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Low-latency localization by Active LED Markers tracking
using a Dynamic Vision Sensor

Andrea Censi, Jonas Strubel, Christian Brandli, Tobi Delbruck, Davide Scaramuzza

Abstract— At the current state of the art, the agility of
an autonomous flying robot is limited by the speed of
its sensing pipeline, as the relatively high latency and
low sampling frequency limit the aggressiveness of the
control strategies that can be implemented. To obtain more
agile robots, we need faster sensors. A Dynamic Vision
Sensor (DVS) encodes changes in the perceived brightness
using an address-event representation. The latency of such
sensors can be measured in the microseconds, thus offering
the theoretical possibility of creating a sensing pipeline
whose latency is negligible compared to the dynamics
of the platform. However, to use these sensors we must
rethink the way we interpret visual data. We present an
approach to low-latency pose tracking using a DVS and
Active Led Markers (ALMs), which are LEDs blinking at
high frequency (>1 KHz). The DVS time resolution is able
to distinguish different frequencies, thus avoiding the need
for data association. We compare the DVS approach to
traditional tracking using a CMOS camera, and we show
that the DVS performance is not affected by fast motion,
unlike the CMOS camera, which suffers from motion blur.

I. INTRODUCTION

Autonomous micro helicopters will soon play a
major role in tasks like search and rescue, environment
monitoring, security surveillance, inspection, etc. A key
problem in aerial-vehicle navigation is the stabilization
and control in six degrees of freedom. Today’s systems
handle well the attitude control. However, without a
position control, they are prone to drift over time. In
GPS-denied environments, this can be solved using
onboard sensors, such as cameras [1] or laser rangefind-
ers [2]; however, the achievable vehicle maneuvers are
still too slow compared to those attainable with off-
board motion-tracking systems (e.g., Vicon) [3].

The agility of an autonomous flying robot is limited
by the speed of the sensing pipeline. More precisely,
“speed” can be quantified in observations frequency and
latency (Fig. 1). In current state-of-the art autonomous
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navigation applications [1] cameras give observations
with frequency of 15–30 Hz and the total latency, from
acquiring the images to processing them, is in the order
of 50–250 ms. To obtain more agile systems, we need
to use faster sensors and low-latency processing.

In this paper, we consider the use of a Dynamic Vision
Sensor (DVS) for pose tracking. The main difference
between a DVS and a normal CMOS camera is that the
DVS output is a stream of events that encode changes
in the brightness. Each event encodes the location of
the change, whether there was a positive or negative
change in brightness, and has a 1 µs timestamp. These
events are not unlike spikes in a biological visual system;
however, while retinal ganglion cells show latencies of
around 200 ms, the DVS chip has a latency of 15 µs.

Theoretically, using a DVS we could obtain sensing
pipelines with a negligible latency compared to dy-
namics of the platform. We are a few years to the
goal, however. On the hardware side, the DVS camera,
though currently available commercially, has a few
limitations, such as the limited resolution (128 × 128
pixels), which will be increased in the next generation of
prototypes currently in development. On the software
side, to take full advantage of this data we need to
rethink completely the way we design robotic sensing
pipelines. It is possible to integrate the events of a DVS
camera to simulate a regular CMOS frame, on which
to do standard image processing, however, that is not
desirable, because that would give the same latency of
a regular camera. Ideally, to have the lowest latency for
the sensing pipeline, one would want each single event
to be be reflected in a small but instantaneous change
in the commands given to the actuators. Therefore, we
consider approaches that possibly use the information
contained in each single event.

In this paper, we consider the application of pose
tracking based on Active LED Markers (ALMs), which
are infrared LEDs blinking at high frequency (> 1 kHz).
The DVS is fast enough to be able to distinguish different
blinking frequencies, so that we can also uniquely assign
an observable identity to each marker. We envision that
this system could be used for inter-robot localization for
high-speed acrobatic maneuvers, or that, in applications
such as rescue robotics, these markers could be left in
the environment to facilitate cooperative mapping.

One approach to using the DVS data is to cluster the
events in order to find spatio-temporal features, like
points or lines, that are then tracked through time [4–6].
This approach works well when the camera is static,



because the output is spatiotemporally sparse.
The algorithm presented in this paper uses a different

approach. We found out that mounting a DVS camera on
a flying robot creates a new set of challenges. Because of
the apparent motion of the environment, the events are
not spatiotemporally sparse anymore. Moreover, while
in controlled conditions the DVS camera parameters
can be tuned to obtain the best performance, a robot
must be able to work in a wider range of environmental
conditions and be robust to interferences. To achieve
this robustness we have developed an approach that
sacrifices some latency to be more robust to noise
and unmodeled phenomena. We accumulate the events
perceived in thin slices of times corresponding to the
blinking frequency (1 ms slice for 1 kHz data). This
allows to do detection of the ALMs position in image
space. On top of this, we use a particle filter for tracking
the position in image space of each detection, and a dis-
ambiguation stage to obtain coherent hypotheses on the
joint position of the markers. Finally, we reconstruct the
pose using a standard approach to rigid reconstruction.

We evaluate our method in tracking the pose of
a drone during an aggressive maneuver (a flip). We
compare our methods with a traditional approach, using
a CMOS camera and a feature-based visual odometry
method. We verify that our method, with a latency of
1 ms, is able to reacquire tracking instantaneously regard-
less of the fast motion, while the CMOS data is corrupted
by motion blur. We evaluate the reconstruction accuracy
using an OptiTrack system and find values that are
compatible with the low spatial resolution (128×128) of
the DVS, which proves to be the current limitation of
this approach.

Software, datasets, and videos illustrating the method
are available at the website http://purl.org/censi/

2013/dvs.
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Fig. 1. To improve the agility of autonomous flying robots, we need
to improve the total latency of the sensing pipeline. Using a device
like a Dynamic Vision Sensor (DVS) we can theoretically obtain a
sensing pipeline which has microsecond latency.

II. THE DYNAMIC VISION SENSOR (DVS)

A regular CMOS camera records a visual scene by
taking a stroboscopic series of still frames. Computer
vision and robot perception methods work on the
analysis of each frame separately. This established
approach has some fundamental drawbacks: each pixel
gets sampled and processed over and over again at each
frame, independently of its relevance to the decision to
be taken, or whether its value changed. Much processing
power is used for considering redundant information,
which translate into high latencies and low frame
rates. In contrast to this, we observe that in biological
systems there is redundancy suppression already on
the “sensor”: as recordings of nerve cells coming from
the eye show, the retina mostly responds to changes in
the perceived brightness.

The field of neuromorphic engineering tries to imple-
ment the computations done by nervous systems as
VLSI circuits. The computation is analogic: currents,
voltages and charges are used for computing, rather
than binary representations. The resulting circuits are
also asynchronous: like nervous cells, they operate inde-
pendently of an external clock for state transitions. There
has been a large amount of research in neuromorphic
sensory systems of different scale and complexity [7].
The first system to be commercially available is the so-
called “silicon retina” or dynamic vision sensor (DVS) [8].

Each pixel in the DVS operates independently and
asynchronously from the others. The photons that reach
a photodiod produce a photocurrent, which is converted
into a voltage. This voltage gets continuously compared
to the last sampled voltage. As soon as the difference
between these two voltages is larger than a certain
threshold, the pixel requests to send an event off chip.
After the address and the timestamp of this event has
been registered from a CPLD at the chip periphery, the
pixel is reset, and the most recent voltage gets sampled
to be compared against successive voltages. Depending
on the sign of the difference, either a P event (positive)
or an N event (negative) is generated. P events indicate
that the brightness increased, N events indicated that
it decreased. All of this computation is done without
digitizing the signal.

The parameters that modulate the pixel behavior are
dynamically programmed using a set of bias currents.
Some of the parameters that can be dynamically changed
are the temporal contrast frequency cutoff, the P & N
threshold, and the event frequency cutoff. Each event
carriers the following information: the address of the
pixel that observed the change (equivalent to its x, y
coordinates), the polarity (P or N), and a timestamp,
which has a 1 µs resolution.

The sensor therefore only produces output if the
observed scene changes. This is not only the case if
the intensity of a light source gets modulated (as with a
blinking LED), but also if a static scene moves relative
to the sensor. If the sensor itself is moved it perceives
all the edges and contours in its visual field.



Sensing the world with a set of autonomous, change-
sensitive pixels has various advantages compared to
traditional image sensors:

• Since the photocurrent gets converted to a voltage
on pixel level, the brightness measurement does not
require a uniform exposure time for all pixels. This
leads to the high dynamic range of 120dB which is
capped by the exposure time in conventional image
sensors.

• By only sensing changes, the sensor performs on-
chip data compression. This does not only make the
amount of output data dependent on the activity in
a scene but it also focusses the processing effort on
the region of interest where it is changing. This
focusing leads to controller update intervals of
down to 125 µs [5].

• Redundant information does not occupy the output
bus and tiherefore relevant information can be
signaled very fast. The sensor chip itself has a
latency of 15 µs which allows to come up with
sensor-actuator latencies (including sensor and ac-
tuator USB communication and laptop processing)
of 3 ms [4].

• The high resolution of the event timestamps can be
used to investigate the dynamics in a scene such as
motion or blinking frequencies. While conventional
vision sensors only allow to investigate the scene at
given times, the DVS produces a continuous stream
of information.

The main drawbacks of the current generation of DVS
are its low resolution of 128 × 128, and the inability
to sample the absolute brightness levels like a normal
camera.

The low resolution is due to the prototype fabrication
process used (350 nm) and the fact that each pixel is
associated to a complex circuit carrying on the analogous
computation. The static scene content cannot be accessed
because the according technology was not ready for the
first series of sensors. But since the field of event-based
vision sensors is steadily growing [9], these limitations
will soon be overcome.

Some of the latest developments include higher
temporal contrast sensitivity of 1.5% [10] and higher
spatial resolution of 240× 180 or 304× 240, accompanied
with a readout channel for pictures and movies that
simulates a CMOS camera [11, 12].

Ongoing efforts include increasing the availability
of the embedded version of the sensor (eDVS, used
in [5]), which weighs only a few grams and measures
30 × 50 × 50 mm. Furthermore, future versions of event
based vision sensors are expected to include a USB 3.0
interface for higher data transmission rates.

III. HARDWARE SETUP AND EVENT DATA

This section describes the hardware setup and gives
an intuition of the event data that a DVS produces.

1) DVS and its interface: The DVS attaches to a
computer using a common USB port. The camera is
distributed with a portable software framework written
in Java called jAER [13]. This project, developed in
C++ for maximum efficiency, needed a special driver
to be developed, based on the Thesycon USB device
driver [14]. The events are transmitted from the camera
in packets of up to several hundred events; however,
each event is independently tagged at the source with
its proper timestamp.

2) Active LED Markers (ALMs): The LED controller is
based on the bronze board [15] from inilabs, which is
based on an AVR32. We used infrared LEDs since the
DVS is most sensitive in the infrared spectrum.

In our setup we could easily change the PWM fre-
quency to the LEDs. An upper bound on the detectable
frequency depends on the power of the LEDs and the
distance to the camera; a DVS camera is not magic:
there must be a large enough change in the number of
photons reaching the photoreceptor to trigger an event.
In our setup we found 2 KHz to be an adequate number.
The frequencies for each LEDs were then decided in
the interval 1–2 KHz making sure we did not choose
frequencies with common harmonics. A reasonable
lower bound on the blinking frequency was found
experimentally to be 1 KHz to minimize the confusion
between with background motion (see Section III-.4
below).

3) Statistical properties of event sequences: Fig. 2 gives
an intuition of how the data looks like. In this scenario
both the ALMs and the DVS are fixed. Fig. 2a shows
the histogram of the number of events coming from a
particular pixels. The three peaks are the three ALMs
( f = 500, 700, 1000 Hz). The number of events is different
for each peak because the frequencies differ. The halo in
Fig. 2a cannot be explained by the refractive properties

(a) Events histogram (b) P/N events sequence

P

N

(c) P/N interval

0 8 ms

1000 μs

σ = 6 μs

Fig. 2. Example event sequence from a DVS looking at an Active
LED Marker (ALM). Subfigure (a) shows the histogram of events
seen from a fixed camera looking at three ALMs. The difference in
numbers is due to the different frequencies of the ALMs. Subfigure (b)
shows a slice of the events seen at a particular pixel near the center
of one of the ALMs which has a blinking frequency of 1 KHz. The
data is a series of events with positive ( P ) and negative ( N ) events.
(c) The sequence of PN transitions are highly regular; in this data we
observed that the distribution of the intervals is well approximated
by a Gaussian with mean 1000 µs and standard deviation σ = 6 µs.



of the optics, and is probably due to non-ideal local
interactions among neighbors in the sensing array.

Fig. 2b shows the sequence of events obtained from
one particular pixel, corresponding to an ALM with
a frequency of 1 KHz. There is a different number of
P and N events, which tells us that we cannot really
interpret the DVS data as simply the derivative of the
image.

For this particular data, the P events arrive noisily,
while the N events arrive more regularly. Note that
the what we observe here is the combination of the
LED dynamics with the dynamics of the photoreceptor
and the nonlinear detector. Experimentally we found
that the interval between successive P/N transitions
is repeatable: we have observed that the jitter is well
approximated by a Gaussian with standard deviation
equal to 6 µs (Fig. 2c).

4) Effect of motion: Things get more complicated when
the camera is moving, because the apparent motion of
the environment creates changes in luminance that are
unrelated to the ALMs. However, we have found that
we can discriminate between the two types of events
based on their temporal statistics.

Fig. 3 shows the histogram of frequencies of the P/N
transitions in three scenarios: a) a fixed camera looking
at fixed ALMs; b) a moving camera looking at fixed
ALMs; c) a moving camera with no LEDs. From this
data we can see that the motion of the camera generates
a large number of events, but at low frequencies, and
notwithstanding the motion, we can still clearly see the
peaks originated from the markers. Therefore, if we
choose the marker frequencies high enough, we can
filter for the camera motion just by ignoring the events
corresponding to frequencies under a certain threshold.

50 1000500 700

Hz

50 1000500 700

Hz

50 1000500 700

Hz

(a)

ALMs, no motion ALMs, motion no ALMs, motion

(b) (c)

Fig. 3. Comparison of transition events statistics in three cases:
a) visible markers, without motion; b) with camera motion; c) with
camera motion but no marker visible. Note in (c) that the motion of
the camera creates apparent motion of the environment and a large
number of events; however they are of a low frequency. In this case,
the events from the background are negligible after 700 Hz, though
this depends on the statistics of the environment and the speed of the
motion. We can choose the frequencies of the markers high enough
such that they are not confused as background motion.

IV. DVS-BASED ACTIVE LED MARKER TRACKING

This section describes our method for tracking the
position of a set of ALMs from the output of a DVS.
The input to the algorithm is a sequence of events
representing the change of luminance in a single pixel.
The output is an estimate of the pose of the quadrotor.
We describe the algorithm as a sequence of stages that
process asynchronous events; in principle, several of
them could be implemented in hardware.

P N

P N

PN

N NP P N P

P N

PN

PN N

P N

raw 
events

transitions

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

∆1 = t7 − t3 ∆3 = t11 − t7

intervals

∆2 = t9 − t6

∆3∆2∆1

time

Fig. 5. A single pixel produces an irregular series of raw events,
with polarity either positive ( P ) or negative ( N ), each with its own
timestamp. The first stage of processing consists in looking for positive-
to-negative ( PN ) or negative-to-positive ( P N ) transitions. The second
stage consists at looking at two successive transitions of the same
kind. For example, two successive PN transitions at time t3 and t7
generate an hyper-event with interval ∆ = t7 − t3. Assuming that
these events are generated by a blinking ALM, the ∆ is a good robust
estimator of the blinking period.

A. Raw events

The input to the algorithm is the sequence of events
in the address-event representation. Each event can be
represented by a tuple

〈tk, pk, 〈xk, yk〉〉,

where:

• the scalar tk is the timestamp of the event generated;
these are not necessarily equispaced in time.

• the value pk ∈ { P , N } is the polarity, which is either
positive ( P ) or negative ( N ), according to whether
the luminance increased or decreased;

• the coordinates 〈xk, yk〉 ∈ {0, . . . , 127} ×
{0, . . . , 127} identify the pixel that triggered
the event.

B. Transitions

The first stage transforms the sequence of { P , N }
events into a sequences of transition events { PN , P N }.
This stage is independent for each pixel. Consider
only the events that are produced by a given pixel
at coordinates 〈x, y〉. At all times, we remember the last
event timestamp tk−1 and the polarity pk−1 ∈ { P , N }.
Every time the polarity of the current event pk is
different than pk−1, we create a transition event. If the
polarity is the same, no transition event is generated.
This is described by the rules in Table I.
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Fig. 4. Our method proceeds in stages. We buffer the raw events, which have either positive ( P ) or negative ( N ) polarity, as to find the
transitions, either positive-to-negative ( PN ) or negative-to-positive ( P N ). Then, we look at the intervals ∆ between two transitions of the same
type. These will be converted into votes in an evidence map tuned to each frequency. From the evidence map we extract local maxima, which
are the instantaneous detections on where is each ALM. The rest of the method is standard: for each frequency we use a particle filter to be
robust to missed detections; then we choose the combination of particles that gives a coherent global estimate for all ALMs.

A transition event is a tuple

〈tk, qk, 〈xk, yk〉〉,

where:

• the scalar tk is the timestamp of the second event
that triggered the transition.

• the value qk ∈ { P , N } is the transition polar-
ity, which is either positive-to-negative ( PN ) or
negative-to-positive ( P N ).

• 〈xk, yk〉 are the coordinates.

TABLE I

FROM RAW EVENTS TO TRANSITIONS

last event current event transition event

〈tk−1, P , 〈x, y〉〉
〈tk, P , 〈x, y〉〉 none
〈tk, N , 〈x, y〉〉 〈tk, PN , 〈x, y〉〉

〈tk−1, N , 〈x, y〉〉
〈tk, P , 〈x, y〉〉 〈tk, P N , 〈x, y〉〉
〈tk, N , 〈x, y〉〉 none

C. Hyper-transitions

The next stage of processing looks at the interval
between successive transitions of the same type. For
each pixel, we remember the last transition of either
type ( PN or P N ) in a separate storage; then, for each
transition, we generate a “hyper-transition”, which is a
tuple of the kind

〈tk, ∆k, 〈xk, yk〉〉,

where ∆k is the interval between transitions of the same
kind, and 〈xk, yk〉 are the coordinates. Note that we
dropped the polarity of the transitions, as they are not
needed in the following stages.

D. Evidence maps

We suppose to have been given a set of n frequencies
{ fi}, i ∈ {1, n} corresponding to the n ALMs to track.
For each frequency separately we construct an “evidence
map” Ii(〈x, y〉 , t) over the visual field corresponding
to the probability that the ALM is at that pixel. Each
hyper-transition contributes to all evidence maps, but
with a different weight, so that we can integrate all
information and do not commit to saying that a given
event belongs to a frequency. For non-noisy data, an

alternative approach that uses clustering of events works
just as well [6].

A hyper-transition with interval ∆k contributes to
the evidence map of frequency fi with a weight that
is proportional to p(∆k | fi); that is, the likelihood that
a marker ALM with that frequency produces a hyper-
transition of that interval. The distribution p(∆k | fi)
is found experimentally to be well approximated by a
Gaussian, as seen in the data in Fig. 3b:

p(∆k | fi) = N

(

1

∆k
− fi, σ2

)

. (1)

In our experimental setting, the standard deviation is
approximately σ = 30 Hz. The evidence maps collect
events within a time slice corresponding to an interval
of 1/ fi. Therefore, the value of the evidence map
Ii(〈x, y〉 , t) for a pixel x, y and at time t is given by
the sum of the contributions of all events at the given
pixel and in the interval [t − 1/ fi, t]:

Ii(〈x, y〉 , t) = ∑
tk∈

[

t− 1
fi

,t
]

∧〈xk ,yk〉=〈x,y〉

N

(

1

∆k
− fi, σ2

)

.

To increase robustness at the expense of latency, it is
also possible to use multiples of 1/ fi as the time slice
interval.

At the end of the time slice, the evidence map
Ii(〈x, y〉 , t) can be interpreted as the likelihood that
the i-th ALM with frequency fi is at position 〈x, y〉. In
our experimental setting, this map is multimodal, with a
strong peak at the true position of the marker, and lower
peaks at the positions at the other markers, because each
event contributes weakly, according to (1), also to the
evidence maps of the other frequencies.

We extract m local maxima, at least δ pixels from
each other (in our experiments m = 3, δ = 15 px). The
value of the evidence map at the local maxima is used
as a weight w to be carried forward to the next stage.
The detections generated in this way have a time t,
coordinates 〈x, y〉 and the weight wi

j:

{〈t, 〈xi
j, yi

j〉, wi
j〉}, j ∈ {1, . . . , m}.



E. Filtering and reconstruction

Once we have these detections, the method proceeds
in a conventional way, as in any tracking problem,
to achieve robustness to missed detections and false
alarms.

First we use a particle filter to evolve particles for
each frequency. Each particle has coordinates 〈x, y〉, a
weight w (carried over from the last step), as well as
an isotropic spatial uncertainty r, which starts at 1 px.
The uncertainty grows using a motion model, which
should be chosen according to how on how fast things
are predicted to move on the visual field. We have
computed that for the range of motions of a quadrotor,
the maximum apparent motion is approximately 1
pixel/ms.

We have a particle filter for each frequency. The
particles in each filter represent the posterior over the
pose of one ALM. To look for a globally consistent
solution, we choose the combination of particles from
all filters with the highest combined weight such that
no two markers can be too close to each other (in our
experiments, d = 15 pixels). Assuming we have the
position of the ALMs in image space, and we know
the relative position of the markers in the world, we
can reconstruct the pose of the object using established
techniques for rigid reconstruction.

V. EXPERIMENTS

The experiments consider the advantages of a DVS-
based tracking solution with respect to a tracking
solution based on a traditional CMOS camera. We
compare the DVS-based ALM tracking with vision-
based tracking using the PTAM algorithm, using the
output of an OptiTrack system as the ground truth. The
data show that the DVS-based tracking is able to deal
with faster motions due to the minimal latency, but the
precision of the reconstructed pose is limited by the low
resolution of the sensor.

A. Hardware

1) Robot platform: We used the commercially available
ARDrone 2.0 We attached four custom-built ALMs to
the bottom of the platform (Fig. 6a). Each LED was

(a) ALMs configuration (b) Infrared markers

Fig. 6. The ARDrone 2.0 equipped with four ALMs (shown in a)
tracked by the DVS, and reflective markers used by the OptiTrack
(shown in b).

fixed facing downwards, one under each of the four
rotors, so that the four were lying on a plane forming a
square of 20cm side length. The USB connector available
on the drone provided power to the microcontroller
and ALMs. The drone has also a front-facing 720 × 980
CMOS camera that is used in these experiments, while
the ground-facing camera is not used.

2) DVS: The DVS128 camera was used for the tests.
This model is currently commercially available from
INI labs. It has a resolution of 128 × 128 pixels. The
lens attached gave the sensor a FOV of approximately
65°, giving a resolution of 0.5 pixels/°. For tracking the
quadcopter, the DVS was installed on the floor facing
upwards. Note that the relative motion between DVS
and quadcopter would be the same if the ALMs were
on the floor and the DVS on board.

3) OptiTrack: To measure the pose estimation accuracy
we used a OptiTrack tracking system from Natural-
Point [16], which is a marker-based optical motion
tracking system using active infrared light and reflective
marker balls. Four markers have been applied to the
drone (Fig. 6b). Our lab setup comprised 10 cameras in
a 6 × 8 m area; the cost of this system is approximately
20,000 CHF ($21,000). The sampling frequency used
was 250 Hz. The accuracy is stated as ∼ 1 mm by
the manufacturer, but this seems an optimistic estimate
based on our experience with the system.

4) Motion: The prototypical aggressive maneuver that
we use is a “flip” of the quadcopter, i.e. a 360◦ roll.
During the flip the frontal camera images are severely
blurred (Fig. 7).

5) Interference OptiTrack / DVS: We encountered an
unexpected incompatibility between OptiTrack and DVS.
The OptiTrack uses high-power infrared spotlights. In
the OptiTrack’s standard configuration, the spotlights
are pulsed at a high frequency. This is of course invisible
to normal sensors and to the human eye, but it was a
spectacular interference for the DVS. Like most cameras,
the DVS is most sensitive in the infrared spectrum and
is much faster than the OptiTrack strobing frequency.
This generated a buffer overflow on the DVS as the
electronics could not handle the large number of events
to be processed contemporaneously. Eventually we
understood how to deactivate the strobing for all the
cameras prior to recording. Still there was a slight
residual interference by the infrared illumination from
the OptiTrack, but it should have relatively little impact
to the results of our experiments.

B. Methods

We compare three ways to track the pose of the
quadcopter: 1) The output of our DVS-based ALM
tracking method; 2) The OptiTrack output; 3) The output
of a traditional feature-based tracker using the data from
the conventional CMOS camera mounted front-facing on
the drone. The image data was streamed to a computer
via network interface, were the parallel tracking and
mapping algorithm (PTAM) [17] was employed for pose
estimation.



Fig. 7. Motion blur induced on CMOS image from flip motion.

1) Data recording, synchronization, and alignment: Using
this setup we did several recordings, in which we
recorded the OptiTrack tracking data, using its native
format, the image data using a ROS interface, as well as
the raw event data from the DVS in the native format.

To synchronize the data from different sources we
used a motion induced cue. We moved manually
the drone up and down, generating an approximated
sinusoid curve in the position data, which allowed easy
manual matching of the sequences.

After adjusting for the delay, the data sets were
brought to the same number of samples with a common
time stamps. As our algorithm’s output has a lower
sampling rate than the OptiTrack (1 KHz vs 250 Hz), the
OptiTrack data was resampled by linear interpolation.

As a final step, the time series were put in the
same frame of reference. Given two sequences of
points xk, yk ∈ R

3, the rototranslation 〈R, t〉 ∈ SE(3)
that matches them can be found by solving the opti-
mization problem

min
〈R,t〉∈SE(3)

∑
k

‖xk − (Ryk + t)‖2, (2)

which is a classic Procrustes problem [18].

C. Results

We recorded data from 18 flips, of which only 6 were
successful. During the recordings we met a number of
unforeseen difficulties due to our modifications to the
drone. Having attached the LEDs and microcontroller to
the drone we found that it had become unstable during
flight and hard to control due to the additional weight,
so while it could hover normally, it did not have enough
thrust to stabilize itself after a flip.

1) Tracking downtimes: During a flip, both the DVS
and PTAM lose tracking: PTAM loses tracking while the
image is blurred; the DVS loses track when the ALMs
are not visible from the ground. The comparison of
these “blackout times” gives a direct measurement of
the latency of the two systems.

The length of a flip was measured by considering
the roll data from the OptiTrack, taking the interval
between the last measurement before the flip and the
first measurement after the flip when the helicopter was
in a level orientation to the floor.

To measure the onset and offset of the blackout for
the DVS, we considered the last sample before losing
track (i.e. where the interval position samples were
considerably higher than the mean sampling rate) and
the first sample of reacquiring track (regaining a steady
sample rate). The equivalent operation was performed
on the PTAM data.

TABLE II

TRACKING DOWNTIME INTERVALS AND THE FLIP DURATION.

DVS 0.35 ± 0.10 s
PTAM 0.80 ± 0.33 s

flip duration 0.56 ± 0.15 s

Table II shows the mean standard deviation of the
different approaches. Our algorithm lost track during
the average time of 0.35 seconds. PTAM lost track for a
mean of 0.8 seconds, which is more than twice the time
of the DVS and takes longer than the average duration
of a flip. One can clearly see that the time where tracking
is lost is much shorter with our approach in respect to
PTAM. The results emphasize that the DVS is faster
in recovering lost tracks than the PTAM approach due
to not suffering from motion blur. As verified with
our recordings, the downtimes of the DVS correspond
to losing sight of the LED markers because of their
emission angle. With a suitable configuration of either
more markers or dynamic vision sensors, tracking could
be maintained during the whole flip.

2) Accuracy of estimated pose: The statistics of the
estimation error for DVS and PTAM, considering the
OptiTrack as the ground truth, are summarized in
Table III and shown in graphical form in Fig. 8.

As for the translation, the DVS estimation error is
roughly two times lower than PTAM (Fig. 8a). Al-
though the spread of outliers is higher in our approach
compared to PTAM, the translation errors of the latter
technique show a broader distribution around their
median. Overall this proves that the DVS approach
has higher accuracy with less spread, if we neglect the
extreme tails of the distribution.

Fig. 8b–d show the error distribution for roll, pitch
and yaw respectively. The DVS performs worse in roll
and pitch compared to yaw. This was to be expected,
because of the position of the ALMs. As roll and pitch
play a minor roll in quadrotor pose estimation these can
be neglected for finding the drone’s orientation. The
DVS performs slightly worse than PTAM with a mean
error of 6° and a deviation of 15° (Table III). This is
explained by the much lower resolution of the DVS
(128 × 128 pixels) compared to the CMOS camera used
by PTAM (720 × 980 pixels).

TABLE III

ESTIMATION ERROR OF DVS AND PTAM COMPARED TO OPTITRACK

(a) Translation (b) Roll (c) Pitch (d) Yaw

DVS 8.9 ± 12.6 cm 19 ± 27° 17 ± 18° 6 ± 15°
PTAM 19.0 ± 12.4 cm 7 ± 22° 5 ± 11° 3 ± 10°
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Fig. 8. Distributions of the errors of DVS/PTAM in reference to the OptiTrack measurements. The data is synthesized in Table III.

VI. CONCLUSIONS

Fast robots need fast sensors. A dynamic vision sensor
(DVS) returns changes in the visual field with a latency
of a few microseconds. This technology is the most
promising candidate for enabling highly aggressive
autonomous maneuvers for flying robots. The current
prototypes suffer a few limitations, such as a relatively
low resolution, which are being worked upon. In the
mean time, the sensing pipeline must be completely
re-designed to take advantage of the low latency.

This paper has presented the first pose tracking appli-
cation using DVS data. We have shown that the DVS can
detect Active LEDs Markers (ALMs) and disambiguate
their identity if different blinking frequencies are used.
The algorithm that the we developed uses a Bayesian
framework, in which we accumulate evidence of every
single event into “evidence maps” that are tuned to a
particular frequency. The temporal interval can be tuned
and it is a tradeoff between latency and precision. In
our experimental conditions it was possible to have a
latency of only 1 ms. After detection, we used a particle
filter and a multi-hypothesis tracker.

We have evaluated the use of this technology for
tracking the motion of a quadrotor during an aggressive
maneuver. Experiments show that the DVS is able to
reacquire stable tracking with negligible delay as soon
as the LEDs are visible again, without suffering from
motion blur, which limits the traditional CMOS-based
conventional feature tracking solution. However, the
precision in reconstructing the pose is limited because
of the low sensor resolution. Future work involving the
hardware include improving the ALMs by increasing
their power and their angular emittance field, as we
have found these to be the main limitations.

In conclusion, DVS-based ALM tracking promises
to be a feasible technology that can be used for fast
tracking in robotics.
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