Low-latency histogram equalization for infrared
image sequences — a hardware implementation

Volker Schatz

Fraunhofer Institut fiir Optronik, Systemtechnik und Bildauswertung, Ettlingen, Germany

firstname.lastnamediosb.fraunhofer.de

This is the author-generated version of a paper published in the Journal of Real-Time Image Processing on 15 June

2011 (received 22 November 2010, accepted 13 May 2011).

As per the copyright transfer agreement, this document must contain the following notice and hyperlink:
“The final publication is available at www.springerlink.com”

This author’s version has been enhanced by oversized internal links and citation classes and contains the result

images in their full resolution.

This work describes a hardware implementation of the
contrast-limited adaptive histogram equalization algorithm
(CLAHE). The intended application is the processing of
image sequences from high-dynamic-range infrared cameras.
The variant of histogram equalization implemented is the
one most commonly used today. It involves dividing the
image into tiles, computing a transformation function on
each of them, and interpolating between them. The contrast-
limiting is modified to facilitate the hardware implemen-
tation, and it is shown that the error introduced by this
modification is negligible. The latency of the design is
minimized by performing its successive steps simultaneously
on the same frame and by exploiting the vertical blank
pause between frames. The resource usage of the histogram
equalization module and how it depends on its parameters
has been determined by synthesis. The design has been
synthesized and tested on a Xilinx FPGA. The implemen-
tation supports substituting other dynamic range reduction
modules for the histogram equalization component by partial
dynamic reconfiguration.

Keywords: Histogram equalization, CLAHE, infrared images,
FPGA design, partial dynamic reconfiguration

1 INTRODUCTION

Histogram equalization is an image enhancement tech-
nique that consists in a grey-level transform designed
to equalize the frequency of occurrence of different
grey values. It has its origins in the information the-
oretic problem of maximizing the information content
of discretized data by applying a transformation before
discretization. These concepts were applied to images
by Hummel [Hum?75]. Histogram equalization has since
been successively refined. Most importantly, each pixel
can be transformed based on the histogram of a con-
textual region [KLW74, KLW76, Hum?77, Piz81], and the
contrast amplification can be limited by clipping the
histogram [PAA*87]. The latter variant, called contrast-
limited adaptive histogram equalization (CLAHE), is in
most widespread use today and is the method that has
been implemented here.

Specialized hardware for computing histogram equal-
ization also has a long history. The paper that intro-
duced contrast limiting [PAA*87] also discussed how to

implement histogram equalization on special processor
architectures. Since then, implementations as a special-
ized multiprocessor machine [EPA90] and as parallel
software on commercially available hardware [Kur91]
have been provided. More recently, several implementa-
tions of global histogram equalization have been devel-
oped that either partly [SS99, DND*01] or exclusively
[LNC"98,JCR03, AAO5] rely on FPGA logic. Reza has
presented a hardware implementation of CLAHE with
an application in medical imaging in mind [Rez04].
Ferguson et al. have developed an FPGA implementation
of CLAHE intended for video processing [FAEP08]. Both
closely follow the software algorithm.

The intended application of this implementation is
the processing of image sequences from an infrared (IR)
camera with a dynamic range of 14 bits or more. Reduc-
ing the dynamic range is necessary before the images
can be displayed on a standard computer monitor. Most
displays support a dynamic range of 8 bits in each
colour channel, resulting in a dynamic range of 8 bits
for greyscale images as well. Displays with a higher
dynamic range are sometimes recommended, such as
for medical applications [NEMO09], but the available
dynamic range should always be utilized as effectively
as possible. Histogram equalization is the method of
choice for this purpose.

Besides visualization, there are other reasons to use
histogram equalization. The FPGA implementation that
is presented in this paper is to be part of a reconfigurable
hardware image processing system briefly described in
[BGPT09]. Reducing the dynamic range of pixel values
allows to reduce the chip area required for downstream
image processing algorithms if necessitated by resource
constraints. Employing histogram equalization for this
purpose allows to do this in a way that minimizes image
degradation. As one important application of the image
processing system is the investigation of object tracking
methods, an important requirement for this histogram
equalization implementation is minimal latency, so that
the reaction time of tracking algorithms is largely unaf-
fected.
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This paper is structured as follows. The following
section will review histogram equalization methods and
present an optimization of the chosen method for a
hardware implementation. The implementation will be
presented in section 3 and the appendix. Section 4 will
describe the application and the test setup and demon-
strate the benefits of partial dynamic reconfiguration.
The final section will summarize the paper.

2 THEORY
2.1 Transformation formula

This section will present a brief derivation of the his-
togram equalization transformation formula; for a more
detailed version, see [Hum?75] or textbooks such as
[GWO02].

Histogram equalization, as its name suggests, refers
to transforming an image in such a way that the his-
togram of the resulting image is flat. It is not generally
possible to do this exactly in the case of a real-world
discretized image. In the following derivation, we will
therefore work with an idealized greyscale image, which
has continuous coordinates and a continuous brightness
value at each point. Without loss of generality, we will
assume the range of brightness values is the unit interval
I=10,1].

Then the histogram of the image is also a continuous
function, the probability density function (PDF) of the
image values z:

p:I — I

x = p(x)

If y is the image value z is transformed to, and ¢ is
its PDF, the requirement of histogram equalization is
expressed by ¢(y) = 1. From the principle of probability
conservation

p(z) dz| = |g(y) dy|

and the requirement that we seek a monotonically in-
creasing transformation function, one derives the trans-
formation:

v=[ pe)ar
0

Expressed in words, the histogram equalizing transfor-
mation function is the cumulative distribution function
(CDF) of the image values.

This transformation formula is discretized for use with
real-world discretized images:

z € {0,1,...,25 -1}
e {0,1,...,2"—-1}
21 &
el 0
xr'=

where N is the total number of pixels in the image or
image region, NN, is the number of pixels with value z,
and |-] is the floor function. Usually £ > 7, ie., y has

no more bits than z. If some of the bin counts N, are
too large (larger than N/(27 — 1)), there will be gaps
in the histogram of y. This is a consequence of the
fact that values that have been lumped together in the
same z bin cannot be picked apart again. So in the
discretized case, the histogram of the image resulting
from a histogram equalization is only flat when averaged
across the gaps. Nonetheless, the resulting image shows
improved contrast.

y can also be computed from a histogram that contains
more than one value of z in each bin. This requires
that the bit width of y is smaller than that of z, or the
accuracy of the result will suffer. The formula for y then
takes the form:

B(x)
M1
_ N 2
y N éob : )

where N, is the bin count of bin b and §(z) stands for
the bin which the original pixel value = belongs to.

2.2 Variants

Since its inception, histogram equalization has evolved
into a number of variants, each of which redresses
some of the drawbacks of the previous one. Applying
histogram equalization globally to an image has the
disadvantage that bright and dark regions of the image
are treated equally. This may cause the contrast in
very bright or dark regions to remain bad or even
to deteriorate. This problem is solved by adaptive
histogram equalization (AHE) [KLW74, KLW76, Hum?77,
Piz81]. AHE transforms each pixel according to the
histogram of a neighbourhood region. As a consequence,
contrast is enhanced locally, with physically separated
bright and dark regions treated independently. The size
of the neighbourhood region serves as a scale parameter.
Variations in the image data on length scales larger than
this parameter are suppressed, those on smaller length
scales are enhanced.

The downside of AHE from a quality perspective is
that it can overamplify noise: when the neighbourhood
lies completely within a nearly homogeneous region,
a very small range of values is mapped to the whole
output range. This is remedied by CLAHE [PAA*87].
This method clips the histogram at a predetermined
value before computing the transformation function,
thereby limiting the contrast amplification. It was found
[PAAT87] that it is advantageous to redistribute the
excess rather than discard it. This is done in a re-
cursive process that, while it can be implemented in
hardware [Rez04, FAEP08], is not particularly suitable
for it. The following subsection will present an equally
good alternative that lends itself well to a hardware
implementation.

The second drawback of AHE (and the straightfor-
ward version of CLAHE) is that it is computationally
expensive (in software) or quite complex (in hardware).
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Figure 2. The redistribution procedure that is part of the histogram clipping for CLAHE. (a), (b) One step in the conventional recursive method.
(c) The new single-step method: only non-exceeding bins receive the redistributed excess, and the secondary excess is discarded (see text).

Figure 1. Tile-interpolated CLAHE: Transformations computed from
the tile histograms are appropriate for the tile centre pixels (black
squares). Pixels in the bulk of the image (a) are bilinearly, margin pixels
(b) linearly interpolated between the transformations of the nearest
centre pixels. Corner pixels (c) transform as the corner centre pixel.

This is also redressed in [PAA*87]. Rather than compute
the histograms and transformation functions for the
neighbourhood of each pixel, this is done for each tile
of a rectangular grid into which the image is divided
up. For the centre pixel of a tile, that transformation
function is obviously the correct one. For the others, a
linear interpolation between the transforms belonging to
the nearest tile-centre pixels is performed as displayed
in figure 1. Most pixels lie in the bulk of the image
and are surrounded by four tile centre pixels. They are
transformed with the corresponding four different trans-
formation functions and interpolated bilinearly to obtain
the result pixel value. Pixels on the image margins
are linearly interpolated between transformation results
from the two neighbouring centre pixel transformation
functions. Finally, corner pixels are not interpolated at all
but simply transformed with the transformation function
of their tile.

2.3 Excess redistribution without recursion

The key element of CLAHE is the limiting of the contrast
amplification by clipping the histogram before comput-
ing the transformation function. The conventional way
of doing this is by the following recursive procedure

[PAAT87]. The histogram is clipped at the predefined
clip limit, which is a parameter of CLAHE. The total
excess from those bins that exceed the clip limit is
distributed equally over all histogram bins, as depicted
in figure 2. This once again pushes some bin counts
over the clip limit (figure 2 (b)). The resulting excess is
redistributed again, and the procedure is repeated until
the limit is not exceeded by any bin any more.

Implementing recursion in hardware can be complex,
necessitating the implementation of control flow and of
storage for intermediate results, and time-consuming, as
recursions are performed sequentially. In particular, in
our case each recursion requires a complete pass over
the histogram RAM even if redistributing the excess and
determining the excess for the next round are combined
[Rez04]. This means that the time for the whole redis-
tribution procedure is of the order of the number of
iterations times the number of histogram bins.

Fortunately, the redistribution can be well approxi-
mated by a single-step procedure. It is based on the
observation that the histogram bins that initially exceed
the clip limit will again do so in every recursion. This is
because those bins are clipped to exactly the clip limit, so
every redistribution step will push them over the limit
again. What is more, only a few additional bins will be
clipped in the later recursions, namely those that do not
initially exceed the limit but are close enough to it that a
redistribution step makes them exceed it. The single-step
redistribution procedure then consists of redistributing
the initial excess only once, and only among the bins that
do not initially exceed the limit, as displayed in figure 2
(c). The relatively few bins that are pushed over the limit
are clipped again, and the secondary excess, marked by
red crosses in figure 2 (c), is discarded.

2.4 Validity of the approximation

The following calculation will estimate the error incurred
by discarding the secondary excess. To that end, we will
utilize the continuous formulation introduced in the first
part of section 2.1. Since the histograms of IR images
consist of one or several peaks (see figure 3), a Gaus-
sian function will be used as an exemplary continuous
histogram.

It seems unlikely that the precise shape of the peak
would influence the error introduced by the modified
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Figure 3. Example histogram of a 14-bit infrared image. This
histogram corresponds to the scene displayed in figure 9. The narrow
peak to the right represents defective pixels which always take the
maximum value.

redistribution procedure to a significant extent. The
fact that the Gaussian is a symmetric function does not
play a part. By combining two halves of Gaussians
with different o, one can approximate an asymmetric
peak. The discarded excess for the resulting function lies
between that for the two Gaussians. A histogram with
several peaks can be constructed similarly, by putting
two Gaussians next to each other.

So in the following, the image PDF is assumed to be
a Gaussian function centred on 3:

p(z) = N exp <(”’72_U§)2> 7 .
B

Here, erf is the error function, the normalized integral
over the Gaussian, defined as follows [AS64, GROO]:

% /01' exp (—t2) dt

As the first step, we have to compute the locations x4
and z, where the histogram crosses the clip limit /.
Because p is centred on %, 712 have to be symmetrical
with respect to z = 1. The result is:

1 1 / N
§ix0(€):§ia 210g7 4)

If ¢ is larger than the maximum of the PDE, N, the
term under the square root becomes negative, and no
real solutions exist because the histogram is everywhere
below the limit, p(z) < ¢ Vz. Otherwise, the primary
excess to be redistributed is

@0 (£)
2/ ple+ 1) de —2z0(0) ¢
0

_ erf \/log(N'/¢) () £
erf ((2\/50’)71>

This amount is redistributed to the regions outside the
interval [z1, z2], so the PDF is increased in these regions

erfr =

T2 =

E(0) (p(a:) - é) dz

©)

Table 1. Error introduced by neglecting the secondary excess in
figure 2 (c) for a Gaussian PDF.

o ¢ D
0.05 4 0.001
0.05 3 0.003
01 3 57-107%
01 2 0.006
by the constant
E(0)
S = 6
1-2 Zo (Z) ( )

The quantity we want to compute is the fraction of the
histogram that we ignore by discarding the secondary
excess after redistribution. Because our PDF is normal-
ized, this is equal to the integral of the PDF over the
discarded regions. These are the regions above the clip
limit between the intersection of the shifted PDF with the
limit and the old intersection, as indicated in figure 2 (c).
The new intersection points are the same as the points at
which the original PDF intersects the limit ¢ — S. They
are therefore given by (4) with ¢ replaced by ¢ —S. So
the amount neglected by the single-step redistribution
procedure is

10(475’) 1
2/ L, e ho9)

_ erf y/log(N /(€ — S)) — erf y/log(N /¢) @
erf ((2\/50)_1)

~ 20 (Viog(W/(Z = 5)) ~ Viog(N]1) ) (¢ - )

Some values of D for typical parameter values are
displayed in table 1. £ is necessarily larger than 1,
since that is the average of the normalized PDF. On the
other hand, if / is chosen much larger than 1, it exceeds
the height of the PDF peak, and no clipping happens.
Table 1 shows cases with a reasonable value of ¢ where
the peak is high enough (¢ is small enough) that clipping
occurs. As the table shows, the secondary excess is less
than one percent of the total in all cases.

In addition to the above general derivation, the single-
step redistribution procedure was tested on real-life
images. The images were IR images available at the
author’s institute as well as standard test image series
from the Signal and Image Processing Institute of the
University of Southern California' and imagecompres-
sion.info?. The latter is available in a bit depth of 16
bits. The colour images from USC-SIPI were converted
to greyscale before processing. Five images from the
USC-SIPI Miscellaneous series and one image from im-
agecompression.info were left out because they do not
depict natural scenes. The results are shown in table 2.
They have the same order of magnitude as the results

D

1. http://sipi.usc.edu/database /index.html
2. http:/ /www.imagecompression.info/test_images/
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Table 2.

Error introduced by neglecting the secondary excess in figure 2 (c), averaged over various test image series.

Source Series Bit depth  Number of images D (/=3) D ({=4)
This author IR 14 11 0.0017 8.7-107%
imagecompression.info ~ Gray 16 bit 16 14 9.5-107% 5.7.107%
USC-SIPI Aerials 8 38 0.001 2.6-107%
USC-SIPI Miscellaneous 8 39 0.001 4.2-107%

of the formal calculation and are consistently better for
= 4.

2.5 Preprocessing

In this implementation, the actual histogram equaliza-
tion is preceded by a preprocessing step. This is com-
mendable due to some characteristics of the IR images
that are to be processed. Because of the challenges
involved in manufacturing IR imaging sensors, such
sensors are not perfect but contain a significant number
of bad pixels which always have the minimum or max-
imum grey value. Also, in most situations the occupied
range of grey values is smaller than the maximum
dynamic range. Both effects can be seen in the example
histogram in figure 3. These effects would reduce the dy-
namic range of the result image if histogram equalization
were performed immediately. In attempting to stretch
the bad pixels accumulated at either end of the input
dynamic range, CLAHE would create a gap next to the
minimum or maximum value. In addition, the contrast
limiting would prevent the empty regions between the
minimum or maximum and the occupied range from
being squashed, causing the corresponding region of the
output range to be wasted.

Both these problems are solved by applying a win-
dowing transformation to the grey values before per-
forming histogram equalization: Based on the global
histogram of the image, a certain share of the largest
and smallest values are discarded as bad pixels. The
remaining pixels are scaled linearly to occupy the full
range of an intermediate value, which is then input into
the CLAHE step. The share of pixels to discard is a
characteristic of the camera, which has to be determined
manually.

3 IMPLEMENTATION
3.1 General

This and the following sections will concentrate on new
aspects of the implementation and describe its structure
very briefly. Readers aiming to reproduce the implemen-
tation should refer to the appendix and to the description
of the hardware implementation in [Rez04].

The structure of the CLAHE implementation is dis-
played in figure 4. Two submodules are instantiated,
which handle the global histogram for the preprocess-
ing step and the tile histograms and transformations,
respectively. The global histogram submodule consists
primarily of the global histogram RAM, in which the

Histogram equalization module
Global histogram Tile histogram module
module ‘ ‘
[ [
G.IObal Tile Trans—
histogram . .
RAM histogram formation
RAMs LUTs
Til I lati
Windowing 1le a.nd nterpolation
f . coordinate module
transformation counters
Figure 4. Structural overview of the CLAHE implementation
Port A Port B
»| ADDR ADDR [«
0> WE WE — C CE

DIN
DOUT

DIN .
DOUT =
A

r Excess +1
n -
L =»

value

> L >
Figure 5. Simplified schematic of the tile histogram generation
circuit. The input data valid and in-range signals that qualify all write
operations are omitted. Histogram bins are incremented until they
saturate. L stands for the clip limit. The total pixel count, excess count

and number of saturated bins are generated simultaneously with the
histogram.

y

E»-'a] Histogram RAM

]

histogram is built up as pixels are available. After the
end of each frame, the histogram is accumulated both
from the bottom and from the top until the prescribed
fraction of bad pixels is exceeded. The histogram bins
where this happens are taken as the limits of the range
of pixel values to be processed further with the CLAHE
method.

In the top module, the global linear transformation of
the preprocessing step is performed on the basis of the
range from the global histogram submodule. Pixels that
are outside the range are marked as such.

The tile histogram submodule contains most of the
CLAHE implementation. It instantiates two sets of
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RAMs, for the histograms and transformation functions
of each image tile. One submodule contains coordinate
counters which track the tile and coordinate within the
tile of the current pixel. Another submodule performs
the bilinear interpolation between the four transforma-
tion results as described in section 2.2.

The input data of the tile histogram module are the
intermediate pixel values resulting from the preprocess-
ing step. As in the case of the global histogram, the tile
histogram bins are incremented as pixels arrive at the
module (see figure 5). Only the pixel values inside the
range determined in the preprocessing step are taken
into account. The clipping is implemented simply by
stopping incrementing once a bin count has reached the
limit. Besides avoiding a separate clipping pass over the
histogram, this has the additional benefit that the width
of the histogram RAM can be reduced significantly, as
the maximum value that has to be stored is the clip limit.
Simultaneously to histogram generation, a total pixel
count and an excess count are computed for each tile.
The former is counted up on every in-range pixel, the
latter only if the corresponding bin is not incremented
because it has saturated. A further per-tile counter keeps
track of the number of bins that have saturated. The total
number of bins minus the end result of that counter gives
the number of bins among which the excess has to be
redistributed (see section 2.3).

In this way the clipping is performed in the same
process as the creation of the histograms, and all data
necessary for redistribution are available when the his-
togram is complete. Only one additional pass over the
histogram is necessary to redistribute the excess and
compute the transformation function. This is performed
for each row of image tiles in parallel. First the amount
to be redistributed to each bin is computed. Then each
bin count is increased by that amount, clipped to the clip
limit and added to the sum of previous bin counts. This
is done indiscriminately to all the bin counts — for those
that are already saturated, the clipping undoes the effect
of the redistribution. The partial sum is then multiplied
with a normalization factor® to obtain the transformation
function value, which is stored in the look-up table.

Finally the interpolation submodule transforms each
intermediate pixel value according to the transformation
functions corresponding to the four nearest tile centre
pixels. The tile counter submodule provides the tile
numbers and the distances from the centre pixels. Linear
interpolation is performed in the horizontal and vertical
direction as required (cf. section 2.2 and figure 1). Pixel
values that are outside the range of the initial windowing
bypass the whole transformation process and are set to
the minimum or maximum output value, respectively.

3. The normalization factor is derived from the pixel count excluding
bad pixels but including the secondary excess, which slightly biases the
transformation function towards smaller pixel values. This could be
corrected by deferring normalization until the transformation functions
are used, when the secondary excess is known.

3.2 Minimizing latency

To reduce the latency of this CLAHE implementation,
two means are employed: performing different steps of
the algorithm in parallel on the same frame and making
use of the vertical blank interval between frames.

The preprocessing step requires knowledge of all pixel
values before the appropriate linear transformation can
be determined, which gives it a latency of a whole frame.
The CLAHE transformation of a pixel may require all
the pixel values of the tile below and to the right of its
own, resulting in a latency of 15 times a tile row. This is
not acceptable for our purposes. The problem is solved
by using the data range from the previous frame for the
windowing transformation in the preprocessing step and
by transforming pixel values with the tile transforma-
tion functions from the previous frame. This allows to
perform the three steps of which the algorithm consists
— value range determination, tile histogram generation
and transformation of pixel values — in parallel on the
current frame, as shown in figure 6. The total latency
of the transformation path (bottom of figure 6) is nine
clock cycles.

The validity of this procedure is based on the as-
sumption that the content of successive frames and of
corresponding tiles in them is similar. This assumption
was verified in IR sequences available at the author’s
institute and surveillance video sequences® from the
conference PETS2007 [Fer07]. The tile histograms of
successive frames were computed, and their normal-
ized RMS differences were found to be of the order of
1073, The following factors can affect the validity of the
assumption: Other things being equal, a high camera
frame rate and a large field of view are beneficial because
they reduce differences between frames. Fast panning
of the camera may be detrimental, but is also likely to
degrade image quality through motion blur.

Those operations that do not process pixel values as
they arrive — finding the value range of the global his-
togram and generating the tile transformation functions
— are designed to be performed during the vertical
blank gap between successive frames. Their results are
available for processing of the first pixel of the following
frame. This places a constraint on the duration of the
vertical blank interval of the camera used. The number
of pixel clock cycles taken up by the vertical blank must
be at least

Ty > max{Bg+72, (35+ Br) Ngx+39}, (8)
where Bg and Br are the number of bins of the global
histogram and of the tile histograms, respectively, and
Nty is the number of tile columns. The cameras with
which the CLAHE module is to be used fulfil this
requirement.

4. Available from http://www.cvg.rdg.ac.uk/datasets/index.html
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3.3 Choice of design parameters

This implementation of CLAHE is systematically
parametrized by constants in the top module which
are propagated to the submodules through the use of
VHDL? generics. The most fundamental parameters are
the width and height of the frames, the number of tiles
in the horizontal and vertical direction, and the input
and output bit widths. In addition, the range determina-
tion for the preprocessing step has two parameters, the
amount to discard at each end of the global histogram.
These are given as real-valued parameters interpreted
as the share of the total number of pixels to discard. By
not choosing the explicit number of pixels as parameters,
they are made independent of the frame size, which
determines the total number of pixels.

The last but not least parameter is the CLAHE clip
limit. This is also specified in a way which makes it
independent of the other parameters, in the following
sense: If the accuracy of the input image data is modified
(by changing the image size or input data bit width), the
same clip limit parameter should still produce the same
output image (within the limits of numerical precision).
This is achieved by dividing the clip limit by a quantity
proportional to the average bin count, as follows.

The tile histogram total approximately equals the
number of pixels in the tile, so the average bin count is
proportional to it. The average bin count also is inversely
proportional to the number of bins and therefore to the
number of different input data values of the tile his-
togram module. So we choose the clip limit parameter
las

’

Br 2¢
iy S
N N
where Br is the number of bins of the tile histograms,
¢ the bit width of the intermediate pixel values after
preprocessing, N the number of pixels in the tile and
L the actual limit used to clip the tile histograms. The

5. VHDL is one of the major hardware description languages. It
stands for “VHSIC hardware description language”, where VHSIC
stands for “very high speed integrated circuit”.

— during frame

- - - -» during vertical blank

Data flow graph of the CLAHE implementation. Paths represented by dashed arrows do not affect the latency of the transformation

parameter ¢ is the same variable as has been used for
the continuous-valued computations in section 2.4 and
can be viewed as the maximum slope of the continuous
transformation function. The implementation computes
L from the real-valued ¢ at compile time using VHDL
constants.

3.4 Some details of the design

This section presents some details of the CLAHE imple-
mentation which help ensure numerical accuracy while
not wasting any resources.

Histogram bin size ~ Minimizing the number of his-
togram bins saves storage space for the histogram and
time for accumulating the histogram values. In this
implementation, the number of tile histogram bins is
chosen as four times the number of possible output pixel
values. This introduces an error of up to ¢/4 of the least
significant bit in the output pixel values. For reasonable
values ¢ < 4, this is no worse than the precision of the
output data. Importantly, the errors do not add up across
bins because a partial sum over whole bins is always
exact.

Similarly, the global histogram has four times as many
bins as the number of distinct values for the intermediate
pixel values, 16 times the number of output pixel values.
This results in an inaccuracy for the minimum and
maximum of the global value range, but it is small
compared to the size of that range. The minimum and
maximum values are rounded towards the middle of
their bins.

To sum up, the histogram bin sizes are

= 9¢
— 9¢'+2

Br = 27+2

Be (10)

— ont+d

Intermediate quantities ~ Three parts of our algorithm
require a division: the windowing of the preprocessing
step, the computation of the excess to be redistributed
per eligible bin, and the computation of the transfor-
mation function normalization factor. In order to save
resources while maintaining accuracy, these divisions

Author-generated version of DOI 10.1007/s11554-011-0204-y published in the Journal of Real-Time Image Processing


http://dx.doi.org/10.1007/s11554-011-0204-y

8 Volker Schatz: Low-latency histogram equalization for infrared image sequences — a hardware implementation

were replaced by multiplications with the inverse of the
denominator, which is computed only once during the
vertical blank gap. So as not to introduce numerical
errors, the bit widths of these inverses and other inter-
mediate quantities are computed at compile time. This is
done by value range propagation based on the bit widths
of the histogram inputs and the output data.

Exploiting dual-port RAMs  Most of today’s FPGA archi-
tectures offer dual-port on-chip RAM blocks. Their most
important application in this CLAHE implementation
is in generating the histograms at a throughput of one
pixel per cycle, as displayed in figure 5. One port is
used for reading the current bin count, the other for
writing the new count after incrementing. Writing the
new count and reading the (usually different) next bin
to be incremented is done simultaneously. The existence
of two RAM ports also allows to save storage space by
packing all tile histograms of one tile row into one set
of RAM blocks. Every two of the four transformation
results needed for interpolation come from two ports of
the same RAM.

3.5 Resource usage

The histogram equalization module was synthesized,
placed and routed for five different FPGA architectures,
the Virtex-II Pro, Virtex-4, Virtex-5, Spartan3 and Spar-
tan6, all made by Xilinx. The three Virtex chips are
members of the high-end FPGA series from Xilinx that
are in use at the author’s institute. The Virtex-II Pro
in particular was used for testing and demonstrating
the histogram equalization module (see next section).
The Spartan6 and Spartan3 are the newest and previous
generations of Xilinx low-cost FPGAs.

To determine its resource requirements, the module
alone was synthesized without any logic interfacing a
camera or data sink. The synthesis software used was
Xilinx ISE. The effort level of the mapper and placer
and router was set to “high”. The clock frequency
was slightly overconstrained to determine the maximum
frequency that could be achieved.

Table 3 shows the resource usage and maximum clock
frequency of the histogram equalization module on the
five architectures. Its parameters were a frame size of
640 by 480 pixels (VGA resolution), an input bit width
of 14 bits and output bit width of 8 bits, a clip limit
of 4, and 8 by 8 tiles. The module fits comfortably on
the large Virtex chips, which makes using it as part of
a larger image processing chain on an FPGA feasible.
The two Spartan devices in table 3 are the smallest
of their series on which the module fits. The limiting
element is the number of RAM blocks required for the
histograms and transformation functions. The Spartan3
4000 is the second largest Spartan3, but the Spartan6
LX45 is medium-sized for its series [Xil09].

That the clock frequencies in table 3 are relatively
low is mainly due to multiplication operations on num-
bers that are wider than the built-in multipliers of the

architecture. In addition, the critical paths sometimes
contain multiplexers or adders or subtractors. If clock
frequency was a concern, additional pipeline stages
could be added. However, the pixel clock frequencies of
the cameras currently used together with the histogram
equalization module range from 9 to 16 MHz, so the fre-
quencies achieved are quite sufficient. Also, the devices
chosen for the comparison in table 3 are not the fastest
speed grades of their respective series.

figure 7 shows how the resource usage depends on
various parameters of the module. The slices, multipliers
and RAM blocks used are displayed relative to the
resources used by the module with the set of parameters
above, which is consequently displayed as 1 in all plots.
The parameters that were not varied in each of the
comparisons were kept as above. The target device was
the Virtex-5 FX130T.

Figure 7 (a) shows that the size of the histogram
equalization module depends only moderately on the
frame size. Adjacent frame sizes differ by a factor of two
in both width and height, and therefore by a factor of
four in the number of pixels. That the required resources
do not vary much is due to the fact that the pixels are
streamed through the module and no part of the image
is stored.

The most important parameters on which the resource
usage does depend are the output bit width and the
number of tiles, as shown in figure 7 (b) and (c). The
output bit width determines the width of the transfor-
mation function look-up table (LUT); hence the strong
dependence of the number of RAM blocks required.
The number of tiles has the largest influence on the
resource usage. This was to be expected, as large parts
of the module exist for each tile: the histogram RAM,
the transformation function LUT, and the circuits that
generate the histogram and the transformation function.

Lastly, the dependence of required resources on the
clip limit is slight, as shown in figure 7 (d). That a
small dependence exists at all is due to the fact that the
clip limit determines the width of the histogram RAM.
The resource usage shows almost no dependence on the
input bit width (not shown in figure 7). This is because
the size of the global histogram and the bit width of
all logic after the initial windowing are determined by
the output bit width and are thereby independent of the
input bit width.

The results of synthesis runs as those displayed in
figure 7 have to be taken with a pinch of salt. There are
threshold effects involved in all three types of resources:
RAM blocks may be partly utilized, not all bits of a
multiplier may be needed, and slices may be underused
due to imperfect packing. But that the major resource
usage dependencies could be ascribed to features of the
histogram equalization module suggests strongly that
the results above are valid.
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Table 3.

Resource usage for the fully placed and routed histogram equalization module, not including any interfacing or auxiliary logic. The

parameters of the module are a frame size of 640 by 480 pixels, 14 bits input data width, and 8 by 8 tiles. The small table on the right is to
remind the reader that the multipliers and RAM blocks of the Virtex-5 architecture and the slices of the Virtex-5 and Spartan-6 are larger than

those of the others

Device Virtex-II Pro Virtex-4 Virtex-5 Spartan-3 Spartan-6 Odd-one-out resource sizes
Part number xc2vpl00-6  xc4vfx100-10 xc5vix130t-1  xc3s4000-4 xc6slx45-2 Virtex-5 + Spartan-6 others
Slices 9045 20% 9037 21% 3691 18% 9130 35% 3396 49% LUTs / slice 4 x 6 bit 2 x 4 bit
Multipliers 27 6% 27 16% 18 5% 27 28% 27  46% Virtex-5 others
RAM blocks 61  13% 61  16% 32 10% 61  63% 61  52% Mult. width 18 x 25 18 x 18
Max. frequency 72.9 MHz 71.8 MHz  101.3 MHz 38.4 MHz 44.7 MHz BRAM size 36 kb 18 kb
Resources by frame size Resources by output bit width Resources by number of tiles Resources by clip limit
'— Slices ' ' '— SIices' ' ' '— Slices' ' / '— Slices' ' '
2+ Multipliers 1 2+ Multipliers 1 2+ Multipliers 1 2+ Multipliers 1
— RAM blocks — RAM blocks — RAM blocks — RAM blocks
15¢ 4 15} 4 15} 1 15} 4
1k ] 1} ] 1} ] 1 ]
05| i 05| i 05 — i 05| <
320x240 640x480 1280x960 6 7 8 9 4x4 6x6 8x8 10x10 2 3 4 5
(a) (b) (c) (d)

Figure 7. Dependence of the resource usage of the histogram equalization module on the frame size, the output bit width, the number of tiles,
and the normalized clip limit £. The plots show the number of slices, multipliers and RAM blocks relative to the resources used for a frame
size of 640 by 480 pixels, 8 bit output data, 8 by 8 tiles, and clip limit 4. The input data bit width was always 14 bits. The y axes in all plots
are scaled equally for easy comparison. This comparison was performed for the Virtex-5 FX130T.

3.6 Comparison with prior work

There exist two previous hardware implementations of
the tile-based CLAHE algorithm, by Reza [Rez04] and
Ferguson et al. [FAEP08]. Reza’s work is aimed at the
real-time visualization of medical X-ray images. He is
careful to keep the latency of his design within the
bounds required for that application and achieves a
latency of half a frame interval, typically 1/60 of a
second [Rez04]. As the implementation presented in this
work in addition envisages use in feedback loops such
as object tracking, it was designed to have a latency
that is much lower still, of the order of microseconds.
It is therefore completely transparent to downstream
processing with respect to latency, not just to the human
eye.

Ferguson et al. have developed a CLAHE implementa-
tion for video streams with a bit depth of 8 bits per pixel.
In order to minimize size and power consumption, they
sacrifice quite a bit of accuracy. The tile histograms are
limited to 8 bins, and it is not discussed whether and
how the resulting 8-step transformation function LUTs
are interpolated to utilize the 8-bit range of result values.
The implementation given above does not trade off size
for accuracy and therefore can serve as an accurate
baseline. As a consequence it is considerably larger than
that presented in [FAEPO0S].

This work improves upon both prior implementa-
tions in several ways. The single-step redistribution
procedure presented in section 2.3 is novel and allows
a more efficient hardware implementation by avoiding
recursion. Unlike prior work, this design is extensively
parametrized, which allows adapting it to different situ-
ations without touching the HDL code. In particular, it

can be synthesized to process input data with an arbi-
trary bit depth. Finally, the preprocessing step makes the
implementation tolerant of faulty pixels and increases
accuracy if not all of the input data range is used.

4 TEST SYSTEM
4.1 Overall design

In order to be able to test and demonstrate the CLAHE
module, it was implemented together with a camera
interface on a Xilinx Virtex-II Pro FPGA. The design
consists of the camera interface, the histogram equaliza-
tion module, a FIFO buffering the transformed images
and a local bus interface. The local bus data transfers
are translated to PCI bus transfers by a bridge chip
on the FPGA card. The image data are then displayed
by a program running on the host PC. The FPGA card
used was an ADM-XP board from the company Alpha
Data [Alp04].

Because the CLAHE module has a throughput of one
pixel per clock cycle, it can run with the same clock as
the camera interface, and buffering the raw camera data
is not required. There needs to be only one clock domain
transition in the design, between the camera clock and
the local bus clock.

The histogram equalization parameters in the test
system were as follows. The image size was 640 by
486 pixels, and the input data bit width was 14 bits,
as required by the attached camera. The CLAHE clip
limit was chosen as 4, and the output bit width was 8.
Eight by eight tiles were used. The preprocessing step
was configured to discard 1% of the pixels at either end
of the global histogram.
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Figure 8.

(a) Test setup with the camera AIM 640 QLW. (b) Photograph of the scene viewed. (c) Infrared image of the scene after being

processed by the CLAHE module. The missing upper left corner is due to a patch of bad pixels on the sensor.

Table 4.  Reconfiguration times for the dynamically reconfigurable
CLAHE module and speedup relative to a reconfiguration of the
complete Virtex-II Pro FPGA. The results for the first two configuration
interfaces were measured, while those for the ICAP controllers were
calculated based on the data rates measured in [CZST08].

Interface Partial reconfiguration time  Speedup
JTAG 25s 5.2
PCI APL 203 ms 1.6
OPB_HWICAP 182 ms n/a
PLB_ICAP 9.7 ms n/a

4.2 Partial dynamic reconfiguration

In preparation for integration into a reconfigurable im-
age processing toolkit, the CLAHE module in the test de-
sign was implemented as a dynamically reconfigurable
module.

The Virtex-1I Pro FPGA supports one-dimensional par-
tial dynamic reconfiguration [LBM106]. This means that
reconfigurable modules extend over a range of config-
uration columns. The reconfigurable region containing
the histogram equalization module was constrained to
the slice columns 0 to 53 and the corresponding block
RAM and multiplier columns. This amounts to 28%
of the chip area (excluding the space taken up by the
PowerPC hard cores). Two alternative dynamic range re-
duction algorithms were implemented which can replace
the histogram equalization module: A global contrast
adjustment (the same used for the preprocessing step of
the CLAHE module) and a trivial method that merely
discards the least significant bits.

The other components of the design — camera inter-
face, FIFO and local bus interface — were wrapped in a
static design module for which the remainder of the chip
was available. The static and reconfigurable parts com-
municate through hard-placed LUT-based bus macros,
which were developed by Hiibner et al. [HBB04] and are
now provided by Xilinx. The design was synthesized
and implemented using the Xilinx ISE command-line
tools version 9.2 with the Early Access Partial Recon-
figuration patches [LBM™06].

Table 4 shows the time needed for reconfiguring the
histogram equalization module using different inter-
faces. Also shown is the factor by which the configu-
ration time is reduced relative to a reconfiguration of

(b)
Figure 9. The results (a) of a manual global contrast adjustment and

(b) of the conventional tiled CLAHE with recursive redistribution for
an infrared image of the same scene as in figure 8.

the complete Virtex-II Pro FPGA. The results in the first
two rows were measured. They apply to the JTAG
interface and the SelectMAP interface accessed via the
PCI bus, board hardware and API provided by the board
manufacturer. The reconfiguration time for the latter is
adversely affected by the fact that the API does not allow
PCI bus DMA transfers for partial bit streams. For full
bit streams this is possible, resulting in the comparably
low speedup factor.

The lower two rows in table 4 show reconfiguration
times calculated for the Internal Configuration Access
Port (ICAP). These were computed using the throughput
measured by Claus et al. [CZST08]. The first relates to
the ICAP controller provided by Xilinx, which receives
configuration data from an on-chip processor via the
On-chip Peripheral Bus (OPB). The last row applies to
the ICAP controller presented in [CMZS07], which is
attached as a master to the Processor Local Bus (PLB)
and can access a memory controller directly. The small
reconfiguration time achieved with this approach makes
it the preferred choice for a future image processing
system.

4.3 Test setup

The histogram equalization design presented above has
been operated together with a camera and a visualization
program running on the host PC. Figure 8 (a) shows the
test setup. The FPGA board was plugged into the server
PC on the left. The infrared camera used was of the type
AIM 640 QLW and is sensitive to wavelengths between
8 and 10 gym. It has a frame resolution of 640 by 486
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pixels and outputs 14 bit data. The pixel clock of its
digital interface, with which the histogram equalization
module operates, was 16 MHz.

The result of the hardware histogram equalization is
displayed in figure 8 (c). For comparison figure 9 shows
the result of a manual global brightness and contrast
adjustment and the result of a software implementation
of CLAHE with recursive excess redistribution. The
image in figure 9 is not exactly the same, because the
hardware implementation only allowed recording the
processed image, but it displays the same scene a short
time later. The superior contrast of the CLAHE can be
seen in the tree branches, the windows of the building
and the round window in the tower.

5 SUMMARY

This report has presented a hardware implementation of
the tile-interpolated contrast-limited adaptive histogram
equalization method. This implementation has been
optimized for latency. Extremely low latency is achieved
by executing successive steps — preprocessing, genera-
tion of transformation functions, and application of the
transformation — in parallel on successive frames. An
important novelty is the replacement of the traditional
recursive redistribution of the excess from histogram
clipping by a single-step procedure. This allows clipping
the histogram while accumulating it and thus saving
much time and storage space.

An exploratory synthesis has revealed that the his-
togram equalization module, when used on its own, fits
on today’s low-cost FPGAs such as the Xilinx Spartan6.
When implemented on a large FPGA such as the Xilinx
Virtex-5 series, it leaves most of the chip area for other
functionality. Its resource usage has been shown to
depend primarily on the desired result precision and the
number of tiles to use for the algorithm. It depends only
slightly on the frame size, the clip limit and the input
precision.

The histogram equalization module has been synthe-
sized together with a camera interface for a Xilinx Virtex-
II Pro FPGA. It has been shown to be functional by
operating it with an infrared camera. The test design
incorporates partial dynamic reconfiguration and allows
replacing the histogram equalization module by other
dynamic range reduction algorithms without reconfigur-
ing the whole FPGA. The histogram equalization module
will in due course be integrated into a partially dy-
namically reconfigurable image processing toolkit that
is under development at the author’s institute.
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The windowing component maps the valid input data range to the
complete output data range. The range check component outputs a
logical 1 if the input value is in the valid range.

APPENDIX

This appendix presents an overall functional description
of the CLAHE implementation and shows how the com-
ponents described in the main part of the paper work
together. Readers intending to reproduce the design
should also consult [Rez04], where an implementation of
the unmodified CLAHE algorithm is described in great
detail.

Figure 11 displays a functional schematic of the oper-
ations performed while pixel values arrive at the mod-
ule. Thick lines represent numerical quantities, while
thin lines are boolean signals. Figure 10 defines the
utilized components. As pixel values arrive, they are
added to the global histogram necessary for the range
determination of the preprocessing step. The windowing
transformation based on the range from the previous
frame is applied to the values. The range check com-
ponent determines which pixel values are within the
valid range. Its output prevents bad pixels from being
processed by the CLAHE.

In the right part of the figure, the pixel value is added
to the appropriate tile histogram. This task is performed
by the circuit displayed in figure 5 the operation of
which is qualified by the data valid and in-range signals.
Simultaneously, it is transformed using transformation
functions computed from the tile histograms of the
previous frame. The transformation results are then
interpolated to produce the result pixel value. See below
for how the right tiles are selected.

The dotted boxes in figure 11 represent submodules
within which other operations are performed during the
inter-frame gap. These operations are shown in figure 12.
The pixel value counters in that figure start from zero
and count up to the maximum once during each vertical
blank interval. The circuit on the left accumulates the
global histogram and keeps updating the range registers
until the corresponding boundary of the valid range has
been passed. The quantities BadPixLow and BadPixHigh
are the numbers of pixels at the bottom and the top of
the histogram to discard as bad pixels of the camera.

The submodule on the right which contains the tile
histograms and transformation functions operates only
on pixels which are within the range of the preprocessing
step. L is the clip limit. The registers for the number
of in-range pixels, the excess and the number of satu-
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Operation of the CLAHE circuit while pixel data arrive during the frame. See figure 5 for the tile histogram generation circuit.
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rated bins are provided by the tile histogram generation
circuit, see figure 5. The amount to be redistributed
per bin is computed, it is added to the bin value, and
that value is clipped again. The result is accumulated,
normalized by division by the pixel count and written
to the transformation LUT.

Selecting the right tiles for tile histogram generation
and interpolation requires auxiliary quantities that are
derived from the pixel coordinates. These are more con-
cisely expressed as formulas than block diagrams. The
horizontal tile indices are derived from the X coordinate
as follows:

HistTileX = X/TileWidth

InterTileLeft = (X — TileWidth/2)/TileWidth (1)
InterTileRight = InterTileLeft+ 1

InterTileXFrac = (X/TileWidth) mod 1.0 — 0.5

HistTileX is the horizontal index of the tile histogram
to which a pixel value is added. InterTileLeft and
InterTileRight are the column indices of the tile transfor-
mation functions to use for interpolation. All divisions
in the first two formulas are truncating integer divisions.
InterTileXFrac is the fractional horizontal interpolation
coefficient. Vertical tile indices and the vertical inter-
polation coefficient are computed analogously from the
Y coordinate. Pixels in the image margins or corners
have to bypass one or both of the interpolation steps,
see figure 1 in section 2.2.
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