
Low Level Metrics to High Level SLAs - LoM2HiS Framework: Bridging the Gap
Between Monitored Metrics and SLA Parameters in Cloud Environments

Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Schahram Dustdar
Information Systems Institute, Vienna University of Technology

{vincent, ivona, maurer, dustdar}@infosys.tuwien.ac.at

ABSTRACT

Cloud computing represents a novel on-demand
computing approach where resources are provided in
compliance to a set of predefined non-functional
properties specified and negotiated by means of Service
Level Agreements (SLAs). In order to avoid costly SLA
violations and to timely react to failures and
environmental changes, advanced SLA enactment
strategies are necessary, which include appropriate
resource-monitoring concepts. Currently, Cloud
providers tend to adopt existing monitoring tools, as for
example those from Grid environments. However, those
tools are usually restricted to locality and homogeneity of
monitored objects, are not scalable, and do not support
mapping of low-level resource metrics e.g., system up and
down time to high-level application specific SLA
parameters e.g., system availability. In this paper we
present a novel framework for managing the mappings of
the Low-level resource Metrics to High-level SLAs
(LoM2HiS framework). The LoM2HiS framework is
embedded into FoSII infrastructure, which facilitates
autonomic SLA management and enforcement. Thus, the
LoM2HiS framework detects future SLA violation threats
and can notify the enactor component to act so as to avert
the threats. We discuss the conceptual model of the
LoM2HiS framework, followed by the implementation
details. Finally, we present the first experimental results
and a proof of concept of the LoM2HiS framework.

KEYWORDS: Cloud Computing, Resource monitoring,
SLA mapping, SLA enforcement, SLA management,
Performance evaluation.

1. INTRODUCTION

In recent years, Cloud computing has become a key IT
megatrend that will take root, although it is in infancy in
terms of market adoption. Cloud computing can be

defined as the convergence and evolution of several
concepts from virtualization, distributed application
design, Grid, and enterprise IT management to enable a
more flexible approach for deploying and scaling
applications [3].

Cloud services include high performance applications
requiring lots of system resources. Service provisioning in
the Cloud is based on Service Level Agreements (SLA),
which is a contract signed between the customer and the
service provider. It states the terms of the service
including the non-functional requirements of the service
specified as quality of service (QoS), obligations, service
pricing, and penalties in case of agreement violations.

In order to guarantee an agreed SLA, the service provider
must be capable of monitoring its infrastructure (host)
resource metrics to enforce the agreed service terms.
Traditional monitoring technologies for single machines
or Clusters are restricted to locality and homogeneity of
monitored objects and, therefore, cannot be applied in the
Cloud in an appropriate manner. Moreover, in traditional
systems there is a gap between monitored metrics, which
are usually low-level entities, and SLA agreements, which
are high-level user guarantee parameters.

In this paper we present a novel framework for the
mapping of Low-level resource Metric to High-level SLA
parameters named LoM2HiS framework. LoM2HiS
framework is embedded into FoSII infrastructure aiming
at developing an infrastructure for autonomic SLA
management and enforcement. Thus, LoM2HiS represents
the first building block of the FoSII [4] infrastructure. We
present the conceptual design of the framework including
the run-time and host monitors, the enactor component,
and the SLA mapping database. We discuss our novel
communication model based on queuing networks
ensuring the scalability of the LoM2HiS framework.
Moreover, we demonstrate sample mappings from the
low-level resource monitoring metrics to the SLA
parameters. Thereafter, we discuss the implementation

issues and finally, we present first experimental results as
proof of concept.

The rest of the paper is organized as follows. Section 2
presents the related work. In Section 3 we present the
conceptual model of the framework. In Section 4
implementation issues of the framework are described. It
also describes the communication model within the
framework. Section 5 deals with the framework
evaluation based on a real testbed and the discussion of
the achieved results. Section 6 presents the conclusion of
the paper and our planned future research work.

2. RELATED WORK

We classify related work on enforcement of Cloud based
services into (i) monitoring of Cloud/Grid/Web services
[12,15,1], (ii) SLA management including QoS
management [8-11] and (iii) mapping techniques of
monitored metrics to SLA parameters and attributes
[20,13,14]. Since there is very little work on monitoring,
SLA management, and metrics mapping in Cloud systems
we look particularly into related areas such as Grid and
SOA based systems.

Dobson et al. [12] present a unified quality of service
(QoS) ontology applicable to the main scenarios
identified such as QoS-based Web services selection, QoS
monitoring and QoS adaptation. Comuzzi et al. 2009 [15]
define the process for SLA establishment adopted within
the EU project SLA@SOI framework. The authors
propose the architecture for monitoring of SLAs
considering two requirements introduced by SLA
establishment: the availability of historical data for
evaluating SLA offers and the assessment of the
capability to monitor the terms in an SLA offer.
NetLogger [1] is a distributed monitoring system, which
monitors and collects information from networks.
Applications can invoke NetLogger’s API to survey the
overload before and after some request or operation.
However, it monitors only network resources.

Theilman et al. 2008 [9] discuss an approach for multi-
level SLA management, where SLAs are consistently
specified and managed within a service-oriented
infrastructure (SOI). They present the run-time functional
view of the conceptual architecture and discuss different
case studies including Enterprise Resource Planning (ERP)
or financial services. Koller et al. 2009 [8] discuss
autonomous QoS management using a proxy-like
approach. The implementation is based on WS-
Agreement. Thereby, SLAs can be exploited to define
certain QoS parameters that a service has to maintain
during its interaction with a specific customer. However,
their approach is limited to Web services and does not
consider requirements of Cloud Computing

infrastructures like scalability. Frutos et al. 2009 [10]
discuss the main approach of the EU project BREIN [11]
to develop a framework, which extends the characteristics
of computational Grids by driving their usage inside new
target areas in the business domain for advanced SLA
management. However, BREIN applies SLA management
to Grids, whereas we target SLA management in Clouds.

Brandic et al. 2009 [20] present an approach for adaptive
generation of SLA templates. Thereby, SLA users can
define mappings from their local SLA templates to the
remote templates in order to facilitate communication
with numerous Cloud service providers. However, they
do not investigate mapping of monitored metrics to
agreed SLAs. Rosenberg et al. 2006 [13] deal with QoS
attributes for Web services. They identified important
QoS attributes and their composition from resource
metrics. They presented some mapping techniques for
composing QoS attributes from resource metrics to form
SLA parameters for a specific domain. However, they did
not deal with monitoring of resource metrics. Bocciarelli
et al. 2007 [14] introduce a model-driven approach for
integrating performance prediction into service
composition processes carried out using BPEL. In their
approach, they composed service SLA parameters from
resource metrics using some mapping techniques. But
they did neither consider resource metrics – nor SLA
monitoring.

To the best of our knowledge, none of the discussed
approaches deal with mappings of low-level monitored
metrics to high-level SLA guarantees as those necessary
in Cloud-like environments.

3. DESIGN OF THE LOM2HIS
FRAMEWORK

The LoM2HiS framework is the first step towards
achieving the goals of the FoSII infrastructure. In the
sections below, we present an overview of the FoSII
infrastructure and give details of the LoM2HiS framework
design.

3.1. FoSII Infrastructure Overview

Foundations of Self-governing ICT Infrastructures (FoSII)
is an ongoing research project at Vienna University of
Technology [4]. It proposes models and concepts for
autonomic SLA management and enforcement. Figure 1
depicts the FoSII infrastructure. It is used to manage the
whole lifecycle of self-adaptable Cloud services [17].
Each FoSII service implements three interfaces: (i)
negotiation interface necessary for the establishment of
SLA agreements, (ii) job-management interface necessary
to start the job, upload data, and similar job management

actions, and (iii) the self-management interface necessary
to devise actions in order to prevent SLA violations. It
specifies operations for sensing changes of the desired
states using the host monitor and run-time monitor
sensors (arrow a and b in Figure 1) and for reacting to
those changes.

Figure 1. FoSII Infrastructure Overview

Logically, FoSII infrastructure consists of two core parts:
i) the Enactor Component, which represents the self-
management component for the deployed services, and ii)
the LoM2HiS framework, which provides monitoring
information for the enactor component.

3.2. Enactor Component

As shown in Figure 1 this component is the autonomic
part of FoSII infrastructure. It is based on the principles of
autonomic computing. In autonomic systems, humans do
not control the system. Moreover, they define the general
policies and rules that serve as input for the self-
management process. Such systems constantly adapt
themselves to changing environmental conditions like
workload, hardware, and software failures [18]. An
important characteristic of an autonomic system is an
intelligent closed loop of control. As depicted in Figure 1,
the autonomic manager manages the elements’ states and
behaviours. Typically, control loops are implemented
following MAPE (Monitoring, Analysis, Planning, and
Execution) steps [17]. The human defined policies and
rules with which the MAPE processes are guided, are
placed in knowledge databases (component “knowledge”
in Figure 1). These rules evolve and adapt to
environmental changes. The goal of this component is to
achieve an autonomic SLA management, where
appropriate actions are taken to prevent future SLA
violations.

3.3. Overview LoM2HiS Framework

In this framework, we assumed that the SLA negotiation
process is completed and the agreed SLAs are stored in
the repository for service provisioning. Beside the SLAs,
the predefined threat thresholds are also stored in a
repository. The concept of detecting future SLA violation
threats is designed by defining more restrictive thresholds
known as threat thresholds that are stricter than the
normal SLA objective violation thresholds. Generation of
the threat thresholds is far from trivial and is part of our
ongoing work. In this paper we assume predefined threat
thresholds.

Figure 2. LoM2HiS Framework Architecture

Figure 2 presents the architecture of our LoM2HiS
framework. The service component including the run-
time monitor represents the application layer where
services are deployed using a Web Service container e.g.,
Apache Axis. The run-time monitor is designed to
monitor the services based on the negotiated and agreed
SLAs. After agreeing on SLA terms, the service provider
creates mapping rules for the LoM2HiS mappings (step 1
in Figure 2) using Domain Specific Languages (DSLs).
DSLs are small languages that can be tailored to a specific
problem domain. Once the customer requests the
provisioning of an agreed service (step 2), the run-time
monitor loads the service SLA from the agreed SLA
repository (step 3). Service provisioning is based on the
infrastructure resources, which represent the hosts and
network resources in a data centre for hosting Cloud
services. The resource metrics are measured by
monitoring agents, and the measured raw metrics are
accessed by the host monitor (step 4). The host monitor
extracts metric-value pairs from the raw metrics and
transmits them periodically to the run-time monitor (step
5) and to the enactor component (step 6) using our
designed communication model.

Upon receiving the measured metrics, the run-time
monitor maps the low-level metrics based on predefined
mapping rules to form an equivalent of the agreed SLA
objectives. The mapping result is stored in the mapped
metric repository (step 7), which also contains the
predefined mapping rules. The run-time monitor uses the
mapped values to monitor the status of the deployed
services. In case future SLA violation threats occur, it
notifies (step 8) the enactor component for preventive
actions. The enactor also receives the predefined threat
thresholds (step 8) for possible adjustments due to
environmental changes at run-time. This component
works out an appropriate preventive action to avert future
SLA violation threats based on the resource status (step 6)
and defined rules. The enactor’s decisions (e.g., assign
more CPU to a virtual host) are executed on the
infrastructure resources (step 9).

3.3.1. Host Monitor
The host monitor processes monitored values delivered by
the monitoring agents embedded in the infrastructure
resources. The monitoring agents are capable of
measuring both hardware and network resources. Figure 3
presents the host monitoring system.

 Figure 3. Host Monitoring System

As shown in Figure 3, the monitoring agent embedded in
virtual host 1 (VH1) measures its resource metrics and
broadcasts them to VH2 and VH3. Equally, VH2 measures
and broadcasts its measured metrics to VH1 and VH3.
Thus, we achieve a replica management system in the
sense that each virtual host has a complete result of the
monitored infrastructure. The host monitor can access
these results from any virtual host. It can be configured to
access different virtual hosts at the same time for
monitored values. In case one fails, the result will be
accessed from the other. This eradicates the problem of a
bottleneck system and offers fault-tolerant capabilities.

3.3.2. Run-Time Monitor
The run-time monitor continuously monitors the customer
application status and performance. Its operations are
based on two information sources: i) the resource metric-
value pairs received from the host monitor and ii) the
SLA parameter objective values stored in the agreed SLA
repository. The metric-value pairs are low-level entities

and the SLA objective values are high-level entities, so
for the run-time monitor to work with these two values,
they must be mapped into common values.

Mapping of low-level metric to high-level SLAs: As
already discussed in Section 3.3, the run-time monitor
chooses the mapping rules to apply based on the services
being provisioned. These rules are used to compose,
aggregate, or convert the low-level metrics to form the
high-level SLA parameter. We distinguish between
simple and complex mapping rules. A simple mapping
rule maps one-to-one from low-level to high-level, as for
example mapping low-level metric “disk space” to high-
level SLA parameter “storage”. In this case only the units
of the quantities are considered in the mapping rule.
Complex mapping rules consist of predefined formulae
for the calculation of specific SLA parameters using the
resource metrics. Table 1 presents some complex
mapping rules.

Table 1. Complex Mapping Rules

Resource	 Metrics	 SLA	 Parameter	 Mapping	 Rule	
downtime,	 uptime	 Availability	 (A)	 	

€

A =1−
downtime
uptime

	

inbytes,	 outbytes,	
packetsize,	

avail.bandwidthin,	
avail.bandwidthout	

Response	 Time	 	
()	

€

Rtotal = Rin + Rout (ms) 	

In the mapping rules in Table 1, the downtime variable
represents the mean time to repair (MTTR), which
denotes the time it takes to bring a system back online
after a failure situation and the uptime represents the
mean time between failure (MTBF), which denotes the
time the system was operational between the last system
failure to the next. is the response time for a service
request and is calculated as

€

Packetsize
availablebandwidthin− inbytes

 in

milliseconds. is the response time for a service
response and is calculated as

€

Packetsize
availablebandwidthout−outbytes

 in

milliseconds. The mapped SLAs are stored in the mapped
metric repository for usage during the monitoring phase.

Monitoring SLA objectives and notifying the enactor
component: In this phase the run-time monitor accesses
the mapped metrics repository to get the mapped SLA
parameter objectives, which it uses together with the
mapped SLAs in the monitoring process to detect future
SLA violation threats. This is achieved by comparing the
mapped SLA objectives against the threat thresholds. In
case of detection it dispatches notification messages to the
enactor component to avert the threats. An example of
SLA violation threat is something like an indication that
the system is running out of storage. In such a case the
enactor component acts to increase the system storage.

4. IMPLEMENTATION ISSUES OF THE

LOM2HIS FRAMEWORK

The LoM2HiS framework implementation targets the
fulfilment of some fundamental Cloud requirements such
as scalability, efficiency, and reliability. To achieve these
aims, the framework is based on well-established and
tested open source projects.

4.1. Host Monitor Implementation

The host monitor implementation uses the GMOND
module from the GANGLIA open source project [2] as the
monitoring agent. The GMOND module is a standalone
component of the GANGLIA project. We use it to monitor
the infrastructure resource metrics. The monitored results
are presented in an XML file and written to a predefined
network socket. We implemented a Java routine to listen
to this network socket where the GMOND writes the
XML file containing the monitored metrics. Furthermore,
we implemented an XML parser using the well-known
open source SAX API [5] to parse the XML file in order
to extract the metric-value pairs. The measured metric-
value pairs are sent to the run-time monitor using our
implemented communication model. These processes are
repeated periodically.

4.2. Communication Model

The components of our framework exchange large
number of messages with each other. So there is a need
for a reliable and scalable means of communication. In
order to satisfy this need, we designed and implemented a
communication model based on the Java Messaging
Service (JMS) API, which is a Java Message Oriented
Middleware (MOM) API for sending messages between
two or more clients [6]. In order for us to use JMS, we
need a JMS provider that manages the sessions and
queues. We use the well-established open source Apache
ActiveMQ [7] for this purpose.

Our implemented communication model is based on a
queuing mechanism. We use it to realize an inter-process
communication for passing messages between two
components of the LoM2HiS framework, due to the fact
that the components could run on different machines at
different locations. The queue makes the model highly
efficient and scalable.

4.3. Run-time Monitor Implementation

The run-time monitor receives the measured metric-value
pairs and passes them into the ESPER engine [16] for
further processing. ESPER is used because the JMS

system used in our communication model is stateless and
as such makes it hard to deal with temporal data and real-
time queries. From the ESPER engine the metric-value
pairs are delivered as events each time their values change
between measurements. This strategy drastically reduces
the number of events/messages processed in the run-time
monitor. We use an XML parser to extract the SLA
parameters and their corresponding objective values from
the SLA document and to store them in a database. The
LoM2HiS mappings are realized in Java methods and the
returned mapped SLA objectives are stored in the mapped
metrics database.

5. FRAMEWORK EVALUATION

We carried out stress tests and performance evaluations as
a proof of concept for our framework.

5.1. Evaluation Environment Setup

Figure 4 presents our designed evaluation testbed. The
aim of the presented testbed is to test the scalability and
performance of the communication model and to produce
a proof of concept for the LoM2HiS framework. Our
evaluation testbed considers one physical host where
GMOND version 3.1.2 is embedded for measuring the
resource metric values. From this host we simulate up to
150 virtual hosts. The virtual hosts are simulated with
Java threads. Each of the threads becomes a copy of the
measured raw metrics from GMOND. The host monitor is
a Java class running on a different thread. It accesses the
measured raw metrics from the virtual host threads,
extracts them from their XML files and transmits them as
messages (via Queue In) into the communication model.
The essence of using many virtual hosts is to test the
efficiency of the host monitor to process inputs from large
number of hosts. This is equivalent to a real environment
where the host monitor processes the measured metric-
value pairs from different hosts.

 Figure 4. Evaluation Testbed

For the evaluation of the run-time monitor, we defined an
SLA agreement for an online web shop as shown in Table
2. The SLA parameter objective values in the table show
the quality of service required by the web shop.

Furthermore, in Table 2 we defined the threat threshold
values that guide the enforcement of these SLAs.
The used test system consists of an Intel Pentium Core 2
Duo 2.26 GHz, 4GB DDR3 memory, and 3Mb L2 Cache.
Mac OS X 10.5 Leopard is the installed operating system
and parallel desktop 4.0 is the installed virtualization
environment.

5.2. Evaluation Result

This section presents the achieved results of the
performance stress test and the performance evaluation
using the evaluation setups.

5.2.1. Host Monitor and Communication Model
Evaluation Results
Figure 5 presents the evaluation settings and the
evaluation results of the host monitor and communication
model. For the evaluation settings, four experimental
scenarios are defined consisting of number of hosts and
number of messages. Each scenario uses one defined
queue. As shown in Figure 5, the y-axis represents time
values and x-axis presents the number of hosts used and
the number of messages generated and sent through the
communication model. The host monitor performance (

€

Hperf) is determined considering the three internal
functions responsible for: i) measuring the infrastructure
resource metrics (T_measure), ii) extracting and
aggregating the measured metric values (T_process), and
iii) sending the extracted metric values into the
communication model (T_send). The overall performance
result is then given by the equation:

€

Hperf =Tmeasure +Tprocess +Tsend . The communication model
performance is equal to the average execution time of the
underlying queue (T_queue).

Figure 5. Host Monitor and Communication Model

 Evaluation Results

From the results presented in Figure 5 it can be noticed in
the four scenarios that the host monitor spends most of its
time measuring the infrastructure metrics. This shows that
this function is critical for the overall performance of the

host monitor and will be the point of concentration in our
further developments.
The achieved results by the communication model for the
different scenarios are relatively stable compared to the
number of messages processed.

5.2.2. Run-Time Monitor Evaluation Result
As already discussed in Section 5.1, the evaluation of the
run-time monitor is based on the settings presented in
Table 2.

Table 2. Run-Time Monitor Evaluation Settings

SLA	 Parameter	 SLA	 Objective	
Threat	

Threshold	
Availability	 98	 %	 98.9	 %	
Response	 time	 500	 ms	 498.9	 ms	
Storage	 100	 GB	 102	 GB	
Memory	 3	 GB	 3.9	 GB	
Incoming	
Bandwidth	

50	 Mbit/s	 52	 Mbit/s	

Outgoing	
Bandwidth	

100	 Mbit/s	 102	 Mbit/s	

The purpose of this evaluation is to test the overall
performance of the run-time monitor. Figure 6 depicts the
achieved performance result. The y-axis represents time
values and the x-axis the number of hosts. The results are
derived from the performances of its core functions
responsible for: i) receiving metric-value pairs, passing
them into ESPER engine, and querying ESPER (T_rec), ii)
extracting the stored SLA from the agreed SLA repository
(T_process), iii) Applying mappings of low-level metrics
to high-level SLA parameters (T_map), and iv)
monitoring and enforcing agreed SLA objective for
services (T_monitor). The overall run-time monitor
performance (

€

TRperf) is calculated by the equation:

€

TRperf =Trec +Tprocess +Tmap +Tmonitor .

 Figure 6. Run-Time Monitor Evaluation Result

According to the results presented in Figure 6 the run-
time monitor’s overall performance depends highly on the
performance of the function to extract the agreed SLA
parameters from the SLA repository (T_process). We
intend to overcome this problem by using decentralized
SLA repositories that make them local and fast accessible

to each run-time monitor instance monitoring a specific
service SLA.

6. CONCLUSION AND FUTURE WORKS

In this paper we presented the LoM2HiS framework,
which is used for mapping monitored low-level metrics to
high-level SLA parameters. The LoM2HiS framework is
embedded into FoSII infrastructure developing
infrastructures for autonomic SLA management and
enforcement. It is capable of detecting future SLA
violation threats based on predefined threat thresholds and
can notify the enactor component to avert the threats. We
discussed its basic design and implementation.
Furthermore, we presented the first experimental results.

Implementing the enactor component is part of our
ongoing research work. The design and integration of a
graphical interface for the modeling of the metrics using
appropriate DSLs is also part of our ongoing research
work. Furthermore, we intend to utilize Cloud
infrastructure simulation frameworks [19] (e.g., CloudSim)
to generate manageable, reproducible, and reliable Cloud
testing infrastructures.

ACKNOWLEDGEMENTS

The work described in this paper is supported by the
Vienna Science and Technology Fund (WWTF) under
grant agreement ICT08-018 Foundations of Self-
governing ICT Infrastructures (FoSII).

REFERENCES

[1] D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee,

“Netlogger: a toolkit for distributed system performance
analysis”, 8th International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems, pp. 267-273, 2000.

[2] M.L Massie, B.N Chun, D.E Culler, “Ganglia distributed

monitoring system: design, implementation, and
experience”. Parallel Computing, Vol. 30 pp. 817-840,
2004.

[3] R. Buyya, C.S Yeo, S. Venugopal, J.Broberg, I. Brandic.

“Cloud computing and emerging IT platforms: Vision
Hype, and Reality for delivering computing as the 5th
utility”. Future Generation Computer Systems, Vol. 25(6)
pp. 599-616, June 2009.

[4] “Foundation of Self-governing ICT Infrastructures

(FoSII)”, Available:
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.htm
l

[5] “SAX API”, Available: http://sax.sourceforge.net/

[6] “Java Messaging Service”, Available:
http://java.sun.com/products/jms/

[7] “Apache ActiveMQ”, Available:

http://activemq.apache.org/

[8] B. Koller, L. Schubert, “Towards autonomous SLA

management using a proxy-like approach”. Multiagent
Grid System, Vol.3, 2007.

[9] W. Theilman, R. Yahyapour J. Butler, “Multi-level SLA

Management for Service-Oriented Infrastructures”, 1st
European Conference on Towards a Service-Based
Internet, 2008.

[10] H.M. Frutos, I. Kotsiopoulos, “BREIN: Business

Objective Driven Reliable and Intelligent Grids for Real
Business”. International Journal of Interoperability in
Business Information Systems, Issue 3(1) 2009.

[11] “Brein Project” (Business objective driven reliable and

intelligent Grids for real business), Available:
http://www.eu-brein.com/ 2009

[12] G. Dobson, A. Sanchez-Macian, “Towards Unified
QoS/SLA Ontologies”. Proceedings of the IEEE Services
Computing Workshops (SCW 2006), 2006.

[13] F. Rosenberg, C. Platzer, S. Dustdar, “Bootstrapping

performance and dependability attributes of web service”,
IEEE International Conference on Web Services, pp 205-
212, 2006.

[14] A. D’Ambrogio, P. Bocciarelli, “A model-driven

approach to describe and predict the performance of
composite services”, 6th international workshop on
Software and performance, pp. 78-89, 2007.

[15] M. Comuzzi, C. Kotsokalis, G. Spanoudkis, R.
Yahyapour, “Establishing and Monitoring SLAs in
Complex Service Based Systems”. IEEE International
Conference on Web Services 2009.

[16] “ESPER”, Event Stream Processing Engine, Available:
http://esper.codehaus.org/

[17] I. Brandic, “Towards Self-manageable Cloud Services”,

2nd IEEE International Workshop on Real-Time Service-
Oriented Architecture and Applications, Seattle, 2009.

[18] J.O. Kephart, D.M. Chess, “The vision of autonomic

computing”. Computer, Vol. 36:(1) pp. 41-50, Jan 2003.

[19] R. N. Calheiros, R. Buyya, C. A. F. De Rose, “A Heuristic

for Mapping Virtual Machines and Links in Emulation
Testbeds”. 38th International Conference on Parallel
Processing, Vienna, pp. 518-525, Sept 2009.

[20] I. Brandic, D. Music, P. Leitner, S. Dustdar. “VieSLAF

Framework: Enabling Adaptive and Versatile SLA-
Management”. 6th International Workshop on Grid
Econonics and Business Models 2009.

