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ABSTRACT

This paper describes a system that detects object outlines in tele-~
vision images in real-time. A high-speed pipeline processor transforms
the raw image into an edge map and a microprocessor, which is integrated
into the system, clusters the edges and represents them as chain codes.
Image statistics, useful for higher level tasks such as pattern recogni-
tion, are computed by the microprocessor. Peak intensity and peak gradi-
ent values are extracted within a programmable window and are used for
iris and focus control.

The algorithms implemented in hardware and the pipeline processor
architecture are described., The strategy for partitioning functions in
the pipeline was chosen to make the implementation modular. The micro~
processor interface allows flexible and adaptive control of the feature
extraction process.

The software algorithms for clustering edge segments, creating chain
codes, and computing image statistics are also discussed. Finally, a
strategy for real-time image analysis that uses this system is given.
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I. INTRODUCTION

A vision system that recogiizes objects in a scene, determines their
locations, and tracks their movements, can be partitioned into two
layers. The first, the low-~level processor, transforms the raw image
into a compact feature representation. The second layer, the high-level
processor, performs scene analysis using these features and a priori
knowledge of the scene. The features considered in this paper are
complete object outlines and their characteristic statistics (perimeter,
area, center of mass, etc.).

When the scene varies with time and objects must be followed, or
visual feedback given to mechanical effectors, feature extraction must
take place in real-time. The definition of "real-time" will depend on
how quickly the scene is changing. TFor this discussion it will corre-
spond to changes detectable when several frames per second are sensed.
Even with the fastest general-purpose computer available today, feature
extraction will take at least a few seconds for each image frame,
Therefore, special purpose hardware must be used if features are needed
in real-time.

A real-time low-level processor that extracts edge information at
the videc rate of thirty frames per second has been implemented. The
system.is flexible. That is, portions of the logic are programmable,
control parameters can be adjusted dynamically by the high-level proces-
sor, and objects of interest can be framed in a window. The window,
which can range from a single pixel to the entire image, allows data
to be transmitted only from the image area of interest.  The system
is adaptive, automatically adjusting the camera's focus and iris to
reflect changes in the scene. Finally, the system has a modular hard-
ware implementation.

II. ARCHITECTURE

Most low-level image processing algorithms (i.e., enhancement, edge
detection, thinning, etc.), are built from local operators that require
access to a small number of picture elements at any one time. These
operators, usually requiring simple arithmetic operations, are computed
for every pixel in the image, and are called computational units (CUs)
when they are implemented in hardware for fast processing. The question
is how to arrange the CUs so that algorithms are applied to an entire
image in the least amount of time.

One approach, studied by Duff [1] and Dyer, et al. [2], arranges
identical CUs in an array.that processes the entire image in parallel.
In this scheme, the execution time for an algorithm would be the execu~
tion time of one CU. Even using a highly complex operator, an array of
CUs will transform an entire image in a few microseconds. Unfortunately,
there are practical drawbacks to this architecture. Parallel arrays
require as many CUs as there are pixels in the image--over a quarter of
a million for a typical 512 x 512 image. The total number of connec-
tions needed (the number of pixels accessed by each CU times the number



of CUs), is an even more serious problem [3]. One way to eliminate the
connection problem is to integrate the CUs and the sensor on one circuit,
However, to justify the parallel processing, the IC should also contain
all the processing necessary to reduce the data to a few features repre-
senting the sensed image. This amount of logic cannot fit on present-
day, two-dimensional solid state devices. Finally, since present-day
sensors output serial data, a parallel array processor, separated from
the sensor, would have to remain idle during the entire time the image
is being sensed. For these reasons, the parallel array approach was

not used in this system.

The converse of the parallel array approach is to scan the entire
image with a single CU. First, the raster output of the camera must be
converted to a window that contains all the points the CU needs to access
in parallel. Figure 1 shows raster-to-window conversion (R/W)--how
serial image data are converted to the 3 x 3 window used by the CU.
Input pixels are stored in a pair of line-long shift registers, giving
parallel access to a 3 x 3 window. The CU must be ready to accept a
new 3 x 3 window every time a new pixel is received, forcing the CU to
execute in no more than the pixel sampling time. The CU's execution
time, unimportant in parallel array processing, is critical in this
scheme,

Timing problems, caused by large propagation delays within a CU,
are overcome by breaking the CU into several computational subunits
(CSUs). These CSUs, separated by latches that are simultaneously clocked
at the pixel sample rate, form the pipeline processor shown in Fig. 2,
The total propagation delay, which must be kept less than the sampling
time, determines the amount of logic in each CSU. This strategy has the
limitation that data lines cannot be fed back from the output of a CSU
to the input of a previous one. Functions that require feedback must be
implemented in a single CSU. Such CSUs may need faster logic circuit
components to keep execution below the pipeline clocking time.

Thus far, only one processing step has been considered. However,
complex multi-step processes can be performed by combining raster to

LINE BUFFER No . 1

COMPUTATIONAL |, PROCESSED
[ H UNIT OUTPUT
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IMAGE LINE BUFFER No. 2 }—
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L
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Figure 1. Raster-to-Window Conversion Provides Parallel Access
to a 3 x 3 Neighborhood for ‘a Computational Unit.
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Figure 2. Partitioning of a Computational Unit
into Computational Subunits.,

window converters and CUs in a pipeline, as shown in Fig. 3. The total
delay between the raw image and the processed output is the number of
lines stored in the raster-to-window converters plus the total number of
CSUs in the system.

IIT. SEQUENTIAL PROCESSING FOR EDGE DETECTION

Using the pipeline architecture discussed above, a three-step
operation that produces partial object outlines from a raw image has
been implemented. The CUs that perform each step are an edge enhancer,
an edge detector, and an edge processor.

The edge enhancer, Fig. 4, the first CU in the pipeline, differ-
entiates the raw image (digitized to eight bits) by applying a weighted
filter. The result is a gradient magnitude image, having a ten-bit
value for each pixel that represents how sharply the gray level changes.
This edge enhancer was chosen because it combines good performance with
simple hardware implementation [4]. The gradient magnitude, G(i,j), is

CSUs
RASTER | RASTER
RAW RV =D RW,l o o o o |R/W, =>:)) ) ) j)—-— PROCESSED
IMAGE ! 2 k IMAGE
cu1 CUk

Figure 3, Pipeline Image Processor Formed by Cascading
Several Computational Units.
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Figure 4. Block Diagram of the Edge Enhancer.

computed at each pixel, whose gray scale value is P(i,j), as the follow-
ing function of the pixel's eight nearest neighbors:

G(i,j) = |P(1 - 1,j - 1) +P(i,j - 1) +PE + 1,5 - 1) - P(i -1, + 1)
- P, +1) - PA+ 1,5 +1)]
+|P(i - 1,5 - 1) + P(1 - 1,j) +P(1 - 1,5 +1) -P{A+1,j-1)

- P(1 +1,j) - P(i + 1,5 + 1)

An edge detector, whose output is a binary edge map, is the second
CU. Like enhancement, edge detection is a type of weighted filtering.
The inputs of this fllter are the gradient magnitudes, G(i,j)s, deflned
above. S(i,j), the value of the filter, is defined as follows:

S(i,7) = Z Z QL+ k, j+ 2

k=-1 =

where the Wiy are programmable integer weights and Wgg is minus the sum
of the other weights. Each point in the binary edge image, E(k,j), is
set to one (edge) if S(i,j) is positive, and to zero (no edge)
otherwise.

Once an edge map is obtained, single-point elimination, edge thin-
ning, single-pixel gap filling, and generation of a list of node and
end points may be desired. All this is done by the third CU, the edge
processor. The edge processor makes decisions for each pixel by check-
ing the states of its eight nearest neighbors. Since each neighbor may
only be in one of two states in the binary edge map, there are 2 #**% §,
or 256, possible conditions for every pixel. The 256 possibilities



define an address into a two-bit-wide lookup table. The lookup table is
programmable for flexible decision making.

Two special registers are used for windowing. The first contains
the upper left-hand corner (ULC) and the second contains the lower
right-hand corner (LRC) of the window. Both ULC and LRC are programmed
by the microprocessor. Using an image location address counter, the
hardware keeps track of the raster scan. The hardware compares the
scan address to the window address registers and generates a logic sig-
nal to indicate the area of the image lying within the window. When the
scan reaches the window's LRC, an interrupt is generated for the
microprocessor.

Two identical CUs are enabled within the programmable window to
detect peak-~image intensities. The first, having direct access to the
raw video, computes the maximum video level within the window. The
second, attached to the gradient output of the first CU, computes the
peak gradient value within the window.

IV.  IMPLEMENTATION

The input devices to the system are GE TN-2000 solid state tele-
vision cameras with a resolution of 188 x 244 elements. The camera's
output is an EIA RS-170 format signal of thirty frames per second and
the system is able to lock onto any standard input signal of this form.
The pixel sampling rate for the GE cameras is 3,58 MHz, making the pipe-
line clocking time 280 nsec.

All logic in the system is implemented with TTL 74LS series
circuits. Computational units are designed to handle clocking times as
low as 150 nsec. By replacing the 74LS with 74S components, the clock-
ing time can be lowered to 90 nsec, more than adequate for camera
resolutions of 512 x 512.

The raster-to-window converters are built with fast bipolar RAMs
(35 nsec access time) instead of shift registers to accommodate differ-—
ent line resolutions that may be needed in the future.

The microprocessor used in the system is a DEC LSI 11/03. A DMA
controller with programmed I/0 capability sends and receivezs data to oxr
from the pipeline processor through a bidirectional bus (Fig. 5). After
the third CU is applied, processed edges are stored in the computer
memory via DMA for software processing. During DMA transfer of the edge
map, only about 107% of ‘the CPU time is occupied, leaving the CPU about
907 for running software. When a small window is set, the overall duty
cycle of the CPU is higher since it has 100% of the time while the non-
windowed area of the image is being scanned. '

_ Camera lenses are controlled by velocity servos. Digital velocity
values, dictated by the microprocessor, are converted to analog signals
and fed to the sexvo controllers.
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Figure 5. System Configuration of the Real-Time Image
Feature Extractor.

A special channel in the video input selector is dedicated for
switching between a pair of stereo cameras on alternate fields. Since
the pipeline operates on one field at a time, switching cameras lowers
the vertical resolution by a factor of two, but enables the system to
make three-~dimensional measurements in frame time.

V. SOFTWARE FOR LOW-LEVEL PROCESSING

By "software for low-level processing' we mean the programs resident
on the microprocessor. These programs adjust the pipeline's programmable
control parameters, giving the system flexibility and enabling it to
adapt to a scene. Software must control the camera's focal length and
iris diameter, have a predominant role in edge clustering, extract chain
codes, and calculate image statistics. Real~time speed requires that
the software be optimized for minimum execution time, implying that it
be written in fast assembly language modules. System adaptability to
the scene implies that the software be event driven using an interrupt
structure. System programming considerations, such as communication
with the high-level processor, are beyond the scope of this discussion.

The low-level processor must control the cameras to ensure that the
proper amount of light is received and that objects of interest remain
in focus. All focusing and irising are done inside the programmable
window set by the high-~level processor around the objects of interest.
This allows the system to get the proper amount of light, even if brighter
objects are in the scene. Similarly, the cameras can be focused on a
particular object without being affected by other objects located at
different depths.

Most researchers agree that clustering cannot be done solely by
a low-level process [5]. The problem, then, is to find a clustering

strategy that minimizes dependence on the high-level processor, and thus
execution time. : ,



Assume that the clustering program is given a list of the end and
node points of all the edge segments in the binary edge map. This list,
as pointed out above, is found during the same process that thins the
edge map. The strategy will be to let the low-level processor do a
global "best guess" clustering at the first pass and let the higher level
processor make local corrections as more information becomes available
or as the scene changes.

One choice of a best guess global clustering is an envelope opera-
tion that joins the edge segments into a silhouetted image. Each end-
point is connected to the closest neighbor such that the connecting
segment dogs not intersect any other segment. The primary limitation of
this method is that extraneous edges will distort an object's envelope.
By setting the initial edge detection threshold to a high value, most
extraneous edges can be eliminated at the cost of a few more gaps to
fi1l.

Chain codes are an ordered list of numbers that represent the
orientation of line segments along the boundary curve. These codes have
been extensively investigated by Freeman [6], and provide a succinct and
convenient representation of object boundaries. Many algorithms, such
as corner detection [7], contour following, and image statistic calcu-
lation [8] run more quickly using chain codes. The data compression of
a chain-coded edge can speed up communication time between the low- and
high~level processors.

These advantages must be weighed against the major disadvantage of
chain codes — the time it takes to extract them. Several methods aimed
at speeding up the chain encoding process have been proposed. Yakimovsky
[9] has proposed a one~pass raster scan technique; Wong [3] has described
a method that works from the list of node and boundary points; and,

Sobel [10] has given a structure that allows hardware to aid chain code
extraction. All these techniques will chain code the entire edge map.
I1f the chain codes are stored as a linked list, then the list can be
locally updated, rapidly adding or deleting chain-coded segments as the
scene changes.

The perimeter, area, and arbritrary moments are calculated from a
region's boundary. Combinations of these statistics describe the loca-
tion, orientation, and shape of objects in space. Wong and Hall [11]
show how certain linear combinations of moments, the invarient moments,
are used for object recognition. Wilf and Cunningham [8] derive the
formulas for calculating arbitrary moments and discuss their computa-
tional properties.

One useful property of region moments is their linearity. ZLet R be
a region composed of two sub-regions R; and Ry, as shown in Fig. 6. Let
M(R) signify the moments of R. Then, M(R) = M(R;) + M(Rp). The perim-
eter of R, P(R), is easily computed from Ry, Ry, and the length of the
common edge, C, between Ry and R,, L(C): P(R) = PRy) + P(Ry) - 2 * L(C).
This property 1mp11es that once statistics have been calculated for the
entire scene, local adjustments can be made w1thout having to do a
maJor global recalculation. , :
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M®) = MR, + MR,
P(R) = P(R)) + P(R,) = 2L(C)

Figure 6. Two Regions With Common Boundary
Segments.

pattern that has emerged from the analysis of clustering, chain

coding, and statistics calculation is that these processes are performed

only one
created,
only the
scenario
1)

2)

3)

4)

5)

6)

time globally. Once a good initial guess image boundary is
all adjustments and recalculations are done locally, involving
altered portion of the image. This gives us the following

for real-time scene analysis:

Using an initial window that includes the entire scene, the
cameras are adjusted for proper light and focus.

The binary edge map and a list of segment end points and node

points, created by the pipeline, are read into the micro-
processor 'S memory.

Edge gaps are closed to form object silhouettes. Each object
boundary is chain coded and its perimeter, area, and low-level
moments are calculated. This information is then passed to the
high-level processor for analysis.

The higher level processor identifies a region of interest and
sets a window around it.

The threshold is lowered inside the window to get more accurate
edge information.

Focus and iris are adjusted, using the new window to center on
the object of interest.



7) The lower threshold reveals new edges in the edge map and
features inside the cbject. The chain code representation is
refined, image statistics are readjusted, and the new infor-
mation is passed back to the higher level processor.

8) The higher level processor, tracking the changes in the object's
boundary and statistics, requests a new window and predicts new
edges on the basis of a priori models of the scene.

9) Steps (5) through (8) are repeated until the scene has been
sufficiently analyzed.

VI. CONCLUSIONS

A pipeline architecture is suitable for high-speed sequential process~
ing of images. In the low-level processor a raster-to-window converter,
along with a computational unit, form a generic building block. The usage
of uniform, pipelined building blocks makes the implementation modular.

By chain code representation the system reduces the amrunt of data in an
average image by about two orders of magnitude, This reduction and rep-
resentation enables high-level algorithms to operate on images in near
real~time.
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APPENDIX - FORMULAS FOR IMAGE STATISTICS

Let R be a region in an image with perimeter P = P(R), area A=A(R)
and p,qth order moments Mpq = Mpq(R) = [R XPY4 dxdy. Let (X;,Y;)
represent the ith point along R's boundary, where i = 0,...,n. Finally,
let Ci be the chain code for the segment linking (Xi-1,Y{-1) with
(Xi,Yi), where i = 1,...,n and Cj e{0,...;,7}, Then, as in Fig. A-1:

Figure A~l. Chain Code Directions and
Labeling Conventions.

1, if C; e{0,1,7}
if Cy e{2,6}
-1, if C, €{3,4,5}

X, =X, - X

1, if ¢, e{5,6,7}
MY, =Y, - Y = 0, if ¢, £{0,4}
-1, if €, e{1,2,3}

i

‘n 1, if ¢, e{0,2,4,6)

i=1 V2, if ¢, €{1,3,5,7}

n
A= Moo = E AYiXi - 1/2AXiAYi
i=1

11
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Using these moments, the region can be assigned a location and
orientation. The location is defined by the region's center of mass,
Kems Yem) -
fold degeneracy, by the axis that minimizes second-order moments of

inertia.
inertia.

cm

cm

tan

[

20

The orientation of the region is described, within a two-

Let 6 be the angle between the X-axis and this axis of minimum

Then,
X - center of mass = MlO/MOO'
Y - center of mass = MOl/MOO'

the angle of the axis that minimizes the moments of inertia.

B 2 (looMyq = MyoMiyy)
- 0 —
MooMao = Mo T MpoMo2 ~ Mox

12 NASA—JPL—Cainl., LA.,Calif
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