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Abstract Global Positioning System (GPS) L1-frequency (1.575 GHz) amplitude scintillations at São José

dos Campos (23.1°S, 45.8°W, dip latitude 17.3°S), located under the southern crest of the equatorial

ionization anomaly, are analyzed during the Northern Hemisphere winter sudden stratospheric warming

(SSW) events of 2001/2002, 2002/2003, and 2012/2013. The events occurred during a period when

moderate to strong scintillations are normally observed in the Brazilian longitude sector. The selected SSW

events were of moderate and major categories and under low Kp conditions. The most important result of

the current study is the long-lasting (many weeks) weakening of scintillation amplitudes at this low-latitude

station, compared to their pre-SSW periods. Ionosonde-derived evening vertical plasma drifts and

meridional neutral wind effects inferred from total electron content measurements are consistent with the

observed weakening of GPS scintillations during these SSW events. This work provides strong evidence of

SSW effects on ionospheric scintillations and the potential consequences of such SSW events on Global

Navigation Satellite System-based applications.

1. Introduction

The generation of premidnight equatorial ionospheric irregularities or plasma bubbles is determined by

sunset electrodynamic processes resulting mainly from eastward thermospheric wind-driven enhanced

prereversal upward plasma drifts and upward propagating lower atmospheric waves. The complex set of

processes involved in the bubble irregularity phenomenon is also affected by the flux tube integrated

Pedersen conductivity, the magnetic field line integrated density, and the longitudinal conductivity gradient

across the sunset terminator [Abdu, 2005; Abdu et al., 2014; Fejer et al., 1999]. Plasma density irregularities with

scale sizes of hundreds of meters, associated with larger structures (plasma bubbles), cause scattering and

diffraction of radio waves crossing unstable ionospheric regions and can produce large-amplitude and/or

phase scintillations on received signals [Yeh and Liu, 1982]. The fades on the GPS signals due to scintillations

caused by irregularities with scale sizes of about 400m can be deep and long enough to cause loss of the

receiver lock, thus affecting the positional and navigational accuracy. Therefore, a statistical characterization

of scintillation patterns can help improve the robustness of Global Navigation Satellite Systems (GNSS)

receivers [Kintner et al., 2001, 2007; Carrano and Groves, 2010; Moraes et al., 2011, 2014a, 2014b].

Equatorial and low-latitude ionospheric scintillations exhibit large variability with local time, day-to-day,

season, latitude, longitude, and solar and magnetic activities, which makes it difficult to establish their

morphology and, consequently, to make accurate predictions of their occurrence. de Paula et al. [2007] used

GPS data from September 1997 to June 2002 from one array of eight sites to describe, for the first time, the

morphology of GPS scintillations over the Brazilian sector. This study showed that these scintillations occur

predominantly from September to March and have highest occurrence during December solstice of high

solar activity. Muella et al. [2013] determined the spatial distribution of GPS scintillations between the crests

of the equatorial ionization anomaly (EIA) over Brazil. They reported that there is higher scintillation

occurrence in the inner region of the southern crests than in the inner region of the northern crest during

both December solstice and equinox seasons, as a result of higher ambient ionization and sharper plasma

density gradients. Muella et al. [2014] determined the climatology of GPS scintillations close to the magnetic

equator over Brazil from solar minimum to solar maximum. They pointed out that the evening and early night

ionization trough near the magnetic equator leads to small plasma densities and, therefore, limits the
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equatorial scintillations to weak intensity levels. Intensive climatological studies on plasma irregularities have

been also done using satellite data [e.g., Stolle et al., 2008; Xiong et al., 2010, and references therein].

The sudden stratospheric warming (SSW) is a large meteorological fluctuation in the polar stratosphere

where over a period of several days the temperature increases substantially and the eastward winds become

weaker or reverse to westward. According toMatsuno [1971], planetary wave activity in the atmosphere is the

main mechanism that may trigger a SSW event. A possible explanation for the phenomenon is based in

the preconditioning of the vortex, which happens when the stratospheric zonal flow is displaced into the

pole. This preconditioning allows the upward propagating planetary waves to interact with the zonal flow,

throughwave forcing, which tends to exert significant influence on the stratospheric circulation. This interaction

imparts a sudden collapse of the zonal flow, then contributing for the displacement of the stratospheric vortex

off the pole and, consequently, to the rise of the stratospheric temperature [Limpasuvan et al., 2004].

SSW events also trigger or influence a variety of waves, including tides and gravity waves, which in turn can

significantly modify the dynamics of the global lower and upper atmosphere and ionosphere. According

to the World Meteorological Organization, a major warming occurs when, at 60° latitude and at 10 hPa

(~32 km), the vortex wind reverts from eastward to westward and a stratospheric temperature variation of

at least ΔT ≥ 25 K is attained.

In the low-latitude and equatorial ionosphere, SSW effects are associated with large semidiurnal

perturbations in the dynamo zonal electric fields and vertical plasma drifts [e.g., Chau et al., 2009, 2010;

Fejer et al., 2010, 2011; Rodrigues et al., 2011; Park et al., 2012] and in the latitudinal distribution of the

ionospheric plasma, including the EIA [Goncharenko et al., 2010a, 2010b, 2013]. The semidiurnal lunar tidal

effects on the vertical plasma drifts over Jicamarca were discussed by Fejer et al. [2010], who found stronger

moon effects about 6 days after the new or full moon days. Fejer et al. [2011] and Fejer and Tracy [2013]

pointed out that lunar semidiurnal tidal effects are strongly enhanced during SSW periods. Pedatella and Liu

[2013], using simulations, showed that the lunar tidal (M2) effect over the vertical plasma drift variability is

about 25% to 30% during SSW. They also pointed out that this lunar influence depends upon the phase of the

moon relative to the timing of the SSW. Chau et al. [2012] and Fejer et al. [2010] using Jicamarca radar data,

and Rodrigues et al. [2011] using C/NOFS satellite data, observed large morning upward and afternoon

downward drifts during SSW events, which was supported by the numerical modeling of Pedatella and Liu

[2013]. Similar behavior was observed at the 60° magnetic longitude sector over Brazil by Jonah et al. [2014].

In that study the daytime vertical plasma drift was inferred from a pair of magnetometers, one located under

the magnetic equator and another at an off-equatorial position. More recently, by using ΔTEC (total electron

content) parameter, Paes et al. [2014] investigated the EIA relative intensity over Brazil during four events

of boreal SSW and also reported TEC semidiurnal patterns as consequence of the ionospheric electric field

modulation. Paes et al. [2014] also observed the intensification (suppression) of the EIA during the morning

(afternoon) hours, which causes anomalous distribution of the ionospheric ionization and, consequently,

affects the ionospheric scintillation activity. We note that the magnetic field aligned plasma transport driven

by transequatorial/meridional neutral winds also contributes to north-south asymmetries in the plasma

density distribution of the EIA, which in turn affect the flux tube integrated conductivities and, consequently,

may suppress the generation of plasma irregularities and their associated scintillations [Devasia et al., 2002;

Abdu et al., 2006, 2014; Muella et al., 2010].

In the present paper we report long-lasting weakening in the scintillation activity and intensity observed at

one GPS station located near the southern crest of the EIA, during the 2001/2002, 2002/2003, and 2012/2013

SSW events. We also examine the possible roles of the equatorial vertical plasma drifts and thermospheric

neutral winds on the L band scintillation activity during these events.

2. Data and Results

In this work we use the S4 scintillation index [Beach and Kintner, 2001] to quantify the fluctuations in the

amplitude of the GPS signals. The S4 index was calculated as the standard deviation of the signal intensity

relative to its average computed every minute from 18 to 06 LT. High data sampling (50Hz) scintillation

monitor installed at the low-latitude station of São José dos Campos (23.1°S, 45.8°W, dip latitude 17.3°S) was

used in the analysis. The S4 measurements from a nearby station, Cachoeira Paulista (22.4°S, 45°W, dip

latitude 16.9°S), have also been used to complement few days of missing data at São José dos Campos. The
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first step of this work was to analyze the São José dos Campos ionospheric scintillation data during the

Northern Hemisphere SSW events covering the period of 2001 to 2014 and select the periods during

magnetic quiet conditions. These warming events occurred during the periods of December to February

2001/2002 (average F10.7= 209.55 solar flux unit (sfu)), 2002/2003 (average F10.7=137.40 sfu), and 2012/2013

(average F10.7= 113.40 sfu). The first two events occurred around the maximum of the solar cycle 23 and the

later around the maximum of the solar cycle 24. Except during solar minimum periods, moderate to high

scintillation levels are generally observed around the EIA in the Brazilian sector from December to February

[de Paula et al., 2007].

Figure 1 presents the stratospheric, solar, geomagnetic conditions, and the S4 indices registered during the

SSW event of 2001/2002. The stratospheric data were collected from the National Center for Environmental

Prediction (http://www.ncep.noaa.gov/). The first and second panels show in red lines the polar stratospheric

temperatures at 90°N and zonal average winds at 60°N at geopotential height of 10 hPa (~32 km) and in

blue lines their historical averages from the last 30 years. In this event, the eastward winds first weakened and

then reversed to westward, which is an indicative of a major warming event. The third and fourth panels

present, respectively, the F10.7 cm solar indices and the daily
P

Kp indices. The solar flux data were collected

from the Space Physics Data Facility provided by NASA at http://omniweb.gsfc.nasa.gov/ website. The

geomagnetic planetary Kp data were collected from the World Data Center for Geomagnetism at http://wdc.

kugi.kyoto-u.ac.jp/ website. The fifth panel presents the number of cases of different S4 amplitudes specified

by colors, from 19 to 24 LT for all available GPS satellites. Only cases with S4 index larger or equal to 0.3 were

considered in the analysis. In order to investigate the possible influence of the lunar gravitational factor,

the shaded and unshaded circles also indicated in the S4 fifth panel denote, respectively, the days of new

(shaded circles) and full (unshaded circles) moon phases. Figure 1 shows the occurrence of strong scintillation

Figure 1. Stratospheric temperature at 90°N, average zonal wind at 60°N and at 32 km of altitude (red lines), F10.7 cm solar

flux, daily
P

Kp, and S4 scintillation indices for the SSW event of 2001/2002 (December to February). The blue lines in

the first and second panels indicate historical average of stratospheric parameters. The different S4 amplitudes are color

coded and represented at the right side of the plot.
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activity up to about 20 December, when the arctic temperature began to increase and simultaneously the

zonal average wind eastward velocity at 60°N around 32 km height began to decrease. With the onset of the

SSW, a long period of weakening in the S4 amplitude scintillation index, delayed from 20 December to 30

December probably due to the simultaneous solar activity increase, was observed which lasted up to the

end of January 2002. Later, the scintillation activity intensified again concurrently with the recovery of the

stratospheric temperature and wind to their historical averages. Small stratospheric temperature increase

and eastward wind decrease were observed also after 8 February 2002, which appears to have caused

another weakening in the S4 index after 18 February 2002.

Figure 2 presents measurements of stratospheric temperatures and winds, solar flux, geomagnetic, and S4
indices prior to and during the 2002/2003 SSW event, which occurred in the beginning of solar cycle 23. This

figure shows again long-lasting weak S4 activity starting at about the SSW onset on 28 December and lasting up

to about the end of February. In this event there were three stratospheric temperature peaks and small increases

up to 20 February, relative to its historical average. Also in this period, the decrease of the eastward wind was

recurrent and lasted up to 23 February, and probably, these two effects caused the long S4 weakening.

The 2012/2013 SSW event occurred under very quiet magnetic conditions, as shown in Figure 3. Again,

the results demonstrate the weakening in the scintillation intensity as observed from the S4 values. In this

case the long-lasting S4 weakening was expected to start after 5 January 2013, when the stratospheric

temperature increased and the zonal wind became more westward. However, an increase in F10.7 index that

occurred in the period of 1–19 January caused an increase on S4 scintillation index so that the SSW-related

weakening in the S4 index prevailed only after 19 January. Weak S4 indices lasted up to the end of February

2013, even though the temperature has recovered to its historical value on 25 January 2013 and remained with

Figure 2. The same as in Figure 1 but for the 2002/2003 SSW event.
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Figure 3. The same as in Figure 1 but for the 2012/2013 SSW event.

Figure 4. Average number of S4 cases during the (top) non-SSW days and (bottom) SSW days.
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smaller values after that. The wind recovered to its historical value on 20 February 2013, and this long-lasting

SSW-disturbed winds might have contributed to this long period of weak scintillations. Goncharenko et al.

[2013] pointed out that during this 2012/2013 SSW event the associated ionospheric anomalies were observed

for over 40days.

Figure 4 presents the average number of cases for each S4 amplitude (see the color coded S4 to the right)

during the non-SSW days (top) and during the SSW days of the years of 2001/2002, 2002/2003, and

2012/2013 (bottom). The large S4 occurrence for these non-SSW days is typical during the December solstice

at Brazilian longitudes [de Paula et al., 2007] mainly due to the large vertical plasma drifts during this season.

Also at this period, large background ionization contributes to large scintillation amplitude. Stolle et al.

[2008] and Abdu et al. [1998] also observed a larger occurrence of spread F (scintillation is normally associated

with SF) during December solstice at the Brazilian sector. Figure 4 shows a substantial decrease in the S4
average number of cases during the SSW days compared to the non-SSW days for the three events. Note that

in this figure the number of non-SSW days is much smaller than that of the SSW days.

3. Discussions

We have seen that following the onset of three SSW events, the S4 scintillation indices exhibited clear

long-lasting weakening compared to their pre-SSW values, even though these events occurred during

December solstice periods which are normally characterized by high incidence of ionospheric scintillation

in the Brazilian sector. The weakening of S4 scintillation is also evident in SSW months of January and

February of 1999, 2000, 2001, and 2002, as shown in the Figure 2 of de Paula et al. [2007], but this was not

pointed out in that paper since SSW effects on the equatorial ionosphere were not known at that time.

The three important factors that control the plasma bubble development [Abdu, 2005; Abdu et al., 2014]

and, consequently, ionospheric scintillations are the following: (a) the variability in the growth rate of the

instability process owing to the evening vertical plasma drifts, (b) the flux tube integrated conductivity

subject to modification by thermospheric meridional winds, and (c) wave modulations of the F layer

bottomside caused by atmospheric waves (normally gravity waves) traveling upward to serve as seeding

source. In addition, the background plasma density also affects the amplitude of the S4 scintillations.

The evening prereversal enhancement in the vertical drift (PRE vertical drift) is one of the most important

parameter controlling the irregularity generation [Fejer et al., 1999]. We have used digital ionosonde data

from the equatorial site of São Luís (2.52°S, 44.3°W, dip latitude 1.73°S) to calculate the vertical drifts at 15min

cadence during the time interval from 17 to 20 LT prior and during the SSW periods discussed above. The

vertical drifts were calculated by the time rate of change of the true height at 7MHz. Figure 5 shows the

estimated vertical plasma drift velocities during selected SSW days after the stratospheric temperature peaks

that are identified by the color legends shown at the right side of the panels. The averaged vertical drift

velocities of the 6 days prior to the SSW events, corresponding to the same moon phase of the SSW days, are

shown in the panels as reference curves (black thick lines with standard deviation bars). The days used in

the average drifts calculation are 20–26 December 2001, 11–17 December 2002, and 17–23 December 2012.

It should be pointed out that the prereversal vertical drift velocity just prior to its peak amplitude that

usually occurs during 1800–1840 LT (as can be verified from the black curves in Figure 5) is a fundamentally

important parameter for the postsunset development of plasma bubble irregularities that produce

scintillations. The plots in Figures 5a–5c show that the equatorial vertical plasma drifts decreased on the SSW

days during all the three events when compared to the mean values of vertical drifts observed during

the days that preceded the events. The results from all the three cases of the SSW events discussed here may

suggest that the vertical drift is at least partially responsible for the weakening of the scintillation. However,

the observed magnitudes of the vertical drift velocities during the SSW periods alone may not be sufficient

to fully explain the weakening in the scintillations. Since the evening thermospheric zonal wind plays a

fundamentally important role in the development of the PRE vertical drift [Rishbeth, 1971], a decrease in such

wind could be occurring during the SSW activity. This may be associated with an increase in the meridional

wind that can cause an additional suppression in the bubble irregularity development and hence in S4 index.

A thermospheric meridional/transequatorial wind can enhance the field line integrated conductivity of an

unstable flux tube leading to suppression of the plasma bubble instability growth [see, e.g.,Maruyama, 1988;
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Abdu et al., 2014] and hence cause decrease or nonoccurrence of the scintillation. It can also cause latitudinal

asymmetry in the EIA crests. According to the simulations of Pedatella and Liu [2013], during SSW events, the

migrating semidiurnal solar SW2 tide gives rise to neutral temperature increases in the Northern Hemisphere

at altitudes of about 130 km. These semidiurnal temperature increases, and the resulting equatorward

gradients [Laskar and Pallamraju, 2014], drive equatorward meridional winds during SSW events at

postsunset hours. Since we do not have wind measurements during our events, we used measurements of

the latitudinal distribution of the TEC during 18–20 LT in an attempt to infer any meridional wind effects

prior to and during the 2012/2013 SSW. This event was the only one selected here, since the number

and distribution of the GNSS receivers available in Brazil before 2007 did not produce reliable TEC maps

for the other events.

Figure 6 shows the ΔTEC for the magnetic longitude of 60°W for dip latitudes from 20°S to 20°N before

and during the 2012/2013 event and also the Northern Hemisphere stratospheric temperatures and their

historical averages. The absolute TEC maps and the ΔTEC contours were obtained using the Nagoya

model [Otsuka et al., 2002] and measurements from the International GNSS Service (IGS) and Brazilian

Network for Continuous Monitoring (RBMC/IBGE) stations (http://www.ibge.gov.br/home/geociencias/). The

ΔTEC = TEC� TECav was calculated, where TEC is the absolute total electron content measured in total

electron content unit (TECU) (1 TECU= 1016 el/m2) and TECav is its values averaged in the 18–20 LT interval

during each lunar phase from December 2012 to February 2013 [Jonah et al., 2014].

Figure 6 shows a significant degree of asymmetry in the EIA TEC (larger intensity of the southern crest)

especially from December 2012 till around 19 January 2013. As may be noted in the figure the EIA crest in TEC

Figure 5. Equatorial vertical plasma drifts for some selected SSW days (colored lines) and for the average of six pre-SSW

days (black line) corresponding to the same moon phase of the SSW days and the standard deviation, inferred from the

São Luís digital ionosonde data. Average F10.7 for the December to February periods are also shown.
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is displaced equatorward by a few degrees from the NmF2 crest that is nominally located at ±15–18° and

commonly referred to as the EIA crest [Nogueira et al., 2013]. In this paper we are assuming that the TEC crest

represents to some degree the EIA crest since we do not have measurements of the NmF2 latitudinal

distribution. The asymmetric distribution of the TEC in this case is in part due to larger ionization production

by the more intense solar radiation around the subsolar point located in the southern summer hemisphere

and also by northward thermospheric winds in the evening hours uplifting the ionospheric plasma to higher

altitudes where the recombination rate is smaller, maintaining a larger ionization density in the southern

EIA crest (contributing to more intense EIA asymmetry). Such EIA asymmetry does not seem to be a

significant factor in the weakening of the scintillation, since the S4 index was strong enough (as typical of its

seasonal behavior) till the onset of the SSW. With the SSW onset on 4 January we note an unexpected

increase in the TEC asymmetry with increase also in S4 index during 5–15 January, which may be attributed to

the significant enhancement in the solar flux that occurred during this period (see Figure 3 (third panel)). The

period from 15 January to the end of warming is marked by a remarkable degree of symmetry in the TEC

latitudinal distribution. This must be the result of a competing influence of the background wind that is

dominantly northward during this period and a southward wind originating from the SSW processes

(mentioned above). Such a situation may lead to the decrease of the scintillation as compared to its pre-SSW

value (characterized as being strong scintillation) that occurred in the presence of an EIA asymmetry and

a northward wind. In other words, if the presence of a finite field line integrated conductivity, which

influences negatively the nonlinear growth of the bubble instability, permits intense scintillation to occur in

the presence of a northward wind, the weakening/reversal of such a wind by an opposing wind due to the

SSW should be able to cause enhancement in the field line integrated conductivity leading to S4 decrease.

This reasoning is based on the fact that the field line integrated conductivity existing in an asymmetric EIA

produced solely from an asymmetric ionization production (without any meridional wind) has significantly

larger contribution to it from the hemisphere of enhanced ionization production, which is the Southern

Hemisphere in our case. A northward wind that lifts up the ionization in the Southern Hemisphere can cause

decrease in the integrated conductivity of the southern sector more than it can increase it in the northern

sector, thereby causing a decrease of the total field line integrated conductivity with respect the nonwind

condition. This situation characterized the pre-SSW scintillation. With the SSW in progress the associated

enhanced southward wind appears to have annulled or even reversed to southward the seasonal northward

wind causing a significant increase in the total field line integrated conductivity, at the same time causing a

more symmetric TEC latitudinal distribution as seen during the period of 15 January to the end of the warming

in Figure 6. This result thus suggests that besides the SSW-related modifications on the evening vertical plasma

drifts, the existing SSW-induced wind is possibly also playing a role in reducing the scintillation activity.

We may further note that the period that followed the end of the SSW is also marked by the weakest of

scintillation intensity as part of an extended duration of such weaker scintillation (as can be noted in Figure 3).

Figure 6. ΔTEC latitudinal distribution at 60°W from 18 to 20 LT around the 2012/2013 SSW event. The continuous line

represents the stratospheric temperature for this period, and the dashed line represents the historical stratospheric

temperature average. The dash-dotted line represents dip latitude (17.3°S) of São José dos Campos.
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This continuing weak scintillation appears to be part of the seasonal trend in the scintillation activity

characterized by a slow, but steady, decrease in activity from its December maximum toward its winter

minimum to occur in the months of June. According to Abdu et al. [1992], over Cachoeira Paulista (very close

to São José dos Campos) and from 1980 to 1981, the spread F (SF) percentage was about 90% during

December and decreased to about 60%–70% during February (SF and scintillation are closely related). So the

seasonal scintillation behavior that is a decrease of occurrence from December to February should also be

considered as a contributing factor to the S4 long-lasting weakening observed at all three SSW events.

Another important aspect observed in Figure 6 is that the southern EIA peaks tend to displace toward the

magnetic equator during the SSW event period, and this fact may also explain in part the weakening of the

scintillation, since the background plasma density at the dip latitude of São José dos Campos (as indicated by

the dash-dotted line in Figure 6) is significantly reduced. This later effect on the day-to-day variability of

plasma irregularities/scintillations during SSW events is going to be further investigated.

Similar studies should be carried out during other SSW periods and also in other sectors where meridional

wind and vertical drifts effects might be somewhat different.

4. Conclusions

On the basis of the above discussion we may conclude that the role of both vertical plasma drift and

thermospheric meridional wind, which are significantly modified during the three SSW events analyzed in

this study, is responsible for the weakening of the scintillation.

The main conclusions of this study may be summarized as follows:

1. The scintillation intensity (represented by the S4 index) over a station under the southern crest of the EIA

in the American sector can be weakened significantly during SSW events. The weakening effect is found

to be long lasting (many weeks) and was consistently observed during the SSW events of 2001/2002,

2002/2003, and 2012/2013.

2. The vertical drift velocity, around the prereversal peak hour, was consistently smaller during all the SSW

days as compared to the pre-SSW days.

3. The latitudinal symmetry of the EIA as observed in the ∆TEC during the 2012/2013 SSW event suggested

a meridional/equatorward thermospheric wind induced by stratospheric warming in the Northern

Hemisphere, together with the weakening of vertical drift, as another factor that contributed to the

scintillation weakening during that event.

4. One interesting characteristic observed in Figure 6 throughout the 2012/2013 SSW event was the

displacement of the southern crest of the EIA to latitudes closer to the magnetic dip equator,

occasioning a reduction in the background ionization above the low-latitude station of São José dos

Campos and, consequently, contributing also to the decline in the scintillation intensity at the site.

5. The seasonal scintillation behavior over the Brazilian sector, which is a decrease of occurrence from

December to February, should also be considered as a contributing factor to the S4 long-lasting

weakening observed at all three SSW events.

6. The events analyzed in this study provided strong evidences of SSW effects on the seasonal (southern

summer solstice) variability of ionospheric irregularities at low latitudes, contributing to the establishment

of GNSS scintillation pattern during such type of events, which is a relevant theme for the scientific and

technical community involved in the scintillation prediction.
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