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Abstract

This paper presents a low-light image restoration method based on the variational Retinex model using the bright

channel prior (BCP) and total-variation minimization. The proposed method first estimates the bright channel to

control the amount of brightness enhancement. Next, the variational Retinex-based energy function is iteratively

minimized to estimate the improved illumination and reflectance using the BCP. Contrast of the estimated

illumination is enhanced using the gamma correction and histogram equalization to reduce a color distortion and

noise amplification. Experimental results show that the proposed method can provide the better restored result than

the existing methods without unnatural artifacts such as noise amplification and halo effects near edges.
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1 Introduction
Various imaging systems that consist of an optical sys-

tem and imaging sensor have been widely used in var-

ious industrial and consumer application fields such as

advanced driver assistance systems (ADAS), surveillance

systems, robot vision, andmedical imaging [1]. To acquire

the high-quality images, sophisticated but compact imag-

ing systems are particularly useful by reducing the size

of a sensor and increasing the pixel density. However, in

low-light condition, it is hard to obtain the high-quality

input image since the sensor cannot sufficiently react to

the very small amount of incoming light. In addition, the

interference of the light between the reduced pixels leads

to the chromatic noise. As a result, the low-light arti-

facts make the post-processing step difficult such as object

recognition, detection, and tracking. To solve this prob-

lem, various image brightness enhancementmethods have

been proposed in the literature.

Histogram-based methods enhance the contrast of an

input image by redistributing the intensity bins or mod-

ifying the cumulative distribution function (CDF) at the

low-computational cost [2–7]. However, since the low-

light image provides the narrow histogram distribution,
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the CDF has many abrupt increases, which results in the

brightness saturation and color distortion.

Recently, the haze removal method is adapted to the

low-light image enhancement because the inversion of the

low-light input image shows the visually similar property

to the hazy image [8]. This method is based on the statis-

tical prior knowledge of the haze-free natural image called

dark channel prior (DCP) [9]. The DCP is estimated by

finding the minimum value among the R, G, and B pixels,

and it is used to estimate the transmissionmap of the non-

haze region. Although the haze removal-based method

can better preserve the bright region than the histogram-

based methods without brightness saturation, it cannot

avoid the noise amplification and color distortion in the

resulting image.

On the other hand, Retinex-based methods are based

on the human color perception system [10, 11]. Provenzi

et al. mathematically analyzed the Retinex algorithm

and demonstrated the performance according to various

parameters such as threshold and the number of path of

light paths to a pixel [11]. The Retinex methods enhance

the input image by eliminating the illumination compo-

nent using the low-pass filtering and logarithmic transfor-

mation [12–14]. However, the resulting image shows the

halo effect near the edges.

To solve this problem, the state-of-the-art Retinex

methods incorporate with the variational optimization

method using l1- and l2-norm minimization [15, 16].
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Li et al proposed a variational Retinex method using the

constraint term that minimizes the combined reflectance

component and the image gradient to reduce the halo

effect [17]. Ma et al. performed the variational optimiza-

tion by minimizing the constraint term on the reflectance

component using l1-norm [18]. Fu et al. proposed the

bright channel prior (BCP) to reduce the halo effect

and color distortion using l2-norm minimization on the

illumination and reflectance components [19]. However,

since the BCP is estimated in the image patch, it results in

the blocking and halo artifacts in the resulting image.

In this paper, we present the low-light image restoration

method using the variational optimization-based Retinex

model and BCP. In order to reduce the blocking and halo

artifacts, the proposed method estimates the pixel-wise

bright channel. In addition, the l1-norm minimization of

the reflectance component provides the edge-preserving

noise reduction without the halo effect near the edges.

In order to reduce color distortion and brightness over-

enhancement, the proposed method performs the local

histogram equalization on the illumination component.

Finally, the restored result is generated by combining the

optimized reflectance and enhanced illumination com-

ponents. Experimental results show that the proposed

method can provide significantly enhanced result without

the halo effect, noise amplification, and color distortion.

This paper is organized as follows. Section 2 briefly

describes variational Retinex model and total variation as

theoretical background. Section 3 presents the proposed

variational Retinexmodel. Experimental results are shown

in Section 4, and Section 5 concludes the paper.

2 Theoretical background

2.1 Variational Retinex model using bright channel prior

Retinex-based image enhancement methods assume that

an image can be formulated as a multiplication of the

illumination and reflectance components as

g = fLfR, (1)

where g represents the observed image, fL is the illumi-

nation component, which can be regarded as the light

directly entered into an imaging sensor, and fR is the ratio

of the reflected light by the object.

The conventional Retinex-based enhancement method

is defined as

log fR = logg − log[ g ∗ G] , (2)

where ∗ represents the convolution operator, G is the

Gaussian low-pass filter, and logfR is the reflectance image

[12]. This method assumes that the slowly changing illu-

mination component can be estimated by the Gaussian

low-pass filtered version of the input image. Next, the

reflectance component is computed by subtracting the

estimated illumination component from the input image.

However, the halo effect around the edges is generated

according to the size of the Gaussian low-pass filter.

To solve this problem, the multi-scale Retinex (MSR)

algorithm estimates several illumination components

using multiple, different Gaussian low-pass filters [13].

The resulting enhanced image is reconstructed using the

weighted sum of multiple reflectance components. How-

ever, the MSRmethod cannot completely remove the halo

effect near the edges.

To solve the halo effect problem, a variational Retinex

model using the l1- and l2-norm minimization on the

illumination and reflectance components was recently

proposed [15]. Specifically, Fu et al. restored the low-light

image using the bright channel prior on the reflectance

component in the variational Retinexmethodwithout log-

arithmic transform and Gaussian low-pass filtering [19].

The energy function is defined as

argmin
fR,fL

∥

∥fRfL − g
∥

∥

2

2
+ α

∥

∥∇fL
∥

∥

2

2

+β
∥

∥∇fR
∥

∥

2

2
+ γ

∥

∥fL − gb
∥

∥

2

2
,

(3)

where g and gb represent the input low-light image and

its bright channel, respectively.
∥

∥fRfL − g
∥

∥

2

2
represents the

data fidelity term, and
∥

∥∇fL
∥

∥

2

2
and

∥

∥∇fR
∥

∥

2

2
are the smooth-

ness constraint term on the illumination and reflectance

components.
∥

∥fL − gb
∥

∥

2

2
penalizes the brightness of illu-

mination component. α, β , and γ represent positive regu-

larization parameters.

The bright channel gb is defined as

gb(x) = max
c

(

max
y∈ω(x)

gc(y)

)

, (4)

where ω(x) represents the image patch whose center is

located at x and c ∈ {R,G,B} [19].

In the Retinex theory, since the illumination compo-

nent is regarded as the low-frequency component, it can

be replaced by a locally constant value in the specified

region [19]. In addition, the reflectance component rep-

resents the ratio of the reflected light from an object in

the range of 0 ≤ fR ≤ 1. Therefore, the constraint term
∥

∥fL − gb
∥

∥

2

2
in (3) can be derived by taking the maximum

operation on both sides of (1) as

max
c

(

max
y∈ω(x)

gc(y)

)

= max
c

(

max
y∈ω(x)

f cR(y)

)

f̃L. (5)

Since the maximum value of the reflectance component

is 1, it can be expressed as

gb(x) = f̃L, (6)

where f̃L represents the illumination component of the

image patch. The constraint term
∥

∥fL − gb
∥

∥

2

2
implies that

the illumination component of an image is close to the

bright channel to prevent the over-enhanced result.
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2.2 Edge-preserving noise reduction using total variation

The degradation model of noisy image is generally

defined as

g = f + η, (7)

where g and f respectively represent the noisy and noise-

free images and η is the additive white Gaussian noise.

In order to perform edge-preserving denoising, Rudin et

al. minimized the magnitude of the gradient of an image

using l1-norm minimization [20]. The total variation-

based noise reduction is defined as

E(f ) =
∥

∥f − g
∥

∥

2

2
+ λ

∥

∥∇f
∥

∥

1
, (8)

where
∥

∥f − g
∥

∥

2

2
represents the data-fidelity term,

∥

∥∇f
∥

∥

1
the total variation constraint term on the smoothness of

the resulting image, and λ represents the regularization

parameter. The energy function in (8) can be solved using

the Euler-Lagrange equation as

dE

df
= λ(f − g) − div

(

∇f
∣

∣∇f
∣

∣

)

= 0. (9)

The edges are preserved according to the magnitude

of gradient of f . In the edge region, since the magnitude

becomes lager than the flat region, the strong edges in the

input noisy image are preserved in the resulting image.

3 Low-light image restorationmethod using the

bright channel prior
In this paper, we present a variational retinex model

using l1- and l2-norm minimization to enhance a low-

light image. The reflectance component consists of rapidly

changing high-frequency components such as edge and

noise. For this reason, the proposed method estimates

the illumination and reflectance components using l2-

and l1-norm minimization, respectively, to suppress noise

amplification while preserving the edge. Next, in order

to prevent over-enhancement of the reflectance compo-

nent, brightness of the estimated illumination component

is corrected using histogram equalization and the sigmoid

function.

The proposed image enhancement method estimates

the contrast enhanced image by minimizing the regular-

ized retinex model as

argmin
fR,fL

∥

∥fRfL − g
∥

∥

2

2
+ λ1

∥

∥∇fL
∥

∥

2

2

+λ2
∥

∥∇fR
∥

∥

1
+ λ3

∥

∥fL − ĝb
∥

∥

2

2
,

(10)

where λ1, λ2, and λ3 represent the regularization param-

eters,
∥

∥fRfL − g
∥

∥

2

2
the data-fidelity term,

∥

∥∇fL
∥

∥

2

2
and

∥

∥∇fR
∥

∥

1
, respectively, the smoothness constraints on the

illumination and reflectance, and
∥

∥fL − ĝb
∥

∥

2

2
the data

fidelity term between the illumination component and the

bright channel.

3.1 Pixel-wise bright channel estimation

Existing Retinex-based methods estimate the illumination

component using a Gaussian low-pass filter to extract

the spatially smoothness component [15]. However, the

estimated illumination component does not match the

human visual system (HVS) near an edge since the esti-

mated illumination component is continuous near the

edge. The incorrectly estimated illumination component

results in the halo effect.

In order to apply the discontinuity to the illumina-

tion component, Fu et al. proposed the bright channel

which can suppress the halo effect [19]. However, this

method cannot generate the optimal illumination com-

ponent because of the blocking artifact caused by the

patch-wise bright channel.

To solve this problem, the proposed enhancement algo-

rithm estimates the bright channel at each pixel as

gb(x) = max
c

gc(x). (11)

The proposed method suppresses noise by estimating

the optimal bright channel using the bilateral filter [21] as

ĝb(x) =
1

W

∑

xi∈�

gb(xi)T(xi, x), (12)

where

W =
∑

xi∈�

T(xi, x), (13)

T(xi, x) = Gr

(
∥

∥gb(xi) − gb(x)
∥

∥

)

Gs (‖xi − x‖) , (14)

� represents the image patch whose center is located at

x, xi is the ith pixel in the patch, Gr and Gs respectively

are the range and spatial filters, and ĝb is the bright chan-

nel. The bilateral filtering process can effectively reduce

the noise while preserving the edge. The enhanced bright

channel enables to estimate the optimal illumination com-

ponent as a constraint of the regularized minimization

in (10).

Figure 1 shows the comparison of the bright channel

used in Fu’s method [19] and the proposed method. As

shown in Fig. 1b, the patch-wise bright channel shows the

halo artifact near the edge region whereas the proposed

method can reduce halo effect using the pixel-wise bright

channel, as shown in Fig. 1e.

3.2 Optimal reflectance and illumination components

estimation

To obtain the enhanced image, the proposed method first

initializes the illumination component using a Gaussian

low-pass filter. Next, the illumination and reflectance

components are separated using variational minimization
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Fig. 1 Comparative results using different bright channels: a input image, b patch-wise bright channel, c proposed bright channel, d resulting

image using b and Fu’s method [19], and e resulting image using c and the proposed method

[19]. Specifically, the energy function related to fR is

defined as

ER(fR) = argmin
fR

∥

∥

∥

∥

fR −
g

fL

∥

∥

∥

∥

2

2

+ λ2
∥

∥∇fR
∥

∥

1
. (15)

Existing Retinex-based variational optimization meth-

ods using l2-normminimization can reduce the noise with

a large regularization parameter at the cost of blurred

edge [19]. In order to perform edge-preserving denoising,

the proposed method estimates the reflectance compo-

nent, which contains high-frequency components, using

l1-normminimization. The energy function in (15) can be

solved using Euler-Lagrange equation as

dE

dfR
=

(

fR −
g

fL

)

−
λ2

2
· div

(

∇f
∣

∣∇f
∣

∣

)

. (16)

The solution for fR in (15) can be solved using the

gradient descent method as

f k+1
R = f kR + τ

⎧

⎨

⎩

λ2

2
· div

⎛

⎝

∇f kR
∣

∣

∣
∇f kR

∣

∣

∣

⎞

⎠ −

(

f kR −
g

fL

)

⎫

⎬

⎭

,

(17)

Fig. 2 Resulting images of each algorithm step: a input image; b estimated illumination image; c adjusted illumination image of b; d bright channel

of a; e estimated reflectance image; and f resulting image using c, e (λ1 = 300, λ2 = 0.1, λ3 = 0.9, and ω = 10)
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Fig. 3 Experimental results using various sets of regularization

parameters: a input image; b simulated low-light image; c resulting

image with λ1 = 300, λ2 = 0.1, λ3 = 0.9, and ω = 10; d resulting

image set with different λ1 ; e resulting image set with different λ2 ;

and f resulting image set with different λ3

where τ represents the parameter that controls the con-

verge speed.

At each iteration, f kR is forced to be in the range [0,1].

Given the estimated fR, the illumination component is

estimated by minimizing the energy function related to fL
defined as

EL(fL) = argmin
fL

∥

∥

∥
fL −

g
fR

∥

∥

∥

2

2
+ λ1

∥

∥∇fL
∥

∥

2

2

+λ3
∥

∥fL − ĝb
∥

∥

2

2
.

(18)

Since the energy function in (18) is quadratic and con-

vex, its optimality condition is obtained by solving linear

equation as

(

1 + λ3 + λ1∇
T∇

)

fL =
g

fR
+ λ3ĝb. (19)

An efficient method to solve (19) is to use the fast

Fourier transform (FFT) as

fL = F−1

[

kF
(

λ3ĝb + g/fR
)

F
(

1 + λ3 + λ1∇T∇
)

]

, (20)

where F and F−1 respectively represent the forward and

backward FFT operators. Since f kR is forced to be in the

range [0,1], f kL is forced to be larger value than g at each

iteration [19].

Fig. 4 a–f A set of six test images to evaluate the enhancement performance
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Fig. 5 Comparative results using simulated low-light image with σ = 5: a input image, b simulated low-light image, c Chen’s method [2], d Kim’s

method [3], e Jiang’s method [8], f Ravi’s method [23], g Jobson’s method [14], h Fu’s method [16], and i the proposed method (λ1 = 300, λ2 = 0.1,

λ3 = 0.9, and ω = 10)

The estimated reflectance component cannot avoid the

brightness over-enhancement. To solve this problem, the

sigmoid function and locally adaptive histogram equaliza-

tion is used to enhance the contrast of the estimated illu-

mination component [16, 22]. Finally, the resulting image

is reconstructed by multiplying the enhanced illumination

and estimated reflectance as

f̂ = fRf
corr
L . (21)

where fR represents the estimated reflectance component

by (15) and f corrL the enhanced illumination component by

(21). Figure 2 shows a step-by-step result of the proposed

enhancement method.

4 Experimental results and discussion
In this section, to evaluate the performance of the pro-

posed low-light enhancementmethod, the resulting image

is compared with those of histogram-based [2, 3], trans-

mission map-based [8], variational optimization-based

[23], and Retinex-basedmethods [14, 16]. The regulariza-

tion parameters λ1, λ2, and λ3 are determined to have the

visually best enhancement result. The objective compari-

son of image enhancement performance is evaluated using

the peak signal-to-noise ratio (PSNR) and structural simi-

larity index measure (SSIM) [24]. The simulated low-light

image were generated by decreasing 70% of the brightness

and adding Gaussian noise of various standard deviations,

such as σ = 5, 10, 15, and 20.

4.1 Analysis on the regularization effect

In this subsection, the effect of regularization constraints

is analyzed using a simulated low-light image with σ = 5.

Figure 3 shows the results of proposed method using var-

ious different regularization parameters to analyze the

effect of each regularization constraint. Figure 3a, b shows

the input and simulated low-light images, respectively.

Figure 3c shows the experimentally best enhancement

result.

Figure 3d shows a set of results with λ2 = 0.1 and λ3 = 0.9

and the three different values of λ1, 1, 300, and 2000

from top to bottom. Since λ1 is a parameter related to the

smoothness of the illumination component, the low- and

high-frequency components are not sufficiently separated

with a small λ1. Therefore, both the illumination com-

ponent and the resulting image contain noise. Figure 3e

shows a set of results with λ1 = 300, λ3 = 0.9, and three

different values of λ2, 0.01, 0.1, and 0.2 from top to bot-

tom. Since λ2 is a parameter related to the smoothness

of reflectance component, noise amplification cannot be

suppressed with a small λ2. However, when this parameter

Table 1 Objective performance evaluation using PSNR and SSIM values with σ = 5

[2] [3] [8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 4a 15.57 0.646 17.50 0.683 19.06 0.783 21.35 0.933 16.86 0.710 22.58 0.894 26.77 0.964

Figure 4b 16.57 0.662 18.92 0.676 18.36 0.722 20.25 0.889 17.10 0.645 21.21 0.819 23.24 0.936

Figure 4c 16.68 0.636 21.50 0.711 18.66 0.697 20.18 0.780 18.23 0.620 21.35 0.774 23.31 0.861

Figure 4d 16.87 0.720 18.69 0.735 19.40 0.821 20.49 0.876 16.68 0.706 22.44 0.896 25.28 0.950

Figure 4e 17.40 0.645 21.40 0.721 16.98 0.701 18.40 0.718 16.40 0.550 21.27 0.769 24.02 0.902

Figure 4f 16.48 0.590 21.69 0.715 19.09 0.671 21.18 0.806 17.50 0.566 21.26 0.741 24.56 0.893

The italicized number represents the highest value among the set of test methods
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Fig. 6 Comparative results using simulated low-light image with σ = 10: a input image, b simulated low-light image, c Chen’s method [2], d Kim’s

method [3], e Jiang’s method [8], f Ravi’s method [23], g Jobson’s method [14], h Fu’s method [16], and i the proposed method (λ1 = 300,

λ2 = 0.15, λ3 = 0.9, and ω = 10)

Fig. 7 Comparative results using simulated low-light image with σ = 15: a input image, b simulated low-light image, c Chen’s method [2], d Kim’s

method [3], e Jiang’s method [8], f Ravi’s method [23], g Jobson’s method [14], h Fu’s method [16], and i the proposed method (λ1 = 300, λ2 = 0.2,

λ3 = 0.9, and ω = 10)

Fig. 8 Comparative results using simulated low-light image with σ = 20: a input image, b simulated low-light image, c Chen’s method [2], d Kim’s

method [3], e Jiang’s method [8], f Ravi’s method [23], g Jobson’s method [14], h Fu’s method [16], and i the proposed method (λ1 = 300, λ2 = 0.2,

λ3 = 0.9, and ω = 10)
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Table 2 Objective performance evaluation using PSNR and SSIM values with σ = 10

[2] [3] [8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 4a 13.67 0.489 15.30 0.548 14.45 0.554 20.03 0.871 14.85 0.585 17.59 0.711 21.44 0.935

Figure 4b 14.52 0.486 16.59 0.557 15.72 0.567 19.04 0.775 15.52 0.546 17.12 0.623 22.02 0.880

Figure 4c 14.50 0.448 17.47 0.523 16.12 0.500 19.06 0.664 16.10 0.479 17.21 0.539 21.65 0.758

Figure 4d 14.83 0.596 16.17 0.629 15.76 0.650 19.12 0.818 14.83 0.599 17.72 0.733 23.33 0.911

Figure 4e 15.49 0.523 17.60 0.571 14.97 0.538 17.58 0.609 14.88 0.456 17.26 0.585 22.38 0.829

Figure 4f 14.31 0.396 17.48 0.496 15.27 0.423 19.73 0.667 15.65 0.426 17.26 0.500 23.05 0.806

The italicized number represents the highest value among the set of test methods

Table 3 Objective performance evaluation using PSNR and SSIM values with σ = 15

[2] [3] [8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 4a 12.21 0.390 13.66 0.457 11.01 0.314 17.94 0.766 13.50 0.496 14.61 0.554 23.25 0.912

Figure 4b 12.94 0.391 14.73 0.471 13.25 0.418 17.28 0.651 14.22 0.468 14.52 0.484 21.23 0.849

Figure 4c 12.77 0.327 14.78 0.387 12.62 0.322 17.32 0.530 14.48 0.372 14.46 0.389 20.73 0.694

Figure 4d 13.26 0.504 14.31 0.549 14.53 0.595 17.33 0.729 13.56 0.521 14.90 0.597 22.05 0.881

Figure 4e 13.69 0.429 15.05 0.463 13.31 0.439 16.22 0.513 13.56 0.381 14.61 0.462 21.41 0.785

Figure 4f 12.62 0.284 14.78 0.360 13.94 0.354 17.69 0.522 14.19 0.335 14.47 0.355 22.25 0.762

The italicized number represents the highest value among the set of test methods

Table 4 Objective performance evaluation using PSNR and SSIM values with σ = 20

[2] [3] [8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 4a 11.23 0.329 12.35 0.385 10.36 0.217 15.94 0.651 12.50 0.429 12.67 0.441 21.75 0.880

Figure 4b 11.94 0.333 13.23 0.398 10.23 0.289 15.67 0.549 13.20 0.409 12.78 0.392 20.15 0.797

Figure 4c 11.59 0.254 13.03 0.300 10.15 0.257 15.61 0.418 13.23 0.300 12.61 0.296 19.69 0.630

Figure 4d 12.11 0.436 12.93 0.481 10.93 0.361 15.67 0.637 12.62 0.464 13.09 0.500 20.71 0.844

Figure 4e 12.28 0.351 13.22 0.379 11.86 0.369 14.81 0.431 12.43 0.316 12.74 0.373 20.13 0.713

Figure 4f 11.58 0.225 13.07 0.280 10.95 0.202 15.84 0.410 13.10 0.276 12.65 0.269 20.98 0.692

The italicized number represents the highest value among the set of test methods
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Fig. 9 Result of the proposed and conventional methods: a input image, b Chen’s method [2], c Kim’s method [3], d Jiang’s method [8], e Ravi’s

method [23], f Jobson’s method [14], g Fu’s method [16], and h the proposed method (λ1 = 300, λ2 = 0.1, λ3 = 0.9, and ω = 10)

is set to too high, blurring artifacts occur. Figure 3f shows

a set of results with λ1 = 300, λ2 = 0.1, and three

different values of λ3, 0.05, 0.9, and 10 from top to bot-

tom. Since λ3 is the parameter related to the data fidelity

term which controls the brightness of the illumination

component, noise amplification and color distortion are

unavoidable with a small λ3. Based on the observation,

the optimal parameters are experimentally determined to

produce satisfactory result.

4.2 Objective performance evaluation using simulated

low-light images

As shown in Fig. 4, six test images were used to compare

the enhancement performance of the proposed method

with conventional methods.

Figure 5 shows the enhanced results of simulated low-

light images using the proposed and conventional meth-

ods. The objective comparison of image enhancement

performance is performed after modifying the average

intensity value of each resulting image to the average value

of Fig. 5a. PSNR and SSIM values are summarized in

Table 1.

Figure 5a, b shows the ideal image and simulated low-

light image with σ = 5, respectively. Figure 5c, d

shows the results of histogram-based methods with sat-

uration in the bright region. Figure 5e shows the result

of transmission map-based method that produces less

saturation than the histogram-based methods. However,

this method cannot avoid color distortion. Ravi et al.

proposed variational optimization-based method using

Fig. 10 Result of the proposed and conventional methods: a input image, b Chen’s method [2], c Kim’s method [3], d Jiang’s method [8], e Ravi’s

method [23], f Jobson’s method [14], g Fu’s method [16], and h the proposed method (λ1 = 300, λ2 = 0.1, λ3 = 0.9, and ω = 10)
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l1-norm minimization that can suppress noise while pre-

serving the sharp edge [23]. However, as shown in Fig. 5f,

it loses the dynamic range because of the brightness

constraint term using gamma correction. Figure 5g, h

shows the result of Retinex-based methods with unde-

sired artifacts. Although the Retinex-based variational

optimization method provides a better enhanced result, it

cannot suppress noise amplification. On the other hand,

the result of proposed method, as shown in Fig. 5i, shows

the significantly enhanced result with minimum color

distortion, saturation, and noise amplification than con-

ventional enhancement methods.

Figures 6, 7, and 8 show the enhanced results of simu-

lated low-light images with different levels of noise using

existing and the proposed methods. The PSNR and SSIM

values are summarized in Tables 2, 3, and 4. As shown

in Figs. 6, 7, and 8, the proposed method provided bet-

ter results than other existing methods in the sense of

bright enhancement without noise amplification. In addi-

tion, the proposed method provided improved objective

quality assessments at higher standard deviation.

4.3 Subjective evaluation using real low-light images

Figures 9 and 10 show the enhanced results of real

low-light images using conventional and the proposed

methods. The histogram-based method exhibits bright-

ness saturation and noise amplification in the resulting

image. The transmission map-basedmethod produces the

enhanced result with noise amplification and color distor-

tion. Although Ravi’s method can successfully reduce the

noise, it loses the dynamic range because of the brightness

constraint term using gamma correction. Since Retinex-

based methods estimate the reflectance component using

the incorrectly estimated illumination component, they

cannot avoid both halo effect and noise amplification. On

the other hand, the proposed method can produce nat-

urally enhanced result with a sufficiently wide dynamic

range while reducing the halo effect and noise amplifi-

cation. However, since the proposed method estimated

the solution fR using the gradient descent method, the

processing time is longer than existing methods.

5 Conclusions
In this paper, a bright channel prior (BCP)-based vari-

ational Retinex model is presented to enhance the low-

light image restoration. The existing low-light image

enhancement methods cannot avoid undesired artifacts

such as noise amplification and halo effect. To solve this

problem, the proposed method simultaneously estimates

the optimal illumination and reflectance components by

minimizing the Retinex-based regularized energy func-

tional to suppress noise amplification during brightness

enhancement process. The constraint term related to

the smoothness of reflectance component suppresses the

noise while preserving the edge using l1-norm minimiza-

tion. In addition, the data-fidelity term on the illumina-

tion component prevents the halo effect near the edge.

Experimental results show that the proposed method can

provide better enhanced result than conventional low-

light enhancement methods in the sense of both better

brightness enhancement and less undesired artifact.
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