
Low Level Parallelization of Nonlinear Diffusion
Filtering Algorithms for Cluster Computing

Environments

David Slogsnat1, Markus Fischer1, Andrés Bruhn2, Joachim Weickert2, and
Ulrich Brüning1

1 Department of Computer Science and Engineering
University of Mannheim, 68131 Mannheim, Germany

slogsnat@uni-mannheim.de
2 Faculty of Mathematics and Computer Science

Saarland University, Building 27.1, 66041 Saarbrücken, Germany

Abstract. This paper describes different low level parallelization strate-
gies of a nonlinear diffusion filtering algorithm for digital image denois-
ing. The nonlinear diffusion method uses a so-called additive operator
splitting (AOS) scheme. This algorithm is very efficient, but requires
frequent data exchanges. Our focus was to provide different data decom-
position techniques which allow for achieving high efficiency for different
hardware platforms. Depending on the available communication perfor-
mance, our parallelization schemes allow for high scalability when using
fast System Area Networks (SAN), but also provide significant perfor-
mance enhancements on slower interconnects by optimizing data struc-
tures and communication patterns. Performance results are presented for
a variety of commodity hardware platforms. Our most important result
is a speedup factor of 210 using 256 processors of a high end cluster
equipped with Myrinet.

1 Introduction

Over the recent years, distributed processing has been a powerful method to
reduce the execution time of computationally intensive applications. Using com-
ponents off the shelf (COTS) in combination with a fast network has become
a viable approach to achieve high performance known from supercomputers,
however at a fraction of the cost. The platform independent message passing in-
terface MPI [7] allows applications to run on a variety of systems. This reduces
the overhead of porting applications significantly.

Image processing is becoming a more and more important application area.
Variational segmentation and nonlinear diffusion approaches have been very ac-
tive research fields in the area of image processing and computer vision as well.
Motivating factors for this research on PDE (partial differential equation) based
models are for example the continuous simplification of images or shapes which
help to understand what is depicted in the image. Image enhancement including

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 481–490, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

482 D. Slogsnat et al.

denoising, edge enhancement, active contours and surfaces or closing interrupted
lines are other points of interest. Within this context efficient numerical algo-
rithms have been developed. They are the basis for this work, which focuses on
reducing the execution time using distributed processing. AOS schemes for non-
linear diffusion filtering have been applied successfully on a parallel system with
shared memory [2] and a moderate processor count. This motivated us to inves-
tigate their suitability on distributed memory systems with a large number of
processors to enable close-to-real-time processing. One specific application area
which we would like to address is the analysis of 2D and 3D medical images.
For this scenario the approach of using clusters as computing resources gives a
dynamic range from low- to high-end systems.

In the following chapter, we will describe the algorithm and how it was paral-
lelized. Chapter 3 briefly describes the clusters that have been used as testbeds.
In Chapter 4 we will present the performance results. Chapter 5 concludes our
description.

2 Parallelization of the Algorithm

This section describes the algorithm and explains two possible solutions for data
decomposition, a dimension segmentation and a mesh segmentation method.
The algorithm is described for the three dimensional case, the two dimensional
case is analogous. Figure 2 shows a filtered 2D image, figure 1 shows the original
image.

Fig. 1. Image with Noise Fig. 2. Image after Filtering

2.1 Algorithm Components and Constraints

In the last decade, PDE based models have become very popular in the fields
of image processing and computer vision. The nonlinear diffusion models as we
know them today were first introduced by a work of Perona and Malik [3], who
developed a model that allows denoising images while retaining and enhancing

Low Level Parallelization of Nonlinear Diffusion Filtering Algorithms 483

edges. This model has been improved by Catté et al. [11] from both a theoret-
ical and practical viewpoint. Anisotropic extensions with a diffusion tensor are
described in [5].

In practice, nonlinear diffusion filters require numerical approximations. In
[1] a finite difference scheme based on an additive operator splitting (AOS)
technique [4] is used for this purpose. This AOS technique is the basis for our
parallelization efforts. Typical AOS schemes are one order of magnitude more
efficient than simple diffusion algorithms.

The AOS scheme is applied in an iterative way until the desired level of
denoising is reached. The AOS iteration loop starts with a Gaussian convolution,
which needs to be processed for each dimension. Based on this smoothed image,
derivatives are computed that are of need to determine the diffusitivity values.
Finally the diffusion processes for all dimensions are calculated and the results
are averaged in a final recombination step.

Gaussian Convolution. The Gaussian convolution is processed seperately for
each dimension d ∈ {1,2,3}. At iteration step n, the algorithm computes a matrix
Mn using the matrix from the previous step n−1, thus Mn

gauss = fgauss(Mn−1).
The convolution takes places for one dimension after another. The computation
itself is a stencil operation with a stencil size of 1×g for every dimension, with a
typical value for g = 3. As a consequence, communication takes place before the
computation for each dimension, but not during the computation for a single
dimension.

Diffusitivity. The diffusitivity is calculated from the output matrix of the
Gaussian convolution step: Mn

diff = fdiff (Mn
gauss). In contrast to the Gaussian

convolution, the diffusitivity is not calculated seperately for every dimension,
but only once for all dimensions. The stencil has a fixed size of 3 × 3 × 3 pixels.
As a result, communication between nodes has to be performed only once before
the diffusity is calculated, but not during the calculation process.

Diffusion. The diffusion is computed from two matrices, those are the matrix
from the previous iteration Mn−1 and the output matrix of the diffusitivity
Mn

diff . To compute the diffusion, d tridiagonal linear systems have to be solved
by a fast Gaussian algorithm, where every system describes diffusion in one of the
dimensions. These systems can be solved independently of each other, although
they are solved one after another for practical reasons. Also, they can again be
decomposed into many small independent equation systems, where each system
corresponds to a single line in diffusion direction. These lines are solved by an
algorithm using first forward and then backward propagation. This means that
if a line crosses process boundaries, these processes have to communicate with
each other during the computational phase. This is different from the Gaussian
convolution and diffusitivity steps, where no communication is required.

Finally, all three resulting matrices have to be merged into the final matrix
Mn by taking the average.

484 D. Slogsnat et al.

2.2 Data Decomposition

In the following we present two data decomposition methods for 2D and 3D
scenarios that have both been applied to the algorithm. Figure 3 depicts schemes
for the decomposition methods.

The first decomposition method is a multidimensional slice decomposition
[14]. Given a number of NP processes and a discrete 3D image f [x1, x2, x3],
x1 ∈ {0, .., X1 − 1}, x2 ∈ {0, .., X2 − 1} and x3 ∈ {0, .., X3 − 1} then the par-
tial image f [x1, x2np, x3] with x2np ∈ {X2/NP ∗ np, .., X2/NP ∗ (np + 1) − 1},
will be processed by processor np, np ∈ {0, .., NP − 1}. In a similar manner,
the image can also by sliced up in one of the other two dimensions. Since the
diffusion algorithm performs filters in all three dimensions, this means that all
three decomposition types are used to reduce communication between processes.
When the program switches between filters of different dimensions, the direction
of decomposition is changed accordingly. However, this implies that an all-to-all
communication has to take place with a total traffic of NP−1

NP ∗Imagesize pixels,
since every processor has to aquire the actual values for all pixels in the new
slice.

....

(a) (b) (c)

n-1

32

0

n-13210

0

1

2

3

n-1

....

1

Fig. 3. Column (a) and Row- (b) versus Mesh Decomposition (c)

The second method is a mesh partitioning which divides the data as shown
in the figure. Mesh partitioning has the advantage that it requires less inter-
connect performance than the slice decomposition method. In contrast to slice
partitioning, the image does not have to be redistributed among the processors,
but only the borders of the meshes have to be exchanged with the neighbor-
ing meshes. This leads to a lower amount of data that has to be communicated.
Also, communication has only to be performed with a small number of neighbors
in contrast to the all-to-all communication required by the slice decomposition
method.

However, mesh partitioning has a downside too. Communication between
processes takes places during computational steps, rather than in-between them.
This increases the chance of processes waiting for results of neighboring pro-
cesses. This problem can be reduced by means of pipeling. This has been imple-
mented for the diffusion step of the algorithm: the processing of different lines
is interleaved.

Low Level Parallelization of Nonlinear Diffusion Filtering Algorithms 485

3 Available Cluster Environments

Ethernet type solutions for a network of workstations or a small cluster are
currently still being considered as a solution for distributed computing. One of
the reasons is that it is available as a built-in solution with no additional costs,
and applications using sockets will work on any type of Ethernet ranging from
Fast Ethernet to Gigabit Ethernet. In contrast to Ethernet network interfaces,
System Area Networks (SANs) always provide direct user access. Also, SAN
network adapters implement reliable transport services directly in hardware.
They also deliver very high bandwidths (typically more than 1 GB/s) with very
low latency. Currently, the most popular SAN is Myrinet from Myricom[8]. Other
SAN implementations are the Scalable Coherent Interface (SCI) from Dolphin[9],
Qsnet from Quadrics[10] and ATOLL from the University of Mannheim[13].
Our goal was to provide efficient implementations on clusters, using a variety of
interconnection networks. Although SANs are clearly the choice of system for
parallel processing, we analyzed our algorithm on Ethernet clusters too. The
reason to do so is to provide an algorithm that performs best on any type of
cluster, not only on dedicated high performance systems.

In the following, we will give a short overview of the platforms which were
available for our performance evaluations.

Paderborn Center for Parallel Computing, Germany. The PC2 hosts a
hpcLine system which includes 96 nodes, consisting of 2 PIII 850 Mhz CPU’s
each. A Linux 2.4 is running in SMP mode. Besides regular Ethernet, a faster
interconnect is available with the SCI network plugged into a 32Bit/33Mhz PCI
interface. The MPI library is a commercial MPI implementation from Scali,
Norway, called Scampi.

Real World Computing Partnership, Japan. The ScoreIII cluster con-
sists of 524 nodes, two PIII 933 Mhz processors each, running a modified
Linux 2.4 SMP Kernel. The Cluster is fully interconnected to a CLOS net-
work using a Myrinet2000 network interface. Although Myrinet offers a universal
64Bit/66Mhz interface, the motherboard only supports the 64Bit/33Mhz mode.
The cluster makes use of the Score cluster system software[6], which provides
fast access to both Myrinet and Ethernet devices. The cluster is ranked 90th in
the November 2002 Top500 Supercomputer List.

FMI Passau, Germany. The FMI in Passau is also equipped with a hpcLine,
offering latest SCI cards with 64Bit/66Mhz. The dual Intel PIII 1000 Mhz Pro-
cessors are running a Linux 2.4 Kernel. Just as the PC2 cluster, the FMI uses
the Scampi environment.

All clusters do also have Fast Ethernet network interfaces.

486 D. Slogsnat et al.

Fig. 4. Speedup on Myrinet

Fig. 5. Speedup on SCI with 32bit/33MHz PCI and 64bit/66MHz PCI

4 Performance

In the following, the results of a number of different versions of the algorithm
will be presented. All are using non blocking communication calls. In contrast to
collective scatter communication, non blocking communication allows for better

Low Level Parallelization of Nonlinear Diffusion Filtering Algorithms 487

scalability with the system size. We expected a performance difference when
switching from a SAN to Fast Ethernet and we were interested in breaking
down the ratio of communication and computation.

Fig. 6. Myrinet execution time breakdown using slice partitioning

As expected, the highest speedup can be achieved on Myrinet clusters. As
shown in figure 4, a speedup factor of 210 on 256 processors using the slice
decomposition method reveals an almost linear increase in performance. Mesh
partitioning scales well too, but it is by far outperformed by the slice decompo-
sition method, which is up to 50% faster than mesh partitioning. Much to our
surprise, we observed a contrarian scaling behaviour on SCI, illustrated in figure
5. While mesh partitioning scales almost as good on SCI as on Myrinet, slice
partitioning does not scale at all on SCI. The scaling behaviour using Ethernet
is very similar to the behaviour using SCI. However, the total speedup achieved
is noticeable smaller: the use of 64 processors leads to a speedup factor of 22.

A breakdown of the total execution time into computation and communi-
cation helps to reveal bottlenecks. For Myrinet, figure 6 shows that the time
spent for communication is negligible. In contrast, the communication overhead
for SCI increases significantly, as shown in figure 7. According to our results
and as indicated by benchmarks like the Effective Bandwidth Benchmark [12],
the bandwidth of the SCI interface itself is not the bottleneck. We measured
a peak bandwidth of 85 MB/s and a one-way latency of 5.1µs for the slower
32bit/33MHz PCI cards, which is more than sufficient for our algorithm. It is
more likely that the SCI ring structure can not deal very well with high data
traffic. On the unidirectional SCI ring, applications may also be hampered by

488 D. Slogsnat et al.

Fig. 7. SCI execution time breakdown using slice partitioning

Fig. 8. Ethernet execution time breakdown using slice partitioning

other applications running on the cluster. Weak scalability is especially the case
for low end networks such as Fast Ethernet. Figure 8 shows that the execution
time of the algorithm is clearly dominated by the communication.

Low Level Parallelization of Nonlinear Diffusion Filtering Algorithms 489

It can be concluded that using Myrinet, the communication overhead is neg-
ligible for our algorithms. On SCI and FastEthernet, communication is still the
major bottleneck. Therefore mesh partitioning, solely optimized for a low in-
terconnect usage, is the method of choice on the slower FastEthernet and SCI
interconnects. Slice decomposition does not scale well on these interconnects.

5 Conclusion

We have shown the potential of cluster computing for parallelization of a non-
linear diffusion algorithm. Two major versions have been implemented and an-
alyzed. With different variants, they offer solutions for both environments with
highest network performance, as well as systems which are only loosely coupled.
Our current focus is to generate an autonomous initial mapping based on clus-
ter characteristics. This includes the processor performance as well as network
features. Another investigation is to support heterogeneous computing resources
in which processors obtain tasks based on their raw performance and current
load. This will lead to an adaptive method which will enable the application
to perform most efficient under several environments ranging from networks of
workstations to tightly integrated systems.

Acknowledgements. We want to thank Andrés Bruhn and Timo Kohlberger
for their valuable contributions, Joachim Weickert and Christoph Schnörr for
the excellent cooperation in our joint project, and Tobias Jakob for his analysis
of various data distribution schemes. Thanks go also to the operators of above
clusters for granting us access to their systems. This work was sponsored by the
DFG unter project number Schn 457/4-1.

References

[1] J. Weickert, B.M. ter Haar Romeny, M.A. Viergever. Efficient and reliable schemes
for nonlinear diffusion filtering, IEEE Transactions on Image Processing, Vol. 7,
398–410, 1998.

[2] J. Weickert, J. Heers, C. Schnörr, K.J. Zuiderveld, O. Scherzer, H.S. Stiehl, Fast
parallel algorithms for a broad class of nonlinear variational diffusion approaches,
Real-Time Imaging, Vol. 7, 31–45, 2001.

[3] P. Perona and J. Malik. Scale space and edge detectioin using anisotropic diffusion
IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639, 1990.

[4] T. Lu, P. Neittaanmaki and X.-C. Tai. A parallel splitting up method for partial
differential equations and its application to Navier–Stokes equations, RAIRO
Mathematical Models and Numerical Analysis 26(6), 673–708, 1992.

[5] J. Weickert Anisotropic diffusion in image processing Teubner, 1998
[6] Y. Ishikawa, H. Tezuka, A. Hori, S. Sumimoto, T. Takahashi, F. O’Carroll, and

H. Harada. RWC PC Cluster II and SCore Cluster System Software – High
Performance Linux Cluster. In Proceedings of the 5th Annual Linux Expo, pages
55–62, 1999.

490 D. Slogsnat et al.

[7] Message Passing Interface MIT Press, 1994.
[8] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic

and W. Su, Myrinet: A Gigabit-per-Second Local Area Network, IEEE Micro,
Vol. 15, 29–36, 1995

[9] IEEE Std for Scalable Coherent Interface (SCI). Inst. of Electrical and Electron-
ical Eng., Inc., New York, NY 10017, IEEE std 1596-1992, 1993.

[10] F. Petrini, A. Hoisie, W. Feng, and R. Graham. Performance Evaluation of the
Quadrics Interconnection Network. In Workshop on Communication Architecture
for Clusters (CAC ’01), San Francisco, CA, April 2001.

[11] F. Catté, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing and
edge detection by nonlinear diffusion. SIAM J. Num. Anal., 29(1):182–193, 1992.

[12] K. Solchenbach. EMP: Benchmarking the Balance of Parallel Computers. SPEC
Workshop on Benchmarking Parallel and High-Performance Computing Systems,
Wuppertal, Germany, Sept. 13, 1999

[13] Ulrich Brüning, Holger Fröning, Patrick R. Schulz, Lars Rzymianowicz. ATOLL:
Performance and Cost Optimization of a SAN Interconnect. IASTED Parallel and
Distributed Computing and Systems (PDCS), Nov. 4–6, 2002, Cambridge, USA

[14] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger, J. Weickert, U. Brüning, and
C. Schnörr. Designing 3-d nonlinear diffusion filters for high performance cluster
computing. Pattern Recognition, Proc 24th DAGM Symposium, volume 2449 of
Lect. Not. Comp. Sci., pages 290–297, Zürich, Switzerland, 2002. Springer.

	Introduction
	Parallelization of the Algorithm
	Algorithm Components and Constraints
	Data Decomposition

	Available Cluster Environments
	Performance
	Conclusion

