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ABSTRACT 
 
Cloud computing represents a novel on-demand 
computing approach where resources are provided in 
compliance to a set of predefined non-functional 
properties specified and negotiated by means of Service 
Level Agreements (SLAs). In order to avoid costly SLA 
violations and to timely react to failures and 
environmental changes, advanced SLA enactment 
strategies are necessary, which include appropriate 
resource-monitoring concepts. Currently, Cloud 
providers tend to adopt existing monitoring tools, as for 
example those from Grid environments. However, those 
tools are usually restricted to locality and homogeneity of 
monitored objects, are not scalable, and do not support 
mapping of low-level resource metrics e.g., system up and 
down time to high-level application specific SLA 
parameters e.g., system availability. In this paper we 
present a novel framework for managing the mappings of 
the Low-level resource Metrics to High-level SLAs 
(LoM2HiS framework). The LoM2HiS framework is 
embedded into FoSII infrastructure, which facilitates 
autonomic SLA management and enforcement. Thus, the 
LoM2HiS framework detects future SLA violation threats 
and can notify the enactor component to act so as to avert 
the threats. We discuss the conceptual model of the 
LoM2HiS framework, followed by the implementation 
details. Finally, we present the first experimental results 
and a proof of concept of the LoM2HiS framework.  
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1. INTRODUCTION 
 
In recent years, Cloud computing has become a key IT 
megatrend that will take root, although it is in infancy in 
terms of market adoption. Cloud computing can be 

defined as the convergence and evolution of several 
concepts from virtualization, distributed application 
design, Grid, and enterprise IT management to enable a 
more flexible approach for deploying and scaling 
applications [3]. 
 
Cloud services include high performance applications 
requiring lots of system resources. Service provisioning in 
the Cloud is based on Service Level Agreements (SLA), 
which is a contract signed between the customer and the 
service provider. It states the terms of the service 
including the non-functional requirements of the service 
specified as quality of service (QoS), obligations, service 
pricing, and penalties in case of agreement violations.  
 
In order to guarantee an agreed SLA, the service provider 
must be capable of monitoring its infrastructure (host) 
resource metrics to enforce the agreed service terms. 
Traditional monitoring technologies for single machines 
or Clusters are restricted to locality and homogeneity of 
monitored objects and, therefore, cannot be applied in the 
Cloud in an appropriate manner. Moreover, in traditional 
systems there is a gap between monitored metrics, which 
are usually low-level entities, and SLA agreements, which 
are high-level user guarantee parameters.  
 
In this paper we present a novel framework for the 
mapping of Low-level resource Metric to High-level SLA 
parameters named LoM2HiS framework. LoM2HiS 
framework is embedded into FoSII infrastructure aiming 
at developing an infrastructure for autonomic SLA 
management and enforcement. Thus, LoM2HiS represents 
the first building block of the FoSII [4] infrastructure. We 
present the conceptual design of the framework including 
the run-time and host monitors, the enactor component, 
and the SLA mapping database. We discuss our novel 
communication model based on queuing networks 
ensuring the scalability of the LoM2HiS framework. 
Moreover, we demonstrate sample mappings from the 
low-level resource monitoring metrics to the SLA 
parameters. Thereafter, we discuss the implementation 



issues and finally, we present first experimental results as 
proof of concept. 
 
The rest of the paper is organized as follows. Section 2 
presents the related work. In Section 3 we present the 
conceptual model of the framework. In Section 4 
implementation issues of the framework are described. It 
also describes the communication model within the 
framework. Section 5 deals with the framework 
evaluation based on a real testbed and the discussion of 
the achieved results. Section 6 presents the conclusion of 
the paper and our planned future research work. 
 
2. RELATED WORK 
 
We classify related work on enforcement of Cloud based 
services into (i) monitoring of Cloud/Grid/Web services 
[12,15,1], (ii) SLA management including QoS 
management [8-11] and (iii) mapping techniques of 
monitored metrics to SLA parameters and attributes 
[20,13,14]. Since there is very little work on monitoring, 
SLA management, and metrics mapping in Cloud systems 
we look particularly into related areas such as Grid and 
SOA based systems.  
 
Dobson et al. [12] present a unified quality of service 
(QoS) ontology applicable to the main scenarios 
identified such as QoS-based Web services selection, QoS 
monitoring and QoS adaptation. Comuzzi et al. 2009 [15] 
define the process for SLA establishment adopted within 
the EU project SLA@SOI framework. The authors 
propose the architecture for monitoring of SLAs 
considering two requirements introduced by SLA 
establishment: the availability of historical data for 
evaluating SLA offers and the assessment of the 
capability to monitor the terms in an SLA offer. 
NetLogger [1] is a distributed monitoring system, which 
monitors and collects information from networks. 
Applications can invoke NetLogger’s API to survey the 
overload before and after some request or operation. 
However, it monitors only network resources.  
 
Theilman et al. 2008 [9] discuss an approach for multi-
level SLA management, where SLAs are consistently 
specified and managed within a service-oriented 
infrastructure (SOI). They present the run-time functional 
view of the conceptual architecture and discuss different 
case studies including Enterprise Resource Planning (ERP) 
or financial services. Koller et al. 2009 [8] discuss 
autonomous QoS management using a proxy-like 
approach. The implementation is based on WS-
Agreement. Thereby, SLAs can be exploited to define 
certain QoS parameters that a service has to maintain 
during its interaction with a specific customer. However, 
their approach is limited to Web services and does not 
consider requirements of Cloud Computing 

infrastructures like scalability. Frutos et al. 2009 [10] 
discuss the main approach of the EU project BREIN [11] 
to develop a framework, which extends the characteristics 
of computational Grids by driving their usage inside new 
target areas in the business domain for advanced SLA 
management. However, BREIN applies SLA management 
to Grids, whereas we target SLA management in Clouds.  
 
Brandic et al. 2009 [20] present an approach for adaptive 
generation of SLA templates. Thereby, SLA users can 
define mappings from their local SLA templates to the 
remote templates in order to facilitate communication 
with numerous Cloud service providers.  However, they 
do not investigate mapping of monitored metrics to 
agreed SLAs. Rosenberg et al. 2006 [13] deal with QoS 
attributes for Web services. They identified important 
QoS attributes and their composition from resource 
metrics. They presented some mapping techniques for 
composing QoS attributes from resource metrics to form 
SLA parameters for a specific domain. However, they did 
not deal with monitoring of resource metrics. Bocciarelli 
et al. 2007 [14] introduce a model-driven approach for 
integrating performance prediction into service 
composition processes carried out using BPEL. In their 
approach, they composed service SLA parameters from 
resource metrics using some mapping techniques. But 
they did neither consider resource metrics – nor SLA 
monitoring. 
 
To the best of our knowledge, none of the discussed 
approaches deal with mappings of low-level monitored 
metrics to high-level SLA guarantees as those necessary 
in Cloud-like environments.  
 
3. DESIGN OF THE LOM2HIS 
FRAMEWORK 
 
The LoM2HiS framework is the first step towards 
achieving the goals of the FoSII infrastructure. In the 
sections below, we present an overview of the FoSII 
infrastructure and give details of the LoM2HiS framework 
design. 
 
3.1. FoSII Infrastructure Overview 
 
Foundations of Self-governing ICT Infrastructures (FoSII) 
is an ongoing research project at Vienna University of 
Technology [4]. It proposes models and concepts for 
autonomic SLA management and enforcement. Figure 1 
depicts the FoSII infrastructure. It is used to manage the 
whole lifecycle of self-adaptable Cloud services [17]. 
Each FoSII service implements three interfaces: (i) 
negotiation interface necessary for the establishment of 
SLA agreements, (ii) job-management interface necessary 
to start the job, upload data, and similar job management 



actions, and (iii) the self-management interface necessary 
to devise actions in order to prevent SLA violations. It 
specifies operations for sensing changes of the desired 
states using the host monitor and run-time monitor 
sensors (arrow a and b in Figure 1) and for reacting to 
those changes. 
 

 
Figure 1. FoSII Infrastructure Overview 

 
Logically, FoSII infrastructure consists of two core parts: 
i) the Enactor Component, which represents the self-
management component for the deployed services, and ii) 
the LoM2HiS framework, which provides monitoring 
information for the enactor component. 
 
3.2. Enactor Component 
 
As shown in Figure 1 this component is the autonomic 
part of FoSII infrastructure. It is based on the principles of 
autonomic computing. In autonomic systems, humans do 
not control the system. Moreover, they define the general 
policies and rules that serve as input for the self-
management process. Such systems constantly adapt 
themselves to changing environmental conditions like 
workload, hardware, and software failures [18]. An 
important characteristic of an autonomic system is an 
intelligent closed loop of control. As depicted in Figure 1, 
the autonomic manager manages the elements’ states and 
behaviours. Typically, control loops are implemented 
following MAPE (Monitoring, Analysis, Planning, and 
Execution) steps [17]. The human defined policies and 
rules with which the MAPE processes are guided, are 
placed in knowledge databases (component “knowledge” 
in Figure 1). These rules evolve and adapt to 
environmental changes. The goal of this component is to 
achieve an autonomic SLA management, where 
appropriate actions are taken to prevent future SLA 
violations. 
 

3.3. Overview LoM2HiS Framework 
 
In this framework, we assumed that the SLA negotiation 
process is completed and the agreed SLAs are stored in 
the repository for service provisioning. Beside the SLAs, 
the predefined threat thresholds are also stored in a 
repository. The concept of detecting future SLA violation 
threats is designed by defining more restrictive thresholds 
known as threat thresholds that are stricter than the 
normal SLA objective violation thresholds. Generation of 
the threat thresholds is far from trivial and is part of our 
ongoing work. In this paper we assume predefined threat 
thresholds. 
 

 
 

Figure 2. LoM2HiS Framework Architecture 
       
Figure 2 presents the architecture of our LoM2HiS 
framework. The service component including the run-
time monitor represents the application layer where 
services are deployed using a Web Service container e.g., 
Apache Axis. The run-time monitor is designed to 
monitor the services based on the negotiated and agreed 
SLAs. After agreeing on SLA terms, the service provider 
creates mapping rules for the LoM2HiS mappings (step 1 
in Figure 2) using Domain Specific Languages (DSLs). 
DSLs are small languages that can be tailored to a specific 
problem domain. Once the customer requests the 
provisioning of an agreed service (step 2), the run-time 
monitor loads the service SLA from the agreed SLA 
repository (step 3). Service provisioning is based on the 
infrastructure resources, which represent the hosts and 
network resources in a data centre for hosting Cloud 
services. The resource metrics are measured by 
monitoring agents, and the measured raw metrics are 
accessed by the host monitor (step 4). The host monitor 
extracts metric-value pairs from the raw metrics and 
transmits them periodically to the run-time monitor (step 
5) and to the enactor component (step 6) using our 
designed communication model.  
 



Upon receiving the measured metrics, the run-time 
monitor maps the low-level metrics based on predefined 
mapping rules to form an equivalent of the agreed SLA 
objectives. The mapping result is stored in the mapped 
metric repository (step 7), which also contains the 
predefined mapping rules. The run-time monitor uses the 
mapped values to monitor the status of the deployed 
services. In case future SLA violation threats occur, it 
notifies (step 8) the enactor component for preventive 
actions. The enactor also receives the predefined threat 
thresholds (step 8) for possible adjustments due to 
environmental changes at run-time. This component 
works out an appropriate preventive action to avert future 
SLA violation threats based on the resource status (step 6) 
and defined rules. The enactor’s decisions (e.g., assign 
more CPU to a virtual host) are executed on the 
infrastructure resources (step 9).  
 
3.3.1. Host Monitor 
The host monitor processes monitored values delivered by 
the monitoring agents embedded in the infrastructure 
resources. The monitoring agents are capable of 
measuring both hardware and network resources. Figure 3 
presents the host monitoring system. 
 

 
        Figure 3. Host Monitoring System 
 
As shown in Figure 3, the monitoring agent embedded in 
virtual host 1 (VH1) measures its resource metrics and 
broadcasts them to VH2 and VH3. Equally, VH2 measures 
and broadcasts its measured metrics to VH1 and VH3.  
Thus, we achieve a replica management system in the 
sense that each virtual host has a complete result of the 
monitored infrastructure. The host monitor can access 
these results from any virtual host. It can be configured to 
access different virtual hosts at the same time for 
monitored values. In case one fails, the result will be 
accessed from the other. This eradicates the problem of a 
bottleneck system and offers fault-tolerant capabilities.       
 
3.3.2. Run-Time Monitor 
The run-time monitor continuously monitors the customer 
application status and performance. Its operations are 
based on two information sources: i) the resource metric-
value pairs received from the host monitor and ii) the 
SLA parameter objective values stored in the agreed SLA 
repository. The metric-value pairs are low-level entities 

and the SLA objective values are high-level entities, so 
for the run-time monitor to work with these two values, 
they must be mapped into common values. 
 
Mapping of low-level metric to high-level SLAs: As 
already discussed in Section 3.3, the run-time monitor 
chooses the mapping rules to apply based on the services 
being provisioned. These rules are used to compose, 
aggregate, or convert the low-level metrics to form the 
high-level SLA parameter. We distinguish between 
simple and complex mapping rules. A simple mapping 
rule maps one-to-one from low-level to high-level, as for 
example mapping low-level metric “disk space” to high-
level SLA parameter “storage”. In this case only the units 
of the quantities are considered in the mapping rule. 
Complex mapping rules consist of predefined formulae 
for the calculation of specific SLA parameters using the 
resource metrics. Table 1 presents some complex 
mapping rules. 
 

Table 1. Complex Mapping Rules 
 

Resource	  Metrics	   SLA	  Parameter	   Mapping	  Rule	  
downtime,	  uptime	   Availability	  (A)	  	  

€ 

A =1−
downtime
uptime

	  

inbytes,	  outbytes,	  
packetsize,	  

avail.bandwidthin,	  
avail.bandwidthout	  

Response	  Time	  	  
( )	  

€ 

Rtotal = Rin + Rout (ms) 	  

 
In the mapping rules in Table 1, the downtime variable 
represents the mean time to repair (MTTR), which 
denotes the time it takes to bring a system back online 
after a failure situation and the uptime represents the 
mean time between failure (MTBF), which denotes the 
time the system was operational between the last system 
failure to the next.  is the response time for a service 
request and is calculated as

€ 

Packetsize
availablebandwidthin− inbytes

 in 

milliseconds.  is the response time for a service 
response and is calculated as 

€ 

Packetsize
availablebandwidthout−outbytes

 in 

milliseconds. The mapped SLAs are stored in the mapped 
metric repository for usage during the monitoring phase. 
 
Monitoring SLA objectives and notifying the enactor 
component: In this phase the run-time monitor accesses 
the mapped metrics repository to get the mapped SLA 
parameter objectives, which it uses together with the 
mapped SLAs in the monitoring process to detect future 
SLA violation threats. This is achieved by comparing the 
mapped SLA objectives against the threat thresholds. In 
case of detection it dispatches notification messages to the 
enactor component to avert the threats. An example of 
SLA violation threat is something like an indication that 
the system is running out of storage. In such a case the 
enactor component acts to increase the system storage.  



 
4. IMPLEMENTATION ISSUES OF THE 

LOM2HIS FRAMEWORK 
 
The LoM2HiS framework implementation targets the 
fulfilment of some fundamental Cloud requirements such 
as scalability, efficiency, and reliability. To achieve these 
aims, the framework is based on well-established and 
tested open source projects.  
 
4.1. Host Monitor Implementation 
 
The host monitor implementation uses the GMOND 
module from the GANGLIA open source project [2] as the 
monitoring agent. The GMOND module is a standalone 
component of the GANGLIA project. We use it to monitor 
the infrastructure resource metrics. The monitored results 
are presented in an XML file and written to a predefined 
network socket. We implemented a Java routine to listen 
to this network socket where the GMOND writes the 
XML file containing the monitored metrics. Furthermore, 
we implemented an XML parser using the well-known 
open source SAX API [5] to parse the XML file in order 
to extract the metric-value pairs. The measured metric-
value pairs are sent to the run-time monitor using our 
implemented communication model. These processes are 
repeated periodically. 
 
4.2. Communication Model 
 
The components of our framework exchange large 
number of messages with each other. So there is a need 
for a reliable and scalable means of communication. In 
order to satisfy this need, we designed and implemented a 
communication model based on the Java Messaging 
Service (JMS) API, which is a Java Message Oriented 
Middleware (MOM) API for sending messages between 
two or more clients [6]. In order for us to use JMS, we 
need a JMS provider that manages the sessions and 
queues. We use the well-established open source Apache 
ActiveMQ [7] for this purpose. 
 
Our implemented communication model is based on a 
queuing mechanism. We use it to realize an inter-process 
communication for passing messages between two 
components of the LoM2HiS framework, due to the fact 
that the components could run on different machines at 
different locations. The queue makes the model highly 
efficient and scalable. 
 
4.3. Run-time Monitor Implementation 
 
The run-time monitor receives the measured metric-value 
pairs and passes them into the ESPER engine [16] for 
further processing. ESPER is used because the JMS 

system used in our communication model is stateless and 
as such makes it hard to deal with temporal data and real-
time queries. From the ESPER engine the metric-value 
pairs are delivered as events each time their values change 
between measurements. This strategy drastically reduces 
the number of events/messages processed in the run-time 
monitor. We use an XML parser to extract the SLA 
parameters and their corresponding objective values from 
the SLA document and to store them in a database. The 
LoM2HiS mappings are realized in Java methods and the 
returned mapped SLA objectives are stored in the mapped 
metrics database.  
 
5. FRAMEWORK EVALUATION 
 
We carried out stress tests and performance evaluations as 
a proof of concept for our framework.  
 
5.1. Evaluation Environment Setup 
 
Figure 4 presents our designed evaluation testbed. The 
aim of the presented testbed is to test the scalability and 
performance of the communication model and to produce 
a proof of concept for the LoM2HiS framework. Our 
evaluation testbed considers one physical host where 
GMOND version 3.1.2 is embedded for measuring the 
resource metric values. From this host we simulate up to 
150 virtual hosts. The virtual hosts are simulated with 
Java threads. Each of the threads becomes a copy of the 
measured raw metrics from GMOND. The host monitor is 
a Java class running on a different thread. It accesses the 
measured raw metrics from the virtual host threads, 
extracts them from their XML files and transmits them as 
messages (via Queue In) into the communication model. 
The essence of using many virtual hosts is to test the 
efficiency of the host monitor to process inputs from large 
number of hosts. This is equivalent to a real environment 
where the host monitor processes the measured metric-
value pairs from different hosts. 
 

 
 
      Figure 4. Evaluation Testbed 
     
For the evaluation of the run-time monitor, we defined an 
SLA agreement for an online web shop as shown in Table 
2. The SLA parameter objective values in the table show 
the quality of service required by the web shop. 



Furthermore, in Table 2 we defined the threat threshold 
values that guide the enforcement of these SLAs.  
The used test system consists of an Intel Pentium Core 2 
Duo 2.26 GHz, 4GB DDR3 memory, and 3Mb L2 Cache. 
Mac OS X 10.5 Leopard is the installed operating system 
and parallel desktop 4.0 is the installed virtualization 
environment.  
 
5.2. Evaluation Result 
 
This section presents the achieved results of the 
performance stress test and the performance evaluation 
using the evaluation setups.  
 
5.2.1. Host Monitor and Communication Model 
Evaluation Results 
Figure 5 presents the evaluation settings and the 
evaluation results of the host monitor and communication 
model. For the evaluation settings, four experimental 
scenarios are defined consisting of number of hosts and 
number of messages. Each scenario uses one defined 
queue. As shown in Figure 5, the y-axis represents time 
values and x-axis presents the number of hosts used and 
the number of messages generated and sent through the 
communication model. The host monitor performance (

€ 

Hperf ) is determined considering the three internal 
functions responsible for: i) measuring the infrastructure 
resource metrics (T_measure), ii) extracting and 
aggregating the measured metric values (T_process), and 
iii) sending the extracted metric values into the 
communication model (T_send). The overall performance 
result is then given by the equation:

€ 

Hperf =Tmeasure +Tprocess +Tsend . The communication model 
performance is equal to the average execution time of the 
underlying queue (T_queue ).  
 

 
 
Figure 5. Host Monitor and Communication Model  

                  Evaluation Results 
         

From the results presented in Figure 5 it can be noticed in 
the four scenarios that the host monitor spends most of its 
time measuring the infrastructure metrics. This shows that 
this function is critical for the overall performance of the 

host monitor and will be the point of concentration in our 
further developments. 
The achieved results by the communication model for the 
different scenarios are relatively stable compared to the 
number of messages processed.  
 
5.2.2. Run-Time Monitor Evaluation Result 
As already discussed in Section 5.1, the evaluation of the 
run-time monitor is based on the settings presented in 
Table 2. 
 

Table 2. Run-Time Monitor Evaluation Settings 
 

SLA	  Parameter	   SLA	  Objective	  
Threat	  

Threshold	  
Availability	   98	  %	   98.9	  %	  
Response	  time	   500	  ms	   498.9	  ms	  
Storage	   100	  GB	   102	  GB	  
Memory	   3	  GB	   3.9	  GB	  
Incoming	  
Bandwidth	  

50	  Mbit/s	   52	  Mbit/s	  

Outgoing	  
Bandwidth	  

100	  Mbit/s	   102	  Mbit/s	  

 
The purpose of this evaluation is to test the overall 
performance of the run-time monitor. Figure 6 depicts the 
achieved performance result. The y-axis represents time 
values and the x-axis the number of hosts. The results are 
derived from the performances of its core functions 
responsible for: i) receiving metric-value pairs, passing 
them into ESPER engine, and querying ESPER (T_rec), ii) 
extracting the stored SLA from the agreed SLA repository 
(T_process), iii) Applying mappings of low-level metrics 
to high-level SLA parameters (T_map), and iv) 
monitoring and enforcing agreed SLA objective for 
services (T_monitor). The overall run-time monitor 
performance (

€ 

TRperf ) is calculated by the equation:

€ 

TRperf =Trec +Tprocess +Tmap +Tmonitor . 
 

 
 
       Figure 6. Run-Time Monitor Evaluation Result 
          
According to the results presented in Figure 6 the run-
time monitor’s overall performance depends highly on the 
performance of the function to extract the agreed SLA 
parameters from the SLA repository (T_process). We 
intend to overcome this problem by using decentralized 
SLA repositories that make them local and fast accessible 



to each run-time monitor instance monitoring a specific 
service SLA. 
 
6. CONCLUSION AND FUTURE WORKS 
 
In this paper we presented the LoM2HiS framework, 
which is used for mapping monitored low-level metrics to 
high-level SLA parameters. The LoM2HiS framework is 
embedded into FoSII infrastructure developing 
infrastructures for autonomic SLA management and 
enforcement. It is capable of detecting future SLA 
violation threats based on predefined threat thresholds and 
can notify the enactor component to avert the threats. We 
discussed its basic design and implementation. 
Furthermore, we presented the first experimental results.  
 
Implementing the enactor component is part of our 
ongoing research work. The design and integration of a 
graphical interface for the modeling of the metrics using 
appropriate DSLs is also part of our ongoing research 
work. Furthermore, we intend to utilize Cloud 
infrastructure simulation frameworks [19] (e.g., CloudSim) 
to generate manageable, reproducible, and reliable Cloud 
testing infrastructures.  
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