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ABSTRACT

Stellar magnetic activity – which has been observed in a diverse set of stars including the Sun –

originates via a magnetohydrodynamic dynamo mechanism working in stellar interiors. The

full set of magnetohydrodynamic equations governing stellar dynamos is highly complex, and

so direct numerical simulation is currently out of reach computationally. An understanding

of the bifurcation structure, likely to be found in the partial differential equations governing

such dynamos, is vital if we are to understand the activity of solar-like stars and its evolution

with varying stellar parameters such as rotation rate. Low-order models are an important aid

to this understanding, and can be derived either as approximations of the governing equations

themselves or by using bifurcation theory to obtain systems with the desired structure. We use

normal-form theory to derive a third-order model with robust behaviour. The model is able to

reproduce many of the basic types of behaviour found in observations of solar-type stars. In

the appropriate parameter regime, a chaotic modulation of the basic cycle is present, together

with varying periods of low activity such as that observed during the solar Maunder minima.
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1 I N T RO D U C T I O N

Direct evidence of solar magnetic activity through the observations

of sunspots dates back to the early 1600s, with indirect evidence

coming from measurements of cosmogenic radioisotopes in tree

rings and ice cores over the past 10 000 yr. A systematic record of

activity in other late-type stars began in 1966 with the Mt Wilson

Ca II H+K project (Duncan et al. 1991; Baliunas et al. 1995; Saar

& Brandenburg 1999). This survey has led to many studies on the

dependence of activity with such large-scale parameters as stellar

age, mass and rotation rate.

The stars in the Mt Wilson survey show several distinct types of

activity. Baliunas et al. (1995) divided the stars into four categories

based on the variability in their emission: those with no significant

variability, those with long-term changes in emission (on a time-

scale greater than 20 yr), those with irregular emission, and those

with cyclic variation. The Sun itself falls into the final category.

The activity periods in the cyclic stars range from around 20 yr to

just 2.5 yr, so the Sun’s own average cycle period of 11 yr falls

in the centre of this range. Considering the sign reversal of the

magnetic field along with the 11-yr sunspot cycle gives a periodicity

of 22 yr for the solar magnetic cycle. Detailed examination of the

sunspot cycle record shows a variation in the length of the activity

period from 7 to 17 yr, with a longer-term modulation of the cycle
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on a period of about 80 yr (the Gleissberg cycle) believed to be

present, although not statistically significant. The Sun has undergone

several grand minima (Beer, Tobias & Weiss 1998), the last of which

being the Maunder minimum during AD 1645–1715 (Eddy 1976;

Hoyt & Schatten 1996). Proxy data, for example 10Be in ice cores

(Wagner et al. 2001), indicate a statistically significant spectral peak

with frequencies corresponding to approximately 205 and 2100 yr

(although it is as yet unclear whether this last peak is of solar origin).

It is possible that grand minima occur in clusters with a well-defined

period of just over 200 yr, and that these clusters reoccur on a time-

scale of 2100 yr. There is not currently enough data to allow us to

infer similar events in other stars, although some conclusions about

stellar magnetic activity can already be drawn.

The Rossby number Ro is a measure of the ratio of the rotation

period of a star to its convective turnover time (which is related

to the dynamo number D, as D ∝ 1/Ro2) and provides an impor-

tant indicator of rotation rate in these solar-type stars. As stars age,

their rotation rate decreases as a result of magnetic braking (Mestel

& Spruit 1987), and so their Rossby number increases (implying a

corresponding decrease in their dynamo number). It has been shown

that the groups of stars with irregular and regular activity are distin-

guished by their Rossby number (Noyes et al. 1984; Hempelmann,

Schmitt & Stȩpeiń 1996). Stars with Ro < 1 show irregular and

strong emission, while the cyclic and constant stars are those with

Ro > 1. A possible explanation for this division is to explain the

magnetic activity as being governed by a non-linear dynamical sys-

tem whose output changes from constant to periodic to chaotic as a
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governing parameter (such as the dynamo number) linked to rotation

is increased.

From a physical point of view, magnetic activity in solar-type

stars is likely to be a result of hydromagnetic dynamo action (Parker

1955; Ossendrijver 2003). Both the components of the stellar mag-

netic field (i.e. toroidal and poloidal) must be generated by the flow.

Thus, any such dynamo model must include a mechanism for the

creation of toroidal flux from poloidal flux and also for the regener-

ation of poloidal flux from toroidal flux. The differential rotation in

stellar interiors generates the toroidal field by stretching the poloidal

field lines. For the regeneration of the poloidal field from the toroidal

component, helical turbulence in stellar convective envelopes, de-

cay of tilted bipolar active regions, various instabilities associated

with toroidal magnetic fields and other physically plausible non-

axisymmetric mechanisms have been invoked.

Many models of solar and stellar dynamos have been proposed,

which qualitatively replicate aspects of the dynamo process, such as

flux production, cycle periods and amplitudes, as well as other well-

known features observed on the Sun, such as the equatorward drift of

sunspots during the cycle and the evolution of the surface radial field;

some have included related processes such as magnetic buoyancy

and meridional circulation (Ferriz-Mas, Schmitt & Schüssler 1994;

Tobias 1996; Nandy & Choudhuri 2002; Brooke, Moss & Phillips

2002; Tobias 2002; Bushby 2003; Ossendrijver 2003; Chan et al.

2004; Charbonneau, Blais-Laurier & St-Jean 2004; Nandy 2004;

and references therein). Full simulations of the dynamo process with

high magnetic Reynolds numbers that yield strong mean fields are

currently out of reach computationally – although see Brun, Miesch

& Toomre (2004) for a global simulation of dynamo action in a

turbulent rotating spherical shell. Much work has centred on mean-

field dynamo theory, with axisymmetric α–ω dynamos attracting

the most attention.

A self-consistent magnetohydrodynamic treatment of many of

the mechanisms thought to be behind stellar dynamos, such as dif-

ferential rotation and other large-scale flows, is a formidable task.

A different and parallel approach is taken here. We construct a

low-order model to examine the bifurcation structure that may be

present in the real system. This approach gives one the advantage

of exploring a wide variety of stellar behaviour that is governed

by the same underlying mathematical structure, without studying

each star in detail, or making other modelling assumptions. Thus,

this is a complementary study to the works cited in the earlier

paragraph.

The construction of low-order models of the solar dynamo has

traditionally utilized one of two alternative approaches. The first

is to derive sets of ordinary differential equations (ODEs) via a

truncation of the partial differential equations (PDEs) of mean-field

electrodynamics (Priest 1982; Zeldovich, Ruzmaikin & Sokolov

1983; Martens 1984; Weiss, Cattaneo & Jones 1984; Jones, Weiss &

Cattaneo 1985; Schmalz & Stix 1991; Covas & Tavakol 1997; Roald

& Thomas 1997). This approach has the advantage that each term in

the truncated set of ODEs has an obvious physical interpretation, as

it has been derived from an analogous term in the PDEs. However,

the drawback of such a procedure is that the dynamics associated

with such a truncated model is often fragile and sensitive to the

level of truncation. An example of such a truncated dynamo system

is given by the Lorenz equations (Knobloch 1981). It is well known

that solutions of this set of equations can be steady, periodic or

chaotic. In addition, the cycle period decreases with increased driv-

ing (rotation). However, the phase relations between the poloidal

and toroidal magnetic fields do not match those observed for the

Sun.

A second approach is to construct low-order models based on

normal-form equations utilizing the theory of non-linear dynam-

ics, by using either symmetry arguments or bifurcation analysis

(Tobias, Weiss & Kirk 1995; Knobloch & Landsberg 1996;

Knobloch, Tobias & Weiss 1998). Here the dynamics found can

be shown to be generic and therefore robust. However, the physical

interpretation of the set of low-order equations is less transparent,

as there is no obvious physical analogue for a given term in the

equations. It is this approach we take here.

The paper is organized as follows. In Section 2 we set-up the

model, which is a modification of that first proposed in Tobias et al.

(1995). The results of the model are presented in Section 3, followed

by conclusions in Section 4.

2 C O N S T RU C T I O N O F T H E M O D E L

The model considered here is an extension of that derived in

Tobias et al. (1995). In that paper, a third-order model was derived

using a Poincaré–Birkhoff normal form for a saddle-node–Hopf bi-

furcation, to obtain a system exhibiting generic and therefore robust

behaviour. This normal form was chosen since it has a bifurcation

structure that gives qualitatively similar behaviour to that observed

in stars as parameters are varied. We expect periodic cyclic solutions

to bifurcate from a steady free-field state in a supercritical Hopf bi-

furcation, in turn giving way to trajectories lying on a two-torus after

a secondary Hopf bifurcation. Finally, this cyclic activity should be-

come chaotically modulated to account for those stars with irregular

activity. Such a bifurcation structure is mirrored in mean-field PDE

models as the non-dimensional measure of rotation rate (the dynamo

number D) is increased (Tobias 1996; Pipin 1999; Bushby 2005).

In Tobias et al. (1995) the magnetic field was decomposed in the

usual way into its toroidal part, represented by x, and its poloidal part,

represented by y. The third coordinate of the system, z, represents

all the hydrodynamics, such as differential rotation. The system of

ordinary differential equations takes the form

ż = µ − z2 − (x2 + y2) + cz3,

ẋ = (λ + az)x − ωy + dz(x2 + y2),

ẏ = (λ + az)y + ωx, (2.1)

where ω and λ give the basic linear cycle frequency and growth rate

of x and y, while µ, which is taken to be positive, is the controlling

parameter for the hydrodynamics of the system, and so it is related

to effects such as thermal forcing and rotation. The parameters a

and c have no obvious physical interpretation and have the effect of

distorting the bifurcation diagram and removing the degeneracy of

the secondary Hopf bifurcation (see Tobias et al. 1995 for details).

Of particular importance here is the parameter d, which breaks the

axisymmetry, making the system fully three-dimensional, whilst

maintaining the invariance of the z-axis.

In order to exhibit the type of behaviour that such a model yields,

Tobias et al. (1995) fixed all parameters except for λ and µ. They

chose a parametrized path through the λ–µ plane to demonstrate the

bifurcation structure that could occur in such a model. In particular,

they showed that, as the controlling parameter was increased, purely

hydrodynamic solutions lost stability in a primary Hopf bifurcation

to oscillatory solutions. In turn these gave way to quasi-periodic

solutions, where the basic cycle is modulated on a longer time-scale

and solutions lie on a two-torus in phase space. Further increase in

the parameter leads to a breakdown of the torus and a transition to

chaos. The solution now takes the form of active periods interspersed

chaotically with minima. These solutions are associated with close

approach to an invariant manifold and near heteroclinicity.
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However, as noted by Ashwin, Rucklidge & Sturman (2004),

a limitation of the model is that the choice of term to break the

normal-form axisymmetry in Tobias et al. (1995) results in a loss of

equivalence of the system under the transformation x → −x , y →
−y, which corresponds to B → −B. Here we choose an alternative

term, which does not suffer from the above disadvantage, to break

the axial symmetry. We add a term proportional to (x3 − 3x y2)

to the x equation and one proportional to (3x2 y − y3) to the

y equation. Thus the model becomes

ż = µ − z2 − (x2 + y2) + cz3,

ẋ = λx − ωy + azx + d(x3 − 3xy2),

ẏ = λy + ωx + azy + d(3x2 y − y3). (2.2)

This new system of equations is invariant under the transformation

x → −x , y → −y and the z-axis remains invariant. The physical

advantages of our choice become clear when the system is written

in cylindrical polars:

ż = µ − z2 − r 2 + cz3,

ṙ = (λ + az)r + dr 3 cos(2φ),

φ̇ = ω + dr 2 sin(2φ). (2.3)

In the following section we examine some of the properties of this

model.

3 R E S U LT S

We examine the behaviour of the system as λ and µ are varied and

fix the parameters a, c, d and ω as

a = 3, c = −0.4, d = 0.4, ω = 10.25.

Following Tobias et al. (1995) we have chosen to fix a = 3 and c =
−0.4 so that both the line of saddle-node bifurcations at µ = 4/27c2

and secondary Hopf bifurcations at λ = −2a/3c are far from the

origin, as shown in Fig. 1. As with system (2.1), the choice of ω

does not greatly affect the bifurcation structure, but it does change

the ratio of the modulation cycle to the underlying cycle. We have

chosen ω = 10.25, since it results in a ratio similar to that observed

in the Sun.

To allow us to choose a suitable path through parameter space

along which to study solutions of (2.2), we examine the bifurcation

set for the system; this is shown in Fig. 1. We see that the line

of secondary Hopf bifurcations, which for d = 0 was identical to
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Figure 1. Bifurcation set for equation (2.2) with a = 3, c = −d = 0.4 and

ω = 10.25.

the positive µ-axis, has moved leftward in our new model (2.2). A

heteroclinic region, which is shaded in the diagram, replaces the

degenerate heteroclinic bifurcation that exists when d = 0, as in

Tobias et al. (1995). We have not indicated all the bifurcations lying

inside this wedge owing to the complexity of the region, some details

of which are described in, for example, Champneys & Kirk (2004).

The main dynamical features observed are described as follows.

Trajectories within this region lie on a torus, and the rotation num-

ber associated with each orbit may be either rational or irrational.

In the case of a rational rotation number, p/q (p, q ∈ Z), since the

z-axis is invariant under the flow, the orbit will turn q times around

the z-axis and p times around the primary periodic orbit before clos-

ing in on itself. This resonance phenomenon does not occur when

the rotation number is irrational; in this case no point on the torus

is revisited in a finite time. The resonance regions are found to be

slim tongues that open out smoothly from the secondary Hopf bi-

furcation, and are bounded by curves of saddle-node bifurcations of

periodic orbits (Kirk 1991). Horseshoes are introduced into the flow,

resulting from the heteroclinic crossings of the stable and unstable

manifolds of two of the fixed points, and this can lead to chaotic

dynamics within the region (Kirk 1991).

To illustrate the new dynamics, we examine the model’s behaviour

along a one-parameter path in theλ–µplane, chosen so that solutions

along the path mimic the observed stellar behaviour as rotation rate

is increased. We choose the parametrization

µ =
√

�,

λ = 1

4

{[

ln(�) + 1

3

]

exp
(

− 1

100
�

)}

, (3.1)

where � ∈ [0, ∞), which is similar to that used in Tobias et al.

(1995). Clearly the path satisfies the requirement µ > 0. It passes

through the primary Hopf bifurcation to the left of the µ-axis and

then through the heteroclinic region, staying close to the µ-axis

(which is where the complicated dynamics occur). The path then

tends back to this axis to give stable dynamo action as � → ∞.

In this section we present the numerical results obtained by inte-

grating the system (2.2) using the Runge–Kutta Fehlberg numerical

method in MAPLE. Although we can loosely think of � as represent-

ing the effects of rotation on the system, we cannot link it directly

with any physical parameters such as the Rossby number. As we

shall show, the behaviour of the system of equations (2.2) along

the parametrized path (3.1) is similar to that found by Tobias et al.

(1995).

For small �, all trajectories are attracted to one of the fixed points

that correspond to purely hydrodynamic states. Magnetic instability

sets in at � = 1.336 × 10−2 with a primary (supercritical) Hopf

bifurcation, so that periodic trajectories are apparent, a typical ex-

ample of which is shown in Fig. 2. The radius of the periodic orbit

grows as � is increased, giving solutions for the magnetic field

0

0.05

0.1

0.15

x
^
2

100 101 102 103 104 105
t

Figure 2. Magnetic activity solution for (2.2) as a function of time along

the parametrized path (3.1) at � = 0.05. A small-amplitude oscillation is

present, whose amplitude grows as � is increased.
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(represented here by x2) that grow in amplitude with increasing �.

The period of oscillation remains approximately constant through-

out, since it is controlled largely by the variable ω, with small pertur-

bations to the period arising from the axisymmetry-breaking term.
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Figure 3. Solutions to (2.2) along the parametrized path (3.1). The 3D

trajectory plot is shown for (a) the quasi-periodic solutions at � = 0.47, and

(b) the frequency locking at � = 0.44. The corresponding activity cycles,

represented by x2, are shown, with (c) � = 0.47 and (d) � = 0.44.

As the amplitude of the magnetic field grows, the Lorentz force be-

comes important, varying periodically with half the period of the

field, as does the velocity.

At � = 0.33 (where λ < 0), the path crosses the line of the

secondary Hopf bifurcation where a torus bifurcates from the pe-

riodic orbit. The solutions for x(t) and y(t), which were periodic

before the secondary Hopf bifurcation, are now also modulated

on a longer time-scale, which results in an oscillatory magnetic

field with significant amplitude variations in time. At � = 0.47, for

example, solutions are quasi-periodic, as shown in Figs 3(a) and

(c). Moving along the parametrized path takes us through various
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Figure 4. Poincaré sections through the plane y = 0. (a) At � = 0.35

the section is well defined and smooth. (b) At slightly larger values of �,

wrinkles start to appear on the attractor, illustrated here for � = 0.7. (c) The

transition to chaos is evidenced by folds appearing on the attractor, shown

here for � = 1.3.
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resonance regions, an example of which occurs at � = 0.44, as

shown in Figs 3(b) and (d). The solutions for x(t) and y(t) appear

to be qualitatively similar, but we see that the trajectory winds ex-

actly six times around the z-axis in one period before returning to

its original location. Near the frequency-locked regions where the

winding numbers are irrational but close to a rational p/q, the orbit

can spend most of its time in a phantom periodic orbit from which

it occasionally unlocks.

Quasi-periodic solutions do not persist far from the secondary

Hopf bifurcation, with the resonance tongues closing off as it is ap-

proached. As � is increased, the torus grows and begins to approach

the invariant z-axis. In addition the torus becomes less smooth, with

first wrinkles, then folds developing on the attractor, an effect best

illustrated by taking Poincaré sections through the plane y = 0. We

show this in Fig. 4, where the appearance of folds on the section

marks a transition to chaos. The modulation of the underlying cycle

in the time series for x and y becomes irregular.

The activity cycle, represented here by x2, shows irregular bursts

of activity followed by variable lengths of no activity. The time series

for z (which represents the velocity) oscillates between values near

to the two stationary points z = ±√
µ. An example is shown in

Fig. 5.

The dynamics is qualitatively unchanged by the saddle-node bi-

furcation, which is reached at � = (0.925)2 ≈ 0.8573, although

two of the three stationary points that existed until this point are de-

stroyed in the bifurcation. The resonance tongues that are associated

with the frequency locking of the flow persist (despite the break-

down of the torus), giving rise to windows of periodicity along the

trajectory. Close to these regions we again have the situation where

the trajectories follow a phantom periodic orbit for much of the
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Figure 5. Chaotic solutions to (2.2) along the parametrized path (3.1) at

� = 1.8 showing (a) the activity cycle, characterized by bursts of activity

between varying periods of very low activity, and (b) x(t) (solid) and z(t)

(dotted).
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Figure 6. Solutions to (2.2) along the parametrized path (3.1), close to a

frequency-locked region, at � = 3.35. The trajectory follows a phantom

periodic orbit for much of the time, unlocking occasionally. (a) The solution

for the toroidal field x(t) and (b) the activity cycle, which shows occasional

sudden increases in activity.

time, unlocking only occasionally, an example of which is shown in

Fig. 6. In these regions the activity cycle is characterized by sudden

and variable increases in the bursts of activity.

Hence we have shown that the bifurcation structure found for the

model of Tobias et al. (1995) remains qualitatively unchanged by

the modification of the term that breaks axial symmetry. However,

some new interesting dynamics is found in this example. This is

illustrated in Fig. 7 for λ = 0.0987, µ = 0.35, which is not on

the parametrized path. It demonstrates that the low-order system is

capable of exhibiting clustering of minima, together with periods

of reduced and enhanced magnetic activity. We believe that this

dynamics is associated with near heteroclinicity and the existence

of chaos. The solution occasionally passes very close to the fixed

points and the invariant z-axis and this leads to exceptionally deep

and long minima. However, for a large proportion of the time, the
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Figure 7. Magnetic activity cycle for λ = 0.0987, µ = 0.35. Bursts of

activity are interspersed with short minima events, with the active periods

themselves separated by much longer, deeper minima.
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solution is not so close to the invariant manifold and the periods of

reduced activity are shorter and clustered with a recognizable period.

Extensive searches of the relevant region of parameter space in the

model of Tobias et al. (1995) have not located any similar solutions,

although we cannot rule out the possibility of their existence.

4 C O N C L U S I O N S

Our understanding of stellar magnetic activity in solar-like stars

and its dependence on parameters such as the Rossby number is

deepening through studies such as the H+K project at the Mt Wil-

son Observatory. The magnetic activity found in this survey di-

vides stars naturally into those with constant emission, periodic

emission, irregular emission and long-term changes in emission

(Baliunas et al. 1995). Younger stars, which rotate relatively rapidly

and have higher dynamo numbers, tend to be those with irregular

emission, while older slower rotators (which have low dynamo num-

bers) tend to show periodic or regular emission (Hempelmann et al.

1996).

Stellar dynamos are governed by highly complex non-linear sys-

tems of equations, the modelling of which has been approached in

a number of ways, from various types of mean-field model to elab-

orate numerical simulations. A partial understanding of the bifurca-

tion structure of such models can be gained by studying low-order

models, consisting of coupled non-linear ordinary differential equa-

tions. Using such a theoretical model one can explore qualitatively

the effect of increasing rotation by looking at a system’s behaviour

in parameter space, for example by increasing the dynamo num-

ber. For slow rotators (small dynamo numbers) we would expect

to observe a field-free state, with a sequence of bifurcations lead-

ing to periodic, quasi-periodic, and finally irregular emission as the

dynamo number is increased.

Here we have extended the model of Tobias et al. (1995) to in-

clude an axisymmetry-breaking term that maintains the underlying

symmetry B → −B of stellar dynamos. Many of the parameters can

be tied loosely to physical effects; however, since the system has not

been derived directly from a set of governing equations, we cannot

relate them directly to physical parameters such as the Rossby num-

ber. We have demonstrated that the bifurcation sequence proposed

by Tobias et al. (1995) is present in the new system of equations,

with solutions going from field-free to periodic, quasi-periodic and

chaotic as the forcing parameter is increased. Furthermore we have

identified a new type of solution that is characterized by the occur-

rence of long and deep minima interspersed with increased chaotic

activity with clusters of shorter minima.

These results are of interest as they can be related to observations,

as discussed above. Moreover, the results presented here are robust

and so can be related to the bifurcations that are found in more com-

plicated (but less transparent) models based on partial differential

equations. Such an analysis of simplified mathematical systems can

scientifically complement those numerical studies that attempt ei-

ther to model fully a particular stellar system or, at a more ambitious

level, to solve the full set of magnetohydrodynamic dynamo equa-

tions. They can even give a guide as to the types of behaviour to be

expected in such systems.
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