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Abstract—We propose a resonant parametric amplifier with an

enhanced noise performance by exploiting the noise-squeezing ef-
fect. Noise squeezing occurs through the phase-sensitive amplifi-

cation process and suppresses one of the two quadrature compo-

nents of the input noise. When the input signal is only in the direc-

tion of the nonsuppressed quadrature component, squeezing can

lower that noise figure by almost 3 dB. The resonant structure of

the proposed amplifier is inspired by a Fabry–Perot laser amplifier
to achieve the squeezing effect using a low number of elements.

We design and simulate the proposed noise-squeezing parametric

amplifier in a conventional 65-nm CMOS process. A minimum

noise-squeezing factor of 0.35 dB is achieved with a signal gain

of 26 dB for one quadrature component of a 10-GHz narrow-band

signal.

Index Terms—Distributed system, low-noise amplifier (LNA),

noise squeezing, nonlinear capacitor, parametric amplification,

phase matching, phase-sensitive gain.

I. INTRODUCTION

I N AN RF receiver front end, a low-noise amplifier (LNA)

is a critical block since it mainly determines the noise figure

(NF) of the entire system. There have been many previous ef-

forts to minimize the NF of LNAs in a CMOS process. A source-

degenerated CMOS LNA is one of the most prevalent struc-

tures, which achieves input matching without a real resistor and

exploits an input resonant network for signal amplification [1],

[2]. -boosted and positive feedback LNAs are also attractive

modifications of a conventional common-gate CMOS LNA [3],

[4]. A sub-0.2-dB NF CMOS LNA was implemented with a

non-50- signal-source impedance [5].

A more exotic approach is to use parametric amplification, in

which the gain comes from the nonlinear interaction between

the signal and the pump without using transistors. Parametric

amplification was actively studied in the 1960s before the tran-

sistor technology dominated the integrated circuit design [6].

Recently, several interesting works have revisited parametric

amplification for CMOS technology. Discrete-time parametric

amplification has been implemented with a MOS varactor

to achieve a low-power and low-noise performance for low

sampling frequencies [7]–[9]. The parametric process was

also exploited for the frequency conversion of a continuous
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signal [10]–[12]. However, the parametric amplification cannot

provide enough gain for high-frequency signals due to low

quality factors of inductors and capacitors in a CMOS process.

In this paper, we propose a parametric amplifier based on

a distributed nonlinear resonator to overcome the limitation of

low quality factor elements. The distributed nonlinear resonator

operates as a regenerative amplifier by supplying the pump am-

plitude below the oscillation threshold. As a result, the amplifier

achieves a high closed-loop gain using a less-than-unity open-

loop gain [13]. An important property of the proposed ampli-

fier is its phase-sensitive gain, resulting in noise squeezing. One

of the quadrature input noise components (e.g., out of phase)

is suppressed when the input noise consists of two quadrature

components: in phase and out of phase relative to the pump

signal. This noise squeezing reduces the amplifier output noise

by almost 3 dB compared to the phase-insensitive amplifier with

the same gain. In other words, while a conventional amplifier in-

creases the input noise of both quadratures, the noise-squeezing

amplifier increases the noise of one quadrature and, at the same

time, decreases the other one.

Noise squeezing was originally studied in optics for precise

measurements constrained by the uncertainty principle, which

sets a fundamental limit to the simultaneous observation of

two conjugate parameters, such as the photon number and its

phase [14], [15]. Since the uncertainty principle preserves the

multiplication of the variances of two conjugate parameters,

the degenerate parametric amplifier can suppress one of the

quadrature noise components at the expense of amplifying the

other quadrature component through phase-sensitive amplifica-

tion. Noise squeezing was also demonstrated in the mechanical

systems as classical analogues of the optical systems to beat

the thermal noise limitation [16], [17]. Finally, Josephson’s

parametric amplifier using a superconducting quantum inter-

ference device was designed to implement noise squeezing

in an electrical system [18]–[20]. However, this amplifier

requires a very low operation temperature (around 0 K) and is

not integrable. To the best of our knowledge, our work is the

first demonstration of noise squeezing for an LNA in a CMOS

process.

The rest of this paper is organized as follows. Section II

explains the theory of distributed parametric amplification.

Section III discusses the noise-squeezing effect to enhance the

noise performance. Section IV explains the pump loss effect,

which poses fundamental limits for gain and noise squeezing

in a traveling parametric amplifier. Section V proposes a

resonant parametric amplifier to overcome the limits men-

tioned in Section IV and analyzes its phase-sensitive gain and

noise-squeezing performance. Section VI summarizes the de-

sign procedure and the simulation results. Finally, Section VII

concludes our work.

1549-8328/$26.00 © 2010 IEEE
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Fig. 1. Parametric amplifier using a differential nonlinear transmission line
with dispersion compensation capacitors . An input signal at frequency
is differentially applied, and a pump is injected at a frequency of in common
mode.

II. DISTRIBUTED PARAMETRIC AMPLIFICATION USING A

NONLINEAR TRANSMISSION LINE

In this section, we review the basic theory behind parametric

amplification using a nonlinear transmission line.

Assume a uniform artificial differential transmission line that

consists of inductors and voltage-dependent (and hence non-

linear) capacitors, as shown in Fig. 1. The nonlinear capacitor

is approximated with a first-order function

(1)

where is the capacitance at zero bias and is the slope.

For now, assume that is very large, which means that the

common node between two lines is ac grounded.

One can easily obtain (2) by applying KCL and KVL and by

using approximate partial derivatives with respect to distance

from the beginning of the line, where the voltage on the line is

[21]. This approximation is valid when the dispersion ef-

fect caused by discreetness is negligible due to a small spacing

between adjacent elements compared to the signal wave-

length

(2)

where

(3)

and , , , and are the unit length inductance, capacitance,

parasitic conductance, and parasitic resistance, respectively.

is the characteristic impedance defined by .

The pump and the signal are applied to the left end of the

transmission line, and the pump frequency is set to twice the

signal frequency. Note that the signal is differentially applied

between two lines, whereas the pump is in the common mode,

as shown in Fig. 1. Then, (2) can be written for a differential

signal

(4)

where and are the signal and pump voltages on the trans-

mission line, respectively. is the transmission line loss for

the signal frequency.We assume that the second-order harmonic

generation (SHG) of the pump is sufficiently suppressed since

the cutoff frequency of the transmission line is set to lower than

twice the pump frequency. The SHG of the signal is canceled

out due to the differential signaling in (4).

In (4), the first term on the right corresponds to the linear

wave propagation, and the third term represents the loss of the

transmission line. The second term on the right represents the

nonlinear coupling between the pump and the signal, which re-

sults in parametric amplification.

From the coupled-mode theory [22]–[24], the signal can be

written as

(5)

(6)

where , , is the

signal propagation constant, and is the initial phase difference

between the signal and the pump at . Here, “ ” denotes the

complex conjugate. and are slowly varying func-

tions over , which means .

Assume that the pump is a sinusoidal function at a frequency

of . Then, the pump can be written as

(7)

(8)

where is the amplitude of the pump, which is a slowly

varying function over , and is the pump propagation con-

stant.

By substituting (5) and (8) into (4) and by approximating

as (small dispersion assumption) and as

(the dispersion might not be negligible for the pump,

which is at a value that is twice the input frequency), we derive

the active coupled-mode equations for and as

(9)

(10)

For now, is assumed to be constant over to obtain an

analytic solution of (9) and (10). This assumption means that we

neglect the pump loss in the transmission line and the transferred

pump energy to the signal frequency. Under this assumption, the

general solution for (9) and (10) is

(11)

where

(12)

and and are constants over .

By applying the boundary condition of (6)–(9), the complete

solution is obtained as

(13)
where

(14)

(15)
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and is the first term on the right side of (12). It is

noteworthy that, in (13), we have assumed no dispersion for the

pump . At the end of this section, we will introduce

a method to compensate the dispersion for the pump, validating

this assumption.

From (13), the parametric gain is

(16)

For the maximum and minimum gains, the signal is exponen-

tially growing or decaying over

for (max)

for (min).
(17)

Equation (16) can be converted into the gain equation for the

section number of the discrete transmission line by inserting

, , , , and , where

is the spacing between two adjacent sections. , , , and

are the inductance, average varactor capacitance, conductance,

and resistance for one section, respectively. Using

(18)

(19)

the parametric gain for the -section nonlinear transmission line

is presented by

(20)

where

(21)

(22)

Fig. 2 shows the plot of the calculated parametric gain for

20 sections based on (20) to show the effect of the initial

phase differences between the pump and the signal for different

nonlinear factors, defined by . The input and pump frequen-

cies are 10 and 20 GHz, respectively. The cutoff frequency, de-

fined by , is set to 25 GHz, and the character-

istic impedance is 50 . We assume that the quality factor of

the transmission line for a signal frequency is 10, which corre-

sponds to section[25]. As the nonlinear factor in-

creases, the gain plot shows a higher amplification and attenua-

tion depending on the phase difference. The phase difference be-

tween the maximum and minimum is , which clearly shows

the phase-sensitive gain for quadrature signals.

Intuitively, at each section of the line, the nonlinear interac-

tion between the signal at and the pump at generates two

frequency components at and . The component is sup-

pressed by the cutoff frequency of the transmission line, and

the component is added to the signal. However, this adding

Fig. 2. Calculated gain versus the initial phase difference between the pump
and the signal for different nonlinearity factors ( pH, fF, and

GHz).

process can be constructive or destructive, depending on the

phase difference between the signal and the pump. A series of

this process over multiple sections enables the gain to exponen-

tially grow (energy transfer from the pump to the signal) or to be

attenuated (energy transfer from the signal to the pump). When

the pump frequency is exactly twice the signal frequency, para-

metric amplification is called as degenerate, mainly character-

ized by its phase-sensitive gain.

Note that the exponent in (17) is proportional to the prop-

agation constant as well as to the varactor slope and the

pump amplitude. This is because the increase in the propagation

constant is equivalent to the increase in the effective transmis-

sion line length. However, the increase in the propagation con-

stant also lowers the cutoff frequency and decreases the pump

amplitude. Therefore, the propagation constant should be care-

fully selected.

The aforementioned analysis neglects the effect of dispersion

. However, the discreetness of the artificial trans-

mission line causes nonnegligible dispersion and results in an

undesired phase shift between the pump and the signal, weak-

ening the parametric coupling between them, as shown in Fig. 3.

Fig. 4 shows how the propagation constant mismatch degrades

the parametric gain. In addition to the drop in the exponential

constant in (12), an even more serious effect comes from the

accumulation of the phase mismatch due to the differences in

the propagation constant. A small phase mismatch is accumu-

lated over multiple sections to reach a certain amount of phase

difference between the pump and the signal, causing attenua-

tion instead of amplification and limiting a maximum gain to

the curve of the gain plot over the section number.

Tomaintain , we have introduced the dispersion com-

pensation capacitor at the common node, as shown in Fig. 1.

This capacitor only affects the common-mode pump because the

differential signal does not see it due to the virtual ground in the

middle node. With the dispersion compensation capacitor, the

net average capacitance for the pump drops to in series with

, decreasing the pump propagation delay without changing

the signal propagation. By selecting the right value for , one

can completely phase match the signal and pump.
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Fig. 3. Dispersion relation of an artificial transmission line when the pump
frequency (20 GHz) is comparable to the cutoff frequency (25 GHz).

Fig. 4. Calculated gain versus the section number for different propagation
constant mismatches between the pump and the signal ( pH,

fF, and GHz).

III. NOISE OF THE DEGENERATE PARAMETRIC AMPLIFIER

Since the degenerate parametric process uses only reactive

components, potentially, it can achieve a better NF than the

conventional transistor-based amplifiers. In addition, its phase-

sensitive gain shows an interesting property: noise squeezing.

The equipartition theorem suggests that the input noise (usu-

ally, thermal noise) is circularly symmetric for two quadrature

components in a thermal equilibrium, and it can be written as

a narrow-band representation of the carrier (signal) frequency

[26], [27]

(23)

(24)

where and are the slowly varying functions com-

pared to a sinusoidal function at .

When is injected into a degenerate parametric amplifier

with -section lossless nonlinear transmission line

pumped at and when the pump has the right phase so that

experiences the maximum gain, then has the max-

imum attenuation based on (17)

(25)

(26)

where the in-phase power gain for -section lossless nonlinear

transmission line (NLTL) ( ) is defined as

(27)

The multiplication of the standard deviations of and

is given by

(28)

(29)

Equation (29) shows that the multiplication of two quadrature

noise components is preserved since one quadrature noise com-

ponent (out of phase) is suppressed at the expense of ampli-

fying the other quadrature noise component (in phase) through

phase-sensitive amplification.

Here, we introduce a noise-squeezing factor , which is

equal to NF when the information is placed only in the single

quadrature phase. This needs to be differentiated with the gen-

eral NF, which usually considers information in two quadra-

ture phases. Assuming that the thermal noise caused by power

dissipation on the transmission line is negligible and that the

signal information is only in the in-phase direction, the noise-

squeezing factor of the parametric amplifier is defined as

(30)

where and is a signal amplitude.

Equation (30) shows that the squeezing factor approaches 3

dB as increases. In other words, the noise is redistributed

from a circular to an oval shape through parametric amplifica-

tion to have a higher SNR in one quadrature direction. Fig. 5

shows the time-domain effect of the noise squeezing and the

noise distribution over the phase. The output of the parametric

amplifier can be written as

(31)

(32)

where

(33)

and is the phase shift due to the propagation delay over the

transmission line. Equation (32) shows that contributes

to the amplitude fluctuation, whereas contributes to

the phase fluctuation. Equations (32) and (33) explain how

the squeezing suppresses the phase (timing) fluctuation at the

output by increasing the amplitude fluctuation with the same

ratio, as shown in Fig. 5(c). This is fundamentally different

from a linear amplifier (phase-insensitive amplifier) that pro-

vides the same amount of amplification for two quadrature
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Fig. 5. Observation of the squeezed output noise by phase-sensitive amplifi-
cation in a time and phase domain compared to linear amplification. (a) Input
signal. (b) Output signal through linear amplification. (c) Output signal through
phase-sensitive amplification. To simplify the notations, the phase of the pump
is shifted by . In (17), the signal has its maximum and minimum at
and , respectively.

components, resulting in a circularly symmetric output noise

distribution, as shown in Fig. 5(b).

Next, we take into account the effect of the transmission line

loss in the parametric amplifier squeezing factor . The para-

metric amplifier consists of two transmission lines that generate

two independent noises ( and ) at the th node. Because

only the differential signal is amplified, the output noise con-

tributed by the power dissipation at the th node is

(34)

(35)

The thermal noise power generated at the th node that travels

toward the output is

(36)

(37)

where is the bandwidth over which the noise is measured.

and are the parasitic series resistance and parallel conductance

which represent the inductor and varactor losses, respectively.

Combining (35) and (37), the total output noise associated with

the transmission line loss is given by

(38)

From (30) and (38), the noise-squeezing factor becomes

(39)

where the input signal source impedance is matched with the

characteristic impedance . In the absence of the pump

, from (39), the NF or the squeezing factor is simply approx-

imated with , which is the reciprocal of the transmission

line loss and is expected from a conventional transmission line.

Fig. 6 shows the calculated squeezing factor based on

(39). The signal and pump frequencies are 10 and 20 GHz,

respectively. The cutoff frequency is set to 25 GHz. When

the transmission line is lossless, the amplifier squeezing factor

approaches 3 dB for large nonlinear factors, as shown in

Fig. 6(a). However, the transmission line loss significantly

degrades the squeezing factor. The phase sensitivity of the

squeezing factor is also investigated, as shown in Fig. 6(b).

Since the input noise distribution is assumed to be circularly

symmetric and independent of the input signal, the variation of

the squeezing factor is caused only by a change in the signal

gain. The squeezing factor is also calculated as a function

of the section number, as shown in Fig. 6(c). As the section

number increases, the squeezing effect exponentially increases,

resulting in a better squeezing factor. However, in the presence

of transmission loss, the number of noise sources also increases

with the section number. Therefore, for a given nonlinearity,

an optimum number of sections will result in a minimum

squeezing factor.

IV. EFFECT OF PUMP LOSS

The previous sections examined the signal gain and noise per-

formance in the absence of pump attenuation for an analytical

solution. However, pump loss is critical since the signal gain

is an exponential function of the pump amplitude, as shown in

(17).

Fig. 7 shows the simulated pump loss effect on the gain and

squeezing factor based on (9) and (10) when the phase differ-

ence between the signal and the pump is for a maximum

gain. When the pump loss is negligible, the log-scale gain is lin-

early proportional to the section number, following (17). How-

ever, as the pump loss increases, the amplifier gain reaches a

peak for a certain number of sections. Before this point, since

the pump amplitude is large, the gain increases as the signal

propagates. After this point, the pump amplitude is too low to

compensate the loss of the transmission line, resulting in a lower

gain. For a higher pump loss, this optimal number of sections

also decreases, thereby resulting in a lower gain peak. Consid-

ering that the typical value of the quality factor of the transmis-

sion line is around 10 for a pump frequency of 20 GHz, the max-

imum gain is only 5 dB, with 22 sections. One might consider
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Fig. 6. Calculated squeezing factor versus the (a) nonlinear factor for different
transmission line loss, (b) initial phase difference between the pump and the
signal for different nonlinear factors, and (c) section number for different non-
linear factors ( pH, fF, and GHz).

injecting the pump frequency at multiple points of the trans-

mission line to compensate the loss. Unfortunately, this method

would require a higher pump power and would also result in a

more complex design and a higher footprint.

Pump loss also degrades the squeezing factor: loss results in

pump attenuation which, in turn, translates to a lower squeezing

effect. This is shown in Fig. 7(b), where the squeezing factor

increases with the section number.

V. RESONANT PARAMETRIC AMPLIFIER

To overcome the challenges of the traveling-wave structures

associated with a large number of lumped elements and

Fig. 7. Simulated pump loss effect on the (a) gain and (b) squeezing factor
versus the section number for different pump losses ( pH, fF,

, and GHz).

pump loss due to a limited quality factor, we propose a resonant

regenerative amplifier based on a parametric oscillator structure.

A. Review of the Reflective Parametric Oscillator

Fig. 8 shows the reflective parametric oscillator and its

standing wave formation for the signal and pump frequencies

[12]. Parametric oscillation occurs when the parametric ampli-

fication compensates the loss of a resonator at the resonance

frequency. The resonator consists of two transmission lines

with four phase-matched sections that are connected at

both ends. Oscillation starts from the ambient thermal noise of

the resonator when the pump is strong enough to compensate

for the loss. The noise component grows by traveling back

and forth between two reflective ends through the degenerate

parametric amplification, finally generating a stable oscillation

signal at a half-pump frequency.

The upper part of Fig. 8 shows different standing wave for-

mations inside the resonator for both the pump and the signal.

The differential signal sees the resonator ends as shorts due

to the virtual ground, while the common-mode pump sees the

ends as open nodes. The effective length of the four- -sec-

tion resonator is equal to a pump wavelength , which is half

of the signal wavelength . With the reflection at both ends,

the signal forms a standing wave with minimum ampli-

tudes at the two boundaries. On the other hand, the pump forms

a standing wave with maximum amplitudes at both ends. The

higher modes for the pump and the signal are suppressed by the
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Fig. 8. Reflective distributed parametric oscillator and its standing wave for-
mation for the signal and pump frequencies.

Fig. 9. Differential parametric resonant amplifier with an output buffer.

resonator cutoff frequency. The output port is selected at the

“ ” location to suppress the pump signal by exploiting the

different standing wave formations for the signal and the pump.

B. Regenerative Amplifier With a Parametric Resonator

By operating the parametric oscillator with a pump below

the oscillation threshold, another form of degenerate parametric

amplification can be achieved, as shown in Fig. 9. Based on the

resonator structure in Fig. 8, the input signal is applied to the

middle of the resonator through the drain of a common-source

LNA. The source followers are simply used as output buffers to

drive a 50- output load. The control voltage enables us

to tune the resonant frequency.

We can intuitively explain the principle of the resonant para-

metric amplifier by comparing it with a conventional regen-

erative resonant amplifier that has been recently proposed for

the high quality factor bandpass filtering [28]. As shown in

Fig. 10(a), a negative resistance in a resonator compensates the

loss and results in a higher quality factor. This increased quality

Fig. 10. (a) Conventional resonant amplifier with a negative resistor. (b) Am-
plification using a parametric resonator with a pump level below the oscillation
threshold.

factor provides a larger output impedance around the resonance

frequency given by , resulting in a higher gain

(40)

where is the transconductance of the transistor, is a series

resistance modeling the loss of the resonator, is the inductance

of the resonator, and is the negative resistance generated

by the external power . We can clearly observe the similarity

between (40) and the parametric gain, which will be presented in

(51). Note that, if the negative resistance is larger than

the resonator loss , the amplifier turns into an oscillator.

The same happens to the parametric amplifier when the pump

power is more than the oscillation threshold.

However, the proposed amplifier does not use the extra tran-

sistor to compensate for the resonator loss since the gain comes

from the parametric amplification. More importantly, the pro-

posed amplifier provides the phase-sensitive gain for the noise

squeezing at the cost of its complicated structure.

For theoretical analysis, we consider the coupled-mode equa-

tions of (9) and (10). Adding terms that represent the injec-

tion of the input signal and pump into the resonator, these cou-

pled-mode equations are modified to

(41)

(42)

(43)
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where and represent the increase ratios in the signal and

pump amplitudes inside the resonator due to the injected signal

and pump, respectively. The significance of this term will be

seen when the reflections are taken into account inside the res-

onator, which will be presented in (47) and (48). and

are the signal and pump amplitudes that enter the resonator, re-

spectively.

By the structural symmetry of the resonator, we can only con-

sider the left half of the resonator for the following analysis. It

is noteworthy that, even though the pump is only applied to the

left end of the resonator, for our analysis, we can imagine a vir-

tual pump injection from the right end. This is due to the fact

that the resonator length is , which means that the two ends

are in phase for the pump frequency.

For the steady-state response, , ,

. Combining (41) and (42) to eliminate , the signal ampli-

tude on the resonator becomes

(44)

where

(45)

At the resonator end where the pump is injected, the relation

between the th and th round-tripped pump amplitudes

( and ) is

(46)

where is the round-trip length of the resonator. Inserting

and into

(46), is reduced to

(47)

In a similar way, can be obtained as

(48)

By rearranging (44)

(49)

where

(50)

From (49), when the pump amplitude is below the oscillation

threshold ( ), the maximum and minimum gains are

for (max)

for (min).
(51)

Based on (51), when the pump power is just below the threshold,

the amplifier has the lowest gain (i.e., maximum attenuation for

), which is half the gain in the absence of the pump.

This sets a fundamental limit of a maximum squeezing ratio of

6 dB in the proposed system. Next, we are going to calculate

the total gain of the parametric amplifier. The voltage gain of

a source-degenerated amplifier that injects the signal into the

resonator, shown in Fig. 9, is [1]

(52)

where is the input amplitude, is the cutoff frequency

of , is the characteristic impedance of the resonator,

is the signal source impedance, and is the signal frequency,

assuming that the input matching is achieved using a source-

degenerated inductor .

Combining (49) and (52), the total gain of the parametric res-

onant amplifier becomes

(53)

(54)

where is the voltage increase ratio due to the standing wave

formation, defined by ( for the output

taken out at ) [25]. is the gain without the pump

injection, defined by .

Fig. 11(a) shows the calculated gain enhancement ratio

due to the parametric amplification with respect

to the phase difference between the signal and the pump for

different pump amplitudes based on (54). As the pump ampli-

tude approaches the oscillation threshold, the gain plot shows

higher amplification and attenuation depending on the phase

difference. The phase difference between the maximum and

minimum is , which clearly shows the phase-sensitive gain

for quadrature signals. Fig. 11(a) is similar to Fig. 2, which

is obtained from a traveling-wave-type parametric amplifier.

However, the resonant amplifier uses only four sections

and provides much higher gain due to resonance, resulting from

the robustness to the pump loss effect compared to Fig. 7.

C. Squeezing Factor

Finally, the minimum squeezing factor can be simply calcu-

lated based on the squeezing effect, assuming that the noise of

the resonator itself is negligible. This is similar to calculating the

NF of a conventional LNA, where we assume that the effect of

the resonator loss is negligible and that the NF is dominated by

the channel noise.1 Under this assumption, the squeezing factor

is

(55)

1For typical losses of on-chip passive components, this assumption is valid.
Interested readers can use a similar approach shown in (39) to calculate NF
when the resonator loss cannot be neglected.
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Fig. 11. Calculated (a) gain enhancement and (b) noise reduction ratios with
respect to the phase difference for different pump amplitudes.

where is the noise reduction ratio and is the NF of the

source-degenerated common-source amplifier. The noise reduc-

tion ratio can be calculated using (30) and (51)

(56)

When approaches , the reduction ratio approaches

1/2.

Fig. 11(b) shows the calculated squeezing factor with respect

to the phase difference between the signal and the pump for

different pump amplitudes based on (55). As expected in the

gain plot, a higher pump amplitude provides a higher noise-

squeezing ratio for the in-phase component, whereas it degrades

the noise performance of the out-of-phase component.

VI. DESIGN AND SIMULATION

We designed and simulated the proposed amplifier at around

10 GHz in a 65-nm CMOS technology. The chip consumes 30

mW from a 1.2-V supply. This power includes the pump gener-

ation circuit, which consumes 14.5 mW. The estimated area of

the entire chip is 1.5 mm 0.9 mm.

Fig. 12. Accumulation-mode MOS varactor characteristic in the 65-nm
process.

A. Design

The design of the proposed amplifier consists of three parts:

a nonlinear resonator for the phase-sensitive gain, an LNA for

the input stage, and a frequency doubler to generate a pump fre-

quency that has exactly twice the input frequency. To design

the resonator, we use the fact that its resonant frequency, which

should be around 10 GHz, is closely related to the propagation

constant , defined by . Also, as ex-

plained in Section II, the cutoff frequency of the ladder sets

the maximum gain of the amplifier. The optimum cutoff fre-

quency can be obtained from the tradeoff between in (20) and

the pump loss due to the cutoff frequency, which is comparable

to the pump frequency. Using an optimum cutoff frequency of

around 25 GHz for the maximum gain, we need a fine adjust-

ment to satisfy the resonant frequency of 10 GHz. The resonant

frequency is determined from

(57)

where is the length of the resonator, is the spacing between

two adjacent nodes, and is the number of resonator sections.

The varactor capacitance per unit section is approximated by its

average value . Equation (57) can be rearranged to

(58)

Inserting the cutoff frequency into (58), the section number is

around 3.9. Because we can only have positive integers, the sec-

tion number is set to four, which requires the minor adjustment

of the cutoff frequency to keep the resonant frequency at 10 GHz

(for an accurate adjustment, the resonant frequency should be

verified with Cadence simulation since (57) and (58) are based

on the small dispersion assumption). Knowing the cutoff fre-

quency of the line and the number of sections, we can determine

the product. To pick the values of the inductors and the var-

actors, we need to select the characteristic impedance of the

line. Since the resonator is driven with an LNA and since the

output is taken out using a buffer, the impedance does not have

to be 50 . As a result, we select the characteristic impedance to

minimize the loss of the resonator, which is around 40 . In this
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Fig. 13. Schematic of the pump generation block consisting of active balun, frequency doubler, and buffer.

process, the optimized inductor and varactor values that are used

to achieve the maximum gain (i.e., optimum cutoff frequency)

and minimum loss are 470 pH and 270 fF, respectively.

The inductor is implemented as a spiral whose inductance is

380 pH and whose dimension is m m, including

the guard ring. The quality factors of the spiral are 16 and 19

at 10 and 20 GHz, respectively. The coplanar waveguide with

a ground-shielded plane is employed to connect the inductors.

The inductance of these interconnects is around 90 pH. The

transmission line structure is carefully simulated in an E/M sim-

ulator (SONNET).

We use an accumulation-modeMOS varactor as a voltage-de-

pendent capacitor. Its capacitance versus voltage characteristic

is shown in Fig. 12. The average capacitance is 270 fF, and the

linearized slope in (1) ( ) is approximated to be 1.4 around

a zero bias voltage. The quality factors of the varactor are 31

and 15 at 10 and 20 GHz, respectively. The varactors use the

multifinger gate structure to optimize the nonlinearity and the

quality factor simultaneously [29]. Metal–insulator–metal ca-

pacitors (MIMCAPs) are used for the dispersion compensation

capacitors.

The design of the LNA for the input stage follows a general

source-degenerated amplifier for an input frequency of 10 GHz.

The input impedance is matched to 50 . The main transistor

( in Fig. 9) has a width of 96 m for optimum NF and input

matching with a bias current of 3 mA. The width of the cascode

transistor is selected by considering the tradeoff between

the amount of parasitic capacitances and its noise contribution.

In our design, the width of is 80 m. Both and have

a minimum channel length of 60 nm.

To generate the pump at twice the signal frequency, the fre-

quency doubler is implemented as shown in Fig. 13. It consists

of an active balun, a frequency doubler, and a buffer. Since the

frequency doubler is designed for a differential input signal, an

active balun is employed. The active balun ( in Fig. 13)

is the combination of the common-gate and common-source

amplifiers to simultaneously generate the noninverting and in-

verting outputs [34]. In addition, the common-gate amplifier lo-

cated in the input port provides a broadband input matching. The

frequency doubler uses the nonlinearity of the tran-

sistor. The even-order harmonics of the differential input signal

(mainly, the second-order harmonic) are picked at the common

node through the resonant network. The last stage is

Fig. 14. Simulated frequency-doubled output of the pump generation block
versus the input amplitude.

Fig. 15. Calculated and simulated gains and squeezing factors versus the signal
phase in the proposed amplifier for a fixed pump amplitude (500 mV).

a two-stage amplifier that is used as a buffer. The first stage am-

plifies the signal with a high gain, and the second stage drives

the nonlinear resonator. Fig. 14 shows the simulated output am-

plitude of the pump generation block versus an input amplitude

in Cadence.

B. Simulation

Using Cadence, we simulated our designed amplifier, which

consists of the input stage amplifier and the nonlinear resonator.

The input of the amplifier is a 10-GHz signal (carrier) with a

bandwidth of 500 MHz (data). The pump frequency is fixed

at 20 GHz, which is twice the carrier frequency. The outputs
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Fig. 16. Cadence simulation of the gain versus the frequency for different
pump amplitudes for the (a) maximum and (b) minimum gains.

are connected to 50- loads using the source follower buffers.

The simulation is carried out at a schematic level, including an

interconnect transmission line model verified by SONNET. We

use periodic noise analysis (Pnoise) and periodic S-parameter

analysis (PSP) in Spectre to simulate the gain and squeezing

factor of the proposed design.

Fig. 15 shows both the calculated and simulated gains

and squeezing factors versus the signal phase for a fixed

pump amplitude of 500 mV. For the calculation, we insert

dB and dB into (54) and (55) based

on the Cadence simulation. is set to 0.65 for a best fit

with the simulation. Note that the accurate calculation of is

difficult due to the voltage-sensitive drain node impedance of

the input amplifier. This is because the standing wave formation

of the pump signal doubles the input pump voltage swing on

the drain node, as shown in Figs. 8 and 9.

The gain ranges from 7 to 20 dB depending on the phase dif-

ference between the signal and the pump. The difference be-

tween themaximum andminimum gains is around 13 dB, which

determines the magnitude of the noise-squeezing ratio in (55).

As expected in (54), the plots are periodic with a period of ,

and the signal phase difference between the maximum and min-

imum gains is , implying a quadrature squeezing. The sim-

ulated gain includes a 6-dB loss due to the output buffer, which

is not calibrated (the maximum gain is 26 dB before the buffer,

whereas the graph in Fig. 15 shows 20 dB at its maximum). The

squeezing factor plot is the flip-down image of the gain plot,

Fig. 17. Cadence simulation of the squeezing factor versus the frequency for
different pump amplitudes for the (a) maximum and (b) minimum gains.

as we observed in Section III. Assuming that all of the signals

are in-phase components, the noise-squeezing effect suppresses

the squeezing factor even below 0 dB, resulting in a minimum

squeezing factor of 0.37 dB when the gain is maximum. From

(55) and (56), the theoretical squeezing factor is suppressed up

to 3 dB below the NF of the input LNA as the pump input gets

close to the oscillation threshold. However, the simulation re-

sult shows a 2-dB suppression of the squeezing factor from 1.6

to 0.37 dB. This is because the additional loss from the drain

node of the input amplifier increases the threshold voltage be-

yond the varactor saturation region, where the capacitance does

not change with the voltage, as shown in Fig. 12.

We also simulated the gain and squeezing factor for different

pump amplitudes with a fixed signal phase, particularly for the

maximum and minimum gain cases, as shown in Figs. 16 and

17. In the maximum gain case, the increase in pump ampli-

tude boosts the gain by increasing the quality factor of the res-

onator. The increase in the quality factor can also be verified

in Fig. 16(a), as well as by observing that the bandwidth be-

comes narrower with the pump amplitude. Fig. 17(a) shows

that the squeezing factor is more suppressed as the difference

between the maximum and minimum gains increases with the

pump amplitude due to the squeezing effect. On the other hand,

Fig. 16(b) shows that the increase in the pump amplitude de-

creases the signal gain for a phase at minimum gain. The de-

structive adding process causes more signal attenuation inside

the resonator with the pump amplitude, degrading the quality
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Fig. 18. Cadence simulation of the noise-squeezing effect (a) for a zero pump
amplitude and (b) for a pump amplitude of 500 mV.

factor. The squeezing factor also becomes worse due to signal

loss, as shown in Fig. 17(b).

The noise-squeezing effect is also clearly observed using the

transient noise option in the transient analysis in Cadence, as

shown in Fig. 18. In the simulation setup, two independent noise

voltages, whose bandwidth is 500MHz, are generated and com-

bined though modulation at a 10-GHz LO frequency. The

combined noise signal is injected to the resonant parametric am-

plifier. After passing through the proposed amplifier, the output

is demodulated to extract the components and is sampled

for statistical analysis. In the transient simulation, it is noted that

the intrinsic device noise is neglected due to a large-signal input

noise source. Fig. 18 shows the simulated noise squeezing, de-

pending on the presence of the pump. Before the pump injection,

the output noise distribution is still circularly symmetric for the

in-phaseandout-of-phasecomponents (hence, it isphase insensi-

tive). However, the out-of-phase noise component is suppressed

in the presence of the pump signal, whereas the in-phase noise

component is amplified. Note that the input signal is also equally

amplified with the in-phase noise component. To quantitatively

analyze the suppressed out-of-phase noise component, the his-

togram is plotted for 960 samples, as shown inFig. 19.We clearly

observe that thestandarddeviationof theout-of-phasenoisecom-

ponent is significantly suppressed with pump injection.

Linearity is simulated in terms of the compression character-

istics and the input-referred IP3. Fig. 20 shows that the 1-dB

Fig. 19. Simulated noise histogram (a) for a zero pump amplitude and (b) for
a pump amplitude of 500 mV using Cadence.

output compression point is 2.9 dBm for the proposed ampli-

fier when the pump is not injected. However, when the pump

amplitude is 500 mV, the 1-dB output compression point de-

creases by around 3 dB since the gain partially comes from

the limited power of the pump. The proposed amplifier pro-

vides an IIP3 ranging from 7.2 to 8 dBm depending on the

pump amplitude, as shown in Fig. 21. For comparison, the linear

modification of the proposed amplifier is also simulated after

replacing all varactors with MIMCAPs in the resonator. The

1-dB output compression point and IIP3 are simulated to be

2.2 and 6.3 dBm for the linear modification, respectively.

Even though the proposed amplifier employs the nonlinear res-

onator, the degradation in linearity performance is not large

compared to its linear version. This is because the parametric

resonator mainly generates the second-order nonlinearity due

to the first-order characteristic of the varactor, while both

IIP3 and gain compression are caused by the third-order non-

linearity. IIP2, caused by the second-order nonlinearity, is not

considered here since it is not problematic for a narrow-band

amplifier like the proposed one.

VII. CONCLUSION

We have proposed a resonant parametric amplifier with

a low-noise performance using the noise-squeezing effect.

The phase-sensitive amplification process suppresses one of

the quadrature noise components and achieves around 3-dB

noise reduction for a single-phase information compared to the
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Fig. 20. Cadence simulation of the gain compression for a zero pump ampli-
tude and for a pump amplitude of 500 mV.

Fig. 21. Cadence simulation of the input-referred IP3 for a zero pump ampli-
tude and for a pump amplitude of 500 mV.

phase-insensitive amplification. The resonant structure of the

amplifier, which resembles the Fabry–Perot laser amplifier,

enables parametric amplification for narrow-band signals with

a small number of lumped elements. The signal gain and

squeezing factor are theoretically analyzed based on the contin-

uous transmission line approximation and on the steady-state

assumption. We have achieved a minimum squeezing factor

of 0.35 dB for a 10-GHz narrow-band signal in Cadence

simulation.

ACKNOWLEDGMENT

The authors would like to thank G. Li, O. Momeni, Y. Tousi,

M. Adnan, E. Hwang, Prof. Apsel, Prof. Molnar, and Prof. Pol-

lock of Cornell University for the helpful discussions regarding

various aspects of this paper and M. Azarmnia and H. Yu for

their support.

REFERENCES

[1] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise
amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759,
May 1997.

[2] A. Nieuwoudt, T. Ragheb, H. Nejati, and Y. Massoud, “Numerical de-
sign optimization methodology for wideband and multi-band induc-
tively degenerated cascode CMOS low noise amplifiers,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 56, no. 6, pp. 1088–1101, Jun. 2009.

[3] X. Li, S. Shekhar, and D. J. Allstot, “ -boosted common-gate LNA
and differential colpitts VCO/QVCO in 0.18- m CMOS,” IEEE J.
Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.

[4] A. Liscidini, M. Brandolini, D. Sanzogni, and R. Castello, “A 0.13
m CMOS front-end for DCS1800/UMTS/802.11b-g with multi-band
positive feedback low noise amplifier,” IEEE J. Solid-State Circuits,
vol. 41, no. 4, pp. 981–989, Apr. 2006.

[5] L. Belostotski and J. W. Haslett, “Sub-0.2 dB noise figure wide-
band room-temperature CMOS LNA with non-50 signal-source
impedance,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp.
2492–2502, Nov. 2007.

[6] J. M. Manley and H. E. Rowe, “Some general properties of nonlinear
elements—Part I. General energy relations,” Proc. IRE, vol. 44, no. 7,
pp. 904–913, Jul. 1956.

[7] S. Ranganathan and Y. Tsividis, “A MOS capacitor-based discrete-
time parametric amplifier with 1.2 V output swing and 3 W power
dissipation,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2003, pp.
406–407.

[8] S. Ranganathan and Y. Tsividis, “Discrete-time parametric am-
plification based on a three-terminal MOS varactor: Analysis and
experimental results,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp.
2087–2093, Dec. 2003.

[9] P. M. Figueiredo and J. C. Vital, “The MOS capacitor amplifier,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 3, pp. 111–115, Mar.
2004.

[10] S. Magierowski, H. Chan, and T. Zourntos, “Subharmonically pumped
RF CMOS paramps,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp.
601–608, Feb. 2008.

[11] S. Magierowski, T. Zourntos, J. Bousquet, and Z. Zhao, “Compact
parametric downconversion using MOS varactors,” in Proc. IEEE Int.
Microw. Symp., Jun. 2009, pp. 1377–1380.

[12] W. Lee and E. Afshari, “Parametric distributed resonator: A passive
frequency divider,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp.
1834–1844, Sep. 2010.

[13] Y. Yamamoto, “Characteristics of AlGaAs Fabry–Perot cavity type
laser amplifiers,” IEEE J. Quantum Electron., vol. QE-16, no. 10, pp.
1047–1052, Oct. 1980.

[14] K. G. Köprülü and O. Aytür, “Analysis of the generation of amplitude-
squeezed light with Gaussian-beam degenerate optical parametric am-
plifiers,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 18, no. 6, pp. 846–854,
Jun. 2001.

[15] T. Hirano, K. Kotani, T. Ishibashi, S. Okude, and T. Kuwamoto, “3
dB squeezing by single-pass parametric amplification in a periodically
poled KTiOPO crystal,” Opt. Lett., vol. 30, no. 13, pp. 1722–1724,
Jul. 2005.

[16] D. Rugar, “Mechanical parametric amplification and thermomechan-
ical noise squeezing,” Phys. Rev. Lett., vol. 67, no. 6, pp. 699–702,
Aug. 1991.

[17] R. Almog, “Noise squeezing in a nanomechanical duffing resonator,”
Phys. Rev. Lett., vol. 98, no. 7, p. 078 103, Feb. 2007, 10.1103/Phys-
RevLett.98.078103.

[18] B. Yurke, “Squeezed-state generation using a Josephson parametric
amplifier,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 4, no. 10, pp.
1551–1557, Oct. 1987.

[19] B. Yurke, “Observation of 4.2-K equilibrium-noise squeezing via a
Josephson-parametric amplifier,” Phys. Rev. Lett., vol. 60, no. 9, pp.
764–767, Feb. 1988.

[20] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and
K. W. Lehnert, “Amplification and squeezing of quantum noise with a
tunable Josephson metamaterial,” Nature, vol. 4, no. 12, pp. 929–931,
Oct. 2008, 10.1038/nphys1090.

[21] E. Afshari and A. Hajimiri, “Nonlinear transmission lines for pulse
shaping in silicon,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp.
744–752, Mar. 2005.

[22] W. H. Louisell, Coupled Mode and Parametric Electronics. New
York: Wiley, 1960.

[23] P. K. Tien and H. Suhl, “A traveling-wave ferromagnetic amplifier,”
Proc. IRE, vol. 46, no. 4, pp. 700–706, Apr. 1958.

[24] P. K. Tien, “Parametric amplification and frequency mixing in prop-
agating circuits,” J. Appl. Phys., vol. 29, no. 9, pp. 1347–1357, Sep.
1958.

[25] D. M. Pozar, Microwave Engineering. New York: Wiley, 2005.
[26] J. J. Waterston, “On the physics of media that are composed of free and

elastic molecules in a state of motion,” Roy. Soc. Proc., vol. 5, p. 604,
1846.

[27] W. Greiner, L. Neise, and H. Stocker, Thermodynamics and Statistical
Mechanics. New York: Springer-Verlag, 1995.



492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 3, MARCH 2011

[28] R. F. Wiser, M. Zargari, D. K. Su, and B. A. Wooley, “A 5-GHz wire-
less LAN transmitter with integrated tunable high- RF filter,” IEEE
J. Solid-State Circuits, vol. 44, no. 8, pp. 2114–2125, Aug. 2009.

[29] C.-C. Ho, C.-W. Kuo, Y.-J. Chan, W.-Y. Lien, and J.-C. Guo, “0.13-
m RF CMOS and varactors performance optimization by multiple
gate layouts,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp.
2181–2185, Dec. 2004.

[30] “CMRF8SF Model Reference Guide,” IBM Microelectronics Divi-
sion, New York, Apr. 2007.

[31] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer,
“Quasi-phase-matched optical parametric oscillators in bulk peri-
odically poled LiNbO ,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 12, no.
11, pp. 2102–2116, Nov. 1995.

[32] G. M. Roe and M. R. Boyd, “Parametric energy conversion in dis-
tributed systems,” Proc. IRE, vol. 47, no. 7, pp. 1213–1218, Jul. 1959.

[33] R. Landauer, “Parametric amplification along nonlinear transmission
lines,” J. Appl. Phys., vol. 31, no. 3, pp. 479–484, Mar. 1960.

[34] R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee, M.
Mikhemar, W. Tang, and A. A. Abidi, “An 800-MHz–6-GHz soft-
ware-defined wireless receiver in 90-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 41, no. 12, pp. 2860–2876, Dec. 2006.

Wooram Lee (S’07) received the B.Sc. and M.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology,
Daejeon, Korea, in 2001 and 2003, respectively.
He is currently working toward the Ph.D. degree at
Cornell University, Ithaca, NY.
He was a Research Engineer with the Electronics

and Telecommunications Research Institute, Dae-
jeon, where he worked on optical transceivers and
links for wavelength-division-multiplexed passive
optical network (WDM-PON) from 2003 to 2007.

His research interests include high-performance RFIC design based on non-
linear electronics for low-noise parametric amplification, oscillation, and
terahertz pulse generation.
Mr. Lee received the IEEE Solid-State Circuits Predoctoral Fellowship for

2010–2011 and the Samsung Graduate Fellowship for 2007–2011. He was also
a recipient of the Best Paper Award of the IEEE Radar Conference in 2009 and
the Silver Medal at the National Physics Competition in 1996.

Ehsan Afshari (S’98–M’07) was born in 1979. He
received the B.Sc. degree in electronics engineering
from the Sharif University of Technology, Tehran,
Iran, and the M.S. and Ph.D. degrees in electrical
engineering from the California Institute of Tech-
nology, Pasadena, in 2003 and 2006, respectively.
In August 2006, he joined the Faculty in Elec-

trical and Computer Engineering, Cornell University,
Ithaca, NY. His research interests include high-speed
and low-noise integrated circuits for applications in
communication systems, sensing, and biomedical

devices.
Prof. Afshari serves as the Chair of the IEEE Ithaca section, the Chair of Cor-

nell Highly Integrated Physical Systems, and a member of the Analog Signal
Processing Technical Committee of the IEEE Circuits and Systems Society. He
was the recipient of Iran’s Best Engineering Student award by the President of
Iran in 2001, the Defense Advanced Research Projects Agency Young Faculty
Award in 2008, and the National Science Foundation CAREER award in 2010.
He was also the recipient of the Silver Medal in the Physics Olympiad in 1997,
the Best Undergraduate Paper Award in the Iranian Conference on Electrical
Engineering in 1999, the Best Paper Award in the Custom Integrated Circuits
Conference in September 2003, the Award of Excellence in Engineering Educa-
tion from the Association of Professors and Scholars of Iranian Heritage in May
2004, and the First Place at the Stanford–Berkeley–Caltech Inventors Challenge
in March 2005.


