchrony point and reached the same state,

as described in Section 4.2.2. Establishing a virtual synchrony

point also serves to reduce the risk that two (or more) backups

regard themselves as the new primary.

4.1. Data structures

4.1.1. Message types

The types of messages used by the membership protocol are

described in Fig. 7, and are illustrated in Fig. 8.

The ProposePrimary, ProposeBackup, Accept-

Backup and RemoveBackup messages are multicast on the

intra-group connection.

The ProposePrimary, AcceptBackup and Remove-

Backup messages include the old membership in the payload,

and require an explicit acknowledgment from each backup. For

the primary, these acknowledgment messages serve as ‘commit’

messages. The new or existing primary must retransmit these

messages until all of the backups in the membership (as

determined by the primary) have acknowledged them.



FIGURE 7. The types of messages used by the Membership Protocol for change of the primary or a backup.

FIGURE 8. Message exchange when a primary view change occurs.

4.2. Change of the primary

The change of the primary in a group is handled in two phases, as

discussed below. The pseudocode for the membership protocol

for a change of the primary is shown in Fig. 9. In the rules

below, Vi denotes the primary view with primary view number

i which corresponds to myPvn in the pseudocode, and p

denotes the precedence of the primary which corresponds to

myPrecedence in the pseudocode.

4.2.1. Determining the new membership

In the first (election) phase, the new primary is determined. The

new primary then determines which backups are included in the

new membership, as well as their precedences and ranks. More

specifically, the first phase operates as follows:

(i) If a backup with precedence p does not receive a

Heartbeat message from the primary of view Vi

within a given time period (and, thus, determines

that the primary is faulty) and it has not received

a ProposePrimary message for view Vi from

a backup with precedence < p, the backup

multicasts a ProposePrimary message on the

intra-group connection, denouncing the old primary

and appointing itself as the new primary of view

Vi+1.

(a) The backup excludes from the new membership

the old primary and the backups of the old

membership with precedences < p (line 4). It

excludes such a backup because that backup did

not send a ProposePrimary message quickly

enough to become the new primary and, thus, it

declares that backup to be faulty.

(b) The backup includes, in the ProposePrimary

message, the group identifier, the proposed new

membership, its current primary view number i

and its precedence p (line 5).

(ii) If a backup with precedence q receives a

Propose-Primary message for a new pri-

mary view Vi+1, from a proposed new primary with

precedence p and the backup is included in the pro-

posed new membership (which implies that q > p),

and

(a) the backup has not generated a Propose-

Primary message for view Vi+1 and

(b) the backup has not acknowledged a Propose-

Primary message from a backup with prece-

dence > p for view Vi+1,

then the backup with precedence q accepts the

proposed new membership and acknowledges the

ProposePrimary message (lines 21–24).

(iii) If a backup receives a ProposePrimary message

for a new primary view Vi+1, or a subsequent view,

with precedence p and the backup is not included in

the proposed new membership, and

(a) the backup has not generated a Propose-

Primary message for view Vi+1 and q > p and

(b) the backup with precedence q has not received

a Propose Primary message for view Vi+1

from a backup with precedence > p,



FIGURE 9. Pseudocode for the membership protocol to handle the change of the primary.

then the backup resets its state and rejoins the group

(line 25).

(iv) When the new primary has received acknowledgments

for its ProposePrimary message from all

members in the proposed new membership, it

concludes the first (election) phase and proceeds to

the second (recovery) phase (lines 14–16). The new

primary sets its new primary view number on line 26.

Note that the sets of conditions in the second and third bullets

above are not complementary and collectively exhaustive.

If a backup receives a ProposePrimary message that

does not satisfy either of these sets of conditions, it ignores

that ProposePrimary message. These novel mechanisms

determine the new membership of the group using only

one round of message exchange (ProposePrimary and

corresponding acknowledgments). With the aims of simplicity

and timeliness, the mechanisms do not attempt to form a new

membership with the largest possible number of members, as

do other systems [17, 21].

4.2.2. Recovering from the membership change

In the second (recovery) phase, the new primary queries the

remote group of each of its inter-group connections regarding

the old primary’s state, and determines a virtual synchrony

point. The virtual synchrony point must be consistent with the

messages that were sent to remote groups in the prior view, and

with the ordering that was used to generate such messages. Thus,

the new primary needs to know the last message sent by the old

primary and delivered to each remote group on a connection

and, in particular, the ordering information piggybacked onto

that message. To advance to the state of the old primary

known to the remote groups before the old primary became

faulty, the new primary must follow the ordering information.

More specifically:

(i) The new primary collects information for the vir-

tual synchrony point by multicasting a New-

PrimaryView message on each of its inter-group

connections (lines 28–29). The NewPrimaryView



message contains the most recent ordering informa-

tion known to the new primary for the connection.

(ii) On receiving the NewPrimaryView message, the

primary of the remote group flushes all messages after

the last message delivered from the old primary’s

group (line 38). The primary of the remote group

acknowledges the NewPrimaryView message by

providing information regarding the last message

delivered from, and sent to, the old primary’s

group (line 41). The primary of the remote group

reflects back the ordering information to the new

primary either in a new application message, or

in a KeepAlive message if it does not have an

application message to send.

(iii) On receiving an acknowledgment from the primary

of the remote group, the new primary determines

whether it has missed any messages from that primary.

The new primary then sends Nack messages for

the missing messages until it has received them

(line 30). The new primary retrieves the ordering

information piggybacked on application messages

or KeepAlive messages from the primary of the

remote group.

(iv) When the new primary has executed all of the

operations according to the ordering information

determined by the old primary, it concludes the second

phase by resetting the message sequence numbers

to one, adjusting the backups’ ranks and generating

ordering information declaring the start of a new

primary view (lines 33–35). The backups switch to

the new primary view when they receive and process

that ordering information.

4.3. Addition or removal of a backup

The membership protocol also addresses the addition or removal

of a backup, as shown in the pseudocode in Fig. 10. The

pseudocode for the addition of a backup (lines 1–14) includes

the case where a process is the first member of the group and,

thus, is the primary.

4.3.1. Addition of a backup

A new process begins to log messages when it starts up (line 1).

The myBirthId of a process (line 5) is a unique identifier,

like a birth certificate, that identifies a process wishing to

join the membership that does not yet have a precedence. The

process multicasts a ProposeBackup message on the intra-

group connection (line 7). The primary assigns the precedence

and rank of the new backup (line 23) and then multicasts

an AcceptBackup message (line 30), containing the new

membership, on the intra-group connection. A backup that

receives an AcceptBackup message, with a membership

containing itself, accepts the new membership and responds

with an acknowledgment (lines 15–18).

The primary checkpoints its state when it has received

acknowledgments for the new membership from all of the

backups in the group (lines 39–41). The checkpoint provides

the virtual synchrony point for adding the new backup. The

primary transmits the checkpoint to the new backup in a State

message (line 42). The new backup then sets its state by applying

the checkpoint, and replaying the messages from the log (lines

20–21), after deleting obsolete messages.

4.3.2. Removal of a backup

The primary modifies the ranks of the backups in the group

(line 28) and then multicasts a RemoveBackup message

(line 30), containing the new membership, on the intra-

group connection. When a backup receives a RemoveBackup

message that includes itself in the membership, the backup

accepts the new membership and responds to the primary with

an acknowledgment (lines 43-45). When a backup receives

a RemoveBackup message that does not include itself in

the membership, the backup resets its state and multicasts

a ProposeBackup message requesting readmission to the

membership (line 46).

For both addition and removal of a backup, the primary

multicasts the new membership to all of the backups in the

membership (line 30). It commits the membership change when

it has collected acknowledgments from all of the backups

in the membership (line 39). If a backup does not provide an

acknowledgment promptly, the primary removes the backup

from the membership (line 34).

5. VIRTUAL DETERMINIZER FRAMEWORK

A reliable, totally ordered, message delivery protocol ensures

consistent replication only if the application is deterministic.

However, modern applications are typically non-deterministic

in a number of ways. To maintain strong replica consistency, it is

necessary to sanitize or mask such sources of non-determinism,

i.e. to render the application virtually deterministic.

The LLFT virtual determinizer framework provides a generic

algorithm and uniform data structures for sanitizing the sources

of non-determinism in an application in a transparent manner.

We describe the data structures and algorithms below, as well as

communication of ordering information to the backup replicas.

First, we describe the threading model.

5.1. Threading model

The state of an application process is determined by data shared

among different threads, and by thread-specific data local to a

thread.

Each thread within a process has a unique thread identifier.

Following good programming practice, every operation on a

data item that is shared by multiple threads must be protected by

a mutex, even atomic operations such as reads and increments,



FIGURE 10. Pseudocode for the membership protocol to handle the addition and removal of a backup.

because the mutex serves also to reproduce a deterministic order

for such operations. The threads and mutexes can be created and

deleted dynamically.

Each replica in a process group runs the same set of threads.

A thread interacts with other threads, processes and its runtime

environment through system/library calls. Non-determinism

can arise from different orderings of, and different results from,

such calls at different replicas in the group.

If the operations on the shared and local data in different

replicas are controlled in such a way that (1) the updates on a

data item occur in the same order with the same change and (2)

each thread updates the data items in the same order with the

same change, then the replicas will remain consistent.

Figure 11 at the left gives an example of the pseudocode

for a thread that shows how such calls might change the

state of an application. The example illustrates three kinds of

system/library calls:

(i) Calls that try to acquire a mutex (line 18).

The pthread_mutex_trylock() operation is

similar to a non-blocking read in that, if the mutex

is currently held by another thread, the call returns

immediately with a specific error code, so that

the caller thread is not blocked. If the thread of

one replica successfully claims the mutex, while the

corresponding thread of another replica fails, the two

replicas perform different operations (lines 19–22),

causing divergence of their states, because one replica

changes the shared data SD1 (line 20) while the

other changes the thread-local data LD5 (line 22).



FIGURE 11. At the left, the pseudocode for a thread. The system/library calls that might change the state, or lead to a state change, are highlighted

in bold. At the right, the pseudocode for the virtual determinizer framework to render the application virtually deterministic.

(ii) Calls that retrieve local clock values (lines 1, 13).

These calls change thread-local data (LD1) directly

(lines 2, 14). If different replicas obtain different clock

values, the replicas might make different decisions

(line 15) as to whether a timeout occurred. If one

replica times out while the other does not, the states

of the replicas will diverge because of the difference

in thread-local data LD4 (line 16).

(iii) Calls that read (write) from (to) a socket asyn-

chronously (lines 3, 7, 12). If, for the same read (write)

operation, one replica successfully reads (writes) a

message while the other does not, the states of the two

replicas will differ in the thread-local data LD2 (line

5) and potentially LD3 (lines 9, 11).

5.2. Generic algorithm and data structures

Figure 11 at the right shows the pseudocode for the

virtual determinizer framework. The virtual determinizer

framework records the ordering information and the return

value information of non-deterministic system/library calls at

the primary to ensure that the backups obtain the same results

in the same order as the primary. In particular, for each non-

deterministic operation, the virtual determinizer framework

records the following information:

(i) Thread identifier: The identifier of the thread that is

carrying out the operation.

(ii) Operation identifier: An identifier that represents one

or more data items that might change either during the

operation or on completion of the operation.

(iii) Operation count: The number of operations carried

out by a thread for the given operation identifier.

(iv) Operation metadata: The data returned from the

system/library call. These metadata include the out

parameters (if any), the return value of the call and the

error code (if necessary).

The virtual determinizer framework introduces novel generic

data structures: the OrderInfo queue at the primary

and, for each operation O, the O.OrderInfo queue

at the backups. These data structures provide a uniform

representation for handling different kinds of non-deterministic

operations.

At the primary, the OrderInfo queue contains four-tuples

(T, O, N, D), where thread T has executed a call with

operation identifier O and with metadata recorded in D, and this

call is the Nth time in its execution sequence that thread T has

executed such a non-deterministic call. TheOrderInfo queue

spans different threads and different operations. The algorithm

appends a (T, O, N, D) entry to the OrderInfo queue

on return of the operation O (lines 23–28). The entries are

transmitted to the backups, using the novel piggybacking and

reflection mechanisms described in Section 3 for the messaging

protocol.



At a backup, for each operation O, the O.OrderInfo

queue contains three-tuples (T, N, D), in the order in

which the primary created them. When the backup receives

the first entry (T, O, N, D) for operation O, it creates

the O.OrderInfo queue (lines 29–30). The algorithm then

awakens the first thread in the O.OrderInfo queue if it

is blocked (lines 31–33). When thread T tries to execute

operation O as its Nth execution in the sequence, if (T, N,

D) is not the first entry in the O.OrderInfo queue, the

algorithm suspends the calling threadT (lines 34–39). It resumes

a suspended thread T in the order in which (T, N, D)

occurs in the O.OrderInfo queue, rather than the order in

which the thread was suspended or an order determined by the

operating system scheduler. It removes an entry (T, N, D)

from the O.OrderInfo queue immediately before it returns

control to the calling thread T after its Nth execution in the

sequence (lines 40–41). The algorithm requires the ordering

of all related operations, e.g. both claims and releases of

mutexes.

Thus, the virtual determinizer framework provides a generic

algorithm and data structures for sanitizing different kinds

of non-deterministic operations. We describe below how it

is instantiated for multithreading, time-related operations and

socket communication. We have not yet instantiated the virtual

determinizer framework for operating system signals and

interrupts, which constitutes future work.

5.3. Multithreading

The Consistent Multithreading Service (CMTS) allows

concurrency of threads that do not simultaneously acquire

the same mutex. Thus, the CMTS achieves the maximum

possible degree of concurrency, while maintaining strong

replica consistency.

At the primary, the CMTS creates mutex ordering informa-

tion, where theoperation identifier is the mutexMtx.

For the normal mutex claim call (pthread_mutex_lock()

library call), the operation metadata is empty if the call

is successful and, otherwise, is the return value. For the non-

blocking mutex claim call (pthread_mutex_trylock()

library call, the operation metadata is the return value.

At a backup, to process a mutex ordering information entry,

the CMTS examines the metadata. If the metadata contain an

error code, the CMTS returns control to the calling thread

with an identical error status without performing the call.

Otherwise, the CMTS delegates the mutex claim operation

to the original library call provided by the operating system.

If the mutex is not currently held by another thread, the

calling thread acquires the mutex immediately. Otherwise,

the calling thread is suspended and subsequently resumed by

the operating system when the thread that owns the mutex

releases it.

5.4. Time-related operations

The Consistent Time Service (CTS) ensures that clock readings

at different replicas are consistent for time-related system calls,

such as gettimeofday() and time(). At the primary, the

CTS creates time ordering information, where theoperation

identifier is the time source and the operation

metadata is the clock value, or an error code if the call

fails.

With the CTS, the replicas see a virtual group clock that

resembles the real-time clock. Each replica maintains an offset

to record the difference between its local physical clock and

the virtual group clock. Each backup updates its offset for each

clock reading.

In addition to consistent clock readings, the CTS ensures the

monotonicity of the clock as seen by the replicas in a group,

even if the primary is faulty. The new primary must not include

its local physical clock value in the time ordering information it

sends to the backups, because doing so might roll backward, or

roll forward, the virtual group clock. Instead, the new primary

adds the recorded offset to its local physical clock value and

includes that value in the time ordering information it sends to

the backups.

5.5. Socket communication

The Consistent Socket Communication Service (CSCS)

produces ordering information for non-blocking read (write)

system calls that an application uses to receive (send) messages

on a socket asynchronously. If no message is received (sent), the

non-blocking read (write) call returns a specific error code. On

such an error return, the application might switch to some other

task and change to a different state. Thus, the CSCS orders the

event of failing to receive (send) a message.

At the primary, on return from a read (write) system call

on a socket, the CSCS produces a socket ordering information

entry for that operation. The operation identifier is

the socket file descriptor. The operation metadata is an

identifier for the message being read (written) if the read (write)

succeeds, or an error code if it fails.

It is quite common to combine socket read (write) system

calls with select/poll system calls. Typically, the application

performs a read (write) system call only if the select/poll

system call indicates that the corresponding socket is readable

(writable).The select/poll system call offers a timeout parameter

(in Linux) for the user to specify how long the operating system

can take to return from the call.

At the primary, on return from a select/poll system call,

the CSCS produces a socket ordering information entry. The

operation identifier is the socket file descriptor. The

operation metadata contains the number of events,

the read (write) error mask and the amount of time left before

the timeout (in Linux) if the call returns successfully, or an error

code if it fails.



6. IMPLEMENTATION AND PERFORMANCE

The LLFT system has been implemented in the C++

programming language for the Linux operating system. The

library interpositioning technique is used to capture and control

the application’s interactions with its runtime environment.

The application state is checkpointed and restored using a

memory-mapped checkpoint library, derived from [22], that

checkpoints the entire address space of an application process.

The implementation of LLFT is compiled into a shared library.

The library is inserted into the application address space at

startup time using the LD_PRELOAD facility provided by the

operating system. LLFT is transparent to the application being

replicated and does not require recompilation or relinking of the

application program.

The experimental testbed consists of 14 HP blade servers,

each equipped with two 2GHz Intel Xeon processors running

the Linux Ubuntu 9.04 operating system on a 1 Gbps Ethernet.

A two-tier client group/server group application is used to

benchmark the LLFT implementation. The application state is

small and the time to communicate it is not significant.

The performance evaluation of LLFT focuses on three areas:

(1) the performance of the messaging protocol during normal

fault-free operation, (2) the performance of the membership

protocol during fault recovery and (3) the overhead of the virtual

determinizer framework. As a baseline for comparison of the

end-to-end latency and of the throughput of LLFT, we use TCP

with no replication. We also compare the end-to-end latency

for LLFT with three-way replication and that for Totem [17]

with three-way replication. Note that LLFT is designed for low

latency, whereas Totem is designed for high throughput.

In all latency measurements during normal operation,

10 000 samples are taken in each run. For the throughput

measurements, a sample is taken at the primary replica for

every 1000 requests processed (i.e. the sample reflects the mean

throughput over 1000 requests), and 10 samples are taken for

each run. For the recovery latency measurements, 100 samples

are taken and the mean values are reported.

6.1. Messaging protocol

First, we consider the performance of the messaging protocol

during normal fault-free operation. We characterize the end-

to-end latency in the presence of a single client for various

message sizes: (1) short requests and short replies, (2) various

size requests and short replies and (3) short requests and

various size replies. The end-to-end latency for (2) is virtually

indistinguishable from that for (3) for the same message sizes

(for requests and replies). Consequently, we consider only the

message size here.

Figure 12 shows the mean end-to-end latency as a function

of message size, without replication using TCP, and with

three-way replication using LLFT. Error bars, corresponding

to the standard deviation, are shown for LLFT. As the figure

FIGURE 12. End-to-end latency vs. message size.

FIGURE 13. Throughput vs. number of concurrent clients.

shows, the messaging protocol incurs very moderate overhead,

ranging from ∼15% for large messages to ∼55% for small

messages, caused primarily by the piggybacking of ordering

information. For large messages, which require fragmentation

in user space, the messaging protocol incurs additional context

switches, although the relative overhead is less as a percentage.

In addition to the increased mean end-to-end latency, higher

standard deviations are observed when LLFT is used. These

results are as expected, given the additional services that LLFT

provides.

We also measured the throughput, without replication using

TCP and with three-way replication using LLFT, in the

presence of various numbers of concurrent clients. Each client

repeatedly issues 1 KB requests without any think time, and

the server responds with 1 KB replies. The throughput results

are summarized in Fig. 13. As is evident, although the mean



FIGURE 14. End-to-end latency vs. the number of replicas in a group.

throughput reduction with replication is moderate under light

loads, it is more prominent under heavy loads.

We also characterized the fault scalability of the messaging

protocol. As shown in Fig. 14, the performance for various

request/reply message sizes does not degrade noticeably as the

number of replicas is increased (so that larger numbers of

concurrent faults can be tolerated). These results are as expected

because LLFT is explicitly designed to allow the primary to

deliver a message as soon as it is ordered within a connection

without the need to communicate with the backups, thus

minimizing the latency during normal operation. To avoid

obscuring the comparison, error bars are not shown in this figure.

To demonstrate the benefits of using LLFT for latency-

sensitive applications, we compared the end-to-end latency of

LLFT with Totem [17]. We used the same test application for

(1) no-replication, (2) three-way replication with LLFT and (3)

three-way replication with Totem (one Totem instance runs on

each node, and the client or server replica connects to the local

Totem instance).As shown in Fig. 15, LLFT outperforms Totem

by a large margin. The probability density function (PDF) for

LLFT is much closer to that for the non-replicated application.

The mean latency for Totem is about four times that for LLFT,

and the standard deviation for Totem is more than four times

that for LLFT.

The much higher mean end-to-end latency and standard

deviation for Totem can be explained as follows:

(i) In Totem, a node must wait to receive the circulating

token before it can multicast a message. This waiting

time increases the end-to-end latency, and causes

greater unpredictability, which leads to a higher

standard deviation. LLFT does not suffer from this

problem because the node can send its message

immediately.

(ii) In Totem, the nodes form a logical ring and the token

circulates around the ring. When a node acquires the

token and has messages to send, an additional delay

occurs, forcing the nodes downstream to wait longer

to receive the token. Again, this results in a higher end-

to-end latency and standard deviation.

6.2. Membership protocol

To evaluate the performance of the membership protocol during

recovery after detection of a fault in the primary, we considered

(1) the primary view change latency and (2) the recovery latency,

i.e. the primary view change latency plus the virtual synchrony

latency (which includes the time to communicate the application

state). The failover latency is determined by the fault detection

time and the recovery latency. In a system that does not incur

lengthy communication delays, the first backup can detect a

fault in the primary in ∼30 ms, based on the parameters used.

In our experiments, the application state is small and the time

to communicate it is not significant.

This evaluation is performed for crash faults because all faults

(including crash faults, timing faults, and partitioning faults) are

detected as timing faults by the fault detectors. Thus, they have

similar performance characteristics for this evaluation.

Figure 16 summarizes the measurement results for the mean

primary view change latency with error bars for the standard

deviation. The measurement results were obtained with no

clients running to highlight the primary view change latency.

As the figure shows, the mean primary view change latency

increases with the number of replicas. Interestingly, when the

number of replicas is two (which industry regards as the typical

case and which majority-based membership algorithms do not

handle), the mean primary view change latency is < 0.05 ms,

which is significantly less than the latency with more replicas,

and much less than the latency for other membership protocols.

In this case, when the primary crashes, only one replica remains.

That replica can promote itself to be the new primary without

waiting for acknowledgments from other replicas.

Figure 17 summarizes the measurement results for the

recovery latency, i.e. the primary view change latency plus

the virtual synchrony latency. The figure shows the measured

mean recovery latency in the presence of various numbers

of concurrent clients, for two-way and three-way replication.

As expected, the mean recovery latency increases with the

number of concurrent clients in both cases. If the availability

requirement allows two-way replication (which is typical

industrial practice), the recovery is faster by ∼0.2 ms. Again,

to avoid obscuring the comparison, error bars are not shown in

this figure.

6.3. Virtual determinizer framework

To evaluate the performance of the virtual determinizer

framework, we injected non-deterministic operations into our

benchmark application. For each run, we varied the number

of non-deterministic operations per call, while keeping the

request/reply message size fixed at 1 KB.



FIGURE 15. PDFs for the end-to-end latency for no replication with TCP, three-way replication with LLFT and three-way replication with Totem.

FIGURE 16. Primary view change latency.

FIGURE 17. Recovery latency.

The measurement results, shown in Fig. 18, were obtained

by introducing a clock-related non-deterministic operation (i.e.

gettimeofday()) into the application. The figure shows the

mean end-to-end latency with error bars corresponding to the

FIGURE 18. End-to-end latency vs. the number of non-deterministic

operations.

standard deviation. Other kinds of non-deterministic operations

produce similar profiles. In general, the mean end-to-end

latency increases linearly as the number of non-deterministic

operations per call increases. On average, each additional non-

deterministic operation adds ∼0.008 ms overhead to the end-to-

end latency. This overhead is primarily due to the piggybacking

of ordering information.

7. RELATED WORK

The LLFT system provides fault tolerance transparently to

both the applications and the operating system, like the

TARGON/32 [23], TFT [24] and Hypervisor [25] systems.

Those systems differ from LLFT in the way in which they

achieve transparency. The TARGON/32 system uses a special

bus design that ensures atomic transmission of a message

sent by a primary to both a destination group and its own

backups. The TFT system requires application object code

editing. The Hypervisor system requires a hardware instruction

counter. LLFT uses the more flexible library interpositioning

technique.



The LLFT system uses a leader–follower replication strategy

similar to that used in the viewstamped replication [6] and

Delta-4 [7] systems. In the viewstamped replication system,

the primary generates a new timestamp each time it needs to

communicate information to the backups. Unlike LLFT, the

viewstamped replication system is based on atomic transactions,

combined with a view change algorithm. The Delta-4 system

uses a separate message to transmit ordering information

from the primary to the backups. The primary must wait

until all of the backups have explicitly acknowledged the

ordering information before it sends its next message, which

can increase the response time at the client. In contrast, LLFT

uses piggybacking and reflection mechanisms to reduce the end-

to-end latency.

Atomic multicast protocols that deliver messages reliably

and in total order, such as Isis [4], Amoeba [16], Totem [17],

Newtop [18], Coyote [26] and Spread [27], have been used to

maintain strong replica consistency in fault-tolerant distributed

systems. However, those protocols introduce delays in either

sending or delivering messages. The LLFT messaging protocol

does not incur such delays because the primary decides on the

order in which the operations are performed and the ordering

information is reflected to its backups. The LCR total order

broadcast protocol [28], which uses logical clocks and a ring

topology, optimizes for high throughput in cluster environments

rather than low latency as does LLFT. LCR is comparable to

the Totem single-ring protocol [29], which likewise optimizes

for high throughput rather than low latency. Some group

communication systems, such as Horus [30], Arjuna [31] and

Cactus [32], are presented as toolkits from which a high

efficiency system can be constructed for a specific application.

The effective use of such toolkits requires substantial skill.

LLFT is designed to achieve comparable performance without

customization and specialized skill.

A comprehensive survey of membership protocols and group

communication systems, and of their formal specifications, is

provided by Chockler et al. [33]. Schiper and Toueg [34] provide

an elegant formalization of the dynamic membership problem

that distinguishes between the problem of maintaining and

agreeing on a set of members and the problem of determining

which processes are working and should be members. Likewise,

we distinguish between the group membership and the pool of

potential members.

The Isis coordinator-cohort strategy [4] is somewhat like

semi-passive replication in LLFT, but its membership protocol

is quite different. As the Isis book states, ‘each member has

the same view of which process is the oldest in the group,

so all agree implicitly on who the coordinator should be’. For

this to work, first the members must reach agreement on the

membership set and only then can they agree implicitly on the

oldest member in that set. LLFT works the other way around.

In LLFT, first the new primary is determined as the process that

proposes to become the new primary and that has the highest

precedence and, then, the new primary unilaterally determines

the membership set. Thus, no agreement or consensus algorithm

is required.

The Paxos algorithm [12] is a leader election algorithm

for asynchronous distributed systems, that uses a two-phase

commit strategy in which a majority of the members vote

for the leader. Paxos assumes a known existing membership,

and does not change the membership dynamically as members

become faulty and recover. Paxos can achieve consensus in

two rounds if communication is reliable and processes respond

promptly. Like the partitionable membership of LLFT, Vertical

Paxos [35] allows multiple configurations (views) to operate

concurrently. Vertical Paxos is oriented toward primary-backup

data replication, whereas LLFT is oriented toward primary-

backup process replication.

Defago and Schiper [36] and Defago et al. [37] have

investigated semi-passive replication along with a consensus

algorithm. Their model admits non-deterministic operations,

but not concurrent processing, with shared data, of requests

from multiple clients. The primary server produces its results

as a single action, including the reply to the client and the

state update for the backups. In our model, multiple processes,

possibly with multiple threads, can interact with each other.

Requests from multiple clients can be processed concurrently

and can access shared data. In their system, every server replica

sends a reply to the client, whereas, in LLFT, the backups do

not send replies to the client, which reduces the network traffic.

Their system uses a rotating coordinator and consensus, whereas

LLFT uses a leader-determined membership protocol without

consensus. In [38], Saito and Shapiro provide a comprehensive

survey of replication strategies.

Membership protocols for group communication systems,

such as Totem [17] and Transis [21], employ fault detectors,

based on timeouts, to reach distributed agreement on as large

a membership as possible, devolving to smaller memberships,

if necessary. Those membership protocols are relatively costly

in the number of messages exchanged and in the delays

incurred. To avoid such costs, the LLFT membership protocol

does not involve distributed agreement but, rather, achieves

consistent group membership by having the primary determine

the membership and communicate it to the backups in the group.

Moreover, LLFT does not attempt to form as large a membership

as possible, like Transis and Totem do.

The LLFT virtual determinizer framework provides a

generic algorithm and uniform data structures for capturing,

transmitting and executing ordering information for non-

deterministic operations to ensure replica consistency for such

operations. The non-deterministic operations handled by LLFT

overlap those considered in other systems such as Delta-4 [7],

TARGON/32 [23], TFT [24] and Hypervisor [25]. To build a

fault-tolerant Java virtual machine, Friedman and Kama [39]

and Napper et al. [40] have extended the Hypervisor work to

address non-determinism caused by multithreading. The Voltan

environment [41] also provides deterministic replication for

applications that have non-deterministic system calls.



Basile et al. [42], Jimenez-Peris and Arevalo [43] and

Narasimhan et al. [44] have addressed the need to sanitize non-

deterministic operations to achieve strong replica consistency

for active replication, rather than for leader–follower (semi-

active or semi-passive) replication. The LLFT mechanisms that

are used to order mutex claims/releases are closely related

to those of the Loose Synchronization Algorithm (LSA) and

Preemptive Deterministic Scheduling Algorithm (PDS) of [42].

However, LSA does not address the strong replica consistency

issues introduced by the pthread_mutex_trylock()

library call, and PDS is suitable for only a specific threading

model.

8. CONCLUSIONS AND FUTURE WORK

The LLFT system provides fault tolerance for distributed

applications deployed over a local-area network, as in a

single data center, cluster or cloud. Applications programmed

using TCP socket APIs, or middleware such as Java

RMI, can be replicated with strong replica consistency

using LLFT, without any modifications to the applications.

Performance measurements show that LLFT achieves low

latency message delivery under normal conditions and low

latency reconfiguration and recovery when a fault occurs.

The genericity, application transparency and low latency of

LLFT make it appropriate for a wide variety of distributed

applications, particularly for latency-sensitive applications.

Future work includes sanitization of other sources of non-

determinism (such as operating system signals and interrupts)

and performance optimization. It also includes the development

of more complex applications for LLFT (in particular, file

systems and database systems), and the development of

replication management tools.

FUNDING

This research was supported in part by NSF grant CNS-

0821319, and by a CSISI grant from Cleveland State University

(for the first author).An earlier abbreviated version of this paper

appeared in [45].

REFERENCES

[1] Chandra, T.D. and Toueg, S. (1996) Unreliable failure detectors

for reliable distributed systems. J. ACM, 43, 225–267.

[2] Fischer, M.J., Lynch, N.A. and Paterson, M.S. (1985)

Impossibility of distributed consensus with one faulty process.

J. ACM, 32, 374–382.

[3] Service Availability Forum. http://www.saforum.org. (accessed

July 25, 2012).

[4] Birman, K.P. and van Rennesse, R. (1994) Reliable Distributed

Computing Using the Isis Toolkit. IEEE Computer Society Press,

Los Alamitos, CA.

[5] Moser, L.E., Amir, Y., Melliar-Smith, P.M. and Agarwal, D.A.

(1994) Extended Virtual Synchrony. Proc. 14th IEEE Int. Conf.

Distributed Computing Systems, Poznan, Poland, June 21–24,

pp. 56–65. IEEE Computer Society Press, Los Alamitos, CA.

[6] Oki, B. and Liskov, B. (1988) Viewstamped Replication: A New

Primary Copy Method to Support Highly-Available Distributed

Systems. Proc. ACM Symp. Principles of Distributed Computing,

Toronto, Canada, August 15–17, pp. 8–17. ACM Publications,

New York, NY.

[7] Powell, D. (1991) Delta-4: A Generic Architecture for

Dependable Distributed Computing. Springer, Berlin, Germany.

[8] Gilbert, S. and Lynch, N.A. (2012) Perspectives on the CAP

theorem. IEEE Comput., 45, 30–36.

[9] Asplund, M. and Nadjm-Terani, S. (2006) Post-Partition

Reconciliation Protocols for Maintaining Consistency. Proc.

ACM Symp. Applied Computing, Dijon, France, April 23–27,

pp. 710–717. ACM Publications, New York, NY.

[10] Melliar-Smith, P.M. and Moser, L.E. (1998) Surviving network

partitioning. IEEE Comput., 31, 62–69.

[11] Guerraoui, R., Hurfin, M., Mostefaoui, A., Oliveira, R.,

Raynal, M. and Schiper, A. (2000) Consensus in Asynchronous

Distributed Systems: A Concise Guided Tour. Advances in

Distributed Systems, pp. 33–47, Lecture Notes in Computer

Science 1752. Springer, Berlin, Germany.

[12] Lamport, L. (1998) The part-time parliament. ACM Trans.

Comput. Syst., 16, 133–169.

[13] Avizienis, A., Laprie, J. C., Randell, B. and Landwehr, C.

(2004) Basic concepts and taxonomy of dependable and secure

computing. IEEE Trans. Dependable Secur. Comput., 1, 11–33.

[14] Cristian, F. and Fetzer, C. (1999) The timed asynchronous

distributed system model. IEEE Trans. Parallel Distrib. Syst.,

10, 603–618.

[15] Fetzer, C. (2003) Perfect failure detection in timed asynchronous

systems. IEEE Trans. Comput., 52, 99–112.

[16] Kaashoek, M.F. and Tanenbaum, A.S. (1991) Group Communi-

cation in the Amoeba Distributed Operating System. Proc. 11th

IEEE Int. Conf. Distributed Computing Systems, Arlington, TX,

May 20–24, pp. 222–230. IEEE Computer Society Press, Los

Alamitos, CA.

[17] Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Budhia, R.K.

and Lingley-Papadopoulos, C.A. (1996) Totem: a fault-tolerant

multicast group communication system. Commun. ACM, 39,

54–63.

[18] Ezhilchelvan, P.D., Macedo, R.A. and Shrivastava, S.K. (1995)

Newtop:A Fault-Tolerant Group Communication Protocol. Proc.

15th IEEE Int. Conf. Distributed Computing Systems, Vancouver,

BC, Canada, May 30–June 2, pp. 296–306. IEEE Computer

Society Press, Los Alamitos, CA.

[19] Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W., Levitt,

K.N., Melliar-Smith, P.M., Shostak, R.E. and Weinstock, C.B.

(1978) SIFT: design and analysis of a fault-tolerant computer for

aircraft control. Proc. IEEE, 66, 1240–1255.

[20] Terry, D.B., Theimer, M.M., Petersen, K., Demers,A.J., Spreitzer,

M.J. and Hauser, C.H. (1995) Managing Update Conflicts

in Bayou, A Weakly Connected Replicated Storage System.

Proc. 15th ACM Symp. Operating Systems Principles, Copper

Mountain Resort, CO, December 3–6, pp. 172–183. ACM

Publications, New York, NY.

http://www.saforum.org


[21] Amir, Y., Dolev, D., Kramer, S. and Malkhi, D. (1992)

Membership Algorithms for Multicast Communication Groups.

Proc. 6th Int. Workshop on Distributed Algorithms, Haifa, Israel,

November 2–4, pp. 292–312, Lecture Notes in Computer Science

647. Springer, Berlin, Germany.

[22] Dieter, W.R. and Lumpp, J.J.E. (2001) User-Level Checkpointing

for LinuxThreads Programs. Proc. 2001 USENIX Technical

Conf., Boston, MA, June 25–30, pp. 81–92. USENIX,

Berkeley, CA.

[23] Borg, A., Blau, W., Graetsch, W., Herrmann, F. and And, W.

(1989) Fault tolerance under Unix. ACM Trans. Comput. Syst., 7,

1–24.

[24] Bressoud, T.C. (1998) TFT: A Software System for Application-

Transparent Fault Tolerance. Proc. 28th IEEE Int. Conf. Fault-

Tolerant Computing, Munich, Germany, June 23–25, pp. 128–

137. IEEE Computer Society Press, Los Alamitos, CA.

[25] Bressoud, T.C. and Schneider, F.B. (1996) Hypervisor-based fault

tolerance. ACM Trans. Comput. Syst., 14, 80–107.

[26] Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D. and Chiu, W.

(1998) Coyote: a system for constructing fine-grain configurable

communication services. ACM Trans. Comput. Syst., 16,

321–366.

[27] Amir,Y., Danilov, C., Miskin-Amir, M., Schultz, J. and Stanton, J.

(2004) The Spread Toolkit: Architecture and Performance. Tech.

Report cnds-2004-1, John Hopkins Univ., Computer Science

Dept.

[28] Guerraoui, R., Levy, R. and Pochon, B. (2010) Throughput

optimal total order broadcast for cluster environments. ACM

Trans. Comput. Syst., 28, 1–32.

[29] Amir, Y., Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A.

and Ciarfella, P. (1995) The Totem single-ring ordering and

membership protocol. ACM Trans. Comput. Syst., 13, 311–342.

[30] van Renesse, R., Birman, K.P. and Maffeis, S. (1996) Horus:

a flexible group communication system. Commun. ACM, 39,

76–83.

[31] Parrington, G.D., Shrivastava, S.K., Wheater, S.M. and Little,

M.C. (1995) The design and implementation of Arjuna. USENIX

Comput. Syst. J., 8, 255–308.

[32] Hiltunen, M.A. and Schlichting, R.D. (2000) The Cactus

Approach to Building Configurable Middleware Services. Proc.

Workshop on Dependable System Middleware and Group

Communication, Nuremberg, Germany, October 16–18. IEEE

Computer Society Press, Los Alamitos, CA.

[33] Chockler, G.V., Keidar, I. and Vitenberg, R. (2001) Group

communication specifications: a comprehensive study. ACM

Comput. Surv., 33, 427–469.

[34] Schiper, A. and Toueg, S. (2006) From set membership to group

membership: a separation of concerns. IEEE Trans. Dependable

Secur. Comput., 3, 2–12.

[35] Lamport, L., Malkhi, D. and Zhou, L. (2009) Vertical Paxos and

primary-backup replication. Microsoft, Tech. Report MSR-TR-

2009-63.

[36] Defago, X. and Schiper, A. (2004) Semi-passive replication and

lazy consensus. J. Parallel Distrib.Comput., 64, 1380–1398.

[37] Defago, X., Schiper, A. and Sergent, N. (1998) Semi-Passive

Replication. Proc. 17th IEEE Symp. Reliable Distributed

Systems, West Lafayette, IN, October 20–22, pp. 43–50. IEEE

Computer Society Press, Los Alamitos, CA.

[38] Saito, Y. and Shapiro, M. (2005) Optimistic replication. ACM

Comput. Surv., 37, 42–81.

[39] Friedman, R. and Kama, A. (2003) Transparent Fault-Tolerant

Java Virtual Machine. Proc. 22nd IEEE Symp. Reliable

Distributed Systems, Florence, Italy, October 6–8, pp. 319–328.

IEEE Computer Society Press, Los Alamitos, CA.

[40] Napper, J., Alvisi L. and Vin, H. (2003) A Fault-Tolerant Java

Virtual Machine. Proc. IEEE Int. Conf. Dependable Systems and

Networks, San Francisco, CA, June 22–25, pp. 425–434. IEEE

Computer Society Press, Los Alamitos, CA.

[41] Black, D., Low, C. and Shrivastava, S.K. (1998) The Voltan

application programming environment for fail-silent processes.

Distrib. Syst. Eng., 5, 66–77.

[42] Basile, C., Kalbarczyk, Z. and Iyer, R. (2006) Active replication

of multithreaded applications. IEEE Trans. Parallel Distrib. Syst.,

17, 448–465.

[43] Jimenez-Peris, R. and Arevalo, S. (2000) Deterministic

Scheduling for Transactional Multithreaded Replicas. Proc. 19th

IEEE Symp. Reliable Distributed Systems, Nuremberg, Germany,

October 16–18, pp. 164–173. IEEE Computer Society Press, Los

Alamitos, CA.

[44] Narasimhan, P., Moser, L.E. and Melliar-Smith, P.M. (1999)

Enforcing Determinism for the Consistent Replication of

Multithreaded CORBA Applications. Proc. 18th IEEE Symp.

Reliable Distributed Systems, Lausanne, Switzerland, October

19–22, pp. 263–273. IEEE Computer Society Press, Los

Alamitos, CA.

[45] Zhao, W., Melliar-Smith, P.M. and Moser, L.E. (2010) Fault

Tolerance Middleware for Cloud Computing. Proc. IEEE 3rd Int.

Conf. Cloud Computing, Miami, FL, July 5–10, pp. 67–74. IEEE

Computer Society Press, Los Alamitos, CA.

APPENDIX

The proofs of correctness for LLFT, based on the model and the

safety and liveness properties given in Section 2.6, are provided

below.

Theorem A.1 (Safety). At most one infinite sequence of

consecutive primary views exists. Each of those consecutive

primary views has a unique consecutive primary view number

and a single primary replica.

Proof. Assume that the primary R1 became faulty in view Vi ,

and that the backup R2 with precedence p2 and the backup

R3 with precedence p3, where p2 < p3, each propose a new

primary view. The two primary views have the same primary

view number but different new primaries (either R2 or R3).

Consider the following two cases.

Case 1. There is a replica R that is a member of both

proposed new primary views. According to the rules of the

LLFT membership protocol, if R first acknowledges R3’s

ProposePrimary message, then R does not acknowledge

R2’s ProposePrimary message because p2 < p3. Thus,

by the eventual reliable communication assumption, when R2



receives R’s acknowledgment to R3, R2 abandons its attempt

to form that new membership, resets its state and applies to

rejoin the group. On the other hand, if R first acknowledges

R2’s ProposePrimary message and subsequently receives

R3’s ProposePrimary message, then R acknowledges R3’s

ProposePrimary message because p2 < p3. When R2

receives R’s acknowledgment to R3, R2 abandons its attempt to

form that new membership, resets its state and applies to rejoin

the group.

Case 2. There is no replica that is a member of both proposed

new primary views (because neither R2 nor R3 received

messages from any replica in the other’s proposed membership

and, thus, R2 and R3 both regard the other’s replicas as faulty).

Because of the eventual reliable communication assumption

and because a message containing a higher precedence than

the precedence of the primary of the primary view is sent and

retransmitted to all members of the group, every replica R in

R2’s membership eventually receives a message from a replica

in R3’s membership. Because p2 < p3, R then realizes that

R2’s membership has been superseded by R3’s membership and,

thus, R abandons its current state and applies for readmission

to R3’s membership. Thus, any side branch is pruned.

Note that there cannot be two replicas with the same

precedence because (1) if a primary admits multiple replicas to

the membership, it assigns different precedences to each of the

replicas; (2) each such precedence is qualified by the precedence

of the primary that admitted the replica to the membership; and

(3) the primary precedences form a chain back to the unique

initial primary replica for the group.

In the theorems and proofs below, operations refer to both

computation and communication operations.

Theorem A.2 (Safety). At most one infinite sequence of

operations in an infinite sequence of consecutive primary views

exists.

Proof. By Theorem A.1, there exists at most one infinite

sequence of consecutive primary views. Each of those primary

views has a unique primary view number and a single primary

replica. Moreover, each of those primary views has an associated

sequence of operations determined by the primary of that

view. The sequence of operations in an infinite sequence of

consecutive primary views is the concatenation of the sequences

of operations for the primary views in the order of their primary

view numbers.

Lemma A.1. In semi-active replication, if a backup replica

R2 is admitted to the membership of view Vi by primary replica

R1 after the start of Vi and R2 subsequently becomes faulty in

Vi , then the sequence of operations of R2 in Vi is a consecutive

subsequence of the sequence of operations of R1 in Vi .

Proof. For primary replica R1 of view Vi , the sequence

of ordering information is determined by the sequence of

operations of R1. When the backup R2 is admitted to the

membership of view Vi by R1 after the start of view Vi ,

it receives a State message from R1, which establishes

a synchronization point. After that point, the sequence of

operations performed by R2 is determined by the sequence of

ordering information provided by R1, until R2 becomes faulty.

Thus, the sequence of operations of R2 in Vi is a consecutive

subsequence of the sequence of operations of R1 in Vi .

Lemma A.2. In semi-active replication, if replica R2 is

admitted to the membership of view Vi by primary replica R1

after the start of Vi and R2 is not faulty in Vi , then the sequence

of operations of R2 in Vi is a suffix of the sequence of operations

of R1 in Vi .

Proof. For primary replica R1 of view Vi , the sequence

of ordering information is determined by the sequence of

operations of R1. When R2 is admitted to the membership

of view Vi by R1 after the start of Vi , it receives a State

message from R1, which establishes a synchronization point.

After that point, the sequence of operations of R2 is determined

by the sequence of ordering information provided by R1 in Vi .

Moreover, because R2 is not faulty in Vi , it participates in the

virtual synchrony at the start of Vi+1. Thus, R2’s sequence of

operations in Vi is a suffix of the sequence of operations of

R1 in Vi .

Lemma A.3. In semi-active replication, if replica R2 is an

initial member of view Vi with primary replica R1 and R2

subsequently becomes faulty in Vi , then the sequence of

operations of R2 in Vi is a prefix of the sequence of operations

of R1 in Vi .

Proof. For primary replica R1 of view Vi , the sequence

of ordering information is determined by the sequence of

operations of R1. Because R2 is an initial member of view

Vi , it participates in the virtual synchrony at the start of

Vi . After that point, the sequence of operations of R2 is

determined by the sequence of ordering information provided

by R1 in Vi , until R2 becomes faulty. Thus, R2’s sequence of

operations in Vi is a prefix of the sequence of operations of

R1 in Vi .

Lemma A.4. In semi-active replication, if replicas R2 and R3

are members of the same memberships of views Vi , Vi+1 and

Vi+2, then the sequence of operations of R2 in Vi+1 is the same

as the sequence of operations of R3 in Vi+1.

Proof. Because R2 and R3 are members of the same

memberships of views Vi and Vi+1, both of them participate

in the virtual synchrony between Vi and Vi+1, determined

by primary replica R1 of Vi+1. Because both R2 and R3 are

members of the same memberships of views Vi+1 and Vi+2,

neither of them becomes faulty in Vi+1 and both of them



participate in the virtual synchrony between Vi+1 and Vi+2.

Consequently, both R2 and R3 perform the same sequence

of operations in Vi+1, which is the same as the sequence of

operations performed by R1, determined by the sequence of

ordering information provided by R1.

Lemma A.5. In semi-active replication, if replicas R2 and

R3 are members of the same memberships of views Vi and Vk ,

then the sequence of operations of R2 in Vj is the same as the

sequence of operations of R3 in Vj , where i < j < k.

Proof. Because R2 and R3 are members of the same

memberships of views Vi and Vk , they are both members of the

same memberships of views Vj for all j , i < j < k, because if

they are removed from a membership and apply for readmission,

they are admitted as new members. The proof follows from

Lemma A.4 by induction.

Theorem A.3 (Safety). In semi-active (semi-passive) repli-

cation, for a member in a view of the infinite sequence of consec-

utive primary views, the sequence of operations (states) of that

member is a consecutive subsequence of the infinite sequence

of operations (states) of the group.

Proof. Based on the above lemmas, we provide the proof for

semi-active replication. The proof for semi-passive replication

is similar. We consider three cases:

Case 1: Replica R is admitted to a membership in view Vi

and becomes faulty in the same view Vi . By Lemma A.1, the

sequence of operations of R in Vi is a consecutive subsequence

of the sequence of operations of primary replica R1 in Vi and,

thus, of the infinite sequence of operations of the group.

Case 2: Replica R is admitted to a membership in view

Vi and becomes faulty in view Vi+1. By Lemma A.2, the

sequence of operations of R in Vi is a suffix of the sequence

of operations of primary replica R1 in Vi . By Lemma A.3,

the sequence of operations of R in Vi+1 is a prefix of the

sequence of operations of primary replica R′

1 in Vi+1. Thus, the

sequence of operations of R is the concatenation of the suffix

for view Vi and the prefix for view Vi+1. Thus, the sequence

of operations of R is a consecutive subsequence of the infinite

sequence of operations of the group.

Case 3: Replica R is admitted to the membership in view Vi

and becomes faulty in view Vk , where k > i+1. By LemmaA.2,

the sequence of operations of R in Vi is a suffix of the sequence

of operations of primary replica R1 in Vi . By Lemma A.3, the

sequence of operations of R in Vk is a prefix of the sequence

of operations of primary replica R′

1 in Vk . By Lemma A.5, the

sequence of operations of R in Vj is the same as the sequence

of operations of primary replica R′′

1 in Vj , where i < j < k.

Thus, the sequence of operations of R is the concatenation of

the suffix for view Vi , the sequences for the views Vj , where

i < j < k, and the prefix for view Vk . Thus, the sequence

of operations of R is a consecutive subsequence of the infinite

sequence of operations of the group.

In the proofs above, which apply to semi-active replication,

we consider the sequence of operations performed at the

primary and at the backups. To address semi-passive replication,

we need to consider the sequence of states at the primary and

the backups, because for semi-passive replication, the backups

perform no operations.

Theorem A.4 (Liveness). At least one infinite sequence of

consecutive primary views with consecutive primary view

numbers exists.

Proof. By the sufficient replication assumption (i.e. each group

contains enough replicas such that in each primary view there

exists at least one replica that does not become faulty), if the

primary becomes faulty in a view Vi , then there exists a replica

R in Vi that can assume the role of the primary in view Vi+1.

The proof follows by induction.

Theorem A.5 (Liveness). At least one infinite sequence of

operations in an infinite sequence of consecutive primary views

exists.

Proof. There exists at least one operation (the communication

of the State message) in each primary view. The proof now

follows from Theorem A.4.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015


	Low Latency Fault Tolerance System
	Repository Citation

	1 Introduction
	1.1 Properties of LLFT
	1.2 Architectural components of LLFT
	1.3 Novel aspects of LLFT

	2 Basic Concepts
	2.1 System model
	2.2 Fault model
	2.3 Process groups
	2.4 Virtual connections
	2.5 Replication
	2.6 Correctness properties

	3 Low Latency Messaging Protocol
	3.1 Data structures
	3.2 Reliable message delivery
	3.3 Total ordering of messages
	3.4 Buffer management

	4 Leader-Determined Membership Protocol
	4.1 Data structures
	4.2 Change of the primary
	4.3 Addition or removal of a backup

	5 Virtual Determinizer Framework
	5.1 Threading model
	5.2 Generic algorithm and data structures
	5.3 Multithreading
	5.4 Time-related operations
	5.5 Socket communication

	6 Implementation and Performance
	6.1 Messaging protocol
	6.2 Membership protocol
	6.3 Virtual determinizer framework

	7 Related Work
	8 Conclusions and Future Work

