
                          Ismail, MR., Ahmed, I., Coon, JP., Armour, SMD., Koçak, T., &
McGeehan, JP. (2010). Low latency low power bit flipping algorithms
for LDPC decoding. In IEEE 21st International Symposium on
Personal, Indoor and Mobile Radio Communications 2010 (PIMRC
2010), Istanbul, Turkey (pp. 278 - 282). Institute of Electrical and
Electronics Engineers (IEEE).
https://doi.org/10.1109/PIMRC.2010.5671820

Peer reviewed version

Link to published version (if available):
10.1109/PIMRC.2010.5671820

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/PIMRC.2010.5671820
https://doi.org/10.1109/PIMRC.2010.5671820
https://research-information.bris.ac.uk/en/publications/70d9a72c-e0e3-4c6f-99db-21811db25dcc
https://research-information.bris.ac.uk/en/publications/70d9a72c-e0e3-4c6f-99db-21811db25dcc


Low Latency Low Power Bit Flipping Algorithms

For LDPC Decoding

Mohamed Ismail, Imran Ahmed and Justin Coon

Toshiba Research Europe Ltd.

Telecommunications Research Laboratory

Bristol, UK, BS1 4ND

Email: mohamed.ismail@toshiba-trel.com

Simon Armour, Taskin Kocak and Joseph McGeehan

University of Bristol

Dept. of Electrical and Electronic Eng.

Bristol, UK.

Abstract—Low Density Parity Check (LDPC) codes have been
adopted in a number of wired and wireless communication
standards due to their improved error correcting ability and
relatively simple decoder structure. However, for very high
throughput systems operating in the multi-Gb/s range conven-
tional decoding methods based on message passing are limited,
due largely to the sheer volume of messages being exchanged.
Thus, simpler decoding methods have been proposed such as bit
flipping permitting efficient and fast hardware implementation.
This paper presents two new bit flipping algorithm designed to
reduce latency and power consumption. For a small loss in bit
error rate performance (0.5 dB) we show how the application of
an early stopping criteria uses 89% fewer iterations compared
to a similar published algorithm. We also present a method for
reducing power consumption by placing processing elements into
a quiescent state based on a bit-local metric. Using this technique
we show a potential reduction in power consumption of 76%.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes were described by

Gallager [1] in 1963 and subsequently rediscovered by Mackay

et al [2]. As well as describing LDPC codes Gallager presented

two practical decoding algorithms. A soft decision message

passing algorithm variously referred to as Belief Propagation

(BP), Sum-Product Algorithm (SPA) and Two Phase Message

Passing (TPMP). The second algorithm, referred to as Al-

gorithm B, falls into the class of bit flipping (BF) methods

designed to be less complex than BP decoding. Although BP

techniques have been shown to perform exceptionally well,

coming within 0.0045 dB of the Shannon capacity limit [3],

they do suffer from implementation problems. In [4] three

major implementation problems for a fully parallel BP decoder

are highlighted: 1) Routing bottleneck due to mirroring of the

LDPC matrix connectivity in hardware, 2) significant memory

storage for messages, 3) large number of processing elements

due to large code lengths. Thus, partially parallel solutions

based on structured codes have been proposed [5] [6] that

address these problems but generally have lower throughput

than a fully parallel implementation.

At the expense of error correcting performance, bit flipping

methods allow for significantly less complex decoding because

they flip one or more bits at a time based on some objective

function. A simple bit flipping technique can be described as

follows. Let y be the soft-decision received vector and x be

the binary hard-decision of the vector y, then the syndrome,

s, is defined as

s = xHT (1)

where, H is a M × N parity check matrix and s =
(s1, s2, . . . , sM ) represents theM individual parity checks. Bit

flipping looks at the parity checks each received bit is involved

in, if the total number of check failures the bit is involved

in exceeds some threshold, the sign of the received bit is

inverted to form an updated received vector. The next iteration

of the algorithm will re-calculate the syndrome vector using

the updated hard-decision vector. This process is repeated until

all checks are error free or the number of iterations reaches

some preset threshold. There are many variants to the basic

bit flipping algorithm most notably the Weighted Bit Flipping

(WBF) algorithm [7], which in formulating a count of failed

checks adds a weighting factor based on the magnitude of the

received sample. The Modified WBF (MWBF) algorithm [8]

introduces an additional scaling factor, α, for the soft-decision

values resulting in improved error correcting performance. Re-

cently, Wadayama [9] formulated a new way of calculating the

decision metric based on the gradient descent formulation. The

Gradient Descent Bit Flipping (GDBF) algorithms outperform

the WBF and MWBF algorithms in error correcting ability and

more significantly in the number of average iterations needed

for successful decoding.

The majority of bit flipping algorithms, including ones

described in [10] [11] [12], require locating a minimum value

over the whole block length which for LDPC codes can be

large. This min operation incurs significant delay when imple-

mented in an Application Specific Integrated Circuit (ASIC)

causing a limitation to maximum achievable throughput.

In this paper we present two variants of the GDBF algo-

rithms designed to have lower latency and fewer iterations.

The same methods may, in principle, be applied to other bit

flipping algorithms for reducing latency, number of iterations

and power consumption.

This paper is organised as follows, section II describes the

GDBF algorithm, which forms the basis for our improvement

and our proposed bit flipping algorithm. Section III describes

a means for detecting when to disable bit processing elements

to aid power conservation. Section IV proposes an early
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stopping criteria and applies it to our proposed algorithm.

Section V evaluates the proposed algorithms comparing their

error correcting performance and average number of decod-

ing iterations to published algorithms. Section VI draws out

conclusions from our work.

II. BIT FLIPPING DECODING ALGORITHMS

A. Gradient Descent Bit Flipping

For a received vector of soft-decision values, y =
(y1, y2, . . . , yN ), let x ∈ {+1,−1}N be the hard decision

of vector y such that xj = sign(yj), j ∈ {1, . . . , N}. If
N(i) = {j : hij = 1} is the index of non-zero elements
in row i and M(j) = {i : hij = 1} is an index of non-zero
elements in column j of the parity check matrix, then the i’th

bipolar syndrome of x is defined as
∏

j∈N(i)

xj ∈ {+1,−1}.

In Gallager’s Algorithm B, an inversion function is used to

provide a measure of the confidence with which a bit should

be flipped, formed by (2).

∆
(G)
k (x) =

∑

i∈M(k)

∏

j∈N(i)

xj (2)

Thus, the Gallager Algorithm B is a hard decision bit flipping

algorithm which is straightforward to implement in hardware,

requiring 5E −m operations (add, subtract and compare) per

iteration, where E is the total number of non-zeros in the

parity check matrix [13]. The WBF inversion function, which

weights each check by the least reliable bit in the check, can

be written as in (3).

∆
(WBF )
k (x) =

∑

i∈M(k)

minj∈N(i)|yj |
∏

j∈N(i)

xj (3)

For a WBF implementation, being a soft-decision algorithm,

the number of real addition operations per iteration is given

as 2KBF E, where KBF is an implementation dependent

constant typically less than three [7]. The gradient descent

inversion function [9] is defined as shown in (4).

∆
(GD)
k (x) = xkyk +

∑

i∈M(k)

∏

j∈N(i)

xj (4)

Equation (4) is a combination of the hard decision of the

Gallager algorithm with an additional term representing the

correlation between the current hard estimate of a bit, xk and

the initial soft value, yk. Based on (4) the single-step GDBF

algorithm can be stated as shown in Algorithm 1.

Two observations can be made from step 3 of Algorithm

1; the single-step GDBF algorithm flips only a single bit in

an iteration and a global min operation over the block length

N is necessary. For the large block lengths typical of LDPC

codes an ASIC implementation of the min operation causes

considerable delay in the critical path of the circuit. Secondly,

by correcting only a single bit error per iteration the decoding

process will take more iterations compared to a multi-bit

flipping approach. In [9] a multi-bit flipping algorithm is

given which modifies the condition in step 3 such that all

bits with ∆
(GD)
k < θ, where θ is the inversion threshold, are

Algorithm 1 Single-step Gradient Descent Bit Flipping

1) For j=1:N

xj = sign(yj)
2) If

∏

j∈N(i)

xj = +1

for all i ∈ {1, . . . ,M}, output x and stop

3) Flip bit xl where, l = argmink∈{1,...,n}∆
(GD)
k (x)

4) If the maximum number of iterations is reached

output x and stop

otherwise

goto step 2

flipped. This approach has the advantage of achieving faster

convergence due to the larger step size arising from flipping

more than a single bit. However, as noted in [9] when close

to a local maximum a large step size is not suitable and thus

the algorithm has to drop down to single-bit flipping mode.

This switch in operating modes is facilitated by evaluating

the behaviour of an objective function, shown in (5), and

comparing to a threshold.

f(x) =

n
∑

k=1

xkyk +
∑

i∈M(k)

∏

j∈N(i)

xj (5)

The multi-step GDBF algorithm achieves better error correct-

ing performance than both the WBF or MWBF algorithms

whilst using fewer iterations at a cost of additional complexity.

Below we present a new localised bit flipping algorithm,

termed Adaptive Threshold Bit Flipping (ATBF), designed to

intrinsically operate in multi-step or single-step mode with a

simple dynamic shifting of the threshold value. The ATBF

algorithm avoids the additional complexity of switching be-

tween modes and use of a minimum function associated with

the multi-step GDBF algorithm.

B. Adaptive Threshold Bit Flipping (ATBF)

Let λk, k ∈ {1, . . . , N} be a negative threshold value
associated with each received bit and θ ∈ [0, 1] a constant
scaling factor used to modify λk. The improved bit flipping

algorithm can then be stated as shown in Algorithm 2, where

λ0 is the initial threshold value.

The ATBF algorithm replaces step 3 of the single-step

GDBF algorithm by flipping a bit when the inversion function

associated with the bit has a value below some threshold. If

the inversion function value associated with a bit, ∆
(GD)
k ,

is not below the threshold, λk, the threshold is lowered by

scaling using a constant factor, θ. A beneficial consequence

of thresholding on a per bit level is that multiple bits will be

flipped to start with progressing to fewer flips as most checks

are satisfied. Thus, ATBF intrinsically moves from multiple

bit flipping to single bit flipping as necessary.

III. POWER REDUCTION METHOD

With each iteration of the ATBF algorithm, step 4 will result

in either a change of sign of xk or the lowering of λk. As

λk −→ 0 the probability of a sign change will become smaller
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Algorithm 2 Adaptive Threshold Bit Flipping (ATBF)

1) Initialise λk = λ0, k ∈ {1, . . . , N}
2) For j = 1 : N

xj = sign(y)
3) If

∏

j∈N(i)

xj = +1

output x and stop

4) For k = 1 : N

If ∆
(GD)
k < λk

flip bit xk

otherwise

λk = θλk

5) If the maximum number of iterations is reached

output x and stop

otherwise

goto step 3
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Fig. 1. Mean λ value as a function of SNR, θ = 0.25, λ0 = −10

leading to scaling of λk being the dominant operation. Thus,

detecting the point at which a particular bit processor enters

into this state and terminating further computation should lead

to power savings.

To determine when a bit processor is unlikely to change

the sign of a bit we introduce a flipping threshold, φ1, against

which a given λk is compared. If λk ≥ φ1 the bit processor is

placed in a quiescent state and no further operations are un-

dertaken. Determing the optimal threshold value was deemed

too difficult as it is a function of the Signal-to-Noise Ratio

(SNR), LDPC code characteristics and modulation scheme

therefore we adopted a statistical approach. With the maximum

number of permitted iterations set to a high value, 100, the

variation of λk was averaged over at least 1000 blocks in

an Additive White Gaussian Noise (AWGN) channel over a

range of SNR values. The LDPC code used was a regular-

(3,6), half-rate (504,1008) code taken from [14] referred to as

PEGReg504x1008. Fig. 1 shows how the mean, over at least

1000 blocks, of each of the 1008 threshold values changes as

a function of SNR.

Let λ̄k = 1
S

∑S

j=1 λj , k ∈ {1, . . . , N} and S is the number
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Fig. 2. Mean no. of λ = φ1 values as a function of iterations at different
SNR values, θ = 0.25, λ0 = −10

of blocks simulated. For a given signal-to-noise ratio we define

λ̄SNR =
∑N

k=1 λ̄k. Using the λ̄SNR values we apply a least

squares polynomial fit to derive a relationship between the

mean threshold value reached in decoding and the SNR value.

We define a flipping threshold, φSNR, based on the polynomial

shown in (6) as the threshold value for which a bit processor

is put in a quiescent state, where a is the SNR in dB.

φSNR = −0.005a4+0.089a3−0.666a2+2.258a−2.897 (6)

For a practical implementation the scaling factor applied to

λ values is made a power of two, θ = 2d, where {d ∈ Z
−}.

This permits the threshold values to be scaled in hardware by a

simple shift operation. In such an implementation the flipping

threshold, φ1, can be derived from φSNR by setting φ1 to the

nearest value to φSNR achievable by a θ scaling, as shown in

(7c).

z =

⌈

−log2

(

φSNR

λ0

)⌉

(7a)

z′ = −(z + mod(z, d)) (7b)

φ1 = λ02
z′

(7c)

Fig. 2 shows the average number of values with λk = φ1

as they vary with each iteration for different SNR values. We

estimate the power saving possible using the method described

by taking the point in Fig. 2 at which the mean number of

λk = φ1 values becomes non-zero for a given SNR. All

prevous iterations prior to this point will use the full 1008

bit processors and all iterations thereafter will use, at most,

1008 minus the mean number of bit processors indicated by

the curve at this point. The upper limit on the number of

iterations at a given SNR point is taken from Fig. 5, which

gives the average number of decoding iterations as a function

of SNR for different decoding algorithms. Fig. 3 shows the

estimated percentage power saving as a function of SNR (dB)

when using the power reduction method described. At 3 dB
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Fig. 3. Estimated saving in power as a function of SNR for PEGReg504x1008
code using the power reduction method

we observe a power saving of 76% over the standard ATBF

algorithm which reduces as the SNR increases. It is interesting

to observe the power saving going to zero beyond 5 dB, this

suggests it may be possible to reduce the maximum allowable

iterations below the observed values.

IV. EARLY STOPPING OF DECODING

In decoding of LDPC codes, it is well known the majority of

bits are decoded in the first few iterations leaving a small num-

ber of bits to drive on the decoding process without successful

decoding. Thus, it is desirable to detect such undecodable

blocks and terminate the decoding process to save time and

energy. In [15] a good overview of various criterion which

can be used for early stopping of turbo decoders is presented.

Some of the methods have also been used in studies into early

stopping of LDPC decoders. Much of the existing literature

addresses the problem of early stopping when using the Belief

Propagation (BP) decoding algorithm. Such methods involve

taking some measure of the message reliability [16] [17], at

the check or variable node, or a combination of the two [18].

Building on the idea of using a flipping threshold to

determine when a bit processor is placed in a quiescent state,

we further investigate behaviour of the threshold values, λk.

From Fig. 2, for the first 13 iterations no threshold values

drop to the flipping threshold, between 13-15 iterations we

observe a large step where the majority of threshold values

reach the flipping threshold. As Fig. 1 shows this corresponds

to the average threshold value with the maximum number of

iterations is set to a high value. Thus, terminating the decoding

operation at this point should result in little change in the error

correcting capability whilst reducing the number of required

iterations.

To keep latency to a minimum we want to avoid use of

operations requiring computation over the block length, such

as a summation or minimum operation. Thus, based on Fig.

2 we define a simple, bit-local, metric for determining when

to terminate the decoding process. When any λk ≥ φ1 the

decoding process is terminated, this is a straightforward edge

detection of the transition from zero values with λk ≥ φ1

to many values for which λk ≥ φ1. The ATBF algorithm is

modified to incorporate the early stopping criterion as shown

in Algorithm 3.

Algorithm 3 Early Stopping Adaptive Threshold Bit Flipping

(ES-ATBF)

1) Initialise λk = λ0, k ∈ {1, . . . , N}
2) For j = 1 : n

xj = sign(y)
3) If

∏

j∈N(i)

xj = +1

output x and stop

4) For k = 1 : n

If ∆
(GD)
k < λk

flip bit xk

otherwise

λk = θλk

5) If,

∃k ∈ {1, . . . , N} : λk ≥ φ1

Or the maximum number of iterations is reached

output x and stop

otherwise

goto step 3

V. SIMULATION RESULTS

The PEGReg504x1008 code from [14] was used to encode

a random binary sequence, BPSK modulated and passed

through an Additive White Gaussian Noise (AWGN) channel.

The Bit Error Rate (BER) and average number of decoding

iterations for the ATBF and ES-ATBF algorithms is compared

to the WBF, MWBF, single-step GDBF and multi-step GDBF

algorithms in Fig. 4 and Fig. 5, respectively.

Both the ATBF and ES-ATBF algorithms BER performance

is very close to the GDBF algorithms being within 0.25

of the single-step and 0.5 dB of the multi-step algorithm.

The advantage of correctly selecting the stopping point is

evident from the ES-ATBF algorithm showing almost no

loss in performance over the ATBF algorithm. The ES-ATBF

algorithm uses, at most, eleven iterations, compared to the

other algorithms which are permitted up to 100 iterations, a

reduction of 89%.

VI. CONCLUSION

We have presented two new bit flipping algorithms designed

to have low computational complexity and, importantly for

high throughput, low latency. The ATBF algorithm describes a

thresholding technique operating at bit-level thereby removing

the minimum operation over the whole block, resulting in

reduced latency. The ES-ATBF algorithm permits early ter-

mination of the decoding process using 89% fewer iterations

than the ATBF algorithm, without loss in error correcting

performance and without any significant increase in latency.
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Additionally, we detail an easy to implement metric resulting

in power savings of upto 76% for the inner loop of the ATBF

algorithm.
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