
Received ; Revised ; Accepted

DOI: xxx/xxxx

RESEARCH ARTICLE

Low order stabilized finite element for the full Biot formulation in

Soil Mechanics at Finite Strain

Lluís Monforte1 | Pedro Navas*1 | Josep Maria Carbonell2 | Marcos Arroyo1 | Antonio Gens1

1Department of Geotechnical Engineering,

Universitat Politècnica de Catalunya -

BarcelonaTech, Campus Nord, Carrer Jordi

Girona, 1-3, 08034 Barcelona, Spain
2International Center for Numerical

Methods in Engineering (CIMNE),Campus

Nord, Carrer Jordi Girona, 1-3, 08034

Barcelona, Spain

Correspondence

* Pedro Navas. Email:

penavasal@hotmail.com

Summary

This article presents a novel finite element formulation for the Biot equation using

low-order elements. Additionally, an extra degree of freedom is introduced to treat the

volumetric locking steaming from the effective response of the medium; its balance

equation is also stabilized. The accuracy of the proposed formulation is demonstrated

by means of numerical analyses.
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1 INTRODUCTION

The mechanics of fully saturated porous media is relevant for many engineering applications. A fundamental aspect of that

mechanics is the description of couplings between the solid and fluid phases, for which several theoretical models have been

proposed. One of the most successful proposals has been that by Biot.1, who accepted the effective stress concept proposed by

Terzaghi, and extended its reach from quasi-static one-dimensional problems to a dynamic three-dimensional setting.

The Biot equations allow for several choices of primary variables. For solutions using the finite element method, Zienkiewicz

et al2,3 discuss alternative formulations. Some of these, denoted as u−ẇ−pw, u−U or u−U−pw are able to represent the whole

set of Biot equations (full Biot). Another, known as the u− pw or reduced formulation is valid only when fluid accelerations are

far smaller than those of the solid phase. Of those variables u and U represent, respectively, the absolute displacement vectors

of the solid skeleton and the fluid phase, w the relative displacement between the phases and pw the fluid pressure.

The reduced u− pw formulation- is not applicable to high-frequency loading, such as that resulting from impact events3. On

the other hand, it is used quite often, since many seismic applications fall within its remit and the formulation is simpler and,

having less degrees of freedom per node, computationally less demanding. This widespread use has brought much attention to

potential numerical problems that may arise during its solution and, particularly, the development of stable formulations.

Unstable elements manifest themselves in the numerical solution as over-stiffening of mechanical response and spurious

high spatial variability of the water pressure field, eventually leading to instability, non-uniqueness and mesh-dependence of

the solutions. This pathology appears when the problem conditions lead to incompressibility. For water-saturated soils this

is approximately the case in undrained conditions. The system of discretized equations for the u − pw formulation, has then

similar structure to that found when using a mixed u−p formulation of Solid Mechanics problems4. As the problem approaches

zero permeability and given the quasi-incompressilibity of the soil and water constituents, it may become ill-posed from a

mathematical point of view.

This numerical pathology is due to an improper finite-dimensional space in the finite element discretization and may be

identified using analytical tools such as the inf-sup condition5 or the patch-test. More importantly, it can be also avoided or

0Abbreviations: DME, Divergence of the Momentum Equation; PPP, Polynomial Pressure Projection; FiC, Finite Calculus
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alleviated using a variety of numerical strategies. Typically, those strategies have been first applied in single-phase fluid or solid

mechanics problems and later adapted to the coupled hydromechanical case.

An example is Finite Increment Calculus (FIC) which was first developed by Oñate to address to Fluid Dynamics and Solid

Mechanics problems 6,7 and later applied to the u − pw formulation 8,9. In this method, balance equations are expressed in a

space/time domain of finite size and higher-order terms in the Taylor series expansion are retained. The FIC form of the balance

equations contains derivatives of the classical differential equations multiplied by characteristic distances in space and/or time.

This approach adds significant complexity to the finite element discretization procedures.

Stable formulations may be also achieved with fractional step algorithms (split-operator methods); equations are solved in a

staggered fashion and the time integration algorithm provides stabilization4. This approach requires semi-explicit integration

steps that may significantly increase the computational burden.

Finally, the spurious modes that appear due to the failure to satisfy the inf-sup condition can be also addressed using simpler,

single-step monolithic solvers. Two main strategies are still possible: either to use more complex, but stable, finite elements

with different order interpolation of displacement and water pressure fields, or to apply stabilization procedures to originally

unstable finite elements10. Equal-order elements are preferable for various reasons. Numerical implementation is simpler when

the same shape functions are used for all variables11. Additionally, low order elements are preferred for its flexibility in adaptive

remeshing codes such as the Particle Finite Element method, which is typically reliant on linear elements12,13,14.

A variety of techniques have been employed for low-order finite element stabilization. Hafez and Soliman15 proposed to add

to the mass balance equation the divergence of the momentum equation; this technique was applied to the u−pw formulation by

Pastor et al10. Another technique is the Polynomial projection technique (PPP)16, that adds a term proportional to the projection

of the pressure in a lower order shape function. This technique was successfully applied to the u − pw first at small strains by

White y Borja 17 and later at finite strains by Sun et al.18.

Apart from undrained conditions, incompressibility may also arise in soil mechanics simply from the mechanical response of

the solid phase. This happens, for instance, when failure is reached in Critical State soil models. As noted in the literature19,18,

this response may lead to volumetric locking. Separate numerical techniques to treat this extra source of incompressibility are

required, and they have been addressed in models using the reduced u − pw formulation. Sun et al18,20 proposed a formulation

with an assumed deformation gradient, that has the F-bar method as a limiting case. Monforte et al21 examined three-field mixed

formulations in which either the effective pressure or the Jacobian were added as supplementary nodal variables and stabilization

techniques were employed in all scalar equations.

In contrast to the extensive work done with the reduced formulation, the development of equal-order stable formulations and

the consequent need for stabilization has received much less attention for the full Biot case. Jeremić et al22 employed a u−U−pw
formulation where the pore pressure variable was added for stabilization purposes. They addressed elasto-plastic problems with

a small strain formulation. They used elements with different interpolation order for pore pressure and other nodal variables and

did not note any spurious mode, although the focus of their work was mostly on seismic applications.

Markert et al23 presented a systematic comparison of different numerical approaches to the full set of poroelastic small

strain equations. They explored high order elements, in which the mixture motion variables were described with second order

interpolants and first order shape functions were used for the fluid variables (relative velocity and pressure). They compared

with simpler elements in which linear interpolants were used for all the variables. They found that in low permeability cases

equal order interpolants yielded an inaccurate displacement solution and a completely wrong pore pressure field. They explored

an split-operator stabilization technique for the equal order elements, as well as a variety of time integration rules.

Sabetamal et al24,25 studied the impact of objects into the soil using a u − ẇ − pw formulation. An arbitrary Lagrangian-

Eulerian method with high order elements was used for the solution. The field equations were extended to large strain through

an hypoelastic approach. Finally, it is worth mentioning that Navas et al26,27 also presented a numerical solution for the full Biot

equations at large strains, using the u−w formulation. The equations were solved using a meshfree method in which the shape

functions are based on the principle of Local Maximum Entropy.

This work presents a methodology to solve the full Biot poroelastic equations at large strains using a finite element mesh with

low order elements. The motivation lies in extending the range of geotechnical applications of the Particle Finite Element Method

(PFEM) to cover high frequency problems, such as impact loading. PFEM was originally developed to address fluid-structure

interaction problems12,28 and has been later adapted to study soil-structure interaction14,29. A cornerstone of PFEM is frequent

re-meshing for which low order elements are very advantageous. The elements employed have equal order interpolation for all

the nodal basic variables, chosen as the mixture displacement, water relative displacement and water pressure, a formulation

with shorthand u −w − pw, resulting in a P1-P1-P1 element.
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The focus of this work lies on the stabilization techniques that are incorporated in the solution to avoid pore pressure spurious

oscillations. Two techniques, namely polynomial pressure projection (PPP) and divergence of momentum (DME),are imple-

mented and tested. They both allow for a monolithic (i.e. non-staggered) solution of the field equations. Apart from that, and to

mitigate the volumetric locking that may arise from the solid phase response a mixed stabilized formulation previously applied

to the simplified u − pw formulation21 is extended to the dynamic range.

This paper is structured as follows: first, the field equations are presented. The equations are then discretized in space by Finite

Elements and in time using a Newmark scheme; a consistent linearization scheme is presented for numerical integration. The

applied stabilization techniques are then presented in detail, developing a new formula to bound the stabilization parameter in

the PPP stabilizing term. The performance of the developed numerical scheme is assessed with 1-D and 2-D numerical analyses

of some representative poroelastodynamic problems. Finally, a number of conclusions are drawn.

2 MATHEMATICAL MODEL

2.1 Strong form of the balance equations

Let v and vw represent, respectively, the absolute velocity vectors of the solid skeleton and the fluid phase. The relative velocity

of the fluid phase with respect to the solid one, ẇ, is expressed as

ẇ = n
(

vw − v
)

, (1)

where n is the soil porosity. The term (vw − v) is also sometimes denoted as vws 30. Let �, �w and �s respectively represent the

mixture, fluid phase and solid particle densities, related through:

� = n�w + (1 − n)�s. (2)

whereas the porosity is related to the initial porosity, n0, and the determinant of the deformation gradient, J , through:

n = 1 −
1 − n0
J

(3)

The mass balance equation for fluid-saturated porous media with compressible solid grains and water phase may be expressed

as30:

div(u̇) + div(ẇ) +
1

Q

[
ṗw + grad pw ⋅

ẇ

n

]
= 0 (4)

where pw is the Cauchy water pressure, u̇ =
du

dt
and ẇ =

dw

dt
are the material time derivatives with respect to the solid phase of u

and w. Q stands for the Biot modulus or mixture compressibility modulus, related to the solid and liquid phase compressibility,

Ks and Kw through:

Q =

[
1 − n

Ks

+
n

Kw

]−1
(5)

The linear momentum balance equation for the mixture reads:

div [�] − �ü − �w(ẅ + gradU̇ ⋅ ẇ) + �g = 0 (6)

Finally, the relative velocity of the fluid, ẇ, is constrained by Darcy’s law as30,3

ẇ = n vws = k ⋅
[
−grad pw + �w(g − ü − aws)

]
(7)

where g represents gravity, vws stands for the relative water velocity with respect to the solid phase, ü and aws are the solid

acceleration and the relative water acceleration with respect to the solid respectively, k = kI is the permeability tensor, that

is further related to the intrinsic permeability, k′ expressed in [m2] and the hydraulic conductivity, � [m/s], by the following

equation

k =
k′

�w

=
�

�wg
. (8)

where �w is the fluid viscosity.

Taking into account the definition of the fluid acceleration, the time derivative of the relative water velocity:

aws = v̇ws + grad(u̇ + vws) ⋅ vws (9)



4 MONFORTE ET AL

the following expression for the Darcy’s equation, Equation (7), may be obtained:

−grad pw − k−1
⋅ ẇ + �w

(
g − ü −

ẅ + gradU̇ ⋅ ẇ

n

)
= 0 (10)

According to the principle of effective stress, the total stress tensor, �, is equal to the sum of the pore pressure, pw, and the

effective stress, �′:

� = �′ − pw I (11)

where �′ = �̂′(F , V ) is the effective Cauchy stress tensors (positive in tension), that depends on the constitutive model through

the deformation gradient, F , and a set of internal variables of the model, V .

The previously presented balance equations, Equations (4), (10) and (6), include some terms that are generally omitted30,3.

For instance, the last term of Equation (4),
1

Q
grad pw ⋅

ẇ

n
, stems from the convective derivative (with respect to the solid phase)

of the change of water density; this effect may be assumed negligible for soil mechanics applications3. Keeping these terms

in the overall numerical formulation would just add some extra terms to the finite element mass and damping matrices; this

more complete model would also suffer from the same kind of instabilities than appear in the formulation without convective

terms and it is presumed that the stabilizing solutions developed here would also be benefitial in that case. As such, the balance

equations can be simplified to:

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div
[
�′ − pw I

]
− �ü − �wẅ + �g = 0

−grad pw − k−1
⋅ ẇ + �w

(
g − ü −

ẅ

n

)
= 0

div(u̇) + div(ẇ) +
1

Q
ṗw = 0

u = u in Γu

� ⋅ n = t in Γt

w = w in Γw

pw = pw in Γpw

(12)

where Γu and Γt defines the boundary of the domain where displacements u and tractions t are prescribed. Water pressure pw
and water velocity w are imposed at Γpw

and Γw.

2.2 Discretized system of equations

This subsection presents the numerical treatment of the balance equations. First, the weak form of the balance equations is

obtained to introduce the finite element spatial discretization. The semi-discrete equations are then temporally integrated with a

Generalized-Newmark scheme.

2.2.1 Weak form and spatial discretization

The derivation of the weak form of the problem defined by Equations (12) starts by multiplying the local balance equations by

tests functions (being �u, �w and �pw the virtual displacement of the solid and the fluid phase and the virtual pore pressure

respectively) and integrating over the domain. For the linear momentum balance equation this procedure gives:

∫
Ω

�u ⋅
[
div (�) − �ü − �wẅ + �g

]
dΩ = 0 (13)

Applying Green’s Theorem, Equation (13) yields:

∫
Ω

�u ⋅
[
−�ü − �wẅ + �g

]
dΩ − ∫

Ω

� ∶ grad�u dΩ + ∫
Γt

t ⋅ �u d
 = 0 (14)

This equation can be rearranged taking into account Terzaghi’s principle of effective stress:

∫
Ω

�u ⋅
[
−�ü − �wẅ + �g

]
dΩ − ∫

Ω

�′ ∶ grad�u dΩ + ∫
Ω

pwdiv�u dΩ + ∫
Γt

t ⋅ �u d
 = 0 ∀ �u ∈ u(Ω) (15)
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The case of the fluid linear balance equation is seen following:

−∫
Ω

grad(pw) ⋅ �w dΩ − ∫
Ω

ẇ ⋅ k−1 ⋅ �w dΩ + ∫
Ω

�w

(
g − ü −

ẅ

n

)
⋅ �w dΩ = 0 ∀ �w ∈ w(Ω) (16)

Finally, the weak form of the mass conservation law yields:

∫
Ω

div(u̇) ⋅ �pw dΩ + ∫
Ω

div(ẇ) ⋅ �pw dΩ + ∫
Ω

ṗw
Q

⋅ �pw dΩ = 0 ∀ �pw ∈ pw(Ω) (17)

where, in Equations (15), (16) and (17), the solution fields belong to the spaces: u ∈ u(Ω), w ∈ w(Ω) and pw ∈ pw
(Ω), that

are defined as:

u(Ω) =
{
u | u ∈

[
H1(Ω)

]n
, u = u in Γu

} u(Ω) = {
u | u ∈

[
H1(Ω)

]n
, u = 0 in Γu

}

w(Ω) =
{
w |w ∈ H(div,Ω), w = w in Γw

} w(Ω) = {
w |w ∈

[
L2(Ω)

]n
, w = 0 in Γw

}
(18)

pw
(Ω) =

{
pw | pw ∈ H1(Ω), pw = pw in Γpw

} pw(Ω) =
{
pw | pw ∈ L2(Ω), pw = 0 in Γpw

}

where H1(Ω) is the space of square integrable functions whose gradients are also square integrable, L2(Ω) is the space of

square integrable functions whereas H(div,Ω) is the space of square integrable vector functions whose divergence is also square

integrable.

The derivation presented above is slightly different to that followed by previous researchers. For instance Markert et al23 first

introduce the effective stress principle in the weak form of the linear momentum balance equation, Equation (13) and afterwards

apply Green’s Theorem only to the effective stress term; by doing this, the traction due to the effective response of the material is

imposed in the Neumann part of the boundary and special procedures to impose the traction due to the total stress are required.

In this work the divergence theorem is not applied to the weak forms of the mass balance and Darcy’s equations, Equations (16)

and (17). This results in another difference with the work of Markert et al23 and Sabetamal et al24,25 who apply that theorem

and obtain different weak forms. In particular, they arrive to the following mass balance equation23,24,25:

∫
Ω

div(u̇) ⋅ �pw dΩ − ∫
Ω

ẇ ⋅ grad �pw dΩ + ∫
Ω

ṗw
Q

⋅ �pw dΩ + ∫
Γg

�pw(n ⋅ ẇ) d
 = 0 (19)

where the last term appears due to the application of the Divergence theorem and represents the imposed normal water flux at

the boundary Γw. However, this flux is also imposed as Dirichlet boundary conditions in the Darcy’s equation, Equation (16).

However, it seems unnecessary to specify the normal flux boundary condition twice: as a boundary integral in the mass balance

equation and as Dirichlet conditions in the Darcy’s equation. Using the same rationale, it can be seen also that is not necessary

to apply the Divergence theorem to Darcy’s equation, Equation (16).

It is worth mentioning that applying the Divergence theorem to the first term of the fluid linear balance equation, Equation (16),

the balance equations do not involve any gradient of the water pressure field31,32. Therefore, it is no longer necessary to have

a water pressure field whose gradients are square integrable. By doing so, displacements, Darcy’s velocity and pore pressure

may be discretized using linear triangles, lowest order Raviart-Thomas and piece-wise constant shape functions respectively,

which allows for element-wise mass conservation31,32. In the undrained limit, this element is unstable and exhibit pore pressure

oscillations, that might be solved by employing a quadratic discretization for the skeleton displacement33.

After obtaining the weak form of the balance equations, Eqs. (15), (16) and (17), the semi-discrete equations of the hydrome-

chanical formulation are obtained. In this work, linear and equal shape functions are used for all the field variables: solid

displacement, water relative displacement and water pressure. In particular, for two-dimensional problems, three-nodded linear

triangles are used, that have 5 degrees of freedom at each node. Consequently, the continuous spaces of functions of the solution

and test functions, Equation (2.2.1), are discretized into the discrete functional spaces:

ℎ
u (Ω) =

{
u | u ∈

[(Ω, ℎ)]n , u = u in Γu

}  ℎ
u (Ω) =

{
u | u ∈

[(Ω, ℎ)]n , u = 0 in Γu

}

ℎ
w(Ω) =

{
w |w ∈

[(Ω, ℎ)]n , w = w in Γw

}  ℎ
w (Ω) =

{
w |w ∈

[(Ω, ℎ)]n w = 0 in Γw

}
(20)

ℎ
pw
(Ω) =

{
pw | pw ∈ (Ω, ℎ), pw = pw in Γpw

}  ℎ
pw
(Ω) =

{
pw | pw ∈ (Ω, ℎ), pw = 0 in Γpw

}

where (Ω, ℎ) =
{
u | u ∈ C0(Ω), u|Ωe

∈ P1(Ωe) ∀Ωe ∈ ℎ}, P1(Ωe) is the space of linear polynomials in Ωe and ℎ is a

partition of Ω made of non-overlapping elements Ωe.
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The interpolants employed are:

⎧⎪⎨⎪⎩

u ≈ uℎ = Nu ⋅ ũ

w ≈ wℎ = Nu ⋅ w̃

pw ≈ pℎw = N ⋅ p̃w

(21)

where □ℎ represents the finite element approximation of the field □ and □̃ the nodal values. N = [N1, N2, ..., Nm] and Nu =

[N1I, N2I, ..., NmI] are the shape functions and m is the number of nodes. Since the shape functions are defined in the reference

configuration and time independent, N = N(X), the following property holds: □̇ℎ = N ⋅ ̇̃□.

Therefore, the semi-discrete form of the hydromechanical formulation, Equations (12), is given by:

⎧
⎪⎪⎨⎪⎪⎩

f int(���′) −Q ⋅ p̃w +Ms ⋅ ̈̃u +Mw ⋅ ̈̃w = f exts

R ⋅ p̃w +Mk ⋅
̇̃w +Mw ⋅ ̈̃u +

1

n
Mw ⋅ ̈̃w = f extw

QT ⋅ ̇̃u +QT ⋅ ̇̃w +
1

Q
Mp ⋅

̇̃pw = 0

(22)

The matrices appearing of the previous expression are given by:

f int(���′) = ∫
Ω

BT ⋅ ���′ dΩ (23)

Q = ∫
Ω

BT ⋅ I ⋅ N dΩ (24)

R = ∫
Ω

NT
u ⋅ ∇N dΩ (25)

Mk = ∫
Ω

NT
u ⋅ k−1 ⋅ Nu dΩ (26)

Mp = ∫
Ω

NT ⋅ N dΩ (27)

M� = �� ∫
Ω

NT
u ⋅ Nu dΩ (28)

where B has the same form that the small deformation strain-displacement matrix34 and ��� represents the Voigt notation of ���.

Finally, the expressions of the external forces, f ext� are:

f exts = ∫
Ω

�s N
T
u ⋅ g dΩ + ∫

Γt

NT
u ⋅ t , d
 (29)

f extw = ∫
Ω

�w NT
u ⋅ g dΩ (30)

In matrix form, the system of equations defined by Equation (22) yields:

⎡
⎢⎢⎢⎣

Ms Mw 0

Mw 1

n
Mw 0

0 0 0

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

̈̃u
̈̃w
̈̃pw

⎤⎥⎥⎦
+

⎡
⎢⎢⎢⎣

0 0 0

0 Mk 0

QT QT 1

Q
Mp

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

̇̃u
̇̃w
̇̃pw

⎤⎥⎥⎦
=

⎡⎢⎢⎣

f exts

f extw

0

⎤⎥⎥⎦
−

⎡⎢⎢⎣

f int(���′) −Q ⋅ p̃w
R ⋅ p̃w

0

⎤⎥⎥⎦
(31)

2.2.2 Time integration scheme

In the u −w − pw formulation here employed, each node contains both solid and fluid displacement degrees of freedom, u and

w, as well as the pore pressure, pw. That can be written as:

û =
[
ũ w̃ p̃w

]T

After assembling the elementary matrices, the final system of equations (31) may be expressed as

M ̈̂uk+1 + C ̇̂uk+1 = P k+1 −Rk+1 (32)
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where R, C and M respectively denote the internal forces vector and damping and mass matrices, whereas P is the external

forces vector, which contains gravity and other external nodal forces. k + 1 indicates the current step.

An implicit monolithic solver is used for time integration of Eq. (32). According to Wriggers 35 time integration schemes

may be generally written in terms of the incremental displacements, i.e.

̈̂uk+1 = �1Δûk+1 − �2 ̇̂uk − �3 ̈̂uk (33)

̇̂uk+1 = �4Δûk+1 + �5 ̇̂uk + �6 ̈̂uk (34)

For the Newmark method,35 these coefficients yield:

�1 =
1

�Δt2
�2 =

1

�Δt
�3 =

1

2�
− 1

�4 =



�Δt
�5 = 1 −




�
�6 =

(
1 −




2�

)
Δt

Where 
 and � are the traditional parameters of the Newmark method. Based on the parametric analysis of Kontoe et al.36,

in the present work the values 
 =0.6 and � =0.3025 are employed. Inserting Eqs. (33-34) in Eq. (32), it follows that:

Gk+1 = M
[
�1Δûk+1 − �2 ̇̂uk − �3 ̈̂uk

]
+ C

[
�4Δûk+1 + �5 ̇̂uk + �6 ̈̂uk

]
+Rk+1 − P k+1 = 0 (35)

Any Newton method can be applied to determine the unknown displacements35. As known, the tangential stiffness matrix

corresponds to the derivative of the internal forces, i.e.

K(ûik+1) = K i
k+1 =

)R

)û

||||ûik+1
(36)

Where i represents the iteration index. Collecting terms the iteration scheme may be written as
[
�1M + �4C +K i

k+1

]
Δûi+1k+1 = −G(ûik+1) (37)

where ûi+1k+1 = ûik+1 + Δûi+1k+1

The iteration finishes when Gi
k+1 is lower than a given tolerance.

2.2.3 Linearization

In the solution of the non-linear equations, Taylor’s series are employed in the current configuration. After the linearization of

the deformation mapping � , Eq. (35) becomes:

G(� , �,Δû)i+1
k+1

≅ G(� , �)ik+1 +DG(� , �)ik+1 ⋅ Δû
i+1
k+1 = 0 (38)

where � is the mapping � = [�u,�w,�pw]T defined as:

⎧
⎪⎨⎪⎩

x = �u = �u(X, t)

w = �w = �w(X, t)

pw = �pw = �pw(X, t)

(39)

and � =
[
�u, �w, �pw

]T
Taking into account the fact that operator G is composed in three parts, the derivatives take the following form:

DG ⋅ Δû =

⎡⎢⎢⎣

DGLMS ⋅ Δu +DGLMS ⋅ Δw +DGLMS ⋅ Δpw
DGLMW ⋅ Δu +DGLMW ⋅ Δw +DGLMW ⋅ Δpw
DGMBE ⋅ Δu +DGMBE ⋅ Δw +DGMBE ⋅ Δpw

⎤⎥⎥⎦
, (40)

where DGLMS , DGLMW and DGMBE represent the derivative of the linear momentum equations Eq. (15) and Eq. (16) of the

solid phase and the fluid phase respectively and the derivative of the mass balance equation Eq. (17).

Rewritting Eq. (35) to separate the current (k+1) and previous (k) terms, since the later ones are not susceptible of linearization

as they are constants that come from the previous step, we obtain:

Gk+1 =
[
�1M + �4C

]
ûk+1 +R(ûk+1) − P k+1

+
[
�1Mûk − �2M ̇̂uk − �3M ̈̂uk

]
+
[
�4Cûk + �5C ̇̂uk + �6C ̈̂uk

]
(41)
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Consequently, after integration in time, Equations (15), (16) and (17) are written at time k+1 following Eq. (41) in order to be

derived and linearized:

−�1 ∫
Ω

�u ⋅
[
�u + �ww

]
dΩ − ∫

Ω

�′ ∶ grad�u dΩ + ∫
Ω

pwdiv�u dΩ + ∫
Ω

�u ⋅ �g dΩ + ∫
Γt

t ⋅ �u d
 = 0 (42)

−∫
Ω

grad(pw) ⋅ �w dΩ − �4 ∫
Ω

w ⋅ k−1 ⋅ �w dΩ − �1 ∫
Ω

�wu ⋅ �w dΩ − �1 ∫
Ω

�w
w

n
⋅ �w dΩ + ∫

Ω

�wg ⋅ �w dΩ = 0 (43)

�4 ∫
Ω

div(u) ⋅ �pw dΩ + �4 ∫
Ω

div(w) ⋅ �pw dΩ + �4 ∫
Ω

pw
Q

⋅ �pw dΩ = 0 (44)

The results of the linearization process are given in Eqs. (A23), (A24) and (A25) of the Appendix A, where the details are

also described.

An interesting result that will be used later, is that, neglecting second order terms, the matrix of the linear system to be solved

is:

⎡
⎢⎢⎢⎣

Kmat + �1M
s �1M

w Q

�1M
w �4Mk +

�1
n
Mw −R

�4Q
T �4Q

T �4
Q
Mp

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

Δũ

Δw̃

Δp̃w

⎤⎥⎥⎦
= −G(û) (45)

where:

Kmat = ∫
Ω

BT
⋅ cep ⋅ B dΩ (46)

and cep is the material constitutive matrix.

3 STABILIZATION OF THE DISCRETE SYSTEM OF EQUATIONS

In this section the stabilization techniques employed to mitigate the problems caused by low order elements are detailed. The

techniques carried out for both phases are treated separately; the stabilization of the mass balance equation, 3.1, is proposed

for the improvement of the behavior of the water phase, meanwhile the solid pressure is stabilized through the volumetric

deformation, 3.2.

3.1 Stabilization of the mass balance equation

To motivate the need for stabilization in the developed u−w− pw formulation, Equation 35, let us follow the reasoning exem-

plified by Zienkiewicz & Taylor34. Assuming incompressible constituents, the Biot modulus Q is large. Under that assumption

the weak form of the mass balance equation given by Equation (19), (which is equivalent to Equation (17)) is considered, and

Equation (45) reduced to:
⎡⎢⎢⎢⎣

Kmat + �1M
s �1M

w −Q

�1M
w �4Mk +

�1
n
Mw −R

�4Q
T −�4R

T 0

⎤⎥⎥⎥⎦

⎡
⎢⎢⎣

Δũ

Δw̃

Δp̃w

⎤
⎥⎥⎦
= −G(û) (47)

which has the same formal structure than that of optimization problems in which constraints are imposed by the method of

Lagrange multipliers. As such, in order to have a non-singular system and, consequently, a water pressure field free of spurious

oscillations, the following conditions must be fulfilled:

nu ≥ npw nw ≥ npw (48)

being nu, nw and npw the number of degrees of freedom for displacement, water displacement and water pressure fields. In addition

to the usual condition required in the for the u−pw problem, nu ≥ npw (see, for instance, Pastor et al37), and additional condition

arises from the Darcy’s problem: nw ≥ npw . These conditions, although necessary, are not sufficient and must be fulfilled in any
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assembly of elements of the mesh34,37. A more rigorous study of the stability conditions of the three-field formulation may be

found elsewhere38.

Using a u − pw formulation, it is well known that the pore pressure field tend to exhibit oscillations, which tend to increase

when the time step is reduced39. As shown in the one-dimensional (Terzhagi’s equation) analysis of the discrete equations, the

use of implicit time-integration scheme produce a stiffness matrix whose eigenvalues are positive and, consequently, the overall

algorithm is unconditionally stable. However, the water pressure field may exhibit oscillations if the time step is smaller than:

Δt ≤ ℎ2

6 cv
(49)

where cv = M k is the coefficient of consolidation,M is the constrained modulus and ℎ the element size. By numerical examples,

it can be shown that this limit also applies to two- and three-dimensional analysis39,40.

On the contrary, the structure of the system matrix, Equation (47), allows to hypothesize that the u−w−pw formulation may

suffer spurious spatial oscillations of the water pressure field irrespectively of the oedometric modulus and the time-step. The

reason beneath this fact is that the system matrix of the u −w − pw formulation always has the same form that the Lagrangian

problem (irrespectively of the value of the permeability); differently, using the u−pw formulation, the term Kpwpw
is significantly

different from zero when the permeability or the time-step are large (i.e, when the time-step is larger than the critical time-step

depicted in Equation (49)) .

3.1.1 Polynomial pressure projection

The Polynomial Pressure Projection (PPP) stabilization method has been originally developed to stabilize Stokes equations41,16

and has also been applied to stabilize the u − p mixed formulation of Solid Mechanics42 and the simplified u − pw formulation

in Soil Mechanics18,17,21. The technique has two main ingredients:

1. A mixed equal order interpolation of the scalar and vector fields.

2. A L2 projection of the scalar variables.

Stabilization is achieved by adding to the mass balance equation a term proportional to the difference between the water

pressure field and its projection to a polynomial of lower order. Unlike other stabilization methods, high-order derivatives are

not required and it can be implemented at element level. Given a function p ∈ L2, the L2 projection operator p̆ ∶ L2 → Q0 is

defined by

∫
Ω0

�q̆ (p − p̆) dΩ0 = 0 ∀�q̆ ∈ Q0 (50)

where p̆ is the best approximation of the pressure p in the space of polynomials of order (Q0).

Then, the stabilization term reads:

∫
Ωe

0

(�q − �q̆) � (p − p̆) dΩ0 = ∫
Ωe

0

� (�q p − �q̆ p̆) dΩ0 (51)

where � is the stabilization parameter. As shown in Appendix B, this parameter may be estimated through:

� =

{
2

M
+

2

Q
−

�




12Δt k

ℎ2
if Δt ≤ 


�

ℎ2

6

(
1

cv
+

1

kQ

)

0 other cases
(52)

that is, it depends on the coefficient of consolidation, cv, the element size, ℎ, and the time integration method through the time

step, Δt, and Newmark parameters, � and 
 .

3.1.2 Stabilization with the Divergence of Momentum Equation (DME)

In the context of Computational Fluid Dynamics, several stabilization techniques have been proposed. On the one hand, Brezzi

and Pitkaranta43 proposed to add, in the Kpp position (the position equivalent to Kpwpw
of the current formulation), the term:

ℎ ∫
Ω

(∇N)T ⋅ ∇N dΩ (53)
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Interestingly, this term tends to zero as the mesh is refined; thus, consistency is preserved. Later, Hughes et al11 introduced

developed an stabilization technique based on Petrov-Galerkin; the key idea is adding a term proportional to the product of

the linear momentum equation by
ℎ2

2�
∇N to the mass balance equation. On the other hand, Hafez and Soliman15 proposed to

stabilize the Navier-Stokes equations by adding the divergence of the momentum equation to the mass balance equation. This

method has been adapted to the hydromechanical problem in quasi-static conditions (u−pw formulation) by Pastor et al37. That

work is here extended to a formulation valid for the full Biot equations.

In our case, the divergence of the time derivative of the linear momentum balance equation of the mixture, multiplied by the

parameter �, yields:

�
[
∇ ⋅

(
∇ ⋅ �̇′

)
− ∇ ⋅

(
∇ṗw

)
− �∇ ⋅

dü

dt
− �w∇ ⋅

dẅ

dt

]
= 0 (54)

The divergence of the time derivative of the linear momentum balance equation of the fluid, necessary in subsequent

derivations, can be written as:

−∇ ⋅
(
∇ṗw

)
−

1

k
∇ ⋅ ẅ − �w∇ ⋅

dü

dt
−

�w
n
∇ ⋅

dẅ

dt
= 0 (55)

The second time derivative of the mass balance equation allows us to get the last terms of Eqs. (54) and (55):

∇ ⋅
dü

dt
+ ∇ ⋅

dẅ

dt
+

1

Q

dp̈w
dt

= 0 (56)

Considering that the mixture compressibility, Q, is large, the last term can be neglected and the following relationship may

be found:

−∇ ⋅
dü

dt
= ∇ ⋅

dẅ

dt
(57)

yielding Eqs. (54) and (55):

�
[
∇ ⋅

(
∇ ⋅ �̇′

)
− ∇ ⋅

(
∇ṗw

)
+ (� − �w)∇ ⋅

dẅ

dt

]
= 0 (58)

�w
n − 1

n
∇ ⋅

dẅ

dt
= ∇ ⋅

(
∇ṗw

)
+

1

k
∇ ⋅ ẅ (59)

Thus, the divergence of time derivative of ẅ in Eq. (58) can be substituted with the definition of the Eq. (59), allowing us to

obtain the equation:

�

[
∇ ⋅

(
∇ ⋅ �̇′

)
− ∇ ⋅

(
∇ṗw

)
+

� − �w
�w

n

n − 1

(
∇ ⋅

(
∇ṗw

)
+

1

k
∇ ⋅ ẅ

)]
=

�
[
∇ ⋅

(
∇ ⋅ �̇′

)
− ∇ ⋅

(
∇ṗw

)]
+ �∇ ⋅

(
∇ṗw

)
+

�

k
∇ ⋅ ẅ (60)

where � = �
� − �w
�w

n

n − 1
.

The first term can be approximated by using different computational techniques (see44). However, it is interesting to note that

the hypothesis of constant total stress over time, �̇ = 0, yields: ∇ ⋅ (∇ ⋅ �̇) = ∇ ⋅
(
∇ ⋅ �̇′ − ∇ṗw

)
= 0. Finally, the stabilization

term to add to the mass balance equation reads:

�∇ ⋅
(
∇ṗw

)
+

�

k
∇ ⋅ ẅ (61)

Pastor and coworkers proposed the following definition of the parameter �:

� = �0
Δt2crit
�

(62)

where Δt2crit is the critical time step employed in order to capture the P wave in the drained material taking into account the

element size ℎ and the characteristic P-wave velocity, Vc . Rearranging (62) we obtain:

� = �0
ℎ2

V 2
c �

= �0
ℎ2

M

�
�
= �0

ℎ2

M
→ � = �0

ℎ2

M

� − �w
�w

n

n − 1
(63)

After applying the finite element discretization to the proposed stabilization technique, Equation (61), the semi-discrete

equation to be added to the balance equations, Equation (31), reads:

�Ks
p ⋅

̇̂pw +
�

k
QT

⋅ ̈̂w (64)

where

Ks
p = ∫

Ω

(∇N)T ⋅ ∇N dΩ (65)
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3.2 Stabilization of solid induced volumetric locking

Stabilized mixed formulations have been proposed for hydromechanical problems to mitigate solid induced volumetric locking

under quasi-static conditions (u − pw formulation); see, for instance, Sun et al18,20 and Monforte et al21. In this work the so-

called u−�−pw mixed formulation presented by Monforte et al21 is extended to the dynamic range, resulting in a u−�−w−pw
formulation. The gist is quite simple: first, a new variable (�) is introduced to approximate volumetric deformation and then

employed to define an assumed deformation gradient; second, the constitutive model is evaluated with this newly introduced

assumed deformation gradient. Using this scheme the usual form of strain-driven stress integration schemes may be maintained

without modification.

The strong form of the u − � −w − pw formulation reads:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

div
(
�̆′ − pw I

)
− �ü − �wẅ + �g = 0

J − � = 0

−grad pw − k−1
⋅ ẇ + �w

(
g − ü −

ẅ

n

)
= 0

div(u̇) + div(ẇ) +
1

Q
ṗw = 0

(66)

where J = det(F ) is the determinant of the deformation gradient and �̆′ = �̂′(F̆ , V ) is the Cauchy stress tensor evaluated with

the assumed deformation gradient, F̆ . Initial and boundary conditions are analogous to those in Equations (12) and not written

for brevity.

The assumed deformation gradient, F̆, is defined as:

F̆ = F̆v ⋅ Fd = (�
1

3 1)
⏟⏟⏟

F̆v

⋅ (det(F)−
1

3F)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Fd

=

(
�

det(F)

) 1

3

F (67)

That is, the deviatoric part of the deformation gradient, Fd , is preserved whereas the volumetric part, F̆v, is replaced with the

� variable. Note that in this formulation the Cauchy stress tensor depends on the displacements and on the Jacobian. Despite

that, the usual form of strain-driven stress integration schemes is completely suitable for this formulation.

For plane strain conditions, the assumed deformation gradient, Equation (67), has to be redefined to guarantee that the out

of plane component of the deformation is equal to unity. As in the F-method (F-bar method), the two-dimensional assumed

deformation gradient is then45,46:

F̆2D =

(
�

det(F)

) 1

2

F2D (68)

And the constitutive model is evaluated with the three dimensional assumed deformation gradient:

F̆CL =

(
F̆2D 0⃗T

0⃗ 1

)
(69)

The use of a mixed formulation is not enough by itself to mitigate the high amplitude oscillations in the effective mean

stress field if equal order interpolants are used for all the variables. Therefore a stabilization technique is also required here. For

simplicity, PPP is also used, thus adding a stabilization term to the volume deformation balance equation. As such, the final

form of the semi-discrete finite element equations of the u − � −w − pw reads:

⎡⎢⎢⎢⎢⎣

Ms 0 Mw 0

0 0 0 0

Mw 0
1

n
Mw 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

̈̃u
̈̃���
̈̃w
̈̃pw

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 Mk 0

QT 0 QT 1

Q
Mp

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

̇̃u
̇̃���
̇̃w
̇̃pw

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

f exts − f int(�̆��′) +Q ⋅ p̃w
f� − (M� + ��M

s
�
) ⋅ �̃��

f extw − R ⋅ p̃w
0

⎤⎥⎥⎥⎥⎦
(70)

where the stabilization factor for the volume deformation balance equation is �� and:

f� = ∫
Ωt

NT dΩt (71)
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M� = ∫
Ω

NT ⋅ N
1

J
dΩ (72)

Ms
� = ∫

Ω

NT ⋅ N
1

J
dΩ − ∫

Ω

N̆T ⋅ N̆
1

J
dΩ (73)

where N̆ are the set of polynomials introduced in Equation (51); in the case of linear triangles, these local element polynomials

are N̆e = [1∕3, 1∕3, 1∕3].

Time integration of the stabilized balance equations, Equation (70) follows the scheme describe above (section 2.2.2) for the

u −w − pw formulation.

4 REPRESENTATIVE NUMERICAL SIMULATIONS

The methodology described in the previous sections has been incorporated into G-PFEM, a code developing geotechnical

applications of PFEM (Monforte et al.14,21,29). G-PFEM is implemented into Kratos (Dadvand et al.47), an object-oriented multi-

disciplinary open-access platform for development of numerical analysis tools. Several numerical examples were run to test the

capabilities of the newly implemented algorithms, with a particular focus on the performance of the stabilization techniques.

The numerical test cases were selected to allow validation against analytical solutions or, at least, comparison with previously

published results of similar codes.

The examples explore a large range of coupled dynamic problems. This can be visualized (Figure 1 ) in a plane spanned by

the dimensionless variables Π1 and Π2, defined as:

Π1 = k
M +Q

! H2
T

, Π2 =
!2 H2

T
�

M +Q
(74)

where ! is the angular velocity of the load, HT is the column height and M and Q represent the constrained modulus of the

soil and the bulk modulus of the mixture respectively. For given problem dimensions Π1 and Π2 are mostly controlled by the

permeability of the soil and the loading frequency, respectively.

These dimensionless variables were introduced by Zienkiewicz and coworkers 48 to analyze a problem of one-dimensional

dynamic consolidation under harmonic loading. As a result zones in the plane Π1 and Π2 were drawn to indicate the range of

application of different simplifications of Biot equations (Figure 1 ). Zone I would correspond to quasi-static conditions, in

which inertial terms made little difference. Zone II to conditions in which relative fluid-solid acceleration could be neglected

and the u − pw formulation was appropriate. In zone III a full Biot formulation was necessary. The analysts also indicated that

Π1 values above 1e2 were indicative of drained conditions and below 1e-2 of undrained conditions. Recently Navas et al.49,50

using a meshfree method at large strain have observed that this zoning scheme is also valid for two-dimensional problems.

4.1 Soil column: ramped-loading case

The first example corresponds to semi-instantaneous (ramped) loading at the upper boundary of a soil column. This, of course, is

the loading condition for the incremental-loading oedometer test, which in the classical analysis by Terzaghi is solved neglecting

inertial terms. This provides an analytical solution, useful as a reference. However, differences are to be expected, as the proposed

methodology should capture the shock dynamics associated with this kind of loading, which are ignored in the classical analysis.

Indeed, a well-known consequence of Biot theory1,51 is the apparition of two separate longitudinal modes of wave propagation.

For the first one, the fastest, porous skeleton and the interstitial fluid move in phase, so that it can be captured by simplified

formulations, in which relative acceleration of fluid phase is ignored. The opposite is true for the second wave, known also as

Biot slow wave, in which solid and interstitial fluid move essentially out of phase. Verruijt52 gives the following expressions for

the wave velocities of the two longitudinal modes:

c2
1
=

M +Q

�
, c2

2
=

⎡⎢⎢⎣

nM

Q

1 − n + M

Q

⎤⎥⎥⎦
Q

�w
(75)

Two cases are presented, with increasing speed of load application.
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FIGURE 1 Location of each numerical example within the Zienkiewickz et al.48 dimensionless plane.

TABLE 1 Material parameters of the ramped-loading consolidation problem (Sections 4.1.1 and 4.1.2)

Section E [MPa] � Kw [MPa] Ks [MPa] n � [m/s] �w [kg/m3] �s [kg/m3]

4.1.1 4.0 0.2857 104 1034 0.363 10−7 1000 2700

4.1.2 5.0⋅103 0.0 2.0⋅103 1034 0.4 10−3 1000 2650

4.1.1 Slower loading rate

The domain consists of an elastic material of 30 meters height, whose lower boundary is rigidly fixed and impermeable and

upper boundary is fully drained and free to move. On the upper boundary of the domain a ramped load is applied, increasing till

t0= 0.1 s and then remaining constant. The finite element mesh consists of 162 linear triangle elements and 103 nodes divided

in a regular grid of 20x2 elements. The key material properties are listed in 1 whereas an sketch of the problem is presented in

Figure 2 (a) and (b).

The oedometer problem has been frequently employed9,17,37 to assess the accuracy of numerical consolidation models using

the reduced u − pw formulation. Unstable elements show large amplitude oscillations in the water pressure profile during the

first steps. This is also observed here. Figure 3 depicts the vertical profiles of normalized water pressure, pw∕pmax, at t=0.1s.

Figure 3 (a) compares the results obtained with direct integration (i.e. without any stabilization technique) with those obtained

using the PPP and DME methodologies. Direct integration results in the typical oscillatory profile of the pore pressure. Both

stabilization techniques are able to eliminate the oscillations and give almost coincident results.

Dynamic effects are present in this application, as shown clearly in Figure 3 (b). The reference quasi-static Terzaghi solution,

with pore pressure equal throughout the domain to the overburden stress, (except for a thin zone near the draining boundary)

is only recovered when all the accelerations are forced to be zero. The observed differences in the normalized water pressure,

pw∕pmax profile may be best understood considering wave propagation.

The wave speed of the slow Biot wave c2 for this problem is in the order of 55 m/s. At 0.1 s, when Figure 3 is plotted, this

wave has traveled 5.5 m, i.e. the initial disturbance front would be located at a normalized height of 0.82, which is coincident

with the peak overpressure of the figure. This overpressure peak cannot be captured if the relative acceleration between solid

and fluid is ignored. The slight overpressure at the bottom of the sample is instead attributed to dynamic undrained effects and

is captured even when relative solid-fluid acceleration is zero.



14 MONFORTE ET AL

FIGURE 2 Oedometer scheme: (a) Geometry and boundary conditions; (b) Ramped-loading consolidation loading; and (c)

Dynamic consolidation loading.
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FIGURE 3 Ramped-loading with t0 = 0.1 s consolidation: (a) Comparison of stabilized and non-stabilized results; (b)

Comparison between dynamic and non-dynamic formulations.

4.1.2 Faster loading rate

In the case considered in this section the soil column is 10 m long and the loading step at the upper boundary is applied over

a very small time period (t0 =10�s). This case was also discussed by Sabetamal et al.24 following the analytical solutions

proposed by Verruijt52 and Carter et al.53. The material parameters are listed in Table 1 .

Figure 4 represents the pore water pressure evolution at a depth of 0.2 m as obtained with the proposed solution in comparison

with the analytical solution proposed by Verruijt52 and Carter et al.53 and the numerical one by Sabetamal et al.24. The time

evolution clearly shows the arrival of the two compressive waves. It is clearly observed that the fast dilatational wave arrives

at a time of approximately 90 �s, whereas the slower wave arrives after a delay of around 85 �s, having about one half of the
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FIGURE 4 The evolution of pore water pressure at depth 0.2 m versus time.

TABLE 2 Material parameters of the cyclic-loading consolidation problem (Sections 4.2.1, 4.2.2 and 4.2.3)

Section E [MPa] � Kw [MPa] Ks [MPa] n k [m/s] �w [kg/m3] �s [kg/m3]

4.2.1 25.0 0.2 3.0 ⋅ 108 1034 0.3 10−7, 10−5 1000 2000

4.2.2 30.0 0.2 3.3 ⋅ 108 1034 0.33 10−2 1000 2000

4.2.3 30.0 0.2 3.3 ⋅ 104 1034 0.33 1.5 ⋅ 10−2 1000 2000

velocity of the first wave. The solution obtained compares favorably with that presented by Sabetamal et al.24 and, despite some

oscillations, shows good agreement with the analytical solution. Further improvement might be achieved exploring different

numerical time integration schemes, but this is out of the scope of the present work.

4.2 Soil column: harmonic-loading case

The second set of numerical simulations corresponds to a soil column under harmonic loading. Horizontal solid displacements

as well as normal fluid motion are restrained on the lateral boundaries (see Figure 2 ). The loading curve shape is depicted

in Figure 2 (c) and the material properties of the soil are listed in Table 2 . The case is solved for low, intermediate and high

frequency loading cases, as detailed below.

4.2.1 Low frequency loading

A reference study for this case was presented by De Pouplana and Oñate9 using a FIC based solution for the u−pw formulation.

Column height is 30 m. The harmonic loading follows the equation: q = 1000 + 500 sin(!t) [Pa] with angular velocity, !, of 2

rad/s. Two different permeabilities are studied (Table 2 ). These cases lie in zone I in Figure 1 , so in principle inertial terms

are not relevant.

Figure 5 presents pore pressure history at 1.5 meters below the top. Both stabilization techniques (PPP and DME) show an

excellent agreement with the reference solution9. In the case with lowest permeability,(see Figure 5 (a)) pore pressure follows

closely the applied load and conditions are practically undrained. If stabilization is not applied spurious values of excess water

pressure are obtained (with peak values close to 2500 Pa). For the case with larger permeability (k = 10−5 m/s), the response in
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FIGURE 5 Low frequency harmonic-loading consolidation: Time evolution of pore pressure at location (0.5, 28.5) for (a)

Undrained case (k = 10−11 m2/Pa⋅ s), (b) Semi-drained case (k = 10−8 m2/Pa⋅ s).
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FIGURE 6 Intermediate frequency harmonic-loading consolidation: Solid displacement response versus depth.

partly drained and although the unstabilized formulation still introduces a significant error, its magnitude is relatively smaller

(see Figure 5 (b)).

4.2.2 Intermediate frequency loading

Sabetamal et al.24 presented a case subject to intermediate frequency loading, given by f (t) = 3
[
1 − sin(�∕2 + 25�t)

]
kPa.

It was compared with the analytical solution proposed by De Boer54, corresponding to incompressible constituents. Column

height is here 10 m. The material properties, Table 2 , correspond to an almost free draining material. Two snapshots of the

displacement response as a function of depth are depicted in Figure 6 at two different times for both numerical and analytical

solutions. They show good agreement between them and illustrate the robustness of the proposed methodology. As expected,

the benefits of stabilization are less conspicuous in this drained case.

4.2.3 High frequency loading

In this case the harmonic loading is as in the low frequency case but now angular velocity is 500 rad/s. Column height is 5 m.

Permeability is relatively high at 1.5⋅ 10−2 m/s and fluid is made compressible to obtain a Q=105 MPa. As indicated in Table 2
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FIGURE 7 Performance of different numerical methodologies for high frequency loading: (a) pore pressure distribution at time

t=0.020 s., and (b) isochrone of normalized pore pressure at time t=0.020 s.

this locates the case in Zone III (point 4 in Figure 1 ; Π1=10, Π2=10−1). There are no reference solutions that may be used for

comparison in this case.

The pore pressure profile at t=0.02 s is illustrated in Figure 7 for computations using the two different stabilization techniques

(PPP and DME) as well as the unstabilized algorithm. The unstabilized case clearly shows spurious high values of pore pressure,

above the reference maximum pressure exerted at the upper boundary (see Figure 7 (b)) .

In the stabilized solutions two peaks of pore pressure appear in the normalized pore pressure graph (Figure 7 (b)) . These

are located roughly at 0.85 and 0.55 of column height. Considering that the slow wave speed c2 is here 128 m/s these two peaks

are approximately one wavelength apart (1.6 m at f = 80 Hz), as expected. Comparing the PPP and DME techniques it can

be observed that PPP stabilization results in slightly higher dampening of the solution, whereas DME show somewhat higher

diffusion. The dependency of these effects on aspects such as the stabilization parameter value are beyond the scope of the

present work.

4.3 2D wave propagation

The last example examines 2-D wave propagation under plane-strain conditions, following closely a case discussed first by

Breuer55 and later by Markert et al23. The geometry, boundary conditions, loading history and soil parameters are presented in

Fig. 8 . A rectangular domain is loaded on its upper boundary by a harmonic half-cycle pressure pulse between 0 and 0.04 s.

The simulation is run for 0.2 s to minimize the effect of boundary reflections; these reflections might also be dealt by employing

absorbing boundary conditions56,57. The loading is described by:

F = 105 sin(25�t) [1 −H(t − 0.04)] [Pa],

where H(t − 0.04) is the Heaviside function and t is the current time in seconds. A mesh composed by 3960 nodes and 7670

low order triangular elements was employed. The load is applied at the 5 nodes closer to the symmetry axis.

Two cases with different permeabilities are studied, roughly corresponding to practically undrained and partially drained

conditions, (points 5 and 6 in Figure 1 ). For this second case the problem conditions lie in Zone II of Figure 1 . As in previous

works55,23, particular attention is paid at the evolution in points A and B (see Figure 8 of displacement and water pressure,

respectively.
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FIGURE 8 Geometry, boundary conditions, loading history and soil parameters of the 2D wave propagation case.
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FIGURE 9 2D wave propagation in partially drained conditions. Solution at t = 0.05s. Without stabilization of the mass

balance equation, (a), and with stabilization of the mass balance equation, (b).(Contour displacements magnified x 250).

Significant pore pressures are generated even in the partially drained case, Figure 9 although conditions are far from incom-

pressibility. Even if the beneficial effect of stabilization (using DME with �0=0.1) is clear in the spatial pore pressure pattern

below the load, spurious water pressure oscillations still plays here a relatively minor role. This is visible in the comparative

performance of different stabilization techniques, illustrated in Figure 10 . The PPP solution was computed with Δt = 0.0025s.,

a value fixed by the condition given in Eq. (B42). For the DME solution, several time steps were tried.

In Figure 10 (a) the vertical displacement of point A is plotted against the horizontal displacement. The motion at A traces

the classical quasi-elliptical retrogressive motion associated with Rayleigh wave propagation. There are some small differences

in amplitude that reflect different amounts of numerical damping introduced by the different algorithms; only for the largest

time step in DME the amount of damping is such to make a significant difference. Again, for this partially drained condition, the

passage of the pore pressure wave at point B Fig. 10 (b) appears only slightly affected by introducing stabilization or (for DME)

by the time step. Only the PPP simulation shows some high frequency noise, near the wave peaks. Numerical dispersion (and

subsequent wave widening) is somewhat larger in the formulations employed here than in the reference solution by Markert et

al23. This is likely due to the different time integration algorithms employed.(The results illustrated from23 were obtained with

an implicit monolithic solution with quadratic approximation for the solid displacement and linear for pore pressure and water

displacement and a composite 2nd order trapezoidal-backward difference time integration scheme).
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FIGURE 10 2D wave propagation in partially drained conditions: (a) In-plane motion at point A, and (b) pore pressure evolution

at point B.
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FIGURE 11 2D wave propagation in partially drained conditions Effective mean stress at t = 0.15s. u −w − pw formulation,

(a), and u − � −w − pw formulation, (b). (Contour displacements magnified x 500).

The use of a stabilized mixed formulation to mitigate the solid-phase induced volumetric locking has significant effects in

this partially drained case. The stabilization of the solid-phase induced volumetric locking has significant effects in this partially

drained case. The distribution of the effective pressure, p′, is depicted at time t=0.15 s. for both u−w− pw and u− � −w− pw
formulations. Locking-induced numerical pollution that appears when the p-wave is traveling without stabilization is eliminated

with the proposed technique (see Figure 11 ). This volumetric locking arising from the effective response of the medium does

not affect much motion at Point A in the free surface Figure 12 , but it is very visible in the spurious mean stress oscillations

that are recorded at point B (in Figure 12 b observed at two consecutive elements just above and below B).

For the undrained conditions (k=10−10 m/s) of this simulation the unstabilized element is severely unstable. As shown in

Figure 13 large pore pressure oscillations are widespread across the domain, irrespective of location. The benefits of stabiliza-

tion are highly significant in this case. Rayleigh-wave motion at A, Figure 14 , shows smaller damping (for the same time step

and time-integration algorithm) using DME. The unacceptable performance of the non-stabilized solution is much clearer on

the pore pressure wave at B, whereas, again, PPP stabilization does show some minor high frequency oscillation.
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FIGURE 12 2D wave propagation in partially drained conditions. Comparison between formulations: u−w− pw and u− � −

w − pw: (a) In-plane motion of point A, and (b) mean stress distribution evolution at point B.
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FIGURE 13 2D wave propagation in practically undrained conditions. Solution at t = 0.05s. Without stabilization of the mass

balance equation, (a), and with stabilization of the mass balance equation, (b). (Contour displacements magnified x 250).

5 CONCLUSIONS

This work presents an original approach for the numerical solution of the Biot equations that describe dynamic solid-fluid interac-

tion, in which a formulation u−w−pw is employed. This formulation covers all drainage conditions, including those developing

under high frequency or impact loading. The finite element approximation uses only linear shape functions, simplifying the

implementation and reducing the computational load.

Several stabilization techniques, (polynomial pressure projection; divergence of momentum; mixed reformulation of field

equations), are implemented to avoid spurious water pressure oscillations and volumetric locking of the low order elements

employed. They all seem to perform well, as illustrated by several numerical examples for which reference solutions were

available. The examples also illustrate that, with this formulation, numerical stabilization is required even in partly drained cases.

Although in the illustrative examples presented small strain conditions are prevalent, the formulation has been developed

more generally, for the large strain regime that is relevant in many geotechnical applications. The formulation is presented in

some detail, including a procedure to estimate stabilization parameter for the PPP stabilization term and, for the first time for

large strain full Biot case, the set of consistent linearized equations. Further work will develop relevant solid contact algorithms

and use more realistic constitutive models to test this formulation in geotechnical applications within the G-PFEM code.
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APPENDIX

A CONSISTENT LINEARIZATION

As the linearization is referred to the undeformed domain, Ω0, since it is time independent, it is necessary to move Eqs. (42-

44) to the reference configuration. From the transport theorems we know that dΩ = J dΩ0 and d
 = JF −T d
0 and the Piola

transformation states that Div(u) = J div(u) (See58,59 for more information). Starting from these points, the equations to be

linearized yield

−�1 ∫
Ω0

�u ⋅
[
�0u + J�ww

]
dΩ0 − ∫

Ω0

�′:grad�u dΩ0 + ∫
Ω0

JpwI :grad�u dΩ0 + ∫
Ω0

�u ⋅ �0g dΩ0 + ∫
Γt0

T ⋅ �u d
0 = 0 (A1)

−∫
Ω0

Jgrad(pw) ⋅ �w dΩ0 − �4 ∫
Ω0

Jw ⋅ k−1 ⋅ �w dΩ0 − �1 ∫
Ω0

J�w

[
u +

w

n

]
⋅ �w dΩ0 + ∫

Ω0

J�wg ⋅ �w dΩ0 = 0 (A2)

�4 ∫
Ω0

Div(u) ⋅ �pw dΩ0 + �4 ∫
Ω0

Div(w) ⋅ �pw dΩ0 + �4 ∫
Ω0

J
pw
Q

⋅ �pw dΩ0 = 0 (A3)
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where �′ is the effective Kirchhoff stress tensor and T is the traction vectors of solid phase computed respect the undeformed

configuration. Following, the linearization of some useful terms is carried out against Δu (see27 for details):

Du [J ] = J div(Δu) (A4)

(From60)

Du [n] = Du

[
1 −

1 − n0
J

]
= (1 − n)div(Δu) (A5)

Du

[
1

Q

]
= Du

[
n

Kw

]
=

1

Kw

Du[n] =
1 − n

Kw

div(Δu) (A6)

Du [k] = (1 − n)
)k

)n
div(Δu) (A7)

(See also59)

Du

[
J

k

]
=

J

k
div(Δu) −

J

k2
Du [k] =

J

k

[
1 −

1 − n

k

)k

)n

]
div(Δu) (A8)

Du

[
J
�w
n

]
=

�w
n
J div(Δu) − J

�w
n2

(1 − n)div(Δu) = J
�w
n

2n − 1

n
div(Δu) (A9)

As the reference density is defined as

�0 = J� = J n�w + J (1 − n)�s = J�w − (1 − n0)�w + (1 − n0)�s, (A10)

the linearization of the density yields:

Du

[
�0
]
= Du

[
J�w

]
= J�wdiv(Δu). (A11)

From tensor analysis61 we determine that:

Du

[
grad(�u)

]
= Du

[
Grad(�u)F −1

]
= Grad(Du [u])F

−1 + Grad(�u)Du

[
F −1

]
= −grad(�u)grad(Δu), (A12)

which is analogous for Du

[
grad(pw)

]
, yielding: −grad(pw)grad(Δu). Also, the following term, either for Div(u) or Div(w) is

linearized as:

Du [Div(u)] = Du [I ∶ Grad(u)] = I ∶ Du [Grad(u)] = I ∶ Grad(Du [u]) = I ∶ Grad(Δu) = Div(Δu)

The linearization will be stated for the weak form with respect to the reference configuration. Hereinafter the linearization

of the main terms that upon the deformation field are presented. In the following equations superscripts represent the different

terms of the Eqs. (A1-A3):

• DGLMS ⋅ Δu:

DG 1
LMS ⋅ Δu = Du

[
�0u + J�ww

]
⋅ �u = J

[
�Δu + �wdiv(Δu) (u +w)

]
⋅ �u (A13)

DG 2
LMS ⋅ Δu = Du

[
�′ ∶ grad(�u)

]
= grad(Δu)�′ ∶ grad(�u) + J grad(Δu) ∶ Cep ∶ grad(�u) (A14)

where Cep is the material elasto-plastic constitutive tangent operator. This linearization is widely developed in literature35.

Also the linearization of the following term is well-known:

DG 3
LMS ⋅ Δu = Du

[
JpwI ∶ grad(�u)

]
= Du [J ] pwI ∶ grad(�u) + JpwI ∶ Du

[
grad(�u)

]

= Jpwgrad(�u) ∶
[
div(Δu)I − gradT (Δu)

]
(A15)

• DGLMS ⋅ Δw:

DG 1
LMS ⋅ Δw = Dw

[
�0u + J�ww

]
= J�wΔw (A16)

• DGLMS ⋅ Δpw:

DG 3
LMS ⋅ Δpw = Dpw

[
JpwI ∶ grad(�u)

]
= JΔpwI ∶ grad(�u) (A17)
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• DGLMW ⋅ Δu:

DG 1
LMW ⋅ Δu = Du

[
Jgrad(pw) ⋅ �w

]
= Du [J ] grad(pw) ⋅ �w + JDu

[
grad(pw)

]
⋅ �w

= J
[
div(Δu)grad(pw) − gradT (Δu)grad(pw)

]
⋅ �w (A18)

• DGLMW ⋅ Δw:

DG 2
LMW ⋅ Δw = Dw

[
Jw ⋅ k−1 ⋅ �w

]
=

J

k

[
div(Δu)

(
1 −

1 − n

k

)k

)n

)
w
]
⋅ �w (A19)

DG 3
LMW ⋅ Δw = Dw

[
J�w

(
u +

w

n

)
⋅ �w

]
=

J�w
n

[
2n − 1

n
div(Δu)w

]
⋅ �w (A20)

• DGLMW ⋅ Δpw:

DG 1
LMW ⋅ Δpw = Dpw

[
Jgrad(pw) ⋅ �w

]
= Jgrad(Δpw) ⋅ �w (A21)

• DGMBE ⋅ Δu:

DG 3
MBE ⋅ Δu = Du

[
J
pw
Q

⋅ �pw

]
= Du [J ]

pw
Q

⋅ �pw + JpwDu

[
1

Q

]
⋅ �pw

= Jpw

[
n

Kw

+
1 − n

Kw

]
div(Δu) ⋅ �pw = J

pw
nQ

div(Δu) ⋅ �pw (A22)

Taking into account these and the rest of analogous terms, the final linearization of Eqs. (A1-A3) gives the following

results:

− �1 ∫
Ω

[
�Δu + �wΔw + �wdiv(Δu) (u +w)

]
⋅ �u dΩ − ∫

Ω

(
grad(�u) ∶ cep ∶ grad(Δu) + �′ ∶ gradT (�u) grad(Δu)

)
dΩ

+ ∫
Ω

(
Δpwdiv(�u) + pwgrad(�u) ∶

[
div(Δu)I − gradT (Δu)

])
dΩ + ∫

Ω

�w g div(Δu) ⋅ �u dΩ (A23)

− ∫
Ω

[
grad(Δpw) + div(Δu)grad(pw) − gradT (Δu)grad(pw)

]
⋅ �w dΩ − �4 ∫

Ω

[
Δw + div(Δu)

k − 1 + n

k

)k

)n
w
]
⋅ k−1 ⋅ �w dΩ

− �1 ∫
B

�w
n

[
Δw +

2n − 1

n
div(Δu)w

]
⋅ �w dΩ − �1 ∫

Ω

�w ⋅ [Δu + div(Δu)u] ⋅ �w dΩ + ∫
Ω

�w g div(Δu) ⋅ �w dΩ (A24)

�4 ∫
Ω

div(Δu) ⋅ �pw dΩ + �4 ∫
Ω

div(Δw) ⋅ �pw dΩ + �4 ∫
Ω

[
Δpw
Q

+
pw
nQ

div(Δu)

]
⋅ �pw dΩ (A25)

B ESTIMATION OF THE STABILIZATION PARAMETER FOR THE PPP TECHNIQUE

In stabilization techniques a free numerical parameter appears, which is related to the size of the element, the time increment and

material constitutive parameters34. However, obtaining estimates for this parameter is rather complex in any particular case. In

this work, to estimate the stabilization factor the same technique that was proposed by Cui et al40 to obtain the critical time-step

for implicit methods is used.

The rational of the method proposed by Cui et40 is quite simple and is based on the solution of the one-dimensional consoli-

dation problem in the quasi-static regime. It is assumed that all the nodes of the mesh have the same initial water pressure; at one

extreme of the mesh the water pressure is increased whereas the other extreme of the mesh has Neumann boundary conditions.

In order to avoid oscillations on the computed water pressure, the solution has to fulfill two conditions:
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• The nodal water pressure should be greater than the initial one at every time step.

• At a given time, the water pressure field should monotonically increase or decrease along the bar.

Analyzing the solution at the first time step for linear elements using a completely implicit time marching scheme, the authors

obtained that the critical time step should be:

Δt ≥ ℎ2

6 cv
(B26)

where cv =
M �

g �w
is the coefficient of consolidation, M is the constrained modulus and ℎ the element size. This time constraint

is equivalent to the one presented by Vermeer and Verruijt39 using a similar method.

In the proposed methodology small strains, one dimensional conditions, null boundary loads and linear elasticity are assumed.

Further assuming that the total stress is constant over time, the following constitutive equation can be written:

∇ ⋅ u̇ = "̇v = "̇z =
�̇′
z

M
=

�̇z + ṗw
M

=
ṗw
M

(B27)

and additionally this hypothesis implies:

ṗ′ = ṗ + ṗw = ṗw (B28)

�̇′
x = �̇x + ṗw = ṗw (B29)

Introducing Equation Eq.(B27) to the mass balance equation yields:

−∇ ⋅ ẇ = ∇ ⋅ u̇ +
1

Q
ṗw =

[
1

Q
+

1

M

]
ṗw (B30)

In order to obtain a single balance equation in terms of the water pressure, let us first obtain the divergence of the linear

momentum of the mixture and the fluid:

∇2�′ − ∇2pw − �∇ü − �w∇ẅ = 0 (B31)

−∇2pw −
1

k
∇ẇ − �w∇ü −

�w
n
∇ẅ = 0 (B32)

where the divergence of g and the densities are neglected.

Subtracting Equation (B32) multiplied by the porosity, n, to Equation (B31) renders:

k∇2pw −

[
1

Q
+

1

M

]
ṗw −

k

n

�d
M

p̈w = 0 (B33)

where �d is the dry density. For quasi-static range, the problem becomes:

k
)2pw
)x2

−
ṗw
M⋆

= 0 (B34)

where
1

M⋆
=

1

Q
+

1

M
has been introduced to simplify the notation.

The semi-discrete finite element equations for the problem defined in Equation (B33) reads:

k

n

�d
M

M ⋅ p̈n+1w +
1

M⋆
M ⋅ ṗn+1w +Ms ⋅ ṗn+1w +H ⋅ pn+1w = 0 (B35)

where pn+1w are the nodal values of the water pressures at tn+1, M is the mass matrix, Ms is the matrix due to the stabilization

technique and H is the permeability matrix. The elemental matrices are given by:

Me =
ℎ

6

[
2 1

1 2

]
Ms

e = �
ℎ

12

[
1 −1

−1 1

]
He =

k

ℎ

[
1 −1

−1 1

]
(B36)

where ℎ is the nodal spacing.

The same Newmark time-integration scheme is used for this simplified equation; thus, at the first time increment, the linear

system of equations to be solved reads:(
−�1

k

n

�d
M

M + �4

[
Ms +

1

M⋆
M
]
+H

)
⋅ p1w = 0 (B37)
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TABLE B1 Stabilization factors proposed for the PPP technique.

Reference Stabilization factor, �

White & Borja17 1

2G
=

1−�

1−2 �

1

M

Sun et al18
(

2

M
−

6 kΔt

ℎ2

)(
1

2
+

1

2
tanh

(
2 −

12 kM Δt

ℎ2

))

Li & Wei62 3

M
+

2

Q

This work max
(

2

M
+

2

Q
−

�




12Δt k

ℎ2
, 0
)

The last equation of this system of equations, Equation (B37), relates the value of the water pressure at the last node of the

oedometer (the one where null Neumann boundary conditions are applied) and its neighbor:(
�4

[
ℎ

6M⋆
−

� ℎ

12

]
−

k

ℎ
+ �1

ℎk�d
6 nM

)
(Δpw)

1
m−1 +

(
�4

[
2ℎ

6M⋆
+

� ℎ

12

]
+

k

ℎ
+ �1

2ℎk�d
6 nM

)
(Δpw)

1
m = 0 (B38)

where (Δpw)
1
m is the excess water pressure (the current water pressure minus the initial value) at the last node of the bar at time

Δt whereas (Δpw)
1
m−1

is the node adjacent to the last one.

The two aforementioned requirements that the solution must fulfill40 may be announced as:

1 ≥ (Δpw)
1
m

(Δpw)
1
m−1

=
−�4

[
ℎ

6M⋆
−

� ℎ

12

]
+

k

ℎ
− �1

ℎk�d
6 nM

�4

[
2ℎ

6M⋆
+

� ℎ

12

]
+

k

ℎ
+ �1

2ℎk�d
6 nM

≥ 0 (B39)

The first inequality do not pose any restriction on the value of �. Meanwhile, the second inequality is relevant; since the

denominator is always positive, the numerator should also be larger or equal to zero. Then, after some manipulation it yields:

� ≥ 2

M

(
1 +

1


Δt

k�d
n

)
+

2

Q
−

�Δt




12 k

ℎ2
, (B40)

For a quasi-static problem, neglecting dynamic terms, the stabilization factor to be used is obtained as:

� ≥ 2

M
+

2

Q
−

�Δt




12 k

ℎ2
. (B41)

Since the stabilization factor should be positive, the following approximation is proposed:

� =

{
2

M
+

2

Q
−

�




12Δt k

ℎ2
if Δt ≤ 


�

ℎ2

6

(
1

cv
+

1

kQ

)

0 other cases
(B42)

Table B1 presents some of the stabilization factors proposed in the literature for the PPP technique for u−pw elements using

a completely implicit time marching scheme, assuming linear elasticity and neglecting dynamic effects. It is worth noting that

the factor proposed here has a similar expression to the one found by Sun et al18 using a more complex technique63; in fact, Sun

et al18 include the term related to tanh to limit the overdiffusion. It is also remarkable the similitude with the stabilization factor

proposed by Li & Wei62: they do not have the negative term and the inverse of the constrained modulus is multiplied by 3 instead

of 2. The stabilization factor proposed by White and Borja17 depends on the shear modulus instead of the constrained modulus.

In order to assess the stabilization technique, the one-dimensional oedometer is computed and the solution is compared with

that of Terzaghi. The height is 1 m, the coefficient of consolidation is cv = 1 m2/s, whereas the constrained modulus is M = 100

kPa. The Poisson’s ratio has been fixed at � = 1∕3; this way, the proposal of White and Borja17 coincides with that of Sun et

al18 and the one derived in this work once the term kΔt∕ℎ2 tends to zero. However, it should be stressed that the proposal of

White and Borja17 would render different results by assuming different Poisson’s ratios.

Figure B1 the results of a convergence analysis, where the solution is computed using 500 time steps up to a final normalized

time of T = 10−3. Two types of error norms are adopted in this study, namely, the L2 norm

‖p − pℎ‖∗
L2 =

(∫
Ω

(
p(x) − pℎ(x)

)2
dΩ

∫
Ω
dΩ

) 1

2

(B43)
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(a) (b) (c)

(d) (e) (f)

FIGURE B1 One-dimensional oedometer. Error norms for the unstabilized element (P1-P1-P1) and using several stabilization

factors for the PPP technique proposed in the literature.

and the maximum nodal difference

‖p − pℎ‖∞ = max
(
p(xi) − pℎ(xi)

)
(B44)

As noted before, all the proposals for the value of the stabilization factor proposed in the literature are quite similar, see

Table B1 and Equation (B42); it is not surprising then that the error norms for all variables show a similar trend irrespectively

of the employed proposal. It should be noted that, with the exception of the water pressure nodal difference, the stabilization

factor proposed by Li and Wei62, give consistently higher error norms. Additionally, these figures also include -indicated by a

discontinuous vertical line- the element size at which the proposed stabilization factor is zero (see Equation (B42)); as such, at

the left of this line the solution is computed with a null stabilization factor, whereas on the right the stabilization factor is larger

than zero. Stabilization switch-off does not produce any undesirable effect.
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