
Low Latency via Redundancy

Ashish Vulimiri
UIUC

vulimir1@illinois.edu

P. Brighten Godfrey
UIUC

pbg@illinois.edu

Radhika Mittal
UC Berkeley

radhika@eecs.berkeley.edu

Justine Sherry
UC Berkeley

justine@eecs.berkeley.edu

Sylvia Ratnasamy
UC Berkeley

sylvia@eecs.berkeley.edu

Scott Shenker
UC Berkeley and ICSI

shenker@icsi.berkeley.edu

ABSTRACT
Low latency is critical for interactive networked applications.
But while we know how to scale systems to increase capacity,
reducing latency — especially the tail of the latency distribu-
tion — can be much more difficult. In this paper, we argue
that the use of redundancy is an effective way to convert ex-
tra capacity into reduced latency. By initiating redundant
operations across diverse resources and using the first result
which completes, redundancy improves a system’s latency
even under exceptional conditions. We study the tradeoff
with added system utilization, characterizing the situations
in which replicating all tasks reduces mean latency. We then
demonstrate empirically that replicating all operations can
result in significant mean and tail latency reduction in real-
world systems including DNS queries, database servers, and
packet forwarding within networks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General

Keywords
Latency; Reliability; Performance

1. INTRODUCTION
Low latency is important for humans. Even slightly higher

web page load times can significantly reduce visits from users
and revenue, as demonstrated by several sites [28]. For ex-
ample, injecting just 400 milliseconds of artificial delay into
Google search results caused the delayed users to perform
0.74% fewer searches after 4-6 weeks [9]. A 500 millisecond
delay in the Bing search engine reduced revenue per user by
1.2%, or 4.3% with a 2-second delay [28]. Human-computer
interaction studies similarly show that people react to small
differences in the delay of operations (see [17] and references
therein).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535392.

Achieving consistent low latency is challenging. Modern
applications are highly distributed, and likely to get more
so as cloud computing separates users from their data and
computation. Moreover, application-level operations often
require tens or hundreds of tasks to complete — due to many
objects comprising a single web page [25], or aggregation of
many back-end queries to produce a front-end result [2,14].
This means individual tasks may have latency budgets on
the order of a few milliseconds or tens of milliseconds, and
the tail of the latency distribution is critical. Such outliers
are difficult to eliminate because they have many sources in
complex systems; even in a well-provisioned system where
individual operations usually work, some amount of uncer-
tainty is pervasive. Thus, latency is a difficult challenge for
networked systems: How do we make the other side of the
world feel like it is right here, even under exceptional condi-
tions?

One powerful technique to reduce latency is redundancy :
Initiate an operation multiple times, using as diverse re-
sources as possible, and use the first result which completes.
Consider a host that queries multiple DNS servers in paral-
lel to resolve a name. The overall latency is the minimum
of the delays across each query, thus potentially reducing
both the mean and the tail of the latency distribution. For
example, a replicated DNS query could mask spikes in la-
tency due to a cache miss, network congestion, packet loss,
a slow server, and so on. The power of this technique is
that it reduces latency precisely under the most challenging
conditions—when delays or failures are unpredictable—and
it does so without needing any information about what these
conditions might be.

Redundancy has been employed to reduce latency in sev-
eral networked systems: notably, as a way to deal with
failures in DTNs [21], in a multi-homed web proxy over-
lay [5], and in limited cases in distributed job execution
frameworks [4, 15,32].

However, these systems are exceptions rather than the
rule. Redundant queries are typically eschewed, whether
across the Internet or within data centers. The reason is
rather obvious: duplicating every operation doubles system
utilization, or increases usage fees for bandwidth and com-
putation. The default assumption in system design is that
doing less work is best.

But when exactly is that natural assumption valid? De-
spite the fact that redundancy is a fundamental technique
that has been used in certain systems to reduce latency, the

283

conditions under which it is effective are not well understood
— and we believe as a result, it is not widely used.

In this paper, we argue that redundancy is an effective
general technique to achieve low latency in networked sys-
tems. Our results show that redundancy could be used much
more commonly than it is, and in many systems represents
a missed opportunity.

Making that argument requires an understanding of when
replication improves latency and when it does not. Con-
sider a system with a fixed set of servers, in which queries
are relatively inexpensive for clients to send. If a single client
duplicates its queries, its latency is likely to decrease, but it
also affects other users in the system to some degree. If all
clients duplicate every query, then every client has the ben-
efit of receiving the faster of two responses (thus decreasing
mean latency) but system utilization has doubled (thus in-
creasing mean latency). It is not immediately obvious under
what conditions the former or latter effect dominates.

Our first key contribution is to characterize when such
global redundancy improves latency. We introduce a queue-
ing model of query replication, giving an analysis of the ex-
pected response time as a function of system utilization and
server-side service time distribution. Our analysis and ex-
tensive simulations demonstrate that assuming the client-
side cost of replication is low, there is a server-side threshold
load below which replication always improves mean latency.
We give a crisp conjecture, with substantial evidence, that
this threshold always lies between 25% and 50% utilization
regardless of the service time distribution, and that it can
approach 50% arbitrarily closely as variance in service time
increases. Our results indicate that redundancy should have
a net positive impact in a large class of systems, despite the
extra load that it adds.

While our analysis only addresses mean latency, we believe
(and our experimental results below will demonstrate) that
redundancy improves both the mean and the tail.

Our second key contribution is to demonstrate multiple
practical application scenarios in which replication empiri-
cally provides substantial benefit, yet is not generally used
today. These scenarios, along with scenarios in which repli-
cation is not effective, corroborate the results of our analysis.
More specifically:

• DNS queries across the wide area. Querying mul-
tiple DNS servers reduces the fraction of responses
later than 500 ms by 6.5×, while the fraction later
than 1.5 sec is reduced by 50×, compared with a non-
replicated query to the best individual DNS server. Al-
though this incurs added load on DNS servers, replica-
tion saves more than 100 msec per KB of added traffic,
so that it is more than an order of magnitude bet-
ter than an estimated cost-effectiveness threshold [29,
30]. Similarly, a simple analysis indicates that repli-
cating TCP connection establishment packets can save
roughly 170 msec (in the mean) and 880 msec (in the
tail) per KB of added traffic.

• Database queries within a data center. We im-
plement query replication in a database system similar
to a web service, where a set of clients continually read
objects from a set of back-end servers. Our results in-
dicate that when most queries are served from disk

and file sizes are small, replication provides substan-
tial latency reduction of up to 2× in the mean and
up to 8× in the tail. As predicted by our analysis,
mean latency is reduced up to a server-side threshold
load of 30-40%. We also show that when retrieved
files become large or the database resides in memory,
replication does not offer a benefit. This occurs across
both a web service database and the memcached in-
memory database, and is consistent with our analysis:
in both cases (large or in-memory files), the client-side
cost of replication becomes significant relative to the
mean query latency.

• In-network packet replication. We design a simple
strategy for switches, to replicate the initial packets of
a flow but treat them as lower priority. This offers
an alternate mechanism to limit the negative effect of
increased utilization, and simulations indicate it can
yield up to a 38% median end-to-end latency reduction
for short flows.

In summary, as system designers we typically build scal-
able systems by avoiding unnecessary work. The significance
of our results is to characterize a large class of cases in which
duplicated work is a useful and elegant way to achieve ro-
bustness to variable conditions and thus reduce latency.

2. SYSTEM VIEW
In this section we characterize the tradeoff between the

benefit (fastest of multiple options) and the cost (doing more
work) due to redundancy from the perspective of a system
designer optimizing a fixed set of resources. We analyze this
tradeoff in an abstract queueing model (§2.1) and evaluate
it empirically in two applications: a disk-backed database
(§2.2) and an in-memory cache (§2.3). We then discuss a
setting in which the cost of overhead can be eliminated:
a data center network capable of deprioritizing redundant
traffic (§2.4).
§3 considers the scenario where the available resources are

provisioned according to payment, rather than static.

2.1 System view: Queueing analysis
Two factors are at play in a system with redundancy.

Replication reduces latency by taking the faster of two (or
more) options to complete, but it also worsens latency by in-
creasing the overall utilization. In this section, we study the
interaction between these two factors in an abstract queue-
ing model.

We assume a set of N independent, identical servers, each
with the same service time distribution S. Requests arrive in
the system according to a Poisson process, and k copies are
made of each arriving request and enqueued at k of the N
servers, chosen uniformly at random. To start with, we will
assume that redundancy is “free” for the clients — that it
adds no appreciable penalty apart from an increase in server
utilization. We consider the effect of client-side overhead
later in this section.

Figures 1(a) and 1(b) show results from a simulation of
this queueing model, measuring the mean response time
(queueing delay + service time) as a function of load with
two different service time distributions. Replication im-
proves the mean, but provides the greatest benefit in the
tail, for example reducing the 99.9th percentile by 5× under

284

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5M
ea

n
re

sp
on

se
 t

im
e

(s
)

Load

Deterministic service time

1 copy
2 copies

(a) Mean: deterministic

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5M
ea

n
re

sp
on

se
 t

im
e

(s
)

Load

Pareto service time

1 copy
2 copies

(b) Mean: Pareto

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

 1 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (s)

Pareto service time:
CDF at load 0.2

1 copy
2 copies

(c) CDF: Pareto

Figure 1: A first example of the effect of replication, showing response times when service time distribution
is deterministic and Pareto (α = 2.1)

Pareto service times. Note the thresholding effect: in both
systems, there is a threshold load below which redundancy
always helps improve mean latency, but beyond which the
extra load it adds overwhelms any latency reduction that it
achieves. The threshold is higher — i.e., redundancy helps
over a larger range of loads — when the service time distri-
bution is more variable.

The threshold load, defined formally as the largest uti-
lization below which replicating every request to 2 servers
always helps mean response time, will be our metric of in-
terest in this section. We investigate the effect of the service
time distribution on the threshold load both analytically and
in simulations of the queueing model. Our results, in brief:

1. If redundancy adds no client-side cost (meaning server-
side effects are all that matter), there is strong evi-
dence to suggest that no matter what the service time
distribution, the threshold load has to be more than
25%.

2. In general, the higher the variability in the service-time
distribution, the larger the performance improvement
achieved.

3. Client-side overhead can diminish the performance im-
provement due to redundancy. In particular, the thresh-
old load can go below 25% if redundancy adds a client-
side processing overhead that is significant compared
to the server-side service time.

If redundancy adds no client-side cost
Our analytical results rely on a simplifying approximation:
we assume that the states of the queues at the servers evolve
completely independently of each other, so that the average
response time for a replicated query can be computed by
taking the average of the minimum of two independent sam-
ples of the response time distribution at each server. This
is not quite accurate because of the correlation introduced
by replicated arrivals, but we believe this is a reasonable
approximation when the number of servers N is sufficiently
large. In a range of service time distributions, we found that
the mean response time computed using this approximation
was within 3% of the value observed in simulations with
N = 10, and within 0.1% of the value observed in simula-
tions with N = 20.

We start with a simple, analytically-tractable special case:
when the service times at each server are exponentially dis-
tributed. A closed form expression for the response time
CDF exists in this case, and it can be used to establish the
following result.

Theorem 1. Within the independence approximation, if
the service times at every server are i.i.d. exponentially dis-
tributed, the threshold load is 33%.

Proof. Assume, without loss of generality, that the mean
service time at each server is 1 second. Suppose requests
arrive at a rate of ρ queries per second per server.

Without replication, each server evolves as an M/M/1
queue with departure rate 1 and arrival rate ρ. The re-
sponse time of each server is therefore exponentially dis-
tributed with rate 1 − ρ [6], and the mean response time is

1
1−ρ .

With replication, each server is an M/M/1 queue with
departure rate 1 and arrival rate 2ρ. The response time of
each server is exponentially distributed with rate 1 − 2ρ,
but each query now takes the minimum of two independent
samples from this distribution, so that the mean response
time of each query is 1

2(1−2ρ)
.

Now replication results in a smaller response time if and
only if 1

2(1−2ρ)
< 1

1−ρ , i.e., when ρ < 1
3
.

While we focus on the k = 2 case in this section, the
analysis in this theorem can be easily extended to arbitrary
levels of replication k.

Note that in this special case, since the response times are
exponentially distributed, the fact that replication improves
mean response time automatically implies a stronger distri-
butional dominance result: replication also improves the pth
percentile response time for every p. However, in general,
an improvement in the mean does not automatically imply
stochastic dominance.

In the general service time case, two natural (service-time
independent) bounds on the threshold load exist.

First, the threshold load cannot exceed 50% load in any
system. This is easy to see: if the base load is above 50%,
replication would push total load above 100%. It turns out
that this trivial upper bound is tight — there are fami-
lies of heavy-tailed high-variance service times for which the
threshold load goes arbitrarily close to 50%. See Figures 2(a)
and 2(b).

Second, we intuitively expect replication to help more as
the service time distribution becomes more variable. Fig-
ure 2 validates this trend in three different families of distri-
butions. Therefore, it is reasonable to expect that the worst-
case for replication is when the service time is completely
deterministic. However, even in this case the threshold load
is strictly positive because there is still variability in the sys-
tem due to the stochastic nature of the arrival process. With

285

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14 16 18

T
hr

es
ho

ld
 lo

ad

Inverse shape parameter 𝛾

Weibull service times

(a) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

es
ho

ld
 lo

ad

Inverse scale paramemter 𝛽

Pareto service times

(b) Pareto

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

es
ho

ld
 lo

ad

p

Simple two-point service time distribution

(c) Two-point discrete distribution

Figure 2: Effect of increasing variance on the threshold load in three families of unit-mean distributions:
Pareto, Weibull, and a simple two-point discrete distribution (service time = 0.5 with probability p, 1−0.5p

1−p
with probability 1 − p). In all three cases the variance is 0 at x = 0 and increases along the x-axis, going to
infinity at the right edge of the plot.

the Poisson arrivals that we assume, the threshold load with
deterministic service time turns out to be slightly less than
26% — more precisely, ≈ 25.82% — based on simulations
of the queueing model, as shown in the leftmost point in
Figure 2(c).

We conjecture that this is, in fact, a lower bound on the
threshold load in an arbitrary system.

Conjecture 1. Deterministic service time is the worst
case for replication: there is no service time distribution in
which the threshold load is below the (≈ 26%) threshold when
the service time is deterministic.

The primary difficulty in resolving the conjecture is that
general response time distributions are hard to handle an-
alytically, especially since in order to quantify the effect of
taking the minimum of two samples we need to understand
the shape of the entire distribution, not just its first few mo-
ments. However, we have two forms of evidence that seem
to support this conjecture: analyses based on approxima-
tions to the response time distribution, and simulations of
the queueing model.

The primary approximation that we use is a recent re-
sult by Myers and Vernon [23] that only depends on the
first two moments of the service time distribution. The ap-
proximation seems to perform fairly well in numerical eval-
uations with light-tailed service time distributions, such as
the Erlang and hyperexponential distributions (see Figure 2
in [23]), although no bounds on the approximation error are
available. However, the authors note that the approxima-
tion is likely to be inappropriate when the service times are
heavy tailed.

As a supplement, therefore, in the heavy-tailed case, we
use an approximation by Olvera-Cravioto et al. [24] that
is applicable when the service times are regularly varying1.
Heavy-tail approximations are fairly well established in queue-
ing theory (see [26, 33]); the result due to Olvera-Cravioto
et al. is, to the best of our knowledge, the most recent (and
most accurate) refinement.

The following theorems summarize our results for these
approximations. We omit the proofs due to space constraints.

Theorem 2. Within the independence approximation and
the approximation of the response time distribution due to

1The class of regularly varying distributions is an important
subset of the class of heavy-tailed distributions that includes
as its members the Pareto and the log-Gamma distributions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 4 8 16 32 64 128 256 512

T
hr

es
ho

ld
 lo

ad

Size of distribution support

Conjectured lower bound
Uniform
Dirichlet

Figure 3: Randomly chosen service time distribu-
tions

Myers and Vernon [23], the threshold load is minimized when
the service time distribution is deterministic.

The heavy-tail approximation by Olvera-Cravioto et al. [24]
applies to arbitrary regularly varying service time distribu-
tions, but for our analysis we add an additional assumption
requiring that the service time be sufficiently heavy. For-
mally, we require that the service time distribution have a
higher coefficient of variation than the exponential distribu-
tion, which amounts to requiring that the tail index α be
< 1 +

√
2. (The tail index is a measure of how heavy a

distribution is: lower indices mean heavier tails.)

Theorem 3. Within the independence approximation and
the approximation due to Olvera-Cravioto et al. [24], if the
service time distribution is regularly varying with tail index
α < 1 +

√
2, then the threshold load is > 30%.

Simulation results also seem to support the conjecture.
We generated a range of service time distributions by, for
various values of S, sampling from the space of all unit-mean
discrete probability distributions with support {1, 2, ..., S}
in two different ways — uniformly at random, and using a
symmetric Dirichlet distribution with concentration param-
eter 0.1 (the Dirichlet distribution has a higher variance and
generates a larger spread of distributions than uniform sam-
pling). Figure 3 reports results when we generate a 1000
different random distributions for each value of S and look
at the minimum and maximum observed threshold load over
this set of samples.

286

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

T
hr

es
ho

ld
 lo

ad

Extra latency per request added by replication
(as fraction of mean service time)

Pareto
Exponential

Deterministic

Figure 4: Effect of redundancy-induced client-side
latency overhead, with different server service time
distributions.

Effect of client-side overhead
As we noted earlier, our analysis so far assumes that the
client-side overhead (e.g. added CPU utilization, kernel pro-
cessing, network overhead) involved in processing the repli-
cated requests is negligible. This may not be the case when,
for instance, the operations in question involve large file
transfers or very quick memory accesses. In both cases, the
client-side latency overhead involved in processing an addi-
tional replicated copy of a request would be comparable in
magnitude to the server latency for processing the request.
This overhead can partially or completely counteract the
latency improvement due to redundancy. Figure 4 quanti-
fies this effect by considering what happens when replication
adds a fixed latency penalty to every request. These results
indicate that the more variable distributions are more for-
giving of overhead, but client side overhead must be at least
somewhat smaller than mean request latency in order for
replication to improve mean latency. This is not surprising,
of course: if replication overhead equals mean latency, repli-
cation cannot improve mean latency for any service time
distribution — though it may still improve the tail.

2.2 Application: disk-backed database
Many data center applications involve the use of a large

disk-based data store that is accessed via a smaller main-
memory cache: examples include the Google AppEngine
data store [16], Apache Cassandra [10], and Facebook’s Haystack
image store [7]. In this section we study a representative
implementation of such a storage service: a set of Apache
web servers hosting a large collection of files, split across the
servers via consistent hashing, with the Linux kernel man-
aging a disk cache on each server.

We deploy a set of Apache servers and, using a light-weight
memory-soaking process, adjust the memory usage on each
server node so that around half the main memory is avail-
able for the Linux disk cache (the other half being used by
other applications and the kernel). We then populate the
servers with a collection of files whose total size is chosen
to achieve a preset target cache-to-disk ratio. The files are
partitioned across servers via consistent hashing, and two
copies are stored of every file: if the primary is stored on
server n, the (replicated) secondary goes to server n+1. We
measure the response time when a set of client nodes gener-

ate requests according to identical Poisson processes. Each
request downloads a file chosen uniformly at random from
the entire collection. We only test read performance on a
static data set; we do not consider writes or updates.

Figure 5 shows results for one particular web-server con-
figuration, with

• Mean file size = 4 KB

• File size distribution = deterministic, 4 KB per file

• Cache:disk ratio = 0.1

• Server/client hardware = 4 servers and 10 clients, all
identical single-core Emulab nodes with 3 GHz CPU,
2 GB RAM, gigabit network interfaces, and 10k RPM
disks.

Disk is the bottleneck in the majority of our experiments –
CPU and network usage are always well below peak capacity.

The threshold load (the maximum load below which repli-
cation always helps) is 30% in this setup — within the 25-
50% range predicted by the queueing analysis. Redundancy
reduces mean latency by 33% at 10% load and by 25% at
20% load. Most of the improvement comes from the tail.
At 20% load, for instance, replication cuts 99th percentile
latency in half, from 150 ms to 75 ms, and reduces 99.9th
percentile latency 2.2×.

The experiments in subsequent figures (Figures 6-11) vary
one of the above configuration parameters at a time, keeping
the others fixed. We note three observations.

First, as long as we ensure that file sizes continue to re-
main relatively small, changing the mean file size (Figure 6)
or the shape of the file size distribution (Figure 7) does not
siginificantly alter the level of improvement that we observe.
This is because the primary bottleneck is the latency in-
volved in locating the file on disk — when file sizes are small,
the time needed to actually load the file from disk (which
is what the specifics of the file size distribution affect) is
negligible.

Second, as predicted in our queueing model (§2.1), in-
creasing the variability in the system causes redundancy to
perform better. We tried increasing variability in two dif-
ferent ways — increasing the proportion of access hitting
disk by reducing the cache-to-disk ratio (Figure 8), and run-
ning on a public cloud (EC2) instead of dedicated hardware
(Figure 9). The increase in improvement is relatively minor,
although still noticeable, when we reduce the cache-to-disk
ratio. The benefit is most visible in the tail: the 99.9th per-
centile latency improvement at 10% load goes up from 2.3×
in the base configuration to 2.8× when we use the smaller
cache-to-disk ratio, and from 2.2× to 2.5× at 20% load.

The improvement is rather more dramatic when going
from Emulab to EC2. Redundancy cuts the mean response
time at 10-20% load on EC2 in half, from 12 ms to 6 ms
(compare to the 1.3− 1.5× reduction on Emulab). The tail
improvement is even larger: on EC2, the 99.9th percentile
latency at 10-20% load drops 8× when we use redundancy,
from around 160 ms to 20 ms. It is noteworthy that the
worst 0.1% of outliers with replication are quite close to the
12 ms mean without replication!

Third, as also predicted in §2.1, redundancy ceases to help
when the client-side overhead due to replication is a signif-
icant fraction of the mean service time, as is the case when
the file sizes are very large (Figure 10) or when the cache

287

 0

 10

 20

 30

 40

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 1e-05
 0.0001
 0.001
 0.01
 0.1

 1

 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 5: Base configuration

 0

 10

 20

 30

 40

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 6: Mean file size 0.04 KB instead of 4 KB

 0

 10

 20

 30

 40

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000
Fr

ac
tio

n
la

te
r

th
an

 t
hr

es
ho

ld
Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 7: Pareto file size distribution instead of deterministic

 0

 10

 20

 30

 40

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 1e-05
 0.0001
 0.001
 0.01
 0.1

 1

 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 8: Cache:disk ratio 0.01 instead of 0.1. Higher variability because of the larger proportion of accesses
hitting disk. Compared to Figure 5, 99.9th percentile improvement goes from 2.3× to 2.8× at 10% load, and
from 2.2× to 2.5× at 20% load.

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12

R
es

po
ns

e
tim

e
(m

s)

Arrival rate (queries/sec/node)

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 2 4 6 8 10 12

R
es

po
ns

e
tim

e
(m

s)

Arrival rate (queries/sec/node)

99.9th %ile response time

1 copy
2 copies

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Rate 1000 queries/sec/node: CDF

1 copy
2 copies

Figure 9: EC2 nodes instead of Emulab. x-axis shows unnormalised arrival rate because maximum throughput
seems to fluctuate. Note the much larger tail improvement compared to Figure 5.

288

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 200

 400

 600

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 10: Mean file size 400 KB instead of 4 KB

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 20

 40

 60

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

 0.1 1 10 100 1000
Fr

ac
tio

n
la

te
r

th
an

 t
hr

es
ho

ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 11: Cache:disk ratio 2 instead of 0.1. Cache is large enough to store contents of entire disk

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

Mean response time

1 copy
2 copies

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Load

99.9th %ile response time

1 copy
2 copies

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

 0.1 1 10 100

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (ms)

Load 0.2: CDF

1 copy
2 copies

Figure 12: memcached

289

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-05 0.0001 0.001 0.01 0.1

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time (s)

1 copy: real
2 copies: real
1 copy: stub

2 copies: stub

Figure 13: memcached: stub and normal version
response times at 0.1% load

is large enough that all the files fit in memory (Figure 11).
We study this second scenario more directly, using an in-
memory distributed database, in the next section.

2.3 Application: memcached
We run a similar experiment to the one in the previous

section, except that we replace the filesystem store + Linux
kernel cache + Apache web server interface setup with the
memcached in-memory database. Figure 12 shows the ob-
served response times in an Emulab deployment. The results
show that replication seems to worsen overall performance
at all the load levels we tested (10-90%).

To understand why, we test two versions of our code at
a low (0.1%) load level: the “normal” version, as well as a
version with the calls to memcached replaced with stubs,
no-ops that return immediately. The performance of this
stub version is an estimate of how much client-side latency
is involved in processing a query.

Figure 13 shows that the client-side latency is non-trivial.
Replication increases the mean response time in the stub ver-
sion by 0.016 ms, which is 9% of the 0.18 ms mean service
time. This is an underestimate of the true client-side over-
head since the stub version, which doesn’t actually process
queries, does not measure the network and kernel overhead
involved in sending and receiving packets over the network.

The client-side latency overhead due to redundancy is thus
at least 9% of the mean service time. Further, the service
time distribution is not very variable: although there are
outliers, more than 99.9% of the mass of the entire distri-
bution is within a factor of 4 of the mean. Figure 4 in §2.1
shows that when the service time distribution is completely
deterministic, a client-side overhead greater than 3% of the
mean service time is large enough to completely negate the
response time reduction due to redundancy.

In our system, redundancy does not seem to have that ab-
solute a negative effect – in the “normal” version of the code,
redundancy still has a slightly positive effect overall at 0.1%
load (Figure 13). This suggests that the threshold load is
positive though small (it has to be smaller than 10%: Fig-
ure 12 shows that replication always worsens performance
beyond 10% load).

2.4 Application: replication in the network
Replication has always added a non-zero amount of over-

head in the systems we have considered so far (even if that

overhead was mitigated by the response time reduction it
achieved). We now consider a setting in which this over-
head can be essentially eliminated: a network in which the
switches are capable of strict prioritization.

Specifically, we consider a data center network. Many
data center network architectures [2, 18] provide multiple
equal-length paths between each source-destination pair, and
assign flows to paths based on a hash of the flow header [20].
However, simple static flow assignment interacts poorly with
the highly skewed flow-size mix typical of data centers: the
majority of the traffic volume in a data center comes from a
small number of large elephant flows [2, 3], and hash-based
flow assignment can lead to hotspots because of the possi-
bility of assigning multiple elephant flows to the same link,
which can result in significant congestion on that link. Re-
cent work has proposed mitigating this problem by dynam-
ically reassigning flows in response to hotspots, in either a
centralized [1] or distributed [31] fashion.

We consider a simple alternative here: redundancy. Ev-
ery switch replicates the first few packets of each flow along
an alternate route, reducing the probability of collision with
an elephant flow. Replicated packets are assigned a lower
(strict) priority than the original packets, meaning they can
never delay the original, unreplicated traffic in the network.
Note that we could, in principle, replicate every packet —
the performance when we do this can never be worse than
without replication — but we do not since unnecessary repli-
cation can reduce the gains we achieve by increasing the
amount of queueing within the replicated traffic. We repli-
cate only the first few packets instead, with the aim of reduc-
ing the latency for short flows (the completion times of large
flows depend on their aggregate throughput rather than in-
dividual per-packet latencies, so replication would be of little
use).

We evaluate this scheme using an ns-3 simulation of a
common 54-server three-layered fat-tree topology, with a full
bisection-bandwidth fabric consisting of 45 6-port switches
organized in 6 pods. We use a queue buffer size of 225
KB and vary the link capacity and delay. Flow arrivals
are Poisson, and flow sizes are distributed according to a
standard data center workload [8], with flow sizes varying
from 1 KB to 3 MB and with more than 80% of the flows
being less than 10 KB.

Figure 14 shows the completion times of flows smaller than
10 KB when we replicate the first 8 packets in every flow.

Figure 14(a) shows the reduction in the median flow com-
pletion time as a function of load for three different delay-
bandwidth combinations (achieved by varying the latency
and capacity of each link in the network). Note that in all
three cases, the improvement is small at low loads, rises un-
til load ≈ 40%, and then starts to fall. This is because at
very low loads, the congestion on the default path is small
enough that replication does not add a significant benefit,
while at very high loads, every path in the network is likely
to be congested, meaning that replication again yields lim-
ited gain. We therefore obtain the largest improvement at
intermediate loads.

Note also that the performance improvement we achieve
falls as the delay-bandwidth product increases. This is be-
cause our gains come from the reduction in queuing delay
when the replicated packets follow an alternate, less con-
gested, route. At higher delay-bandwidth products, queue-
ing delay makes up a smaller proportion of the total flow

290

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.2 0.4 0.6 0.8 1

%
 im

pr
ov

em
en

t

Total load

% improvement in median flow completion time

5 Gbps, 2 us per hop
10 Gbps, 2 us per hop
10 Gbps, 6 us per hop

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

C
om

pl
et

io
n

tim
e

(m
s)

Total load

99th %ile flow completion time

No replication
Replication

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Flow completion time (ms)

CDF: Load 0.4

No replication
Replication

Figure 14: Median and tail completion times for flows smaller than 10 KB

completion time, meaning that the total latency savings
achieved is correspondingly smaller. At 40% network load,
we obtain a 38% improvement in median flow completion
time (0.29 ms vs. 0.18 ms) when we use 5 Gbps links with
2 us per-hop delay. The improvement falls to 33% (0.15 ms
vs. 0.10 ms) with 10 Gbps links with 2 us per-hop delay,
and further to 19% (0.21 ms vs. 0.17 ms) with 10 Gbps links
with 6 us per-hop delay.

Next, Figure 14(b) shows the 99th percentile flow comple-
tion times for one particular delay-bandwidth combination.
In general, we see a 10-20% reduction in the flow comple-
tion times, but at 70-80% load, the improvement spikes to
80-90%. The reason turns out to be timeout avoidance: at
these load levels, the 99th percentile unreplicated flow faces
a timeout, and thus has a completion time greater than the
TCP minRTO, 10 ms. With redundancy, the number of
flows that face timeouts reduces significantly, causing the
99th percentile flow completion time to be much smaller
than 10 ms.

At loads higher than 80%, however, the number of flows
facing timeouts is high even with redundancy, resulting in a
narrowing of the performance gap.

Finally, Figure 14(c) shows a CDF of the flow completion
times at one particular load level. Note that the improve-
ment in the mean and median is much larger than that in
the tail. We believe this is because the high latencies in the
tail occur at those instants of high congestion when most of
the links along the flow’s default path are congested. There-
fore, the replicated packets, which likely traverse some of
the same links, do not fare significantly better.

Replication has a negligible impact on the elephant flows:
it improved the mean completion time for flows larger than
1 MB by a statistically-insignificant 0.12%.

3. INDIVIDUAL VIEW
The model and experiments of the previous section in-

dicated that in a range of scenarios, latency is best opti-
mized in a fixed set of system resources through replication.
However, settings such as the wide-area Internet are better
modeled as having elastic resources: individual participants
can selfishly choose whether to replicate an operation, but
this incurs an additional cost (such as bandwidth usage or
battery consumption). In this section, we present two exam-
ples of wide-area Internet applications in which replication
achieves a substantial improvement in latency. We argue
that the latency reduction in both these applications out-
weighs the cost of the added overhead by comparing against
a benchmark that we develop in a companion article [29].
The benchmark establishes a cost-effectiveness threshold by
comparing the cost of the extra overhead induced at the

servers and the clients against the economic value of the
latency improvement that would be achieved. In our eval-
uation we find that the latency improvement achieved by
redundancy is orders of magnitude larger than the required
threshold in both the applications we consider here.

3.1 Application: Connection establishment
We start with a simple example, demonstrating why repli-

cation should be cost-effective even when the available choices
are limited: we use a back-of-the-envelope calculation to
consider what happens when multiple copies of TCP-handshake
packets are sent on the same path. It is obvious that this
should help if all packet losses on the path are independent.
In this case, sending two back-to-back copies of a packet
would reduce the probability of it being lost from p to p2.
In practice, of course, back-to-back packet transmissions are
likely to observe a correlated loss pattern. But Chan et
al. [11] measured a significant reduction in loss probabil-
ity despite this correlation. Sending back-to-back packet
pairs between PlanetLab hosts, they found that the aver-
age probability of individual packet loss was ≈ 0.0048, and
the probability of both packets in a back-to-back pair being
dropped was only ≈ 0.0007 – much larger than the ∼ 10−6

that would be expected if the losses were independent, but
still 7× lower than the individual packet loss rate.2

As a concrete example, we quantify the improvement that
this loss rate reduction would effect on the time required to
complete a TCP handshake. The three packets in the hand-
shake are ideal candidates for replication: they make up
an insignificant fraction of the total traffic in the network,
and there is a high penalty associated with their being lost
(Linux and Windows use a 3 second initial timeout for SYN
packets; OS X uses 1 second [12]). We use the loss prob-
ability statistics discussed above to estimate the expected
latency savings on each handshake.

We consider an idealized network model. Whenever a
packet is sent on the network, we assume it is delivered suc-
cessfully after (RTT/2) seconds with probability 1− p, and
lost with probability p. Packet deliveries are assumed to be
independent of each other. p is 0.0048 when sending one
copy of each packet, and 0.0007 when sending two copies
of each packet. We also assume TCP behavior as in the
Linux kernel: an initial timeout of 3 seconds for SYN and
SYN-ACK packets and of 3 × RTT for ACK packets, and
exponential backoff on packet loss [12].

With this model, it can be shown that duplicating all three
packets in the handshake would reduce its expected comple-

2It might be possible to do even better by spacing the trans-
missions of the two packets in the pair a few milliseconds
apart to reduce the correlation.

291

tion time by approximately (3+3+3×RTT)×(4.8−0.7) ms,
which is at least 25 ms. The benefit increases with RTT ,
and is even higher in the tail: duplication would improve
the 99.9th percentile handshake completion time by at least
880 ms.

Is this improvement worth the cost of added traffic? Qual-
itatively, even 25 ms is significant relative to the size of the
handshake packets. Quantitatively, a cost-benefit analysis
is difficult since it depends on estimating and relating the
direct and indirect costs of added traffic and the value to
humans of lower latency. While an accurate comparison is
likely quite difficult, the study referenced at the beginning of
this section [29,30] estimated these values using the pricing
of cloud services, which encompasses a broad range of costs,
including those for bandwidth, energy consumption, server
utilization, and network operations staff, and concluded that
in a broad class of cases, reducing latency is useful as long
as it improves latency by 16 ms for every KB of extra traf-
fic. In comparison, the latency savings we obtain in TCP
connection establishment is more than an order of magni-
tude larger than this threshold in the mean, and more than
two orders of magnitude larger in the tail. Specifically, if we
assume each packet is 50 bytes long then a 25-880 ms im-
provement implies a savings of around 170-6000 ms/KB. We
caution, however, that the analysis of [29, 30] was necessar-
ily imprecise; a more rigorous study would be an interesting
avenue of future work.

3.2 Application: DNS
An ideal candidate for replication is a service that in-

volves small operations and which is replicated at multiple
locations, thus providing diversity across network paths and
servers, so that replicated operations are quite independent.
We believe opportunities to replicate queries to such services
may arise both in the wide area and the data center. Here,
we explore the case of replicating DNS queries.

We began with a list of 10 DNS servers3 and Alexa.com’s
list of the top 1 million website names. At each of 15 Plan-
etLab nodes across the continental US, we ran a two-stage
experiment: (1) Rank all 10 DNS servers in terms of mean
response time, by repeatedly querying a random name at a
random server. Note that this ranking is specific to each
PlanetLab server. (2) Repeatedly pick a random name and
perform a random one of 20 possible trials — either querying
one of the ten individual DNS servers, or querying anywhere
from 1 to 10 of the best servers in parallel (e.g. if sending 3
copies of the query, we send them to the top 3 DNS servers
in the ranked list). In each of the two stages, we performed
one trial every 5 seconds. We ran each stage for about a
week at each of the 15 nodes. Any query which took more
than 2 seconds was treated as lost, and counted as 2 sec
when calculating mean response time.

Figure 15 shows the distribution of query response times
across all the PlanetLab nodes. The improvement is sub-
stantial, especially in the tail: Querying 10 DNS servers, the
fraction of queries later than 500 ms is reduced by 6.5×, and
the fraction later than 1.5 sec is reduced by 50×. Averaging
over all PlanetLab nodes, Figure 16 shows the average per-
cent reduction in response times compared to the best fixed
DNS server identified in stage 1. We obtain a substantial

3The default local DNS server, plus public servers from
Level3, Google, Comodo, OpenDNS, DNS Advantage, Nor-
ton DNS, ScrubIT, OpenNIC, and SmartViper.

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time threshold (s)

1 server
2 servers
5 servers

10 servers

Figure 15: DNS response time distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9 10

%
 la

te
nc

y
re

du
ct

io
n

Number of copies of each query

Mean
Median

95th %ile
99th %ile

Figure 16: Reduction in DNS response time, aver-
aged across 15 PlanetLab servers.

reduction with just 2 DNS servers in all metrics, improving
to 50-62% reduction with 10 servers. Finally, we compared
performance to the best single server in retrospect, i.e., the
server with minimum mean response time for the queries to
individual servers in Stage 2 of the experiment, since the
best server may change over time. Even compared with this
stringent baseline, we found a result similar to Fig. 16, with
a reduction of 44-57% in the metrics when querying 10 DNS
servers.

How many servers should one use? Figure 17 compares the
marginal increase in latency savings from each extra server
against the 16 ms/KB benchmark [29, 30] discussed earlier
in this section. The results show that what we should do de-
pends on the metric we care about. If we are only concerned
with mean performance, it does not make economic sense to

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

La
te

nc
y

sa
vi

ng
s

(m
s/

K
B)

Number of DNS servers

Incremental Improvement

99th %ile
Mean

Break-even point

Figure 17: Incremental latency improvement from
each extra server contacted

292

contact any more than 5 DNS servers for each query, but if
we care about the 99th percentile, then it is always useful
to contact 10 or more DNS servers for every query. Note
also that the absolute (as opposed to the marginal) latency
savings is still worthwhile, even in the mean, if we contact
10 DNS servers for every query. The absolute mean latency
savings from sending 10 copies of every query is 0.1 sec /
4500 extra bytes ≈ 23 ms/KB, which is more than twice the
break-even latency savings. And if the client costs are based
on DSL rather than cell service, the above schemes are all
more than 100× more cost-effective.

Querying multiple servers also increases caching, a side-
benefit which would be interesting to quantify.

Prefetching — that is, preemptively initiating DNS lookups
for all links on the current web page — makes a similar
tradeoff of increasing load to reduce latency, and its use is
widespread in web browsers. Note, however, that redun-
dancy is complementary to prefetching, since some names
in a page will not have been present on the previous page
(or there may not be a previous page).

4. RELATED WORK
Replication is used pervasively to improve reliability, and

in many systems to reduce latency. Distributed job exe-
cution frameworks, for example, have used task replication
to improve response time, both preemptively [4, 15] and to
mitigate the impact of stragglers [32].

Within networking, replication has been explored to re-
duce latency in several specialized settings, including repli-
cating DHT queries to multiple servers [22] and replicat-
ing transmissions (via erasure coding) to reduce delivery
time and loss probability in delay-tolerant networks [21,27].
Replication has also been suggested as a way of providing
QoS prioritization and improving latency and loss perfor-
mance in networks capable of redundancy elimination [19].

Dean and Barroso [13] discussed Google’s use of redun-
dancy in various systems, including a storage service similar
to the one we evaluated in §2.2, but they studied specific sys-
tems with capabilities that are not necessarily available in
general (such as the ability to cancel outstanding partially-
completed requests), and did not consider the effect the total
system utilization could have on the efficacy of redundancy.
In contrast, we thoroughly evaluate the effect of redundancy
at a range of loads both in various configurations of a de-
ployed system (§2.2, §2.3), and in a large space of synthetic
scenarios in an abstract system model (§2.1).

Andersen et al. [5]’s MONET system proxies web traf-
fic through an overlay network formed out of multi-homed
proxy servers. While the primary focus of [5] is on adapt-
ing quickly to changes in path performance, they replicate
two specific subsets of their traffic: connection establish-
ment requests to multiple servers are sent in parallel (while
the first one to respond is used), and DNS queries are repli-
cated to the local DNS server on each of the multi-homed
proxy server’s interfaces. We show that replication can be
useful in both these contexts even in the absence of path di-
versity: a significant performance benefit can be obtained by
sending multiple copies of TCP SYNs to the same server on
the same path, and by replicating DNS queries to multiple
public servers over the same access link.

In a recent workshop paper [30] we advocated using re-
dundancy to reduce latency, but it was preliminary work
that did not characterize when redundancy is helpful, and

did not study the systems view of optimizing a fixed set of
resources.

Most importantly, unlike all of the above work, our goal is
to demonstrate the power of redundancy as a general tech-
nique. We do this by providing a characterization of when
it is (and isn’t) useful, and by quantifying the performance
improvement it offers in several use cases where it is appli-
cable.

5. CONCLUSION
We studied an abstract characterization of the tradeoff

between the latency reduction achieved by redundancy and
the cost of the overhead it induces to demonstrate that re-
dundancy should have a net positive impact in a large class
of systems. We then confirmed empirically that redundancy
offers a significant benefit in a number of practical appli-
cations, both in the wide area and in the data center. We
believe our results demonstrate that redundancy is a pow-
erful technique that should be used much more commonly
in networked systems than it currently is. Our results also
will guide the judicious application of redundancy within
only those cases where it is a win in terms of performance
or cost-effectiveness.

Acknowledgements
We would like to thank our shepherd Sem Borst and the
anonymous reviewers for their valuable suggestions. We
gratefully acknowledge the support of NSF grants 1050146,
1149895, 1117161 and 1040838.

6. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: dynamic flow
scheduling for data center networks. In Proceedings of
the 7th USENIX conference on Networked systems
design and implementation, NSDI’10, pages 19–19,
Berkeley, CA, USA, 2010. USENIX Association.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center TCP (DCTCP). In
SIGCOMM, 2010.

[3] M. Alizadeh, S. Yang, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. Deconstructing
datacenter packet transport. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks,
HotNets-XI, pages 133–138, New York, NY, USA,
2012. ACM.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Why let resources idle? Aggressive cloning of
jobs with Dolly. In USENIX HotCloud, 2012.

[5] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. N. Rao. Improving web availability for clients
with MONET. In USENIX NSDI, pages 115–128,
Berkeley, CA, USA, 2005. USENIX Association.

[6] S. Asmussen. Applied Probability and Queues. Wiley,
1987.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and
P. Vajgel. Finding a needle in haystack: facebook’s
photo storage. In Proceedings of the 9th USENIX
conference on Operating systems design and
implementation, OSDI’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

293

[8] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC,
pages 267–280, New York, NY, USA, 2010. ACM.

[9] J. Brutlag. Speed matters for Google web search, June
2009. http://services.google.com/fh/files/
blogs/google_delayexp.pdf.

[10] Apache Cassandra. http://cassandra.apache.org.

[11] E. W. Chan, X. Luo, W. Li, W. W. Fok, and R. K.
Chang. Measurement of loss pairs in network paths. In
IMC, pages 88–101, New York, NY, USA, 2010. ACM.

[12] J. Chu. Tuning TCP parameters for the 21st century.
http://www.ietf.org/proceedings/75/slides/

tcpm-1.pdf, July 2009.

[13] J. Dean and L. A. Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, Feb. 2013.

[14] P. Dixon. Shopzilla site redesign – we get what we
measure, June 2009.
http://www.slideshare.net/shopzilla/

shopzillas-you-get-what-you-measure-velocity-2009.

[15] C. C. Foster and E. M. Riseman. Percolation of code
to enhance parallel dispatching and execution. IEEE
Trans. Comput., 21(12):1411–1415, Dec. 1972.

[16] Google AppEngine datastore: memcached cache.
https://developers.google.com/appengine/docs/

python/memcache/usingmemcache#Pattern.

[17] W. Gray and D. Boehm-Davis. Milliseconds matter:
An introduction to microstrategies and to their use in
describing and predicting interactive behavior. Journal
of Experimental Psychology: Applied, 6(4):322, 2000.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: a scalable and flexible data center
network. In ACM SIGCOMM, pages 51–62, New
York, NY, USA, 2009. ACM.

[19] D. Han, A. Anand, A. Akella, and S. Seshan. RPT:
re-architecting loss protection for content-aware
networks. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, NSDI’12, pages 6–6, Berkeley, CA,
USA, 2012. USENIX Association.

[20] C. Hopps. Computing TCP’s retransmission timer
(RFC 6298), 2000.

[21] S. Jain, M. Demmer, R. Patra, and K. Fall. Using
redundancy to cope with failures in a delay tolerant
network. In ACM SIGCOMM, 2005.

[22] J. Li, J. Stribling, R. Morris, and M. Kaashoek.
Bandwidth-efficient management of DHT routing
tables. In NSDI, 2005.

[23] D. S. Myers and M. K. Vernon. Estimating queue
length distributions for queues with random arrivals.
SIGMETRICS Perform. Eval. Rev., 40(3):77–79, Jan.
2012.

[24] M. Olvera-Cravioto, J. Blanchet, and P. Glynn. On
the transition from heavy-traffic to heavy-tails for the
m/g/1 queue: The regularly varying case. Annals of
Applied Probability, 21:645–668, 2011.

[25] S. Ramachandran. Web metrics: Size and number of
resources, May 2010. https://developers.google.
com/speed/articles/web-metrics.

[26] K. Sigman. Appendix: A primer on heavy-tailed
distributions. Queueing Systems, 33(1-3):261–275,
1999.

[27] E. Soljanin. Reducing delay with coding in (mobile)
multi-agent information transfer. In Communication,
Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, pages 1428–1433. IEEE, 2010.

[28] S. Souders. Velocity and the bottom line.
http://radar.oreilly.com/2009/07/

velocity-making-your-site-fast.html.

[29] A. Vulimiri, P. B. Godfrey, and S. Shenker. A
cost-benefit analysis of low latency via added
utilization, June 2013. http://web.engr.illinois.
edu/~vulimir1/benchmark.pdf.

[30] A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker.
More is less: Reducing latency via redundancy. In
Eleventh ACM Workshop on Hot Topics in Networks
(HotNets-XI), October 2012.

[31] X. Wu and X. Yang. Dard: Distributed adaptive
routing for datacenter networks. In Proceedings of the
2012 IEEE 32nd International Conference on
Distributed Computing Systems, ICDCS ’12, pages
32–41, Washington, DC, USA, 2012. IEEE Computer
Society.

[32] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In USENIX OSDI, pages
29–42, Berkeley, CA, USA, 2008.

[33] A. P. Zwart. Queueing Systems With Heavy Tails.
PhD thesis, Technische Universiteit Eindhoven,
September 2001.

294

