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ABSTRACT

In toroidal plasmas, the toroidal magnetic field is nonuniform over a

magnetic surface and causes coupling of different poleidal harmonics. It is

shown both 2nalytically and numerically that the toroidicity not only breaks

up the skear Alfvén continuous

spectrum, but alse creates new, discrete,

toroidicity-induced shear Alfvén eigenmodes with frequencies inside the
continuim gaps. Potential appiications of the low-n toroidicity-induced shear

Alfvén eigenmodes on plasma heating and instabilities are addressed.
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I. INTRODUGTION

Shear Aifvén continuous spectra have been extensively stndied 1-10 gor
both cylindrical and toreoidal plasmas by using the ideal MHD model. The
understanding of the shear Alfvén continuous spectra in toroidal geometries is
essential for plasma heating by means of the resonant absorption of Alfvén
waves with frequencies lying within the continuous spectra. A great deal of
attention has been placed on the toroidal coupling effects’ ™10 because a
nonuniform toroidal magnetic field over a magnetic surface can cause
interactions among the neighboring poloidal harmenics and can break up the
shear Alfvén continuous spectrum with gaps. However, a complete understanding
of the stable shear AlLfvén spectra for axisymmetric toroidal plasmas is still
not achieved. In this paper we will thoroughly examine the «table shear
Alfvén spectra and show that the toroidal coupling effects not only break vp
the shear Altvén continuous spectrum, but alsa result in discrete, global,
toroidicity-induced shear Alfv&n eigenmodes with frequencies inside che
continuum gaps. The existence of the discrete, global toreoidicity—-induced
shear Alfvén eigenmodes sug:~sts a new and more efficient Alfvé&n wave heating
scheme. In addition, instabilities of the discrete toroidicity-induced
eigenmodes can beAexciced by tapping the free energy of energetir particies
assbciated with the plasma inhomogeneities through wave-particle resonances.
Our analysis will be limited to low-n modes, where n is the toroidal mode
number, For high-n modes, extensive analytical and "umerical solutionst0 have
been obtained for the shear Alfvén spectra by solving the nigh-n ballooning
mode equation.

Recent investigations of shear Alfvén waves in cylindrical plasmas have
11,12

also indicated existence of discrete stable global Alfvén eigenmodes with

frequencies below the minimum of the Alfvén continuum for a given toroidal
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mode number n and a poloidal mode number m, i.e., 0 < wl < Hin[wﬁ(r)], where
ui(r) = (m-nq)zvglquz, m and n have different signs, q is the safery factor,
R is the major radius, and V, is the Alfvén speed. These modes represent
stable kink modes and 2xist only under certain well-defined conditions. They
are different from our discrefe coroidicicy—ind;ced mades and are called
"cylindrical global Alfvén wavés." In toroidal gecmetries, the cylindrical
global AlfvEn waves have singular mode structures with frequencies embedded in
continuous spectra due to toroidal couplings of different poloidal
harmonies. We do not discuss these modes here.

In Sec. II, we formulate the ideal MHD eigenmode equations in a new form
to provide for a better physical representation. This forms the basis of our
numerical solutions. Analytical and numerical analyses of the breakups of the
continuous spectrum due to toroidal <coupling effects are presented in
Sec. III. In Sec. IV, the numerical solutions of the discrete, global, low-n
toroidicity-induced shear Alfvén eigenmodes are shown, and the analytical
theories are performed on the vreduced MHD equations in a low-8 limit.
Finally, a discussion of the major results and some implicatiens for plasma
heating and inscabilities related to the low—-n toreidicity-induced shear

Alfvén modes are given in Sec. V.

II. FORMULATION
We consider linearized ideal MHD operations in stationary MHD equilibria

satisfying

J.E=9p , 9x8=3 ,andv-B=0 , (1)

>

where J, B, and P are the equilibrium current, magnetic fisld, and plasma



pressure, tespectively. In terms of the straight field line flux coordinate
system {(¢,8,;), the axisymmetric toroidal equilibrium magnetic field can be

written as
B =9; « b+ q(¢) v x VO, (2)

where q is the safety factor, % is the poloidal flux within a magnetic
.surface, 8 is a generalized poloidal angle with a periocd of 2n, and % is a
generalized toroidal angle with a period of Z=. If P{y) and g(y) are
specified, an axisymmetric toroidal equilibrium can be determined numerically

by solving the Grad-Shafranov equation
IR GRT {15 ve) = - (XZP' +gg'). (3)

In this paper, a prime denotes the partial derivative with respect to ¢. Let

%, B, and p, be the perturbed plasma displacement, magnetic field, and plasma

pressure, respectively. With the time dependence L(x,t) = E(x)e ot , the

linearized ideal MHD equations are given by
Pt [ YSP v-E=0, (4)
cuzz = gp, *+ b « (V x é] + 8 (V x 5) , (5).
and

b=v . (£ «8), (&)



where y_ = 5/3 is the ratio of specific heats and p the plasma density.
Equations (4) - (&) can further be simplified by employing the variables 7-%,

=3 2
€4s Ey» and Py, where £, = g (B « vo)/ vy is the surface displacement, gy =

s’
2.9y is the radial dJdisplacement, and By = py *+ 58 the total perturbed

pressure. The final ideal MHD eigenmode equations are cast into the following

form:
Pl Pl Es
v -9 =C + D (7)
&y o v-f
and
g 13
ef * )=¢[ ! (8)
v-E Em ,

where C,D,E,F are 2 x 2 matrix operators involving only surface derivatives

- +
B-¥ and (B = V¢):9. The matrix operators are given by

11 - v

- N - o 2
Cp mwlo v 20tk o+ [ue[P B v Bty (5.3 -5 oy ?) BT
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€50,
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- 2
D =[|vw|zs-§.3]J§3-L§-v,

B ¥
b, = |ve|? [2x_ - 25T 0)

2

v P =
D, = |ogf® [1+ -8 . vk 27) y
w p B

2 2 2 =
g =4p ngl + 8- (lvw] 25 M V] , (9)
B

B
E12 = ZYSP Ks ’
521 =2k ,
2
P+3
Ea2 ~ . 7" 1%2 Bov (B,
B w o p B
Foo=k + 2T L0,
B
wi? s 3-8
F,,=8.7 s-=—1%8.9-20'x |,
12 2 2 s
B B
1
F,, = ~= ,
21 )
- K,
22 {702

wrere £ = X7, K_ = K-(B~V¢/Bz), K = (B/8)-9(B/B) is the curvature, 5 = {8

CTel T 2)~?-(3~7$)/|V$I2) is the local shear. The boundary condition at the

magnetic axzis is ED = (. For fixed boundary modes the boundary condition is



§, =0 at the plasma-wall interface. For free boundary modes the boundary
condition at the plasma-vacuum interface i3 given by ;v » Tp = E L where
the perturbed vacuum magnetic field is Kv = U9 and ¢ is the scalar magnetic
potentizl obtained from the vacuum solution of vZe = 0.

For a given equilibrium, we first solve £, and 7-% in terms of P, and £y
from Eq. (8) by inverting the surface matrix operator E. Equation (7) then
reduces to an equation for Py and Sy Admissible regular solutions mus: be
periodic in both 8 and f directions, and satisfy the appropriate boundary
conditions., This procedure fails if the inverse of the surface operator E
does not exist for a given uw at certain y, surface. Then, only a nonsquare
integrable sclution with spatial singularity at the singular sorface v, is
possible. If at each surface nontrivial single~valued periodic solutions in @

and L can be found for the equation

E =0 , (10)

then corresponding set of eigenvalues w2 forms the continuous spectrum for the
equilibrium. Equation {(10) represents the coupling of the sound branch and

the shear Alfvén branch through the curvature and plasma prassure.

III. BREAKUPS OF THE CONTINUOUS SPECTRUM
Since £ 1is an ignorable coordinate for axisymmetric equilibria, we

consider the perturbed quantities in the form

£(8,¢) = gﬂ(e){m . (113



Then, we have
8- v = g7 (& -ina)e JeTH
- ’—l eian %3 (£ e—inqﬂ] . (12)

and Eq. (10) reduces to

2 2 2
%o |vo 12 (|wy .
32 vt i 8 { Bz yl) + 2 YSPKS ¥, 0, {(13a)
/)
2
v_P+B Y P
1 3
K, oy, ¢ (Eem) y, v = (-2 ) =0, (13b)
s ‘1 BZ 2 wzp! a0 Bzi 38 2

where Y,(6) = g_ exp(in(zg-q8)], Y,{(8) = (V-%) explin(z-q8)]. Because the
coefficients of Eq. (13) are periodic in 8, then from cthe Floquet theorem the

solutions of Y, and Y, can be wricten as

v, (8) = exp(iae)?l(ﬂ) , (14)

where ¥; is periodic in & with a period of 2w. Since §_ and V-¥ are periodic
in 9, we must have ¢ = ¢ - nq, where ¢ is an integer.
Equation (13) is Hermitian and can be solved by developing a variational

principle with the Lagrangian functional given by

2

v 2 . 1 e
;\/ = 4 No(lfgl— v 7 e 8?12} - 1% !;_1

2

iYSPB 1 732, 2 N

) Pfﬁz] K2Yl 7 [33} 'Jde » (15)
5
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where Z = YSP(QYZ/BE)/([wzpBZ). It is straightforward to verify that Eq. (13)
is a consequence of the requirement that the functionalcifTbe stationary. The
determination of the spectrum reduces Lo that of finding the eigenvalues w and
eigenfunctions Y, and Yz so chat the Lagrangian functignal gzpis stationary
with respect to variations of ¥; and Y,. The admissible variational functions
must he square-integrable and satisfy the periodicity congtraint given by Egq.
(14},

To proceed, we will adopt the Galerkin procedure where the trial
functions denend linearly on certain variational parameters, and the problem
is reduced teo the minimization of an algebraic quadratic Eorm with the;e
variational parameters.

In terms of Eq. (14), we introduced the Fourier expansion of the

perturbations
Yl m
= Z exp(i(t + m ~ nq)8] (163
Z m \ib
into Egq. (15). Then the wvariational calculation is eguivalent to the

determination of eigenvalues and eigenfunctions of the matrixz eigenvalue

problem
%m
) ' (am.bm,] Loto =0 , (n
m,m b
m
where
. Ay 412
L, =9 de exp[i{m-m')9] , (13
m A A ;

21 22
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2.2
¢l2 _ A ¥ _ fvulf

Ay = Imzp 'V2 3 5 (¢ +m - ng)(& +m' -~ ng) ,
B ¥,P+B Is
v pB%K
Alz = —E———Ei (g +m' - nq) y
y P+B
s
¥ PBzK
A, =2 % (4 +m-ng) ,
21
y P+B
5
2 2 Y PB2
byy = Ju 0B - 3 5 (¢ +m~-ng)e +m' ~ng) .
7ty P+B°)

In the following we will let 2 = 0 without the less of generality.

from Eq. (17), a numerical solution of the continuous spectrum for a low-
B8 circular, numerical equilibrium is shown in Fig. 1, where the eigenvalues
(m/wA)z are plotted versus the y surface for an n=l perturbation. The
normalization frequency is defined by w, = V,(0)/q(a)R.  The numerical
equilibrium has an aspect ratio Rfa = 4, average bera 8, = 0.04%, q{0) =
1.0408, and q (a) = 2.3. The broken curves represent the continuous spectra
form = 1 and m = 2 modes in the absence of toroidal couplirgs, and they cross
at cthe q = 1.5 surface. Because of the nonuniformity of the toroidal magnétic

field, coupling of different poloidal harmonies result in the breakup of :he

i

continuous spectra (solid curves). The continuum gaps are located at q(ro)
{m; + my)/2n surfaces with corresponding local skear Alfvén frequencies mg =
[(ml-mz)VA(ro)/Zq(ro)Rlz, where m; and m, are two different poloidal mode
numbers. As shown in Fig. 1, the gap size is of the order or (ro/R) with m
and m, differing by one. When m, and m, differ by more thaan one, the gap size
is of rhe aorder of (rﬂfﬂ)z-

Ta obtain the shear Alfvén continuous spectrva due to t-=e toroidal
coupling effects, we employ a large-aspect-ratio, low-8 equilibrium derived by

Creen et at. 13 Considering P ~ sz, q~ 1+ ezq(Z), the flux surfaces of up-

B i R



down symmetric equilibrium can be expesse. by

Y =R - cR cos 8 - e2a(r) + ej[E(r) + G{r)) cos 8 + ..., {19a)

er sin 0 + e2[E(r) - G(r)] sin 6 + ... (195)

™~
L]

o where ¢ is a tag denoting the small ordering parameter which is set to one, r
labels the flux surface, & is the poloidal angle, A(r) measures the shift of
the center of the surfaces from the magnetic axis, E(r) determines the
ellipticity of the surfaces, and G (r) modifies the labeling of the

surfaces. Then in e expansion, ve have

] § = ale}l + 2ealr) cos @ + 0(52)] y (20a)
.L.__L € G(') [r+2e (E+a') cos 0w ote?y] (20b)

B

4]
where &' = da(r)/dr. From Eg. (18) we find that to order ¢ the shecr Altvef

waves decoupl2 from the sound waves. Concentrating on the shear &1fvén
branch, Eq. (17} reduces to

ZnEZG(r) 2 r

el 7 {af(s v+elgest v o){s

L. + 6 1
a(t)BZ ,ym" m,m mym' -1 m,n'+]
e

_ ~ . ee(T 4 ) \ 2, B -
{(m-nq)(m nq)[&m’m ©(g Al ][om’m,_l*ém'm,)+0(e ),amam. 0. (21)
é where g2 = mzoaz(r), 6 ' 15 the Kronecker delta. To 0{c) only the couplings
Pl 1 ]
' of neighboring poloidal harmornics are presen:. Coupiings oY poloidal

harmonics with m differing more than one come in U(cz) terms, which arce
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neglected in Eq. (21). Now keeping only m and m + ! modes, we have the

dispersion relation

[ (a2 - ni] e[[% 2+ q)e? (* 8 -daal
=0 , (22)

le[[% + 4+ o)at - (F+a - a]Qonll (a? - ui]

where 2, = (m - nq), g, ={m+1- nq). MNear tha crossing surfaces of 9% and

Q% vhere |n§ - ﬂ%l < 0 (e2), we have R, = - 0; and ng = (1/4). Then the
eigenvalue a? is approximately given by
2 2. r 2
ay = au[. t2c(z+a')e GSE ), (23)

which is independent of m and n, and the toroidicity comes through 17&]2/32

only. It is clear from Eq. (22) that when 195 - ﬁ%| > 0(1), the solutions of

9¢ are the uncoupled ones p.is corrections of 0(eZ), The eigenfunctions y,

corresponding to the eigenfrequencies ﬂ% can be easily obtained from Eq. (21)

and are given by

¥_(8) = exp[i(m + % = nqJe] COS(%] ’

ard

¥,(8) = iexpli(m + 3 - nqdo)sin(§) . (24)

The wave corresponding to the lower frequency @2_ is localized in the outside

of the torus ¢ = 0, where the curvature is bad. The wave with the higher

e e e e g p v 12 F 11 e
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frequency 2, is localized in the good curvature region at 8 = .
Physically, the gap ir the continuous Spectrum is analogous to the gap
which appears in the energy spectrum of valence electrons in a periodic

14 e gaps in the electron energy

potential well of the crystal lattice.
spectrum occur because Bragg reflection of a travelling electron wave off the
lattice ions results in standing electron waves which are either localized in
the well between the ions {lower energy state) or at the top of the well near
the ions (higher energy state). For the shear Alfvén waves, the gaps appear
because of the periodic variation of the magnetic field which induces coupling
of poloidal harmonics, and the waves are localized in the goad or bad

curvature regions. This can be demonstrated from Eq. (13a) by letting P = 0,

and we have

2
a4y 4

21+m2plz-w—l—‘(l=0 , (25)
) B

where we have chosen J= [7e|?/87 which does not affect our results because to
0(z) ths gaps are independent of the toroidicity in J. Equation (25) reduces
15

to the Mathieu equation in the large-aspect~ratio limit

d 2 |3 =

—z ¥ e [1 + 4 ¢ [E + 4')cos B]Yl =0 ’ {(26)
which admits an infinite set of characteristic values ﬂz. These infinite
pairs of characteristie values correspond Co periodic solutions of Yy and
define the gaps between the bands of continuous spectra located at 2l =
(2/2)2, ¢ = 1,2 ... . The lowest characteristic pairs that define the gaps

are given by Eg. (23) to 0(e). For ¢? inside the gaps, Y, is divergent at

large 0. It is also straightforward to show from Eq. (26) that for the higher
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frequency gaps, the gap sizes are of ().

V. LOW-n TOROIDICITY-INDUCED GLOBAL SHEAR ALFV;H MOBES
In this section we show that the toreoidal coupling effects due to a
nonuniform magnetic field can induce discrete, global shear Alfvén eigenmodes
with frequencies inside the continuum gap., Direct analysis of the ideal MHD
eigenmode equations, Egqs. (7) and (8) is extremely complicated even im the
large-aspect-ratio limit. Instead, we employ the reduced MHD equations

introduced by Strauss et ai.'® o obtain analytical solutions of the

toroidicity~induced shear Alfvén eigenmodes. In a large-aspect-ratio, law-8

tokamak, the linearized, reduced MHD equation describing shear Alfvén waves is

given by
Boor{a (%% . e msz'Viu =g ) (21
where
A‘"‘=x3_£é_+i v2=v2:[E]-v[E-v]
XX 2 7L B B '

p is the plasma mass densily, and u is the velociry stream function. Consider

-

an equilibrium with circular, concentric magnetic surfaces and we have B =
(IO/X)[; + (r/qX)8], where X = R[l + (r/R)cos 8], R is the major radius, r is
the minor radius, @ is the poloidal angle, and ¢ is the toroidal angle. The

velaocity stream function u can be expanded as

u = z ur exp(i{mé - nc)) .
@

1 et
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Then to 0(e), Eq. (27) reduces to

4l z o (28)

o

2 o n2.2
Vlu =g R Vl(um+1 + um_

- 29il(n - Bu ] - afla

where &° = Af is assumed, ; = 2r/R << 1, 02 = 4 mszi, ui = (B%/pquz), B, =
I/R, q, = qa(r,) = [m + (1/2)]/n is the safety factor at the crossing surface
of the local Alfvén frequencies for the m and (m + 1) modes, and p is assumed
to be constant. To solve Eq. (28), we consider the region g around q, so that
(h ~ m/q) = (1 + 2 msx}/2q,, where s = roqéfqo, x = (r - ro)/r0 < 1., Further
assuming that Vium x [(azlarz) - (mzlrz)]um, £q. (28} for the mth harmonic

. then reduces to

2 dZ

(1 +2 msx)(g—i - mz](l < 2msx)um - 92["—E - mz)um
dx dz
"2 dz 2 d2 2
=¢Q {[_'E - (m+ 1) ]um+l t 5 - m- 1D Ju )} - (29)
dx dx

To 0(e), Eq. (29) can be truncated to retain only m and {(m + 1} harmonies and

we form a closed set of equations

d 2 [} 2 ?
o [(L + 2my)”° - a2 el [E]z[(l + 2my)” - @ ]}um

2
* 2¢d -1y2
el ["5 - Eﬂi') } S
dy

(30a)

and
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2
[g—y[(l - 2>m+1)y)? - nzlg—y - (24?7 [(1 - 2meddy) 0%,

) 2
=cd® (S5 - @, (30b)
dy

where y = sx.
Equation (30) can be solved by the method of asymptotic matching by
considering two regions of y: (i) y ~ ¢ and (ii) y ~ 51/2. Taking (1 - 92) -

0(e} and s ~ m ~ (ug/u 1) ~ 0(1), chen in these regions Eq. (30) reduces to

2 :
d 2 d o~ o1d :
E% {1 -a° + 4my)§§ u =ef Iy Ymel (31a) :
d 2 d - 24t
& [1 -0~ 4(m+l)y]a; Uy TEQ 3y %n (31b)
in the y ~ 0(e) region, and to
L‘ﬂ'l
d d
—_ -— =( 3z
dy ¥ §y 4ol ’ (32}

in the y ~ (51/2) region. The sclutions in the y ~ 0(c) region are given by

u_ = Co{% 2n[(y+a)2 + bzl - % tan-l(zig]} + leé Caﬂ-l(zgéll s {33a)

m

2 tan_l(zﬁi)} + él[% tan-l[zti]] ’ (33b)

=c It ‘ Z 2y e
u c '3 wn[ly+a)” + b ] b b

where the integration constants are defined by

c am(azﬁz}«(l-nz)(cl/col i

= -

c

0 Bma—(l-ﬂz)-4m(01/00)
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=2 2
e2°Cqy = 4mC, + (1 -2a°- Bma]CO )

2= (1 - 89)/Bmimsl) ~ 0{e)

and

,2 - tefateae?y I senme 1)

16 m{m+1) :
. . “1/2 : .

The solutions 1n the y ~ E reglon are glven by

u, = a(enfyl + 5] , (34a)
and

4ol T a2[2n|y! + bz] , (34b)

where 2y, a;, by, and by are real finite integration constants of Q{1) )
and b, is determined by matching the solutions to those of Eq. (28) in cthe y ~
0{!) region, which depend on the safety factor q{r) (or shears). We do not
pursue the y ~ 0(1} solutions of Eg. {28), but instead, assume that b; and b,
are known constants, Then we obtain a dispersion relation by matching the
solutions in the y ~ 0(;) region, Eq. {33), to those in the y -~ 0(;1/2)

region, Eq, (34). The dispersion relation depends on by and b, and is glven
by

_ Qmel)(-2%)s Gs)

b 8m{m+1) ’ ’
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where

2(b;-b,)

[n[l'blb /nz)]

In general, ¢ is real and finite, and we must require b2 > 0 so that the ¥

~ 0(e) solutions, Egs. {33a) and (33b), are regular. The corresponding

eigenfrequencies are given by

a? = (1% eh) + 0%y (36)

2

where h? = 4m(m+1)/ [ +bm(m+1)+(2m+1)2aZ] > 0. Since h? < 1, 92 is inside the

continuum gap, defined by 92 =11 ;, and depends on the shear [or q{r)] and
boundary conditions through b; and by. Thus, we have shewn that for any given
regular y ~ 0(1) solutions, i.e., given finite b; and by, we can always
obtain regular global sclutions with discrete eigenvalues a? lying inside the
continuum gap due to the eoupling of m and (m*l)} poloidal harmonies. In the

high-m limit, h? = (1 + o?)! ang 92

is independent of n and m.

Figure 2 shows the poloidal harmo;ics of the eigenfunction £, versus /'
for the same equilibrium as used in Fig. 1. The eigenfrequency for this fixed
boundary n = 1 mode is (m/wA)Z = 0.5. The solution is obtained by numerically

17

integrating Eqs. {7) and (B8) by employing a nonvariational code. The code

employs cubic B spline finite elements and Fourier expansion in a general flux
coordinate (w,6,f) system and has been extensively compared with the PEST
code. The q{v) profile is also shown in Fig, 2. It is clear from Fig. 2 that
primarily m = ! < 2 harmonics dominate around the g = 1,5 surface with a small

coupling to m = 3 harmonics towards the plasma surface. Projection of the

deplacement vector Ew on the ¢ = 0 plane is shown in Fig. 3 where the plasma
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vortices corresponding to m = 1 and 2 harmonics are clearly seen. Figure &
shows the eigenfunction £y versus y for the n = 1 free boundary mode for the
same equilibrium with the eigenfrequency (m/wA)z = 0.48. This result clearly
supports our analyticgl analysis that boundary conditions only modify the
eigenfrequency slightly through o (i.e.s by and bz). Numerical solutions of
tigher n mades (n > 2) have also been obtained with frequencies inside the
lowest continuum gap. The results also indicate that the number of the
discrete, global toroidicity-induced shear Alfvén mode is proportional to n
for a given a(r) profile. As n becomes large, the discrete spectra fill up
the continuum gap.

The discrete toroidicity-induced shear Alfvén modes have been optained
previously in the infinite n 1imit.!? The shear Alfven eigenmode equation for

a low-B plasma with circular, concentric magnetic surfaces obtained by

employing the high-n WKB-ballooning formalism is given by

2 2

[5—2+92(1+25 cos 8) - ————le =0 (37)
de (1+s787)
- ' : _ ¢ 2.241/2 7 © . .
where s = rq'/q is the shaar, ¢ = (1 + s°08°) 6, ¢ is the elactrostatic

potential., Equation (37) has been analyzed for the toroidicity-induced shear
Alfvén modes by a two-scale analysis and asymptotic matching. The

eigenfrequency of the even parity mode in the lowest continuum gap is given by

1 5212 -1
2t =z (1 +e(l - )] (38)

2

for s2 << 1, and for s° >» 1 we havz

2
z 1 -1
[+] =Z[l-e(l-—1r—4)] . (39)
725
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From Egs., (38) and {39), we see that as s + O, a2 approéches the lower end of
the gap, 4and as s » =, 22 goes to the upper end of the gap. The odd parity
solution is nonexistent. Note that Eq. {37) admits only one degenerate
solution. This degeneracy is due to tht lowest order ballaaning formalism

which ignores the equilibrium radial variacions.

V. DISCUSSION

In this paper, we have studied low-n shesar ALfvén waves in axisymmetric
toroidal plasmas. We have shown that the toroidal coupling effects due to a
nonuniform magnetic £ield over a mapnetic surface not only break up the shear
Alfvén continuous spectrum, but also result in disereste glohal toroidicity-
induced shear AlfvEn eigenmodes with frequencies inside the cantinuum gaps.
The undecscanding of the shear Alfvén continuous spectra io axisymmetric
toroidal oplasmas ic essential for Alfvén resonance heating and mode
conversion, which crucially depend on cthe location of the singular surface.
The low~n toroidicity-induced shear Alfvefi eigenmodes may be mnre efficiently
applied teo wave heating and current drive due to its global eigenmode
structure. Unlike the Alfvén resopance heating which involves localized
perturbations at the singular surface with the parallel phase speed m/k” = U
the global coroidicity-induced shear Alfvén modes involve several poleidal
harmonics so that parallel phase speed m/ku can be either greacer or smaller
than V, ac different radial locaticas and, therefore, both electron and ion
Landau dampings can be substantially stronger globally.

Ancther application of rtaroidicity-induced shear Alfvef modes concerns
instabiiicties induced by energetic particles, In neutral beam injecticn

experiments in PLT and PDX, high frequency oscillations (f = 100 kHz) have

RS




been observed in Mirnov coils and soft X-ray signals. These oscillations are
deminantly m = n = 4 ~ 10 and oecur near the q = 1 gurface where beam
particles are highly coincentrated. Our numerical calculations indicate that
toroidicity-induced shear Alfvén modes can be destabilized by beam particle
magnetic drift resopances and may account for these experimental
observations. In thermal nuclear fusion regimes, energetic a-particles are
produced in large amounts. Their interactions with toroidicity-~induced shear
Alfvén modes may lead to sericus instabilities and shauld, therefore, be

investigated.
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FIGURE CAPTIDNS
The shear Alfvén conrianuous spectrum with gaps for a laow-8 toroidal
equilibrium with n = 1, g, = 0.04%, R/a = 4, q(Q0) = 1.0408, and q(a)
= 2.3. The uncoupled specta (dotted line) of m = 1 and m = 2 cross

at the q = 1.5 surface. The sound continuum is also showm.

The poleoidal harmonice of the fixed boundary n = 1 roroidicity-
induced shear Alfvén eigenmade §, versus r (r = /U) for the same
equilibriﬁm as in Fig. 1. The eigenfunction is primarily the m = 1
and m = 2 comgponents because q{r) varies from q(0) = 1.0408 to q(a) =

2.3 as shownm.

Paloidal projection of the displacement vector, E, for the n =1

fixed boundary taroidicity-induced shear Alfvén eigenmode as shown in

Fig. 2.

The poloidal harmonics of the free boundary n = 1 teoroidicity~induced
shear Alfvén eigenmode 5w versus § for the same equilibrium as in

Fig. 1. The gq(d) profile is also shawn.
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