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Abstract— We report the design, fabrication and 

characterization of a few-mode ring-core fiber supporting 4 mode 

groups (i.e. 7 spatial modes including spatial degeneracies). By 

carefully designing the ring-core parameters, the fiber can support 

only single-radial-order modes, which enables weak intermodal 

coupling between higher-order modes and has potential to reduce 

the complexity of mode-division multiplexed digital signal 

processing. The low loss (~ 0.3dB/km) and long length (25.3km) 

RCF is successfully fabricated and they are both records for a 

ring-core fiber. 

 
Index Terms— Few-mode fibers, ring-core fiber, mode-division 

multiplexing, space-division multiplexing.  

 

I. INTRODUCTION 

ode division multiplexing (MDM) has attracted 

considerable attention in the fiber-optic community as a 

promising approach to increase the per-fiber capacity by 

employing multiple distinguishable spatial information 

channels within the same multimode core [1-4]. Several 

different types of few-mode fiber (FMF) [5-9] have been 

proposed and investigated to date. In the vast majority of FMF 

transmission systems, multiple-input, multiple-output (MIMO) 

digital signal processing (DSP) is an essential requirement in 

order to compensate for the linear cross-talk between optical 

modes that ordinarily occurs due to mode coupling. As the 

number of modes (information channels) increases, the 

complexity of the MIMO processing required increases rapidly 

for conventional step-index or graded-index FMFs [10, 11]. 

However, if mode coupling can be reduced the use of MIMO 

processing might be considerably simplified (or possibly even 

avoided), thereby increasing the viability and scalability of the 

MDM approach. 
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In this aspect, few-mode ring-core fibers (FM-RCFs) that 

support single-radial-order modes (i.e. LP1m modes where m is 

an integer) have been reported both theoretically [12-14] and 

experimentally [15-21] to show great potential for improving 

the transmission capacity of MDM system with low DSP 

complexity. In FM-RCFs, the effective index difference 

between adjacent neighbouring azimuthal modes significantly 

increases with increasing azimuthal mode number, which can 

result in relatively weak mode coupling between higher-order 

azimuthal modes. Therefore, the DSP complexity can be 

reduced by using MIMO processing only to recover signals 

carried on those lower-order azimuthal modes which 

experience strong mode coupling and/or between modes within 

the same mode group [15-17]. In addition, ring-core fiber 

amplifiers can, in theory, provide nearly identical gain for all 

guided signal modes owing to the fact that similar overlap 

factors can be achieved between the erbium doped core and all 

the signal spatial modes [22-24]. RCF amplifiers are thus very 

attractive as MDM amplifiers in terms of having low mode 

dependent gain. However, despite the aforementioned merits of 

FM-RCFs the development of long lengths of suitably low loss 

RCF has proved a challenge. For example, the 7 mode-group 

RCF reported early in 2015 suffered from a substantial fiber 

attenuation of a few hundred dB/km [15] and even the most 

recent results describing the development of a 5 mode-group 

RCF reported a fiber attenuation of a few dB/km [16]. It is 

therefore clear that fiber loss must be driven down in order to 

make FM-RCFs a feasible approach for high-capacity long-

distance MDM transmission.  

In this work, we have designed and successfully fabricated a 

25.3km length of low loss FM-RCF supporting 4 mode groups 

(i.e. 7 spatial modes including all spatial degeneracies). The 

fiber attenuation for all guided modes was around 0.3 dB/ km, 

which is the lowest fiber loss so far reported in the FM-RCF 

family. To fully quantify the modal properties of the fiber, the 

modal intensity profiles, mode dependent loss and multimode 

temporal impulse response were also investigated. 

X. Jin and F. Payne are with the Department of Engineering Science, 
University of Oxford, OX1 3PJ, U.K. (e-mail: xqjin@ustc.edu.cn, 

frank.payne@lincoln.ox.ac.uk). 

H. Zhou, R. Zhang, S. Chen, H. Wang and Y. Yang are with the State Key 
Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze 

Optical Fiber and Cable Joint Stock Limited Company, Wuhan, China (e-mail: 

zhouhongyan@yofc.com, zhangrui@yofc.com, chensu@yofc.com, 
wanghonghai@yofc.com, yangyucheng@yofc.com). 

Color versions of one or more of the figures in this paper are available online 

at http://ieeexplore.ieee.org. 
Digital Object Identifier XX.XXXX/JLT.2016.XXXXXXX 

Low-Loss 25.3km Few-Mode Ring-Core Fiber 

for Mode-Division Multiplexed Transmission 

Yongmin Jung, Senior Member, IEEE, Qiongyue Kang, Hongyan Zhou, Rui Zhang, Su Chen,  

Honghai Wang, Yucheng Yang, Xianqing Jin, Frank P. Payne, Shaif-Ul Alam, and  

David J. Richardson, Fellow, IEEE,  

M 

mailto:ymj@orc.soton.ac.uk
mailto:qk1g11@orc.soton.ac.uk
mailto:sua@orc.soton.ac.uk
mailto:djr@orc.soton.ac.uk
http://ieeexplore.ieee.org/


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

II. FIBER DESIGN AND FABRICATION 

A step-index RCF is defined by two structural design 

parameters, i.e. r1 and r2, which define the two boundaries of 

the ring core, as well as the index difference Δn, as shown in 

Fig. 1(a). In this paper, we propose a 4 mode-group RCF (4MG-

RCF) design, whose fiber refractive index profile (FRIP) is 

shown in Fig. 1(a) with parameters r1=3.8 m, r2= 7.3 m and 

Δn=0.015. The key design objective for this 4MG-RCF was to 

ensure strong guidance for the LP01, LP11, LP21, and LP31 mode 

groups in the C-band, whilst the next higher order mode, i.e. 

LP41, is completely cut-off at λ=1500nm. Generally, fiber 

attenuation is strongly related to the macro-bending and/or 

micro-bending loss of the guided modes and a relatively large 

effective index difference (Δneff) between the guided modes and 

cladding modes is essential to reduce the intrinsic fiber loss by 

suppressing mode coupling from the guided LP31 mode to leaky 

cladding modes. As shown in the modal intensity distribution 

in Fig. 1(b), the four guided mode groups are well confined in 

the ring core area and the simulated power fractions in the core 

for the LP01, LP11, LP21 and LP31 mode groups at 1550 nm are 

91%, 92%, 91% and 88%, respectively. Figure 1(c) shows the 

simulated modal effective indices of the 4MG-RCF in the 

wavelength range 1530-1560 nm. The normalized propagation 
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(b) 
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Fig. 1.  (a) The refractive index profile of the RCF design that supports 4 mode 

groups (7 spatial modes), (b) the intensity distribution of the guided modes of 
the RCF at λ=1550nm. (c) Effective refractive indices of the guided modes as 

a function of wavelength.  
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Fig. 2.  (a) The fiber cross-section and (b) measured FRIP (in red line) of the 

fabricated 4MG-RCF. 

0 2 4 6 8 10

0.000

0.005

0.010

0.015
 

 


n

Radius [m]

 Fiber design

 FRIP



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

constant 𝑏 =
𝑛𝑒𝑓𝑓
2 −𝑛2

2

𝑛1
2−𝑛2

2  of the LP31 mode group at 1550nm in the 

designed 4MG-RCF is 0.23, which also provides for good 

guidance of the modes. The effective index difference between 

the LP01 and LP11 modes is about 8×10-4, while the differences 

between other higher-order mode groups is more than 2×10-3. 

This large effective index difference between adjacent HOMs 

can assure weak mode coupling between the HOMs, although 

relatively strong mode coupling between the LP01 and LP11 

mode group is to be expected. 

Using a conventional plasma chemical vapour deposition 

(PCVD) process, we have successfully fabricated the 4MG-

RCF. Figure 2(a) shows an optical microscope image of the 

cross section of the fabricated RCF. The fiber core is clearly 

observed as a bright annular ring with a dark spot at its center 

because white light from a halogen lamp can be transmitted 

through the core of the fiber. The fiber refractive index profile 

of the fabricated RCF (red line in Fig. 2(b)) is reasonably well 

matched to the fiber design (gray line). The fiber has an inner 

core radius (r1) of 3.4 m, outer core radius (r2) of 7.5 m, 

Δn=0.0135 and an outer cladding dimeter of 125 m. 

III. MODAL CHARACTERIZATION OF THE FM-RCF 

A. Fiber attenuation 

First of all, the mode-averaged fiber attenuation was measured 
by a cut-back method using a white light source and an optical 
spectrum analyzer. Conventional 50 m step-index multimode 
fiber pigtails were spliced at both input/output ends of the RCF 
to provide over-filled light launching conditions into the RCF, 
which provides us with an averaged fiber loss over all spatial 
modes. As shown in Fig. 3(a), the fabricated RCF exhibits an 
averaged fiber attenuation of 0.32 dB/km at 1550 nm (i.e. 8.2 
dB span loss over 25.3 km), which is the lowest loss value ever 
reported for a ring-core fiber. Water absorption peaks appeared 
at ~1240 nm and ~ 1380 nm due to the presence of OH ion 
impurities but these could easily be reduced by adopting a “dry 
fiber” fabrication process in the future. 

To examine the modal dependency of the fiber attenuation an 
optical time domain reflectometer (OTDR) was used in 
conjunction with a mode selective excitation scheme based on 
phase plates. As shown in the inset of Fig. 3(b), a suitable phase 
plate is used to selectively launch a specific mode of the RCF 
and the reflected Rayleigh back-scattered light was analyzed 
using the same phase plate, which enabled us detect 
backscattered light from  the same spatial mode. Therefore, 
using this mode-selective excitation/detection scheme, we can 
analyze the mode dependent loss of the fiber using a standard 
single-mode fiber OTDR. Figure 3(b) shows the OTDR traces 
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Fig. 3. (a) Averaged fiber loss (using cut-back method) and (b) mode 

dependent fiber loss (using mode selective OTDR) of the RCF. 
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Fig. 4. (a) Average bend loss spectra and (b) mode dependent bend loss of the 

RCF (measured using phase plate based mode excitation). 
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for four guided mode groups of the fiber (i.e. LP01, LP11, LP21, 
and LP31) which are excited selectively one-by-one using the 
corresponding phase plates. All spatial modes show similar 
propagation losses (~0.3 dB/km) and negligible polarization 
dependent losses. The OTDR measurements coincide with and 
are quite well matched to measurements made previously using 
the cutback method. A slightly higher loss was observed for 
higher-order modes (HOMs) but the differences are very 
modest. 

B. Macro-bending loss 

The macro-bending properties of the fabricated RCF were 
examined by winding 5-turns of the fiber onto mandrels of 
different diameter. First, all spatial modes of the RCF were 
excited by splicing a step-index 50m-core MMFs at both fiber 
ends and transmission spectra were recorded with a white light 
source. As shown in Fig. 4(a), the transmission spectrum of 
fiber at small bending diameters was almost the same as for 
straight fiber in the range of 1500-1600nm and the average bend 
loss at these wavelengths remains relatively low. Interestingly, 
a discrete transmission power drop was observed in Fig. 4(a) at 
wavelengths around 1240nm under fiber bending and we 
believe that this is related to the cut-off wavelength of the 
second radial mode group (e.g. LP02, LP12, LP22 ...). Similarly 
to the LP11 mode cut-off in a single mode fiber design, the 
second radial mode group cut-off should be properly designed 
to provide a suitable balance between guidance strength (or core 
confinement) and ensuring robust single radial mode guidance 
conditions. Compared to our previously fabricated RCF 
reported in Ref. [15], a smaller ring diameter and a thicker ring-
core were chosen for the current RCF. The measured second 
radial mode cut-off was shifted considerably (from 870nm to 
1240nm) and the fiber attenuation was greatly improved. The 
detailed fiber design considerations are described in ref. [12].  

Secondly, we also tested the mode dependent bending loss at 
1550nm using a phase-plate based mode excitation approach. 
As shown in Fig. 4(b), all spatial modes of the RCF show high 
bending robustness and the bend loss of the LP31 mode, the 
highest order mode of the fiber, is much smaller than that of 
conventional SMF. In our proposed fiber design (Fig. 1(c)), the 
large effective index difference between the guided core modes 
and the cladding modes enables low macro-bend loss sensitivity. 

C. Multimode impulse response 

We performed time-of-flight (ToF) measurements [9] on the 
4MG-RCF under selective mode excitation to further 
characterize the multimode fiber impulse response, in particular 
the differential group delay (DGD) of the different spatial 
modes. The DGD over the full 25.3 km length of 4MG-RCF 
was too large to be unambiguously measured using the 
available equipment and hence a 1 km length of fiber was taken 
to accurately measure the DGDs of the fiber. The traces in Fig. 
5(a) show the four main distinct and discernible mode peaks at 
their relative DGD locations (3.9 ps/m for LP11, 11.0 ps/m for 
LP21, and 18.2 ps/m for LP31), which agrees very well with our 
simulations. To find out the modal identity of the individual 
peaks in the ToF measurement the output beam intensity from 
the RCF was examined using a charge coupled device (CCD) 
to identify the dominant spatial guided mode under the selective 
mode excitation. The LP01, LP11, LP21 and LP31 spatial modes 
are clearly identified after 1km of fiber as shown in Fig. 5(b). 
The near field distribution was measured using a microscope 
objective lens (×50) to magnify the spatial modes onto a CCD 

camera placed at the focus. By moving the fiber slightly away 
from the focal point (i.e. by defocusing), the far field 
distribution can also be measured. As expected the measured 
modal intensities showed an annular ring shaped profile in the 
near field (e.g. a ring-shaped LP01 mode) but these evolved to 
the more usual fiber transverse mode profiles in the far field 
(e.g. a Gaussian-shaped LP01 mode). More importantly, we 

have observed relatively strong mode coupling between the 
LP01 and LP11 mode groups in Fig. 5(a), which is evidenced by 
a flat plateau between these two mode groups for delays 
between 0 and 3.9 ns. Under LP01 mode excitation, for example, 
a discrete peak was observed at 0 ns but a smooth sloped plateau 
was noticed towards the LP01 peak due to the strong distributed 
mode coupling occurring along the entire length of fiber. Under 
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Fig. 5. (a) Time-of-flight measurement of the 4MG-RCF under selective mode 
excitation and (b) the beam intensity (near and far fields) of the guided modes. 
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LP11 mode excitation, however, this plateau is now sloped 
toward the LP11 peak but with an almost identical magnitude of 
gradient due to the symmetric mode coupling. About 50% of 
the optical power resides in the distributed plateau after 1 km 
fiber propagation corresponding to a modal coupling efficiency 
of 0.5 km-1. However, there is no noticeable plateau between 
other higher-order mode groups in the RCF. This interesting 
mode coupling feature can be easily understood from the modal 
effective index calculation of the RCF in Fig. 1(c). The Δneff 
between the LP01 and LP11 group is relatively small and this 
results in strong mode coupling. However, the large Δneff 

between other HOMs in RCFs prevents distributed mode 
coupling between neighboring modes. 

We also tested the ToF traces using a 25.3 km length of 4MG-
RCF and there was no discernible distributed mode coupling 
between HOMs (less than -30 dB). We plan to carry out an 
MDM transmission experiment using this 25.3km 4MG-RCF to 
validate the transmission performance and the required level of 
MIMO DSP complexity reduction in the near future. 

D. Micro-bending property 

Finally, the micro-bending sensitivity of the RCF was 

examined by rewinding the 300m length of fiber onto a bobbin 

(diameter=15cm) under various amounts of tension. No 

significant micro-bending induced optical loss was observed on 

the fabricated RCF however a significant increase in intermodal 

crosstalk was noticed in the time-of-flight measurement as 

shown in Fig. 6. The strength of the distributed mode coupling 

between the LP01 and LP11 mode (i.e. DGD between 0 and 3.9 

ps/m) gradually increased with increasing winding tension from 

20g to 50g but with the strength of coupled power sloping more 

towards the LP01 peak at 90g of tension. It appears that the fiber 

winding tension is an important factor in determining the 

intermodal crosstalk in the fiber and that the intermodal 

coupling coefficient can be changed from a weakly coupled 

regime to a strongly coupled regime by control of the fiber 

winding tension. 

IV. CONCLUSIONS 

We have designed and fabricated a low-loss few-mode ring-

core fiber supporting 4 mode groups. All spatial modes show a 

similar fiber attenuation of ~0.3 dB/km, which is the lowest loss 

value ever reported for a ring-core fiber. Due to the large 

effective index separation between the neighboring higher-

order modes, the distributed intermodal coupling can be 

minimized and this should be very beneficial in terms of 

reducing the MIMO DSP complexity required for MDM 

transmission. In addition, the macro- and micro-bending 

properties of the ring core fiber was further investigated in 

terms of mode dependent loss and intermodal coupling. 
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Fig. 6. Time-of-flight measurement of the 4MG-RCF under various fiber 

rewind tensions. The strength of the mode coupling between lower-order 
modes was affected by the micro-bending induced fiber winding tension. 
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