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Abstract

Tracing is a common method used to debug, analyze, and monitor various systems. Even though standard tools and
tracing methodologies exist for standard and distributed environments, it is not the case for heterogeneous
embedded systems. This paper proposes to fill this gap and discusses how efficient tracing can be achieved without
having common system tools, such as the Linux Trace Toolkit (LTTng), at hand on every core. We propose a generic
solution to trace embedded heterogeneous systems and overcome the challenges brought by their peculiar
architectures (little available memory, bare-metal CPUs, or exotic components for instance). The solution described in
this paper focuses on a generic way of correlating traces among different kinds of processors through traces

synchronization, to analyze the global state of the system as a whole. The proposed solution was first tested on the
Adapteva Parallella board. It was then improved and thoroughly validated on TI’s Keystone 2 System-on-Chip (SoC).

Keywords: Heterogeneous embedded systems, Tracing, Traces synchronization, Traces correlation, Parallella,
Keystone 2

1 Introduction
Heterogeneous embedded systems combine the pecu-

liarities of traditional embedded systems (little available

memory and exotic architectures among others) with the

complexity of having many processors of different archi-

tectures on the same board. Usually, some processors are

referred to asmasters as they are the main cores, typically

running a high-level OS (HLOS) like Linux, and offload-

ing work to some coprocessors (slaves). Even though some

coprocessors could run an HLOS [1], we assume in this

paper that they are used as bare-metal units, as this

brings the most compelling challenges. This is a reason-

able assumption since those coprocessors are mostly used

to perform very specific tasks and should not be disturbed

by any other processes.

On such systems, finding the root of an issue such as

a bottleneck, an abnormal latency, or even a simple bug

usually cannot be done by separately looking at each core.

For this reason, proper methods and tools should be used

to have a complete understanding of the whole system.

However, even the right tools can sometimes encounter
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limitations on such devices: running the GDB debugger on

a thousand cores, for instance, can be tough. As such, het-

erogeneous system vendors often provide their own, more

suited, diagnosis tools for a particular device, thus forc-

ing the users to use as many different tools as there are

existing platforms, without any consistency.

Tracing is an elegant and efficient way of obtaining

information on a system while minimizing the moni-

toring’s impact. It requires the instrumentation of the

traced application (i.e., the addition of tracepoints) to

output timestamp-matched events and give insights on

the execution of specific parts of a system. A set of

such events is called a trace. Because of its granularity

(tracing can be as precise as the internal clock of the

device is), traces can be massive and are not well-suited

for every situation. However, tracing allows a better

information-gain/performance-loss ratio than standard

logging methods and requires less time and effort than

classical step-by-step debugging.

In this paper, we present a generic way of tracing het-

erogeneous embedded systems in an attempt to show how

efficient it is to solve common problems and how it can

lead to a standard analysis methodology for those systems.

The described method only assumes that two common

constraints are met. Under those reasonable assumptions,
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only the actual implementation of the process can dif-

fer from one system to another. By presenting how our

solution is implemented on the Keystone 2 platform,

we provide some guidelines and a complete example

on how to proceed with any new platform, the key

point being the implementation of the synchronization’s

process.

This paper is structured as follows. Section 2 cov-

ers related work on heterogeneous environments, trac-

ing, bare-metal CPUs tracing and traces synchronization.

Section 3 briefly describes the architectures of the two

devices used in this work and highlights their specifici-

ties. Section 4 introduces barectf 1, a tool used to generate

traces on bare-metal systems. Section 5 then discusses in

details the challenges and methods for correlating hetero-

geneous traces. Finally, Section 6 exposes and discusses

some results through a set of benchmarks and a complete

use-case on the Keystone 2, before concluding on the state

of tracing on heterogeneous embedded systems.

2 Related work
Working on heterogeneous environments can be a com-

plicated task. Conte et al. [2] highlight in particu-

lar how the use of different programming languages

along with their respective (sometimes exotic) compil-

ers and the inherent load balancing and management

among heterogeneous environments are common prob-

lems needing to be addressed. The latter issue is part

of a more general load-balancing problem, for which it

is impossible to design a universal solution, as the tasks

distribution is heavily dependent on the algorithm being

distributed. However, some works, such as [3], study the

use of specific frameworks to balance the load between

different components within the same heterogeneous

environment.

Communications between heterogeneous components

is a commonly addressed issue in distributed systems. It

can be tackled in a similar way on embedded devices. In

particular, Lamport [4] discusses the basis of interprocess

communication mechanisms, where all can be reduced

to a classical producer/consumer problem on a shared

medium. In this model, a consumer will poll said medium

and wait for a producer to change it (by adding data for

instance). As far as heterogeneous embedded systems are

concerned, a shared memory space can often endorse the

role of the communication medium, where masters and

slaves will both be producers and consumers. Of course, as

underlined by Tanenbaum [5], it is mandatory to explicitly

design a communication protocol to ensure that con-

sumers and producers can both use the shared data. For

instance, the data encoding and the bit ordering must be

agreed upon before any transaction occurs.

Tracing isan efficientmethod to gather valuable informa-

tion on a system, based on source-code instrumentation.

The instrumentation will yield events when tracepoints

are encountered, during the application’s workflow. Each

event holds a payload and is associated with a finely-

grained timestamp. Tracing is not to be mistaken with

logging or profiling [6] as they serve different purposes.

Logging is usually restricted to unusual or high-priority

events such as system failures or abnormal behaviors. Pro-

filing can be used to analyze the performances of separate

parts of a system, giving an overview of useful metrics,

without any need for events ordering. On the other hand,

tracing can be used to monitor, debug, profile, or log sys-

tems behaviors [7] and is often the favored solution to

debug and monitor concurrent programs [8]. However,

please note that logging, debugging, profiling, and tracing

can all be used at different phases during the develop-

ment cycle, and thus the use of one does not preclude the

utilization of the others.

Since tracepoints can be placed anywhere in the appli-

cation’s code, it is mandatory to ensure that the resulting

instrumentation does not affect the observed state or

create new issues. Indeed, tracing solutions need to be

highly optimized as they should only minimally impact

the monitored system, to avoid the undesired “probe

effect” [9].

Tracing Linux-based systems has been proven many

times to be a reliable and efficient solution. Common tools

such as LTTng (Linux Tracing Toolkit next generation2)

are widely used to trace both the Linux kernel and user-

space applications [10, 11]. Having the ability to trace both

domains at once allows a better understanding of a system

as a whole. It brings more context on abnormal behav-

iors: the roots of an abnormally high latency cannot always

directly be found in user-space and might require trac-

ing system calls. Desnoyers and Dagenais [12] also showed

that porting LTTng to different architectures could eas-

ily be achieved, as long as some requirements, such as the

presence of fine-grained timers, are met.

Tracing bare-metal systems is a bit more tedious as, by

definition, there is no access to any of the usual Linux

tools. Thankfully, barectf was created to address part of

this issue. It is a python-based tool able to generate C99

code implementing tracepoints, which can then be linked

with the user’s application to generate native common

trace format (CTF) traces. This is particularly interesting

as CTF is also the default output format for LTTng traces

and aims to standardize traces’ outputs across different

systems. As a proof of concept, Proulx particularly showed

in [13] and [14] how barectf could be used to trace some

very constrained coprocessors inside the Epiphany chip.

Extending this work, we will demonstrate how barectf can

be implemented on another platform, the TI’s Keystone

2 SoC. Figure 1 displays a basic setup enabling tracing of

both a master CPU and its associated slave. Among other

works targeting heterogeneous environments, Couturier
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Fig. 1 Basic setup used to trace embedded heterogeneous systems

[15] explains how OpenCL calls can be intercepted to

produce CTF-formated traces on GPGPUs. All of this

lays the foundation of the standardization of traces

collected on different components of a heterogeneous

environment.

Having traces sharing the same format on every pro-

cessor in a heterogeneous environment is a step forward

towards the global monitoring of the system. However,

it still is necessary to find a way to correlate said traces.

In fact, traces obtained from different machines or dif-

ferent processors, will most likely not share the same

timestamps origin, have different working frequencies

and frequency scaling policies. This is a common prob-

lem when it comes to tracing distributed systems, as

every component might use a different clock. As such,

directly comparing traces obtained on all devices would

not make much sense. Tanenbaum [5] lists traditional

ways, such as NTP or the Berkeley algorithm, to achieve

clocks synchronization in a distributed system. The clas-

sical work of Lamport [16] summarizes the need to syn-

chronize as the need to preserve the events causality.

Under this constraint, only a logical clock would suffice

and ensure that the events’ order is respected across the

system.

In this context, Jabbarifar [17] proved that traces corre-

lation can be achieved through synchronization, merging

two or more traces with different timestamps’ origins

into a single one with the same (fictitious) time ori-

gin. Although this work addressed “live” synchronization

(i.e., synchronization done while the traces are being

recorded), the preferred way is to operate a post-analysis

on existing traces, with a trace analysis and viewing soft-

ware such asTraceCompass. This way, tracing is kept from

interfering too much with the system and limits its per-

formance overhead to the minimum. Poirier et al. [18],

in particular, showed how generating pairs of match-

ing events between traces brings enough context for a

post-tracing synchronization process. The idea is to pre-

serve the causality relationship between all the events, by

tracing interactions between remote cores and creating a

fictitious global clock. This method will be further dis-

cussed in Section 5.

As far as we are aware, no other published work was

directed at tracing embedded heterogeneous systems in

a generic and structured way, with traces taken at differ-

ent levels being synchronized and analyzed in a suitable

trace viewing tool. By using the tools and concepts previ-

ously presented, we intend to show how such tracing can

be achieved and how it can tackle common problems.

3 Background
Our methodology aims at tracing both generic CPUs and

coprocessors in an attempt to correlate the traces and

analyze complex heterogeneous systems. Most of the het-

erogeneous embedded devices used in industry are com-

posed of generic-purposes ARM processors, coprocessors

of various designs (from generic to highly specialized) and

a shared memory space. The ARM processors can run an

HLOS such as Linux and thus have common tracing tools

at their disposal. The coprocessors are used as bare-metal

computing units, on which the masters will offload part

of the work. No common solution presently exists to con-

sistently trace them and correlate the traces at a global

scale. Figure 2 represents the common pattern on which

this paper is focused.

The two primary devices used to develop and test

our tracing method devices are of great interest as they

respect this pattern and provide an interesting range of

specifications. The first one (Adapteva’s Parallella) is an

FPGA-based, custom board that could easily be used as

a prototyping device, with very limited hardware and

minimal coding APIs. By contrast, the Keystone 2 offers

eight widely used TI’s DSPs a very powerful hardware and

extensive APIs and could thus be adopted as a production

device.

3.1 Adapteva’s Parallella

The Parallella board [19] was the first platform used

to better understand the constraints of heterogeneous

embedded systems. The tested version contained 16

generic coprocessors (called eCores). Because of its exotic

architecture, valuable lessons were learned, and it allowed

us to infer the minimal requirements to trace a heteroge-

neous embedded system.

The core of the Parallella board is composed of a Zynq

70xx SoC containing a dual-core ARM Cortex A9 and

an Artix-7 FPGA, an Epiphany chip (where the eCores

are located) and 1 GB DDR memory. All coprocessors

are little-endian, C-programmable, and best used as bare-

metal units.

The Parallella’s limitations are very challenging, which

forced us to explore different technical alternatives, and

allowed us to tackle complex systems more easily. For

instance, the communication mechanism between the

master (ARM) and the slaves (coprocessors) is one way.

This situation does not allow a slave to send any kinds
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Fig. 2 High-level view of the devices of interest

of information to its master directly. Thus, the first min-

imal requirement emerged: it is mandatory to dispose of

(at least) a shared memory space to allow communication

between the masters and the slaves. The very constrained

memory space, the lack of interruptions queue, the

absence of ordering for memory transactions and the

lack of software components made the Parallella a fas-

cinating device to experiment with, and from which we

gained a better understanding of what issues one could

have to tackle to trace a heterogeneous embedded system

properly.

3.2 TI’s Keystone 2

Looking at TI’s Keystone 2, SoC is a logical next step,

allowing us to test our tracing solution from scratch on

a more complex and powerful device. This way, having

addressed the issues of the weaker Parallella’s hardware,

we dispose of a solid range of devices. Moreover, since the

DSPs featured in this SoC are also present in many other

systems, everything done for this platform will have much

wider repercussions.

TI’s EVMK2H evaluation board features a 66AK2H12

SoC containing 4 ARM Cortex A15 and 8 TI’s C66

CorePacs DSPs [20]. It also provides 2-GB DDR memory

and a faster 6-MB shared memory. This SoC is commonly

used in industry and is thus a representative platform.

TI provides a set of C modules acting as a real-time

micro-kernel that can be loaded on each and every DSP.

This micro-kernel (named SYS/BIOS3) is capable of han-

dling basic tasks, memory management and communica-

tions between ARM and DSPs. Because it is lightweight

and well-optimized, its usage is somehow standardized.

Our main interest in this product is to see how it is possi-

ble to instrument it, like the Linux kernel, to obtain traces

at a lower level. For instance, tracing context switches

between tasks would provide much information regarding

the global state of the system. Being able to trace the

SYS/BIOS kernel, along with user-specific applications,

would open the way to new opportunities such as critical

path analysis [21].

No solution currently exists to trace the Keystone 2

platform, and the only tools provided are mostly target-

ing profiling. Those tools are in no way sufficient enough

to compete with the benefits of tracing a device: more

information with a lower performance impact.

Part of the challenge of tracing this platform is to eval-

uate how a tool such as barectf can be integrated into

TI’s micro-kernel, and how the provided communication

mechanisms impact the way we see the master/slave rela-

tionship. Since barectf has not yet been ported to this

platform, Section 4 will explain how it can be done and

provide some general guidelines regarding this process.

4 Bare-metal tracing with barectf
In this section, we will briefly present barectf and

describe the procedure to implement it on a new plat-

form. Barectf ’s traces’ output follows the CTF, which is

a memory-wise efficient binary format. Bit-manipulating

functions are needed to generate events in this format.

For instance, it is perfectly acceptable to declare and

trace a 3-bit integer. To ensure that a parser can read

through such traces, a set of metadata, describing the

content of each event, is required. Barectf handles the cre-

ation of the trace’s metadata and all the bit-manipulating

functions.

Barectf is a tool generating sets of C tracepoints. To

do so, the user provides a configuration file written in

YAML defining what are the required tracepoints (i.e., the

description of the metadata): each tracepoint is given a

name and a payload that can be anything from a single

integer to a complex structure.

Figure 3 sums up a basic barectf setup.
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Fig. 3 High-level view of barectf’s workflow, extracted with permission from [14]

In order to use barectf with any device, one needs to

implement a client-side API in charge of managing the

packets generated by the tool. Packets are sets of events,

initially recorded in a local buffer on each monitored core.

They have a limited length and can thus only store a finite

set of events. As such, they need to be handled when full,

before recording new events. Therefore, because barectf is

hardware-agnostic and thus does not provide those mech-

anisms, one has to implement an API called a “barectf

platform” on every newly studied platform (see Fig. 4).

While implementing these functions, a few things

should be taken into consideration:

• The barectf_init function is in charge of allocating

and instantiating the data structures holding the

packets (either locally or on external memory). Those

can be circular buffers, regular queues or even a

single global variable holding one packet. However,

some systems might not handle dynamic allocation

very well (as it was the case for the Parallella board).

Thus, particular care must be taken when

instantiating the structures.
• When implementing the barectf_get_ctx function, it

is possible to allow multiple contexts to be created. In

that case, no assumptions should be made about any

preexisting checking mechanism, and potential

coherency issues should be tested.
• The barectf_get_clock and barectf_init_clock

functions should use a proper 64-bit counter. Usually,

a cycle counter is used, and when not available,

special care must be taken to ensure the coherency of

timestamps through time. For instance, some
Fig. 4 Barectf’s device-specific API
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platforms (like the Parallella board) might only offer

one 32-bit counter which can be reset after hitting its

maximum value, in which case a custom-made

counter should be incremented at each reset to

simulate a 64-bit counter.
• The barectf_close_packet function is the core of the

API, as it is in charge of handling a full packet. Such

packet can be flushed into a shared memory space,

directly sent to the master or even discarded because

of lack of space. The choice is at the user’s discretion.

For instance, the first implementation of the API on

the Parallella copies the local packet into a shared

memory location for the master to consume it. It

requires proper initialization of the shared memory

space and a custom protocol to retrieve the data. Our

Keystone 2 implementation, however, uses TI’s

MessageQ API4 to directly send the packet to the

master. This API allows the host to sleep on a

semaphore’s lock while waiting for a packet to be

received, thus eliminating the need to poll a shared

memory space.

Obviously, every choice made on the slave regarding the

handling of barectf packets should have its counterpart

on the master, to ensure that the data can be retrieved

and processed afterward. For instance, if the packets are

written into a special memory location, the master should

periodically poll this area and write new packets in a

CTF file. In this case, extra care must be taken to ensure

the coherency of the data read, since both the consumer

and the producer might try to access the shared memory

location at the same time.

5 Correlating heterogeneous traces
Being able to trace every component of a heterogeneous

system separately is only the first step to trace its global

state. Indeed, directly analyzing all the raw traces without

processing them would be pointless, as different compo-

nents most probably have different clock origins. Thereby,

synchronizing the traces on the same (fictitious) time

origin is mandatory to preserve timestamps and cause-

effect coherency.

5.1 Generating pairs of matching events

Synchronization can be achieved either “live” or as a

post-tracing process. Since the monitoring process should

minimally impact the system, we chose to use the second

solution. For this to work, one needs to generate pairs of

matching events during the tracing session. Those events

can be seen as a “handshake” between a master, which

will be used as the synchronization origin, and a slave, for

which the trace’s timestamps will be adjusted to match

those of the master. This method is already well-used in

distributed systems where the synchronization’s process

uses TCP exchanges. The following process can be seen as

the generalization of this mechanism (see Fig. 5):

1. The master generates its first matching event of

sequence n and proceeds to ask for its counterpart on

the slave to be generated.

2. Once the request is handled by the slave (which

should happen as fast as possible to obtain results as

accurate as possible), the second event (seen as an

ACK ) of the first pair is generated on the slave (with

sequence number n).

3. The slave then generates the first event of the second

pair of sequence n + 1 and notifies its master.

4. Once the master handles the notification, it

generates the second event of the second pair with

sequence n + 1, thus concluding the first exchange.

Those events can later be processed, post-tracing, to

compute the time conversion function to convert the

timestamps in the slave’s traces to the master’s time refer-

ence. Note that each pair needs to be uniquely identified

during the post-tracing process, thus explaining the need

for unique sequence ids.

In the next subsection, we propose a generic and effi-

cient way to make the right interactions between a master

and slave during the matching events’ generation process.

Fig. 5 Generating pairs of matching events
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5.2 Workflow and synchronization

The below-described method aims at being hardware-

agnostic and will work under these reasonable assump-

tions:

(H1) The slaves can be interrupted by the masters

(H2) A shared memory space is accessible by both

the masters and the slaves.

To generalize our approach, we assume that the slaves

are single-core processors and thus cannot handle multi-

ple threads at a time. For this reason, (H1) ensures that

there will always be a way for a master to halt a slave’s

workflow and generate the synchronization events.

Since we cannot assume either that a proper communi-

cation mechanism (such as a message passing interface)

exists on every platform, (H2) allows data communi-

cations and is available on almost every heterogeneous

embedded platform.

As previously seen, generating pairs of matching events,

across different traces, requires the master to send a

request to the slave. This can be achieved by having the

master trigger a hardware interrupt on the slave, thus

forcing its workflow to be suspended in order to process

the incoming interruption. Upon reception of the inter-

ruption, the slave can write its ACK flag in the shared

memory. In the meantime, the master would poll said

memory and wait for the slave to complete.

To generate a set of matching events, a background task

(referred as a synchronization daemon) can run on the

master to periodically generate the interrupts and cor-

responding events. The interruptions’ frequency needs

to be adjusted so that the synchronization is accurate

enough (enough matching events can be used) but does

not significantly impact the system’s performance.

The global scheme of this generic process, for which the

only requirements are (H1) and (H2), can be summarized

by Fig. 6, where

1. The synchronization daemon (master’s side):

1.1 Interrupts the slave workflow to request

synchronization

1.2 Generates the first event of the first pair

1.3 Polls the shared memory location where the

ACKs are to be written by the slave

2. On the slave:

2.1 The interruption is handled and thus begins

the synchronization task (which can be a real

task or a function, in which case the next step

does not apply)

2.2 The synchronization task is “awoken” from its

waiting state

2.3 The second event of the first pair is then

generated

2.4 The slave ends its synchronization task by

writing the proper ACK flag in the shared

memory space and consecutively generating

the first event of the second pair

3. The synchronization daemon (master’s side):

3.1 Receives the ACK and leaves state 1.3

3.2 Generates the last matching event (same

transition as 1.2)

3.3 Stays on standby until the next periodic

synchronization

This process could be tweaked in harmony with

hardware-specific components for better results. For

instance, the Keystone 2 platform allows the use of TI’s

message passing API (MessageQ) to send the ACKs from

the slave to the host, thus eliminating the need to con-

stantly poll a shared memory location (the synchroniza-

tion daemon can simply wait on a blocked semaphore for

the ACK to arrive). Similarly, if the device of interest does

not provide any shared memory space but handles local

network packets, those could be used instead.

5.3 Post-analysis treatment

Once the pairs of matching events are created, a post-

analysis process can handle the traces and proceed to the

timestamps’ transformation.

The chosen method, whose efficiency is well proven,

is based on the convex hull algorithm, as discussed in

Fig. 6 High-level view of the synchronization process
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[18] and [22]. It has been widely used to synchronize

kernel traces using network packets among distributed

systems. The pairs of matching events described here are

the generic equivalent of those packets.

The convex hull algorithm’s goal is to find a suitable

linear transformation of the slaves timestamps. The pairs

of events are displayed on a 2D graph where each axis

represents the timestamps of the events on one device.

The upper-half (respectively lower-half ) of the hull is used

to determine the conversion function with the maximum

(respectively minimum) slope. Duda et al. [22] suggest to

take the bisector of the angle formed by those two lines as

the linear transformation.

Each part of the hull should contain a minimum of two

points. Obviously, the more points there is, the better the

approximation gets. However, in the case of tracing, the

compromise is to have enough points while keeping the

process from interfering too much with the system.

The TraceCompass5 trace visualization tool can eas-

ily take a set of traces, compute the hull, and apply the

corresponding linear transformation to each trace.

6 Results

6.1 Benchmarks—tracing overhead

Since tracing should be minimally intrusive (to avoid any

“probe effect” and maintain good performance), some

benchmarks were executed to evaluate the performance

of our barectf implementation on the TI Keystone 2 and

compare it to the preexisting one on the Parallella board.

The barectf platform built for the Keystone 2 relies on the

TI MessageQ API to send the packets from a slave to its

master. This way, we take advantage of the built-in wait-

ing queues, used for message passing, and do not have to

worry about memory overlapping when writing packets.

The Parallella’s implementation uses the shared memory

space to store the packets.

The platforms configurations for the benchmarks are as

follows:

• Keystone 2:

– 8 C66 CorePac DSPs running at 1.2 Ghz.

– barectf platform using MessageQ API.

– barectf platform configured to allow at most

256 packets of 256 bytes each, at a time.

– Compilation ensured by TI’s compiler with

-02 optimization option

• Parallella:

– 16 eCores running at 1 GHz.

– barectf platform using shared memory.

– barectf platform configured to allow at most

90 packets of 2048 bytes each, at a time.

– Compilation ensured by a customized gcc

with -02 optimization option

The results (given in cycles) are computed in Tables 1

and 2 and represented in Figs. 7 and 8. Six workloads were

executed on each device. The first four compute the sha-

256 hash of a set of strings. This set, composed of the

5040 permutations of the string “barectf,” is created while

the benchmark is being executed. Those tests require

heavy computations and simulate a generic demanding

task. The two other tests are the computation of pisum6

and of a quicksort on an array containing 10,000 random

integers.

• SHA-256 A: Computes the sha-256 hash of each

permutation and produces a tracepoint for each

result (5040). Note that the tracepoint is composed of

a 32-bit integer and not of the 256-bit result, because

directly tracing the result would require 4

(respectively 8) 64-bit integer (respectively 32-bit

integer) tracepoints to be sent, thus artificially

increasing the overhead.
• SHA-256 B: Computes the sha-256 hash and

produces a tracepoint for every set of 5 permutations

(1008).
• SHA-256 C: Computes the sha-256 hash and

produces a tracepoint for every set of 10

permutations (504).
• SHA-256 D: Computes the sha-256 hash and

produces a tracepoint for every set of 100

permutations (50).

Table 1 Benchmarking results (in cycles) on the TI Keystone 2

Benchmark
Instrumentation Standard deviation Overhead (%) Cost/tracepoint

None Barectf

SHA-256 A 68.37e5 105e5 3.4e5 53.58 725

SHA-256 B 17.8e5 24.25e5 0.027e5 36.23 640

SHA-256 C 11.5e5 14.7e5 0.023e5 27.82 635

SHA-256 D 5.72e5 6.04e5 0.023e5 5.95 640

Pisum 126e5 126.4e5 0.025e5 0.32 800

Quicksort 42.1e5 68.8e5 3.55e5 63.42 620
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Table 2 Benchmarking results (in cycles) on the Parallella board

Benchmark
Instrumentation Standard deviation Overhead (%) Cost/tracepoint

None Barectf

SHA-256 A 658.5e5 784.2e5 125.7e5 19.08 2500

SHA-256 B 411e5 451e5 41e5 9.73 3900

SHA-256 C 378e5 412e5 34e5 8.99 6700

SHA-256 D 351e5 355e5 4e5 1.14 8000

Pisum 196808e5 196820e5 2.48e5 0.006 24,000

• Pisum: Computes 50 iterations of the pisum and

produces a tracepoint for each of them.
• Quicksort: Computes the quicksort of an array of

10,000 random integers and produces a tracepoint at

each recursive call. Note that this test was too

demanding to be directly reproduced on the Parallella

board.

Each one of those operations was repeated 10,000 times,

and the results presented in Tables 1 and 2 reflect the

mean values of the metrics.

As expected, the measured overhead is directly pro-

portional to the number of tracepoints triggered. On the

Keystone 2, triggering 5040 tracepoints in less than 100ms

produces more than 50% overhead on the monitored

application. However, the mean cost per tracepoint stays

consistent for each test on this platform, indicating that

there is no bottleneck induced by tracepoints. Even with

a demanding workload, one should not expect big latency

spikes brought by tracing. The built platform, even if not

perfect, offers reasonable enough performance to use in

a prototyping phase and eliminates the need for memory

polling and checking for memory overlapping.

Sadly, the same inferences cannot be made about

the Parallella board. Because the eCores are much less

powerful than TI’s DSPs, the overhead is somehow hidden

behind the already huge time passed on the algorithms

themselves. The cost per tracepoint is highly variable, and

having fewer tracepoints will increase this inconsistency,

as flushing a packet into the shared memory will take

a very variable time, due to the hardware design of the

board. Besides, since the shared memory space is accessed

by both the consumers (the slaves) and the producers (the

masters), a basic checkingmechanism exists to ensure that

they do not access the memory space at the same time,

thus leading to additional waiting times on the slaves.

This is particularly interesting to note, as instrumenting

the Epiphany chip in this way could be prone to increase

the so-called “probe effect,” where tracing the application

affects its observed state. It is also interesting to notice

that the very demanding pisum benchmark yields extreme

results for the Parallella in contrast with the Keystone 2.

This can be linked to the micro-architectural specifici-

ties of the Epiphany chip and mostly to the absence of

cache in the eCores. In fact, the pisum benchmark relies

on operations on a single variable and can thus easily take

advantage of TI’s DSPs cache. The eCores are also far less

powerful than the DSPs in terms of raw performances, so

it is likely that they have been pushed too much in this

case.

Fig. 7 Barectf instrumentation influence on Keystone 2
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Fig. 8 Barectf instrumentation influence on Parallella

Tracing performance heavily relies on the device per-

formance itself and the barectf local implementation. As

underlined by the Keystone 2 performance, it can be very

efficient and could even be used with care in produc-

tion. Moreover, even though the Parallella’s performance

is modest, and the probe effect may be substantial because

of the board architecture, tracing is nevertheless possible

and could be useful in a lot of common use-cases such as

regular logging or casual monitoring.

Since most of the commodity hardware use a setup

similar as the Keystone 2, our approach should behave

the same on a majority of devices and in particular with

any TI’s DSPs-based platform. Tracing should also be

expected to work, albeit with limited performance, on

more exotic minimalistic devices such as the Parallella

board.

6.2 Use-case

In order to demonstrate how the described tracing solu-

tion would perform with a real-life problem, we chose to

instrument an image processing algorithm running on TI’s

C66x CorePacs DSPs (on the Keystone 2).

The algorithm uses Sobel’s filter to perform edges detec-

tion on an input image. Since TI provides it as part of the

board’s SDK, this use-case should be easily reproducible.

Sobel’s filter computes an intensity gradient for each

pixel in the image, detecting brutal changes in lighting

and their direction, which might point towards an edge.

Even though this method is rudimentary, the mathemati-

cal operations performed still benefit from the dedicated

image processing APIs available on TI’s DSPs.

The global application goes through three steps:

1. A program running on the master (ARM) is waiting

for the user to interactively provide an image to

process.

2. Then, the master parses the image and sends some

memory allocation requests to the “leader” DSP

(DSP #0).

3. Finally, the image is cut into eight pieces, each piece

being sent to a different DSP in the previously

allocated memory spaces, and the DSPs reply back

with their share of the processed image.

Communication between master (ARM) and slaves

(DSPs) is achieved through TI’s MessageQ API, which

relies, as its name suggests, on messages queues. The

master opens a single queue, to which each slave will be

connected, and every slave opens its queue, to receive

orders from the master. This API is quite high-level and

adds more latency than basic shared-memory communi-

cation. However, it is less error-prone and allows a core

to switch tasks when awaiting a message, as it will wait

for a semaphore to be unlocked. It also eliminates the

need to poll a shared memory space and waste CPU cycles

waiting for data to arrive. Of course, in the context of a

high-performance application where a slave should per-

form one task only, using the shared memory would be a

better solution.

Tracing a system must be done with a goal in mind.

Since tracepoints can be placed anywhere in the appli-

cation, tracing can serve a lot of different purposes. For

instance, one might want to place tracepoints at strate-

gic places to check when the application reaches them,

thus using them as checkpoints. It also can be utilized for

debugging and/or monitoring purposes.

In our case, tracing was employed to monitor our sys-

tem by adding tracepoints at the beginning and end of

every important function call. This way, the application’s

weakest link can easily be found by measuring the elapsed

execution time of each function and following the calls

leading to it (including calls induced by remote cores).
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TI’s SYS/BIOS micro-kernel was also instrumented

(through the use of well-placed hooks in the APIs) so that

task management and communications (among others)

can be observed. This way, the generated traces also hold

information regarding the tasks running on a DSP. Each

DSP being single-core, they can only perform one task at

a time.

Note that every added tracepoint contains a useful pay-

load. For instance, in the case of the message passing

API instrumentation, receiving or emitting queues are

described, along with the message’s size.

In summary, the procedure is as follows:

• Add tracepoints at the beginning and end of every

“useful” functions.
• Thanks to hooks, add tracepoints inside critical APIs

functions, such as message passing or tasks

management functions.

Moreover, the underlying objectives are to

• Monitor the whole system.
• Spot and understand abnormal latency.
• Analyze dependencies between cores.

The instrumentation allows us to compute a partial call

stack view in a CTF trace viewer such as TraceCompass.

The following screenshots come from this software. The

trace view is described in Fig. 9:

Figure 10 shows the global view of our system, from the

beginning of the application to its end. Note that, for dis-

play purposes, only the four first processes (the master

and the first three slaves) are shown.

This figure confirms that the synchronization is working

since the DSPs are all entering the main task (displayed in

dark blue) approximately at the same time, i.e., when they

each receive a command from the master. Without trace

synchronization, some processes might appear well ahead

or behind others, and any cause/effect relationship would

be lost.

As highlighted, recognizing the different parts of the

workflow is easy: as long as the DSPs are in the “idle” task,

they are waiting for their master’s input. If the master is

not doing anything, it means that it is itself waiting for

user input.

Zooming on the beginning of the main task shows the

main function, which actually processes a part of the

Fig. 9 Description of the callstack view of processes

image, and allows one to see how long it took (see Fig. 11).

In this case, the average processing time was around

96 ms.

The memory allocation part better shows how the inter-

action between two distinct cores can be easily distin-

guished. Figure 12 displays this situation.

When tracing an entire heterogeneous system, the

aim is to understand the global workflow of the sys-

tem and the different interactions between its compo-

nents, which cannot be achieved when looking at each of

them separately. Figure 12 demonstrates how the depen-

dencies between two heterogeneous cores can be eas-

ily exposed, as a master and its slave are continuously

waiting for each other. The back and forth exchanges

presented here are characteristic of two-way communi-

cations between a slave and its master. By reading the

states, one can see that an exchange is structured as

follows:

1. The master sends a message (a memory allocation

command) to the slave and then waits for an answer.

2. The slave receives the message and allocates some

memory accordingly.

3. The slave finally sends back the information on said

memory to its master.

During a normal execution, this step is followed by the

actual processing of the image, as shown in Fig. 11.

We now examine a more problematic context where

another high-priority task is awoken during the actual

image processing. Because of its high priority, this task

will run to completion before the main task can be

resumed. Without tracing, this problem would only be

seen at the end, where the total processing time would

jump from an average 96 to 300 ms. Finding the cause of

this abnormal latency would be quite difficult, even with

the help of a profiling tool, as long as the slaves and the

masters are examined separately and not as a whole.

However, thanks to our instrumentation, one simple

look at the main task section of the trace would reveal that

another task actually preempts DSPs 1 and 2, and issues

communications between the two. Once the messages

exchange is over, they return to themain task, allowing the

master to finally get all the results. As can be seen, other

DSPs are not disturbed by this task. Only the master is

also impacted, as it is waiting for every slave to send back

their share of the processed image. Figure 13 displays this

situation.

6.3 Discussion

Thanks to the information gathered through tracing, we

discovered that another task might preempt our image

processing task. As such, one might try (if possible) to

protect the image processing task from being preempted,
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Fig. 10 Global view of the application

or ensure that the conditions triggering the other task

are only met once the image processing function is

finished.

Detecting the previous problem as easily would not have

been possible without the help of traces. Even though

this issue was artificially created for demonstration pur-

poses, it is fairly representative of problems encountered

in real systems. It thus demonstrates that system moni-

toring through tracing on a heterogeneous device is both

possible and useful.

Other common problems, such as communication

faults, could also have easily been detected and corrected

with our method. For instance, one could have seen that

one DSP was hanging in a task, waiting for a message

to arrive, while its correspondent crashed or was itself

hanging on a different task.

Finally, instrumenting TI’s SYS/BIOS micro-kernel is

a step towards spreading tracing mechanisms to various

platforms, as it can be used on a broad variety of TI’s

products.

7 Conclusions
Tracing heterogeneous embedded systems, in a generic

way, is now possible, regardless of hardware specifici-

ties and existing APIs, under the reasonable assumptions

that the slaves can be interrupted (H1) and that there is

(at least) a shared memory space on the device (H2) to

communicate. We thus filled a gap regarding the state of

Fig. 11 Zoom on the main processing function
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Fig. 12 Zoom on the memory allocation part

tracing on heterogeneous embedded systems and brought

it closer to the common methods and solutions existing

for regular systems.

Bringing standard formats and tools to these new

devices could help developers to easily adapt tracing

methods to virtually any platform, thus allowing them to

use multi-platform tools, avoiding the reliance on propri-

etary or limited, single-platform tools. This would also

enable quick comparisons, with the same tools, of the

same application running on different platforms, for per-

formance and behavioral analysis purposes.

We are confident that the work done on the Parallella

board, a very limited platform with strong constraints,

and the Keystone 2 platform, which is closer to the indus-

try’s standards, reflects the possibilities of what can be

achieved on a wide range of heterogeneous embedded sys-

tems. This opens the way for even more opportunities,

such as critical path analysis in a heterogeneous envi-

ronment. In particular, we showed how a custom-made

micro-kernel could be instrumented to obtain the same

kind of information readily available on a Linux-based

device.

Even though the generic method described to obtain

correlated traces on such devices appears fairly satisfying,

local implementations of barectf platforms could slightly

influence the tracing’s impact. For instance, due to its sim-

ple design, the Parallella board offers very inconsistent

performance when traced, whereas tracing’s impact on the

Keystone 2 is more predictable and consistent. Moreover,

barectf is still a work in progress and will surely see its

features enhanced in the near future.

Trace visualization is also worthy of further work. The

proposed call stack view will not easily scale to more than

a few cores. A new approach will be required to visually

examine systems with more than a few dozen cores.

Furthermore, it would be interesting to investigate the

optimal frequency to generate synchronization points, as

a compromise between performance overhead and syn-

chronization accuracy. In theory, only two points in each

hull are required to achieve a basic synchronization, but

Fig. 13 Zoom on the problematic area
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having more points brings more accuracy at the cost of

more overhead.

Finally, we would like to see if trace synchronization

can be directly achieved by matching regular message

exchanges, without requiring an external synchronization

process that adds time-consuming messages exchanges,

just like we can synchronize traces by looking at exist-

ing TCP exchanges. Although this approach would lose

its generality, the overall performance would be slightly

improved.

Endnotes
1https://github.com/efficios/barectf
2http://lttng.org/
3http://www.ti.com/tool/sysbios
4http://processors.wiki.ti.com/index.php/IPC_Users_

Guide/MessageQ_Module
5http://tracecompass.org/
6https://github.com/JuliaLang/julia/tree/master/test/

perf/micro
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