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A combined numerical and analytical approach is used to study the low-frequency
shock motions observed in shock/turbulent-boundary-layer interactions in the
particular case of a shock-reflection configuration. Starting from an exact form
of the momentum integral equation and guided by data from large-eddy simulations,
a stochastic ordinary differential equation for the reflected-shock-foot low-frequency
motions is derived. During the derivation a similarity hypothesis is verified for the
streamwise evolution of boundary-layer thickness measures in the interaction zone. In
its simplest form, the derived governing equation is mathematically equivalent to that
postulated without proof by Plotkin (AIAA J., vol. 13, 1975, p. 1036). In the present
contribution, all the terms in the equation are modelled, leading to a closed form of
the system, which is then applied to a wide range of input parameters. The resulting
map of the most energetic low-frequency motions is presented. It is found that while
the mean boundary-layer properties are important in controlling the interaction size,
they do not contribute significantly to the dynamics. Moreover, the frequency of the
most energetic fluctuations is shown to be a robust feature, in agreement with earlier
experimental observations. The model is proved capable of reproducing available low-
frequency experimental and numerical wall-pressure spectra. The coupling between
the shock and the boundary layer is found to be mathematically equivalent to a
first-order low-pass filter. It is argued that the observed low-frequency unsteadiness
in such interactions is not necessarily a property of the forcing, either from upstream
or downstream of the shock, but an intrinsic property of the coupled system, whose
response to white-noise forcing is in excellent agreement with actual spectra.
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1. Introduction

In recent years, shock-wave/turbulent boundary-layer interactions (SBLI) have
received renewed interest, thanks to considerable progress in experimental and
computational techniques. A principal concern is the occurrence of energetically sig-
nificant low-frequency shock motions, which in turn can lead to undesirable unsteady
pressure loads in practical aerospace applications. Recent experimental observations
(see Dupont, Haddad & Debiève 2006; Piponniau et al. 2009; Polivanov, Sidorenko &
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Maslov 2009; Ringuette et al. 2009) and numerical studies (see Wu & Martin 2008;
Garnier 2009; Priebe, Wu & Martin 2009; Touber & Sandham 2009a ,b) are in
agreement that the pressure fluctuations are broadband in nature and centred around
a frequency which is one to two orders of magnitude smaller than the characteristic
frequency of the incoming boundary layer ū1/δ0, where ū1 is the upstream potential-
flow velocity and δ0 is the upstream 99 % boundary-layer thickness.

The physical mechanisms at the origin of the low-frequency shock motions are not
currently understood but a number of tentative explanations have been proposed,
usually falling into one of two categories. The first relates the low-frequency motions to
specific events or flow structures from the upstream turbulent boundary layer, whereas
the second looks for causal mechanisms within the interaction itself (i.e. downstream
of the shock). In both cases, the difficulty resides in identifying a mechanism that
can span time scales of the order of 101δ0/ū1 to 102δ0/ū1. With respect to the second
category, a variety of mechanisms have been proposed. Piponniau et al. (2009) argue
that the mass-entrainment time scale associated with the separation bubble and the
developing mixing layer above it scales with the shock-motion time scales of interest.
They suggest that the main controlling parameter is the compressible mixing-layer
spreading rate, provided that a separation bubble is formed. Under such conditions,
they indicate that the geometry of the flow configuration (i.e. compression corner or
shock reflection) has little influence on the low-frequency dynamics. On the basis of
direct numerical simulation (DNS) of a shock-reflection configuration, Pirozzoli &
Grasso (2006) suggest that the low-frequency shock motions could result from an
acoustic resonance similar to Rossiter modes in cavity flows, where the shear-layer
at the separation-bubble interface acts as the amplifier, the incident-shock tip as
the source point of the acoustic field (produced by shock/vortex interactions), with
feedback via the region of subsonic flow and receptivity of the shear layer to the
acoustic field. It is unclear whether or not the low-frequency tones described in
their results originate from sufficiently long data samples, knowing that in practice
the oscillations are broadband. Yet another suggestion has been to relate the low-
frequency motions with an intrinsic hydrodynamic instability (see Robinet 2007 and
Touber & Sandham 2009b, for details).

Returning to the first category of mechanisms, the experimental work of
Ganapathisubramani, Clemens & Dolling (2007, 2009) is of special interest, since
the authors find direct correlations between O(50δ0)-long coherent structures in the
incoming boundary layer and the shock motions. While the shock is undoubtedly
affected by the passage of low- or high-speed streaks, as for instance evidenced by
the tomographic particle image velocimetry study of Humble et al. (2009), the success
of the mechanism studied by Ganapathisubramani et al. (2009) in explaining the
low-frequency shock motions depends on the existence of sufficiently long streaky
structures. Touber & Sandham (2009b) performed large-eddy simulation (LES) of a
shock-reflection configuration where special care was devoted to the inflow conditions
to prevent the development of coherent structures more than 10δ0 long. Long data
samples were acquired clearly establishing that, although the upstream boundary
layer was deprived of very long coherent structures (i.e. more than 10δ0 long), the
low-frequency shock motions could still be observed. This result does not mean that
if present, long coherent structures as described by Ganapathisubramani et al. (2007)
do not contribute to the low-frequency shock motions but it is an indication that
they are not necessary for the underlying low-frequency SBLI dynamics.

In the authors’ view, the variety of the mechanisms proposed in the literature,
together with the subsequent debate about the merits of one approach relative to
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another, is symptomatic of the difficulty one has in identifying and then separating
individual events from a (supposedly) nonlinear (chaotic) system, where actual causal
events may well be impossible to detect. Instead of attempting to check the relevance
of one assumed mechanism against numerical/experimental data with the inherent
complexity of extracting this from fully turbulent flow, it could be more useful to
identify the properties of the dynamical system arising from the coupling between
the shock and the boundary layer. To some extent, this is the approach followed by
Plotkin (1975), who postulated that the shock displacement was obeying a first-order
stochastic ordinary differential equation (ODE) with an associated characteristic time
scale. Plotkin has shown that such a mathematical model is capable of reproducing
the wall-pressure low-frequency spectrum. To the best of the authors’ knowledge, this
interesting point has only been verified in two subsequent papers by Poggie & Smits
(2001, 2005). Two main reasons why Plotkin’s model has not been widely adopted
are: (i) it is a postulate and therefore lacks a physical basis for its ability to reproduce
experimental wall-pressure spectra; (ii) it is impractical since the key parameter, the
characteristic time scale of the ODE, needs to be determined a posteriori from existing
data. Arguably, (ii) may be seen as a corollary of (i).

Nevertheless, it is rather intriguing that a relatively simple ODE is capable
of reproducing the low-frequency spectra. The mathematical implications of this
observation have been considered only at a superficial level. For example, one can
read that Plotkin’s model is a mathematical explanation of how relatively broadband
perturbations, caused by the incoming turbulence, can lead to relatively low-frequency
motions; or that it assumes that the restoring mechanism ensuring the shock stability
is linear. However, there are more subtle implications. First, the analytical expression
given by Plotkin for the spectrum is based on the response to white noise, meaning
that the model does not assume as an input a turbulent signal but instead one which
is equally composed of high and low frequencies. Second, while it is true that the
postulated governing equation is linear, it is possible that the time constant associated
with the restoring mechanism already incorporates nonlinear interactions between a
velocity fluctuation and the coupled shock/boundary-layer system. This latter point
is clearly indicated by Poggie & Smits (2001).

The present paper aims at deriving an equation describing the shock low-
frequency motions, in the spirit of Plotkin’s pioneering work, but from a completely
different approach. The case of a shock-impingement configuration is chosen but
this work could be extended to compression-ramp flows in the future. A combined
LES/analytical approach is used, where the LES results are extensively employed to
support and guide each step of the derivations. This work is organised as follows.
Section 2 presents the numerical procedure used to generate the LES database.
Section 3 describes the conditionally averaged LES data, which will be constantly
used throughout the paper. We then move on to the derivations of the shock-foot
dynamical equation in § 4, the constituents of which are then modelled in § 5. Section 6
summaries the final closed form of the model and presents some solutions of interest.
Finally, § 7 discusses the low-frequency shock motions in the light of the model. More
mathematical aspects have been given in appendices.

2. Numerical procedure for the large-eddy simulations

2.1. Governing equations and numerical approach

The following filtered dimensionless three-dimensional compressible Navier–Stokes
equations (expressed in conservative form) are solved. They are composed of one
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continuity equation, three momentum equations and the energy equation:
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ŭj

∂xj

− 1

Re

∂〈τij 〉ŭi
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where ρ is the fluid density, ui is the instantaneous velocity vector, p is the pressure,
T is the temperature and t is the time. The subscript 1 denotes that the quantity
is taken to be in the potential flow upstream of the interaction. The streamwise,
wall-normal and spanwise directions are denoted by x, y and z, respectively. The
resolved equation of state, the resolved total energy/temperature relation and the
resolved viscous shear-stress relations are, respectively,
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∂ŭi

∂xj

− 2

3
δij

∂ŭk
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The resolved dynamic viscosity 〈µ〉 is related to the resolved temperature assuming
either a power law or Sutherland’s law (depending on the case):

〈µ〉 = 〈T 〉Ω , (2.1g)

〈µ〉 = 〈T 〉3/2 1 + Cs

〈T 〉 + Cs

, (2.1h)

where Cs = S/T̄ ⋆
1, with S being the Sutherland temperature and T̄ ⋆

1 being the mean
upstream free-stream dimensional temperature. In the present calculations, Cs is 0.76
while Ω is set to 0.67.

The 〈·〉 and ·̆ notations denote the grid-filter and Favre-filter operators, respectively,
while the hat notation will refer to the spatial-filter operator

̂̆ai(x) =

∫

D
G(x − z ; ∆) ăi(z) d3

z, (2.2a)

∫

D
G(x − z ; ∆) d3

z = 1, (2.2b)

ăi =
〈ρai〉
〈ρ〉 . (2.2c)

The function G(x − z ; ∆) is the filter kernel, with the characteristic length scale
∆. The integration is performed on a compact subset of �

3, denoted by D. The
usual indicial notation was used, and δij denotes the Kronecker-δ function, Re is the
Reynolds number, Pr is the Prandtl number (taken to be 0.72), M 1 is the upstream
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Mach number and γ is the specific heat ratio (taken to be 1.4). The reference
values to normalise the flow variables are taken in the potential flow, upstream of
the interaction. The reference length scale will vary during the discussion and will
be explicitly defined where it is used. The subgrid-scale (SGS) stress tensor on the
right-hand sides of (2.1b) and (2.1c) is

σij = 〈ρuiuj 〉 − 〈ρui〉〈ρuj 〉
〈ρ〉 , (2.3a)

and the SGS Reynolds heat flux on the right-hand side of (2.1c) is

Ψj =
〈ρT uj 〉

〈ρ〉 − 〈ρT 〉
〈ρ〉

〈ρuj 〉
〈ρ〉 . (2.3b)

Note that the right-hand sides of (2.1b) and (2.1c) are incomplete. The list of the
neglected SGS terms can be found in Touber & Sandham (2008), together with
the motivations which led to the above approximate form of the filtered equations.
The SGS stress tensor is modelled via the classical eddy-viscosity approach,

σij − 1
3
δijσkk = −2〈ρ〉νtS

⋆
ij , (2.4a)

where νt is the eddy viscosity and S⋆
ij is the deviatoric part of the strain-rate tensor

computed from the filtered velocity field:
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The eddy viscosity is then obtained from the mixed-time-scale (MTS) model by
Inagaki, Kondoh & Nagano (2005):

νt = CMkesTS, (2.5a)

kes = [ŭi − ̂̆ui][ŭi − ̂̆ui], (2.5b)
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where |S⋆|2 = 2S⋆
ijS

⋆
ij and the constants CM and CT are set to 0.03 and 10, respectively

(see Touber & Sandham 2009b).
The filter used in the code is a simple top-hat filter with characteristic width equal

to the grid spacing. The flow is filtered only in the streamwise and spanwise directions,
avoiding issues related to filtering in the stretched-grid direction. The filter size was
defined as

∆ =
√

�x�z, (2.6)

with �x and �z being the grid spacing in the streamwise and spanwise directions,
respectively. Once the eddy viscosity is obtained, the SGS heat flux is modelled as

Ψi = − νt

Pr t

∂T̃

∂xi

, (2.7)

where νt is taken from the SGS stress tensor model. The SGS turbulent Prandtl
number Pr t could, in theory, be computed dynamically as in Moin et al. (1991).
However, we consider it to be constant here (as in Garnier, Sagaut & Deville 2002),
with Pr t = 1.0.
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The aforementioned governing equations are solved using a fourth-order central
spatial differencing scheme for the spatial derivatives and the third-order explicit
Runge–Kutta scheme to integrate in time. The boundary treatment is also fourth-
order (Carpenter, Nordstrom & Gottlieb 1998). The code makes use of entropy
splitting of the Euler terms and a Laplacian formulation of the viscous terms to
enhance the stability of the non-dissipative central scheme (Sandham, Li & Yee
2002). In addition, a variant of the standard total variation diminishing scheme is
used for shock capturing (Yee, Sandham & Djomehri 1999), coupled with the Ducros
sensor (Ducros et al. 1999). Periodic boundary conditions are used in the spanwise
direction, while the no-slip condition is enforced at the wall, which is set to be
isothermal and equal to the upstream adiabatic wall temperature. The top (free-
stream) and outflow boundaries make use of an integrated characteristic scheme
(Thompson 1987; Sandhu & Sandham 1994) in order to minimise unwanted reflections
from the computational-box boundaries. The oblique shock is introduced at the top
boundary using the Rankine–Hugoniot relationships. The code was made parallel in
all three directions using MPI libraries.

One major challenge in DNS and LES of wall-bounded turbulence is the need to
specify realistic three-dimensional and time-varying inflow conditions. Moreover, in
the present SBLI study, it is important to ensure that no artificial low-frequency
forcing is introduced in the simulation domain, potentially interfering with the
reflected shock dynamics. This was the main motivation to develop a modified version
of the digital filter (DF) approach (Klein, Sadiki & Janicka 2003). The details of the
DF approach used in the present simulations can be found in Touber & Sandham
(2009b), where it is shown that no particular low-frequency forcing is introduced by
this choice of inlet conditions.

2.2. Flow cases and computational set-ups

The present work is based on the shock-reflection experiments from the Institut
Universitaire des Systèmes Thermiques Industriels (IUSTI) in Marseilles (France).
It consists in a Mach 2.3 turbulent boundary layer impinged by an oblique shock
generated by a wedge placed in the potential flow. In Dupont et al. (2006), the wedge
angle varies from 7◦ to 9.5◦. In the LES, only the 8◦ case will be considered, as
it is reported to be unsteady with an interaction length smaller than the 9.5◦ case,
reducing the computational cost. In this paper, the interaction length L is defined as
the distance between the mean reflected-shock-foot position x̄0, defined as the linear
prolongation of the mean reflected shock to the wall, and the theoretical incident-
shock impingement location on the wall in the absence of the boundary layer, x̄ imp

(i.e. L = x̄ imp − x̄0). The separation length is defined as the distance between the mean
reattachment location x̄at and the mean separation location x̄sep (i.e. Lsep = x̄at − x̄sep).
The Reynolds number Reδ2

, based on the boundary-layer momentum thickness δ2

(using the classical compressible formulation) upstream of the interaction, is 5 × 103.
The computational settings are detailed in table 1. Two LES simulations will be

considered whose results and validations were published in recent papers. The first
simulation, labelled narrow-span LES, is discussed in Touber & Sandham (2009b)
whereas the second one, labelled large-span LES, is discussed in Touber & Sandham
(2009a). The main difference between the two cases is the spanwise extent of the
computational domain to allow longer integration times for the low-frequency studies
(see table 1). The effect of the spanwise confinement on the interaction was presented
in Touber & Sandham (2009c) and Touber (2010), where it is shown to lead to longer
interaction lengths and enhanced low-frequency motions.
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Narrow span Large span GSD P&G

Upstream Reynolds number Reδ2
5 × 103 5 × 103 5 × 103 4 × 103

Domain size Lx, Ly, Lz in Lsep 4.3, 0.7, 0.1 6.9, 1.4, 1.6 5.5, 2.1, 0.5 78, 6.8, 2.3
Grid size Nx, Ny, Nz 451, 81, 37 451, 151, 281 255, 151, 55 2650, 111, 255
Grid resolution �x+, �y+

min , �z+ 41, 1.6, 14 33, 1.3, 12 50, 1, 18 15, 1, 6.5

Ratio Lsep/δ
imp
0 O(6) O(3) O(3) O(1)

SGS model MTS MTS MSM none (DNS)
Dynamic viscosity law Power Sutherland Sutherland Sutherland
Inflow conditions DF DF Recycling BT

Time step �t ū1/δ
imp
0 2 × 10−3 2 × 10−3 6 × 10−4 8 × 10−4

Number of low-frequency cycles O(6 × 101) O(3 × 101) O(1) O(1)

Table 1. Computational setups of the IUSTI 8◦ case: present calculations and earlier ones.
GSD, Garnier et al. (2002); P&G, Pirozzoli & Grasso (2006); MSM, mixed-scale model (see
Sagaut 2005; Garnier et al. 2002); BT, bypass transition (tripped laminar boundary layer using
blowing and suction). Number of low-frequency cycles covered by a sine wave at frequency
f = 0.035ū1/Lsep.

In addition to the current LES, table 1 provides a comparison with earlier
simulations of the same case, although the DNS of Pirozzoli & Grasso (2006)
was run at a lower Reynolds number. It can be seen that the present simulations span
30–60 longer times than earlier works, so that the reported broadband motions of the
reflected shock can be captured (see Touber & Sandham 2009b). Despite the relatively
long signal spanned by the large-span simulation, the convergence of the spectra at
St < 10−1 is not perfect, where St ≡ f L/ū1. Thus, some parts of the upcoming analysis
will only be performed on the narrow-span LES results. Because the flow statistics of
the two LES are published in the aforementioned papers, the next section only covers
the shock-motion extraction and resulting conditional averages.

3. Shock motions and conditional averages

3.1. Detection of the shock location

The shock system is first identified using the dilatation rate. On the basis of a carefully
chosen threshold value, the shocks can be detected. While this approach is robust
in the potential flow, it becomes less and less reliable as one penetrates into the
boundary layer, where the shock is significantly weaker and compressible turbulence
structures may match the selected threshold value. Nevertheless, spurious data points
can be kept to a minimum. Furthermore, the choice of the dilatation rate was found
to produce smoother results than specific sensors such as the one from Ducros et al.
(1999), which gave step-like results in the potential flow due to the high level of grid
stretching.

Next, the extracted instantaneous shock positions are time-averaged to estimate the
streamwise extent, along which the shock extraction can be deemed successful. This
choice is manual and rather subjective but it aims at selecting a range of streamwise
positions which occur a significant number of times. Therefore, extreme but rare shock
positions are not considered. Following this choice, the raw data are then clipped to
the selected domain and we are left with the final step, consisting of removing most
of the remaining spurious points. The last step is performed automatically, where the
decision is based on how far a data point is from the mean value. It was decided to
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Figure 1. Instantaneous side view of the interaction of the large-span simulation with the
detected shock system. The grey colour scheme linearly maps the temperature field ranging
from hot (black) to cold (white), with Tw/T̄ 1 ≈ 2.06. The black lines indicate the shock system
which was captured using the detection algorithm. The thick white ticks incorporated in the
wall show the time-averaged separation and reattachment positions.
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Figure 2. Shock-foot-displacement time series from the (a) narrow-span and (b) large-span
simulations. The dashed lines indicate the location of the variance ±σ/L (ε̄ = 0, σ 2 = εε).

remove points departing by more than four times the local standard deviation and to
replace them using a linear interpolation from the closest instants where the position
is reliably known (see Touber 2010 for details).

A snapshot of the end result is provided in figure 1, where one can see the detected
shock system and the ability of the method to capture the oscillatory nature of the
reflected shock. An animated version of this can be found in Touber & Sandham
(2010).

3.2. Conditional averages

The conditional averages used in this work are based on the shock-foot motions
extracted from the LES data. By subtracting the time-averaged shock-foot position,
the reflected-shock-foot displacement ε(t) is obtained, as shown in figure 2. The time
spanned by the large-span LES is shorter than that covered by the narrow-span LES,
due to the computational overhead in the large-span configuration.

Nevertheless, the standard deviation (σ ) of both raw time series can be computed.
The standard deviation is then used as a selection criterion. First, the space spanned
by the possible shock-foot positions is split into 12 equally sized bins between −3σ

and +3σ . Then, for each available instant in the LES database, the flow fields are
averaged according to which bin they belong to.
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Figure 3. Conditional averages of the SBLI based on the probability density function (p.d.f.)
of the shock-foot position, which is split into 12 bins in the range ±3σ . The conditionally
averaged shocks are nearly linear but only the best-fit lines are shown in the figure for
clarity. Furthermore, the best-fit lines are extended to the wall but in reality the shocks do
not penetrate the subsonic region, which is also indicated in the figure. The total number of
samples are 160 000 and 64 990 in the (a) narrow-span and (b) large-span cases, respectively.
The normal-law p.d.f. is shown on top of the black histograms.

Let Aε0,�σ be the set of all the instants t ∈ [0, T ] such that the shock-foot
displacement is located between ε0 and ε0 + �σ , where T , ε0 and �σ are some
predefined values. Let N(Aε0,�σ ) be a measure associated with this set, consisting of
the time spanned by Aε0,�σ . This can be written as

Aε0,�σ = {t ∈ [0, T ] : ε(t) ∈ [ε0, ε0 + �σ ]}, (3.1a)

N(Aε0,�σ ) =

∫

Aε0,�σ

1 dt . (3.1b)

The set Aε0,�σ and its associated measure N being specified, it is possible to define
the conditional-average operator 〈·〉ε0,�σ :

〈ui〉ε0,�σ =
1

N(Aε0,�σ )

∫

Aε0,�σ

ui(t) dt . (3.1c)

It is straightforward to see that this operator is linear and conserves constants.
Ideally, the LES data could provide 〈ui〉ε0,�σ for any given values of ε0 and �σ .

In practice, this is impossible due to the finite and short time spanned by the LES;
and ε0, �σ are chosen such that the range [−3σ, 3σ ] can be split into 12 segments.
Figure 3 is a plot of the resulting conditionally averaged data. It features the different
shock positions (except for the extreme bins), the respective positions of the sonic
line as well as the contours where the streamwise velocity is −0.02ū1. To ease the
reading of the figure, the upstream displacements are shown by dashed lines. Note
that in the case of figure 3 no effort is made to distinguish the positive dε/dt events
from their negative counterparts. The most interesting aspects of both figures 3(a)
and 3(b) are: (i) the clear correlation between a stronger separation and an upstream
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position of the reflected shock and (ii) the fact that the reflected shock angle does
not stay constant between upstream and downstream positions. Note that in both
cases, the conditionally averaged shocks are nearly linear and therefore it was decided
to approximate them by their best-fit lines. Some differences between the narrow-
span and large-span cases may be seen, namely the smaller shock excursions and
separation bubbles in the large-span LES and the behaviour of the sonic line, which
seems to rotate around a different fixed point. The correlation between the size of
the separation and the shock position is a well-established result (see Piponniau et al.
2009). Moreover, the reduction of the streamwise excursions of the shock as one
moves further away from the wall was also documented by Dupont et al. (2006). The
LES results thus confirm those experimental observations.

From this point onward, we wish to associate the conditional averages with the
notion of phase averaging, although we stress that the shock motions are not harmonic
so that the notion of phase is different from its usual meaning. At any given position,
the velocity-vector time series ui(t) can be decomposed in its time-averaged value ūi

and a time-dependent component u′
i(t). This is the classical Reynolds decomposition.

Now suppose that the time dependency of u′
i occurs on two distinct time scales, a fast

one denoted by tf and a slow one denoted by ts such that tf /ts ≪ 1. In the present
case, tf is associated with the time scales of turbulent structures in the upstream
boundary layer whereas ts is associated with the time scales of the low-frequency
shock motions. This can be made more formal by setting

tf ≡ δ0/ū1,

ts ≡ tf /r0, with r0 ≪ 1.

}
(3.2)

From Dupont et al. (2006) and Touber & Sandham (2009b), it is known that for
the shock-reflection case considered in this work, r0 ∼ 10−2. Thus, the time-dependent
component u′

i is decomposed into the low-frequency (ũi) and high-frequency (u′′
i )

contributions:

ui(t) ≡ ūi + ũi(ts) + u′′
i (tf ). (3.3a)

By definition, the time average of all fluctuations is zero, i.e. u′
i = 0. This implies that

u′′
i = − ũi , which is still too general for the present purposes. Thus, it is also required

that each mean contribution vanishes:

ũi = 0, (3.3b)

u′′
i = 0. (3.3c)

At this stage, it is tempting to try to relate ũi with the conditionally averaged fields
〈ui〉ε0,�σ , but this is not trivial. The main difficulty in reconciling the two resides in the
temporal dependence of ũi , as opposed to the dependence of 〈ui〉ε0,�σ on the selected
shock-foot position. To remove this difficulty, the following (strong) hypothesis will
be used.

Hypothesis 1. For a given reflected-shock-foot position taken from a low-pass filtered
signal (with cutoff frequency O(0.1ū1/δ0)), the associated flow field ũi is uniquely
defined:

ũi(ts) = ũi(ε(ts)). (3.4)

The validity of the above hypothesis is debatable but it may be justified in the light
of the LES results. While it is clear that there exist an infinite number of different
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flow fields ui yielding the same shock-foot position x0 (when for example considering
the transverse waves along the shock and the turbulence), it is argued that when only
the low-frequency motions are retained, the picture may become uniquely defined.
One supporting observation is that the conditionally averaged LES data, where the
distinction between upstream and downstream shock motion was made, do not show
any significant level of hysteresis. In other words, for a given shock position, the fact
that the shock foot was moving upstream or downstream does not matter, giving
one example where hypothesis 1 is satisfied. The above arguments strongly depend
on the observed scale separation between the low-frequency shock motions and the
turbulence-related fluctuations.

If hypothesis 1 is satisfied, and assuming that the turbulence fluctuations do not
correlate with the shock-foot motions, making the conditional-averaging operation
similar to a time integration (i.e. 〈u′′

i 〉ε0,�σ = u′′
i =0), the following two corollaries may

be written (the details of which are provided in Appendix A).

Corollary 1.

〈ui〉ε0,�σ − ūi = ũi(ε0) + O(�σ ). (3.5a)

Corollary 2.
∫

Aε0,�σ

ũi(ε(ts))ũj (ε(ts)) dts =
[
ũi(ε0)ũj (ε0) + O(�σ )

]
N(Aε0,�σ ). (3.5b)

As mentioned earlier, the term ‘phase average’ will be used here to refer to ũi(ts). To
quantify the spatial and energetic relevance of the phase fluctuations, it is of interest to
compute the phase-fluctuation stress tensor ũi ũj . By invoking the previous corollaries,
one can easily show that the phase-fluctuation stress tensor may be evaluated from
the following sum (see Appendix A):

ũi ũj ≈ 1

T

N−1∑

k=0

[
〈ui〉εmin+k�σ,�σ − ūi

] [
〈uj 〉εmin+k�σ,�σ − ūj

]
N(Aεmin+k�σ,�σ ), (3.6)

where N =(εmax − εmin)/�σ with εmax = max(ε(t)), εmin = min(ε(t)), t ∈ [0, T ].
Figure 4 compares the distribution of the kinetic energy associated with the phase

fluctuations alone with the kinetic energy associated with all fluctuations. In the
narrow-span case, the contribution of the phase fluctuations to the total energy
represents about 30 % whereas in the large-span case, where the low-frequency
motions were found to be less energetic (see Touber & Sandham 2009c), the
contribution of the phase fluctuation is less than 10 %. In both cases, the contribution
of the phase fluctuations is restricted around the mean reflected-shock position and
in the vicinity of the first section of the mixing layer, as one would expect.

4. Stochastic dynamical model derivation

4.1. Initial form of the momentum integral equation

To derive the model, the streamwise component of the unsteady momentum equation
is first integrated in the wall-normal direction. After some algebraic manipulations
(provided in Appendix B), one can obtain the following exact form of the momentum



428 E. Touber and N. D. Sandham

−0.5 0 0.5 1.0 1.5

0

0.1

0.2

0.3

0.4

0.5
u~iu

~
i

0

2

4

6

8
(×10−3)

(a) (b)

0

1

2

3

0

1

2

3

(c) (d)

y/L

y/L

−0.5 0 0.5 1.0 1.5

0

0.1

0.2

0.3

0.4

0.5
u′

iu
′
i/3

u~iu
~

i u′
iu

′
i/12

0

2

4

6

8
(×10−3)

−0.5 0 0.5 1.0 1.5

0

0.1

0.2

0.3

0.4

0.5 (×10−3)

(x – x–0)/L

−0.5 0 0.5 1.0 1.5

0

0.1

0.2

0.3

0.4

0.5 (×10−3)

(x – x–0)/L

Figure 4. Kinetic energy fields from all fluctuations (b, d ) and from the phase fluctuations
only (a, c). (a, b) Narrow-span case (note the factor 1/3 in (b)); (c, d ) large-span case (note the
factor 1/12 in (d )). The dashed lines indicate the position of the shocks.

integral equation (MIE):

ρh (h − δ1)

[
∂uh

∂t
+ uh

∂uh

∂x

]
+ uh

∂

∂t
[ρh(δρ − δ1)] − ∂

∂x

[
ρhu

2
hδ2

]
+

∂

∂z

[∫ h

0

ρuw dy

]

− uh

∂

∂z

[∫ h

0

ρw dy

]
=

∂

∂x
[ph(δp − h)] +

µh

Re

[
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

]
− 1

2
Cf ρhu

2
h

+
1

Re

∂

∂x

[∫ h

0

τxx dy

]
+

1

Re

(
∂

∂z

[∫ h

0

τxz dy

]
− τxz|y=h

∂h

∂z

)
, (4.1)

where the following thicknesses are defined (displacement, momentum, pressure and
density thicknesses, respectively):

δ1 =

∫ h

0

(
1 − ρu

ρhuh

)
dy, (4.2a)

δ2 =

∫ h

0

ρu

ρhuh

(
1 − u

uh

)
dy, (4.2b)

δp =

∫ h

0

(
1 − p

ph

)
dy, (4.2c)

δρ =

∫ h

0

(
1 − ρ

ρh

)
dy, (4.2d)

and

Cf =
2µw

ρhu
2
hRe

∂u

∂y

∣∣∣∣
w

, (4.3)
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Figure 5. Sketch of the interaction with the definition of the notations in use.

where the subscripts h and w denote that variables are evaluated at y = h and
at the wall, respectively, with h being the distance measured from the wall of the
instantaneous shock-crossing point, as shown in figure 5.

4.2. Change of variable

It is convenient to introduce a new coordinate system by moving the origin of the
streamwise x axis to the instantaneous shock-foot position and then normalising with
the distance covered from the instantaneous shock foot to the instantaneous shock-
crossing point (denoted by C in figure 5). Note that l0 is the absolute distance between
the mean shock-foot position and the mean streamwise cross-point position whereas x,
s and ε can be either positive or negative distances, with s and ε respectively denoting
the instantaneous shock-crossing and shock-foot positions relative to the mean (see
figure 5). With the upstream movement of the shock foot sketched in figure 5, s and ε

are negative. The distance from the origin of the axis system O to the instantaneous
shock-foot location is l0 − ε and the distance separating the instantaneous shock foot
from the instantaneous crossing point is l0 − ε + s. Therefore, the new coordinate
system, denoted by ξ , is

ξ ≡ x + l0 − ε

l0 − ε + s
or equivalently, x ≡ (l0 − ε)(ξ − 1) + sξ. (4.4)

Hence, in the following sections, ξ = 0 is the instantaneous shock-foot position, ε

is the shock-foot displacement with respect to its mean position and ξ = 1 is the
instantaneous location of the shock crossing.

Because of the integration in the wall-normal directions, the terms in (4.1) are
only functions of x, z and t . This can be expressed in a generic way by writing that
the terms in (4.1) are of the type f (x, z, t). Equation (4.4) will transform f (x, z, t)
into f (ξ (z, t)). From the chain rule, ∂f/∂(·) = [∂f/∂ξ ][∂ξ/∂(·)], where (·) should be
replaced by t , x and z. From (4.4), it is straightforward to compute the following
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derivatives:

∂ξ

∂t
=

1

l0 − ε + s

[
(ξ − 1)

∂ε

∂t
− ξ

∂s

∂t

]
, (4.5a)

∂ξ

∂x
=

1

l0 − ε + s
, (4.5b)

∂ξ

∂z
=

1

l0 − ε + s

[
(ξ − 1)

∂ε

∂z
− ξ

∂s

∂z

]
. (4.5c)

Using the above relations, one can express (4.1) in the new coordinate system:

ρh (h − δ1)

l0 − ε + s

[
(ξ − 1)

∂ε

∂t
− ξ

∂s

∂t
+ uh

]
∂uh

∂ξ

+
1

l0 − ε + s

[
uh

(
(ξ − 1)

∂ε

∂t
− ξ

∂s

∂t

)
∂

∂ξ
[ρh(δρ − δ1)] − ∂

∂ξ

[
ρhu

2
hδ2

]]

+
1

l0 − ε + s

[
(ξ − 1)

∂ε

∂z
− ξ

∂s

∂z

]{
∂

∂ξ

[∫ h

0

ρuw dy

]
− uh

∂

∂ξ

[∫ h

0

ρw dy

]}

=
1

l0 − ε + s

∂

∂ξ
[ph(δp − h)] +

µh

Re

[
1

l0 − ε + s

∂v

∂ξ

∣∣∣∣
y=h

+
∂u

∂y
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y=h

]
− 1

2
Cf ρhu

2
h

+
1

Re

1

l0 − ε + s

∂

∂ξ

[∫ h

0

τxx dy

]

+
1

Re

1

l0 − ε + s

[
(ξ − 1)

∂ε

∂z
− ξ

∂s

∂z

]{
∂

∂ξ

[∫ h

0

τxz dy

]
− τxz|y=h

∂h

∂ξ

}
. (4.6)

4.3. Approximate form of the momentum integral equation

In principle, if one could find all the appropriate necessary closure terms, (4.6) would
be used to resolve the shock dynamics. However, in its current state, (4.6) is unpractical
and one needs to make further assumptions in order to simply it. Some reasonable
assumptions are:

(a) the study shall be restricted to ξ < 1;
(b) the potential flow is assumed constant (e.g. the acoustic field is neglected) so

that u1, ρ1 and p1 are true constants (ρ1 = ρ̄1, u1 = ū1, p1 = p̄1);
(c) the top boundary (delimited by h in figure 5) is assumed to be always inside

the potential flow, i.e. h > δ0 at all times;
(d) the shock system is considered two-dimensional (i.e. spanwise variations are

not considered), so that h = h(t), s = s(t), ε = ε(t) (three-dimensional effects could be
considered in a future study).

With the above assumptions, the subscripts h can be replaced by 1 (e.g. uh = u1),
since h is inside the potential flow (assumption c) and the study restricted to the
section upstream of the shock-crossing point (assumption a). Furthermore, for a
constant potential flow (assumption b), one can write ∂uh/∂ξ = ∂u1/∂ξ = 0. For
similar reasons, multiplicative terms such as ρh, uh or ph can be pulled out of
derivatives. The two-dimensional (2D) assumption (assumption d) is used to zero out
terms with ∂/∂z. Finally, the shear-stress term τxz|y =h vanishes under assumptions
b and c. Implementing the above simplifications to (4.6) eventually leads to the
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Figure 6. Evaluation of the contribution from each term in (4.7) to the (a) time-averaged
balance and (b) their relative importance to the energy of the fluctuations. Note that most of
the data smaller than O(10−5) are subject to noise.

following approximate form of the MIE:

1

u1l0

[
(1 − ξ )

dε

dt
+ ξ

ds

dt

]
∂

∂ξ
[δρ − δ1]

︸ ︷︷ ︸
(i)

+
1

l0

∂δ2

∂ξ︸ ︷︷ ︸
(ii)

+
p1

ρ1u
2
1l0

∂δp
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(iii)

=
1

2

(
1 − ε

l0
+

s

l0
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Cf
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(iv)

− 1

ρ1u
2
1l0Re

∂

∂ξ

[∫ h

0

τxxdy

]

︸ ︷︷ ︸
(v)

. (4.7)

In a canonical boundary layer, term (v) would be neglected and it is worth checking if
this would also hold for the current SBLI configuration. Each term in (4.7) is therefore
evaluated using the LES data and the magnitudes are shown in figure 6(a). It can be
seen that upstream of the interaction, (v) is O(10−7) whereas all the other terms are
greater than O(10−5), justifying the common assumption made in canonical boundary
layers. Upon entering the interaction region, the amplitude of (v) rises, as one
would expect, to reach a maximum (for the region considered here) near separation.
However, it may be argued that this maximum remains small compared with the
other terms, with the exception of the skin-friction term (iv) right at separation, where
it is strictly zero. Because the analysis of the time-averaged data is not sufficient to
judge the relevance of (v) in the unsteady context, the relative importance of the
variance of each terms in (4.7) is also considered in figure 6(b). It is found that
term (v) only makes a marginal contribution to the energy of the fluctuations and it
appears justified, as a leading-order approximation, to neglect (v) from (4.7).

In figure 6(a), it is also interesting to note that on average within the interaction,
there is an approximate balance between the rate of changes of momentum and
pressure thicknesses (terms (ii) and (iii)). At leading order, those two terms control
the interaction length by setting the necessary equilibrium between the adverse
pressure gradient and the rate of change of momentum thickness. We shall come
back to this point later.
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4.4. Hypothesis of the existence of a similarity solution

Equation (4.7) with (v) neglected is not yet in a closed form but some interesting
features are already emerging. The final dynamical equation which is sought is the
governing equation for ε and, looking at (4.7), some terms in ε can already be identified
amongst terms involving the streamwise evolutions of the various thicknesses. One
common approach to transforming a partial differential equation into an ordinary
one is to seek similarity solutions. In this particular case, one can attempt to map
terms in ∂/∂ξ into a family of functions playing the role of coefficients in the final
governing equation for the shock motions. Such families can indeed arise if the
following hypothesis is invoked.

Hypothesis 2. There exists a similarity function (F) that describes the streamwise
evolution of the various boundary-layer thicknesses independent of the time variable, i.e.

F (ξ ) ≡ δi(ξ ) − δi(ξ = 0)
∆i

,

∆i(t) ≡ δi(ξ = 1) − δi(ξ = 0),

}
(4.8)

where the subscript i is any of the following: 1, 2, ρ, p.

Mathematically, hypothesis 2 corresponds to the supposed existence of a separation
of variables. From (4.8),

δi(ξ ) = F (ξ )∆i(t) + δi(ξ = 0),
∂δi

∂ξ
=

dF

dξ
∆i ≡ F ′∆i, (4.9)

so that the MIE becomes

1

u1l0

[
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dε

dt
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ds

dt

] (
F ′∆ρ − F ′∆1

)
+

1

l0
F ′∆2 +

p1

ρ1u
2
1l0

F ′∆p

=
1

2

(
1 − ε

l0
+

s

l0

)
Cf . (4.10)

The validity of hypothesis 2 can be tested using conditionally averaged LES data,
as shown in figure 7. In figure 7(a), the δi functions are shown from the stationary
axis ξ̄ . The same functions are then plotted in the moving coordinate system ξ (see
figure 7b), making the local extrema in the δi distributions centred at ξ = 1. Finally,
the δi functions are shifted by δi(ξ =0) and normalised by their respective amplitudes
∆i to give the F functions shown in figure 7(c). It is argued that the 30 curves shown
in figure 7(c) collapse reasonably well onto the hypothesised universal function F .
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Figure 8. (a) Dependency of thicknesses amplification (∆i) on the shock-system position (η)
and (b) the relationship between the shock-foot motions and the shock-cross point motions.
The theoretical line in (b) will be described in § 5.

However, evaluating the thicknesses from the LES fields, and in particular at the
shock-crossing point streamwise station ξ = 1, is difficult due to the shock-smearing
and grid-stretching effects, reducing the accuracy of these quantities at this particular
station. The plots in figure 7 should thus be regarded as indicative only. Furthermore,
one can see in figure 7 that the time-averaged displacement thickness does not
increase much between ξ = 0 and ξ = 1, compared with the other thicknesses, making
the division by ∆1 in (4.8) sensitive to numerical errors. Therefore, the case of the δ1

distributions was not included in figure 7(c).
Despite the issues outlined above, the LES data provide good support for hypothesis

2. Looking at (4.10), one also needs to consider the ∆i functions and these quantities
are also difficult to obtain numerically. Nevertheless, figure 8(a) gives an idea of
how the ∆i functions depend on the shock-system position. The numerical results
suggest that, as a first approximation, the overall changes of the different thicknesses
considered here may be approximated by the mean value plus a linear dependence
on η, defined as the shock-crossing point wall-normal displacement (see figure 5):

∆i = Θi + κi η(t). (4.11)

The above approximation will be further discussed in § 5. Next, it is easily seen from
geometrical considerations (see figure 5) that

η(t) = −s(t) tan β. (4.12)

From (4.10) and (4.12), it is clear that a relationship between the shock-foot
displacement ε and the shock-crossing-point streamwise displacement s is needed.
This relation is reported in figure 8(b) using the LES data sets. Again, a linear
relation seems appropriate and reflects the earlier impressions on the conditionally
averaged data in figure 3:

s(t) = k ε(t). (4.13)

The rationale behind (4.13) will be further discussed in § 5 and the theoretical line in
figure 8(b) will be explained.
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Using (4.11)–(4.13) in (4.10), one can write

1

u1

k tan β(κ1 − κρ)F
′(ξ )[1 + ξ (k − 1)]

dε

dt
ε +

L
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(
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+

[
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2
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ρ1u
2
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]
ε

= L

(
1

2

l0

L
Cf − Θ2

L
F ′(ξ ) − p1

ρ1u
2
1

Θp

L
F ′(ξ )

)
. (4.14)

Since the location of interest in this study is the shock foot, the parameter ξ can be
set to zero. Allowing for F ′(0) being non-zero (figure 7) and introducing the following
non-dimensional variables,

ζ ≡ ε/L,

t⋆ ≡ tu1/L,

ζ̇ ≡ dζ/dt⋆,

⎫
⎬

⎭ (4.15)

(4.14) becomes

k tan β(κ1 − κρ)ζ ζ̇ +

(
Θρ

L
− Θ1

L

)
ζ̇ +

[
Cf (0)

2F ′(0)
(1 − k) − k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)]
ζ

=
l0Cf (0)

2LF ′(0)
− Θ2

L
− p1

ρ1u
2
1

Θp

L
. (4.16)

Equation (4.16) is a first-order nonlinear ODE representing the shock-foot motions
in the presence of the forcing term Cf (ξ = 0) (note that separation occurs for ξ > 0 so
that Cf (ξ = 0) > 0). For particular cases, the constants could be computed from the
LES, but for more general applications we need to model them. Prior to discussing
some tentative modelling efforts, it is of interest to use the LES data to perform a
leading-order analysis and further simplify the governing equation (4.16).

4.5. Leading-order equations

To further simplify the equation for the shock-foot motions, it is convenient to apply
the triple decomposition approach introduced earlier (see (3.3a)) to decompose the
skin-friction time series at the shock foot:

Cf (ξ = 0) = C̄f0
+ C̃f0

(ts) + C ′′
f0

(tf ). (4.17)

Terms C̃f0
and C ′′

f0
correspond to the skin-friction fluctuations at the shock foot

associated with the low-frequency motions and the high-frequency fluctuations due
to the turbulence, respectively. From the LES time series, it is found that both C̃f0

and C ′′
f0

contribute to the skin-friction fluctuations and therefore one cannot neglect
C ′′

f0
in (4.17). Furthermore, using the LES conditional averages and invoking the first

corollary (3.5a), it is possible to evaluate the correlation between C̃f0
and the shock

displacement ζ , as shown in figure 9. Although there is some departure from the
linear relationship at larger positive ε due to the asymmetry in |dC̄f /dx| about the

shock-foot position, it is argued that, as a first approximation, the variations in C̃f0

are linearly correlated with the shock-foot displacement:

C̃f0
≈ Λζ, (4.18)

with Λ in the range 2 × 10−3 to 3 × 10−3 for the case considered. Using (4.17) and
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Variable Amplitude Justification

ζ O(10−1) Figure 2
ζ̇ † O(10−3) (3.2), (4.15) with t ≡ ts
k, k tan β O(10−1) Figure 8(b), β ≈ 32◦

C̄f0
O(10−3) Configuration input, figure 9

C ′′
f0

O(10−4) From LES data
Λ O(10−3) Figure 9
F ′(0) O(10−1) Figure 7
p1/(ρ1u

2
1)

‡ O(10−1) For γ = 1.4 and M 1 = 2.3
l0/(2L)¶ O(10−1) By geometry with α ≈ 29◦, β ≈ 32◦

κ1, κρ, κp O(1) Figure 8(a)
κ2 O(10−1) Figure 8(a)
Θ1/L, Θ2/L O(10−2) Figure 8(a)
Θρ/L, Θp/L O(10−1) Figure 8(a)

† ζ̇ = dζ/dt⋆ ∼ Lζ/(u1ts) = ζ r0L/δ0 with r0 ∼ 10−2, L/δ0 ≈ 4 (Dupont et al. 2006).
‡ p1/(ρ1u

2
1) = 1/(γM 2

1) from ideal gas law.
¶ l0/(2L) = tan β/[2(tanα + tan β)] by construction (see figure 5).

Table 2. Amplitudes of all the constituents found in (4.20) for M 1 = 2.3 and θ = 8◦.
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(4.18) in (4.16) gives

k tan β(κ1 − κρ)ζ ζ̇ +

(
Θρ

L
− Θ1

L

)
ζ̇

+

[
1 − k

2F ′(0)

(
C̄f0

+ Λζ + C ′′
f0

)
− k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)]
ζ

=
l0

2LF ′(0)

(
C̄f0

+ Λζ + C ′′
f0

)
− Θ2

L
− p1

ρ1u
2
1

Θp

L
. (4.19)

Each term in (4.19) can now be quantified. This is performed in the case of an
upstream Mach number M 1 =2.3 and a wedge angle θ set to 8◦, which gives α ≈ 29◦

and β ≈ 32◦ from inviscid theory. The orders of magnitude of all the constituents in
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(4.19) are provided in table 2 and the governing equation is

k tan β︸ ︷︷ ︸
O(10−1)

⎛

⎜⎜⎝ κ1︸︷︷︸
O(1)

− κρ︸︷︷︸
O(1)

⎞

⎟⎟⎠ ζ ζ̇︸︷︷︸
O(10−4)

+

⎛

⎜⎜⎜⎜⎝

[
Θρ

L

]

︸ ︷︷ ︸
O(10−1)

−
[
Θ1

L

]

︸ ︷︷ ︸
O(10−2)

⎞

⎟⎟⎟⎟⎠
ζ̇︸︷︷︸

O(10−3)

+

⎡

⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎝
C̄f0︸︷︷︸

O(10−3)

+ Λζ︸︷︷︸
O(10−4)

+ C ′′
f0︸︷︷︸

O(10−4)

⎞

⎟⎟⎟⎠

[
1 − k

2F ′(0)

]

︸ ︷︷ ︸
O(1)

− k tan β︸ ︷︷ ︸
O(10−1)

⎛

⎜⎜⎜⎜⎝
κ2︸︷︷︸

O(10−1)

+

[
p1

ρ1u
2
1

κp

]

︸ ︷︷ ︸
O(10−1)

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦
ζ︸︷︷︸

O(10−1)

=

[
l0

2LF ′(0)

]

︸ ︷︷ ︸
O(1)

⎛

⎜⎜⎜⎝
C̄f0︸︷︷︸

O(10−3)

+ Λζ︸︷︷︸
O(10−4)

+ C ′′
f0︸︷︷︸

O(10−4)

⎞

⎟⎟⎟⎠
−

[
Θ2

L

]

︸ ︷︷ ︸
O(10−2)

−
[

p1

ρ1u
2
1

Θp

L

]

︸ ︷︷ ︸
O(10−2)

. (4.20)

Neglecting all the O(10−5) terms, (4.20) reduces to

Θρ

L
ζ̇ +

[
1

2F ′(0)

(
C̄f0

(1 − k) − l0

L
Λ

)
− k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)]
ζ

=
l0C

′′
f0

2LF ′(0)
+

l0C̄f0

2LF ′(0)
− Θ2

L
− p1

ρ1u
2
1

Θp

L︸ ︷︷ ︸
Υ

. (4.21)

Equation (4.21) is now a linear first-order ODE with both a forcing term C ′′
f0

and
a steady term Υ on the right-hand side. It is well known from the LES and from
the experiments that the reflected shock oscillates about a mean position (in a non-
harmonic manner). In other words, the reflected-shock-foot motions must be governed
by a stable dynamical system and in the absence of any external forcing, the shock
must remain at its equilibrium position. In the current coordinate system, this means
ζ = 0 in the absence of any forcing (i.e. C ′′

f0
= 0). Applying this condition to (4.21)

leads to Υ =0. Hence, the system is governed by

l0C̄f0

2LF ′(0)
− Θ2

L
− p1

ρ1u
2
1

Θp

L
= 0 (4.22a)

and

ζ̇ + φζ = ψ(t), (4.22b)
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where

φ =
L

Θρ

[
1

2F ′(0)

(
C̄f0

(1 − k) − l0

L
Λ

)
− k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)]
, (4.22c)

ψ(t) =
l0C

′′
f0

(t)

2LF ′(0)
. (4.22d)

Equation (4.22a) is the reflected-shock-foot steady-state equation whereas (4.22b) is
its dynamical equation in the presence of fluctuations. Equation (4.22a) shows that,
on average, the most significant balance is the balance between the rate of changes
of momentum and pressure thicknesses (as previously noted in connection with
figure 6a). As one could have anticipated, the error in this statement scales with the
mean skin friction and is of the order of 10−3 in the present case.

Quite remarkably, (4.22b) is similar to the model proposed by Plotkin (1975), and
the above may be viewed as a derivation of his model. This is discussed in more
detail later. Generally speaking, (4.22b) is a stochastic differential equation resembling
a Langevin equation for Brownian motions (see chapter 3 of Risken 1989), where
φ is the damping coefficient and ψ(t) is the Langevin force, with zero mean (i.e.
ψ(t) = 0). However, the main difference with the classical Langevin equation resides
in the time-correlation properties of the forcing, which is not proportional to a Dirac
function, at least for time scales of the order of δ0/ū1 (we shall see that for the
time scales considered in the present problem, i.e. O(102δ0/ū1), the forcing may be
considered similar to a white noise). One interesting property of (4.22b) is that it is
sufficient to know the time correlation of the forcing (i.e. C ′′

f0
(t)C ′′

f0
(t + τ )) to calculate

the correlation function of ζ (i.e. ζ (t)ζ (t + τ )), which is our ultimate goal. Therefore,
if the time-correlation function of the skin-friction turbulence-related fluctuations
is known, and provided that one can calculate the damping factor φ, the derived
governing equation (4.22b) is sufficient to predict the shock-motion low-frequency
spectrum.

In the present case, the aforementioned results (i.e. Θρ/L = − 0.104, F ′(0) = 0.12,
C̄f0

=1.35 × 10−4, k = 0.32, l0/L = tan β/(tan α + tan β) = 0.55, Λ = 3 × 10−3,
k tan β = 0.2, κ2 = 0.27, κp = − 1.23 and p1/(ρ1u

2
1) = 0.134) can be used to find that

the damping factor φ is roughly 0.23. It will be shown later that the premultiplied
spectrum of ζ when subject to a white-noise forcing is broadband with a peak at
φ/(2π). For φ ≈ 0.23, one finds φ/(2π) ≈ 0.037, which is reminiscent of the Strouhal-
number value observed in the LES-weighted spectrum (see Touber & Sandham
2009b). However, before discussing this encouraging result further, it is of importance
to try to model the coefficients Θρ , k, κ2 and κp to overcome the need for some prior
LES results.

5. Modelling the ODE coefficients

5.1. The k coefficient

If the shock maintains its inclination angle at all times, one could write
s = ε tan α/(tan α + tan β). However, this is not the case. For example, Dupont et al.
(2006) noted that ‘the reflected shock appears as a low-frequency unsteady sheet with
a length of excursion vanishing far from the wall’. This implies that the reflected
shock angle with respect to the wall changes as the shock moves back and forth.
This picture may also be observed in the conditional averages, as shown in figure 3
and also in side-view animations of the LES (see Touber & Sandham 2010). At
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Figure 10. Sketch of the interaction with the notations used to compute k.

high frequencies, the shock cannot be considered to be a straight line (or sheet)
because of transverse travelling waves, and defining an inclination angle may be
difficult and not meaningful. However, at sufficiently low frequencies, the reflected
shock appears to move as a whole and may be thought of a straight line (or sheet)
with a given foot position and inclination angle (see Touber & Sandham 2010). The
quantitative relationship between s and ε seen in figure 8(b) can be combined with
the aforementioned comments to justify relating s and ε as in (4.13), if the study is
restricted to the low-frequency motions. An analytical expression for k in (4.13) is
derived in the following paragraph.

From the notation defined in figure 10, one can write the following geometric
relations:

K = H/ tan α,

K − ε = H/ tan ι,

tan ι = (h0 + η) / (l0 − ε + s),

η = −s tan β,

tan α = h0/l0,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.1)

to find that

s =
(ε/h0) (h0 − H )

(ε/h0) tan β − (H/h0)

(
1 +

tan β

tan α

) . (5.2)

Assuming ε/h0 ≪ 1, one can expand the above equation in series of ε/h0 to find

s =
H/h0 − 1

(H/h0)

(
1 +

tan β

tan α

) ε + O(ε2/h0). (5.3a)
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Following the aforementioned remark by Dupont et al. (2006), which is supported
by figure 3, one can say that H is significantly larger than the incoming boundary-
layer height δ0. One way to look at H is to see it as a penetration length scale
corresponding to the wall-normal distance a perturbation associated with a shock-
foot displacement can travel along the shock during half of a low-frequency cycle.
If V is the propagation speed and T is the typical period of a low-frequency cycle,
one could write H = (T/2)V sin α. Roughly, the propagation speed can be thought
to scale with u1 cos α and the characteristic frequency of the system with u1/L,
so that H ∼ πL sin α cos α = Lπ sin(2α)/2. Considering that π sin(2α)/2 ∼ 1, one finds
that H ∼ L. Therefore, one could replace H with L in (5.3a) and write

s ≈ L/h0 − 1

(L/h0)

(
1 +

tan β

tan α

) ε. (5.3b)

Noting the geometrical relation h0/L = tan α tan β/(tan α + tan β), the theoretical
value for k is

k =
1 − tan α tan β/ (tan α + tan β)

1 + tan β/ tan α
. (5.4)

For M 1 =2.3 and a wedge angle of 8◦, inviscid theory gives that β ≈ 32.4◦ and
α ≈ 29.4◦, so that the theoretical k value is about 0.33, to compare with 0.38 in the
large-span LES and 0.32 in the narrow-span LES (see figure 8b). The average error
is less than 6 % and therefore (5.4) is considered a good first-order approximation.

5.2. The Θi coefficients

The Θ coefficients represent the mean changes of thicknesses (i.e. δ1, δ2, δρ , δp) between
the shock foot ξ = 0 and the shock-crossing point ξ = 1. Note that, rigorously, we
should write ξ = 1− owing to the discontinuity at this station. However, the thicknesses
being integral quantities, the presence of the discontinuity is in fact irrelevant and we
can write ξ = 1. Although such quantities are not generally known, this section will
introduce a model to estimate Θp and show how it can be related to Θρ and Θ2 in a
useful way.

In canonical boundary layers, the pressure is considered constant in the wall-normal
direction. In the presence of the oblique shock, this approximation is obviously
inadequate. However, upstream of the interaction, the boundary layer is a typical
turbulent boundary layer and one can write

p̄(ξ < 0, y) ≈ p1, (5.5)

which is easily verified from figure 11. Inside the interaction, the picture is more
complex. At ξ = 1 and y = h0, the pressure is discontinuous, jumping from p1 to p̄3

(where p̄3 refers to the mean pressure downstream of the interaction) whereas at the
wall, the pressure continuously increases from p1 to p̄3 over a streamwise distance
ranging from ξ ≈ 0 to well beyond the reattachment point. However, on the basis
of figure 11, we argue that the isobar in the vicinity of ξ = 1 can be modelled as a
straight line given its actual ‘S’ shape in the figure (see white dots), with the straight
line chosen such that it averages the S. From the data, this idealised isobar would
take a value between p+

2 and p̄3 (see the dash-dotted isobar corresponding to p+
2 );

hence

p̄(ξ = 1, y) ≈ (1 − r) p+
2 + r p̄3, (5.6)
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Figure 11. Mean pressure field p̄/p1 (a, c) and the mean momentum-thickness-integrand
field [ρu/(ρ1u1) − ρuu/(ρ1u1u1)] (b, d ). Both the (a, b) narrow-span and (c, d ) large-span LES
data are shown. The thick solid and dash-dotted lines indicate the contours equal to the
inviscid-theory results, using the upper-region values (e.g. p+

2 , ρ+
2 , u+

2 ) for the dash-dotted lines
and the bottom-region values (e.g. p−

2 , ρ−
2 , u−

2 ) for the solid lines. The shock-system location
is indicated by the set of dashed lines. The white dots in the pressure fields show the contours
(1 − r) p+

2 /p1 + r p̄3/p1 with r = 0.2 and 0.1 for (a) and (c), respectively.

with r being a weighting factor. In the present case, r ≈ 0.2 gives satisfactory results.
Assuming the distributions (5.5) and (5.6), one finds

Θp

L
≡ 1

L

[∫ h0

0

(
1 − p̄(ξ = 1−, y)

p1

)
dy −

∫ h0

0

(
1 − p̄(ξ = 0, y)

p1

)
dy

]

≈
{

1 − (1 − r)
p+

2

p1

− r
p̄3

p1

}
tan α tan β

tan α + tan β
, (5.7)

noting from geometrical considerations in figure 10 that h0/L = tan α tan β/(tan α +
tan β). Applying (5.7) to the M 1 = 2.3 and 8◦-wedge-angle case gives Θp/L = − 0.233
(with r = 0.2) to compare with the LES value of −0.243 from figure 8(a). Of course,
the choice of r was based on the LES data whereas, generally, one has no prior
knowledge of this value. However, note that the existence of a similarity function
(see figure 7c) suggests that the weighting factor r does not change during the shock
motions and can thus be treated as a true constant.

In the previous section it was shown that, on average, the changes of pressure and
momentum thicknesses between ξ =0 and ξ = 1 are close to equilibrium with an error
scaling on the skin friction (see (4.22a)). Therefore, as a first approximation:

Θ2 ≈ − p1

ρ1u
2
1

Θp, or equivalently
Θ2

Θp

≈ − 1

γM 2
1

, (5.8)

where the ideal-gas law was used to transform p1/(ρ1u
2
1) in 1/(γM 2

1). Using (5.8) with
M 1 = 2.3 and γ =1.4, one finds Θ2/Θp = − 0.135, whereas from figure 8(a), the LES
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Figure 12. Percentage error between the temperature field computed from the velocity field
using the Crocco–Busemann equation and the actual LES temperature field for the (a)
narrow-span and (b) large-span simulations.

gives −0.132, which is a satisfactory agreement. This result confirms that the error
in (5.8) scales with l0C̄f0

/(2LF ′(0)) ≈ 3 × 10−3, providing an encouraging consistency
check.

Finally, to relate Θρ to Θp , the Crocco–Busemann relation will be used (see
White 1991). The temperature field computed using the Crocco–Busemann relation
is denoted by Tc and defined as

Tc

T1

= 1 +
γ − 1

2
M 2

1

(
u

u1

)2

, (5.9)

assuming the wall to be isothermal and equal to the upstream adiabatic-wall condition
(as in the current LES settings). The validity of (5.9) is tested using the LES results
and the error contour levels are shown in figure 12. Overall, the use of (5.9) is
remarkably accurate with errors not exceeding 7 %.

Starting from the definition of the pressure thickness and using the ideal-gas law,
one finds

δp =

∫ h

0

(
1 − p

p1

)
dy =

∫ h

0

(
1 − ρT

ρ1T1

)
dy, (5.10a)

which with (5.9) may be approximated by

δp ≈
∫ h

0

{
1 − ρ

ρ1

[
1 +

γ − 1

2
M 2

1

(
1 − u2

u2
1

)]}
dy, (5.10b)

which can be expressed in terms of the density, displacement and momentum thickness
definitions:

δp ≈ δρ

(
1 +

γ − 1

2
M 2

1

)
− γ − 1

2
M 2

1 (δ1 + δ2). (5.10c)

Using (5.10c) in the definition of ∆i (see (4.8)) and time-averaging, one finds

Θp ≈ Θρ

(
1 +

γ − 1

2
M 2

1

)
− γ − 1

2
M 2

1 (Θ1 + Θ2). (5.11a)

Using (5.8), (5.11a) becomes

Θp ≈ Θρ

(
1 +

γ − 1

2
M 2

1

)
− γ − 1

2
M 2

1

(
Θ1 − 1

γM 2
1

Θp

)
. (5.11b)
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From figure 8(a), it is found that for the configuration studied here |Θp/(γLM 2
1)| ≈

3 × 10−2 whereas Θ1/L ≈ 6 × 10−3. Therefore, as a leading-order approximation, the
term in Θ1 in (5.11b) may be neglected:

Θp ≈ Θρ

(
1 +

γ − 1

2
M 2

1

)
+

γ − 1

2γ
Θp. (5.11c)

Equation (5.11c) is re-arranged:

Θp ≈ χΘρ, with χ =
2γ + γ (γ − 1) M 2

1

γ + 1
. (5.11d)

For M 1 = 2.3, (5.11d) gives χ = 2.40 while the LES data in figure 8(a) give χ =2.34.
It should be stressed that the Crocco–Busemann equation used to derive (5.11d) was
assumed to be applicable to the unsteady velocity field, the displacement-thickness
contribution was neglected and the momentum-thickness contribution was related
to the pressure thickness using (5.8). Despite those gross assumptions, only a 3 %
difference with the LES can be found for the present configuration.

5.3. The κp and κ2 coefficients

By definition, the κp and κ2 coefficients in (4.11) correspond to the rate of change of the
pressure and momentum thickness between ξ = 1 and ξ = 0 as the shock moves back
and forth (i.e. κp = d∆p/dη, κ2 = d∆2/dη). Although not explicitly written in (4.11),
the shock motions of interest for this study are the low-frequency ones. Therefore,
the reflected shock is considered to remain straight and to rotate around its foot
as it oscillates. One direct consequence of such a motion is a modification of the
pressure field in the region 2− as well as in region 3 (i.e. p−

2 and p3 in figure 10),
whereas p+

2 remains unchanged. We wish to express those changes in terms of the
variable η, which is made possible by developing a series expansion of the classical
oblique-shock jump relations, considering that η/h0 is sufficiently small. The details
of such expansions are provided in Appendix C and only the final result is reported
here. For the pressure in region 3, we find

p3

p1

=
p̄3

p1

+
p+

2

p1

γM 2
2�

1 + γ

η

h0

+ O

(
η2

h2
0

)
, (5.12)

where � =(tan α +tan β) sin(2α) sin[2(α + θ)]/(tan β(1 − 1/ tan α) − 1). Assuming that
the distributions (5.5) and (5.6) can be extented to the low-frequency oscillations, it is
possible to write

∆p =

[
1 − (1 − r)

p+
2

p1
− r

p3

p1

]
(h0 + η). (5.13a)

Using the series expansion (5.12) and (5.7), the above equation becomes

∆p = Θp +

{
1 − r

p̄3

p1

− p+
2

p1

[
1 − r

(
1 +

γM 2
2�

1 + γ

)]}
η + O

(
η2

h0

)
. (5.13b)

Thus,

κp ≈ 1 − r
p̄3

p1

− p+
2

p1

[
1 − r

(
1 +

γM 2
2�

1 + γ

)]
,

with � =
tan α + tan β

tan β (1 − 1/ tan α) − 1
sin (2α) sin [2 (α + θ)], r = 0.2. (5.14)
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Figure 13. Integrands of δp and δ2 at ξ = 1. The solid lines indicate cases where η > 0 whereas

dashed lines indicate cases where η < 0. In (b), the dotted line corresponds to M at ξ = 0. The
numbers 2 and 3 embedded in black circles indicate the potential-flow values in regions 2
and 3, respectively.

For M 1 = 2.3 and θ =8◦, the modelled κp using (5.14) gives −1.21 whereas the
measured value on the narrow-span LES data is −1.23. The difference is thus less
than 2 % for the particular choice of weighting factor r =0.2. As mentioned earlier,
the weighting factor is based on time-averaged LES data and its use here is justified
based on the similarity hypothesis, combined with (5.6) and the above series expansion.

The case of κ2 is more complex than κp mainly because the quantity M ≡ ρu(1 −
u/u1)/(ρ1u1) at ξ =0 and ξ = 1 is not constant along the wall-normal direction,
even approximately, as shown in figures 11 and 13(b). From the definition of the
momentum thickness (4.2b), we have

∆2

h
=

1

h

∫ h

0

M|ξ=1 dy

︸ ︷︷ ︸
δ2,ξ=1/h

− 1

h

∫ h

0

M|ξ=0 dy

︸ ︷︷ ︸
δ2,ξ=0/h

. (5.15)

Decomposing M(ξ =1, y) in its steady (M(ξ =1, y)) and time-dependent
(M′(ξ =1, y)) component, one can write

δ2,ξ=1

h
=

1

h

∫ h

0

M
∣∣
ξ=1

dy +
1

h

∫ h

0

M′|ξ=1 dy. (5.16)

Since M(ξ = 1, y) is a continuous function on y ∈ [0, h[, the mean-value theorem
states that there exists a positive real number R such that

1

h

∫ h

0

M
∣∣
ξ=1

dy = (1 − R) min
0�y<h

[
M
∣∣
ξ=1

]
+ R max

0�y<h

[
M
∣∣
ξ=1

]
, R > 0. (5.17)

Let us denote by M3 and M3 the following quantities, respectively:

M3 ≡ ρ3u3

ρ1u1

(
1 − u3

u1

)
, M3 ≡ ρ̄3ū3

ρ1u1

(
1 − ū3

u1

)
. (5.18)

From figure 13(b) one can see that M|ξ =1 does not exceed M3, whereas inside the
separation bubble, it is possible that it becomes negative. Recalling that the separation
bubble height is very small compared to h (see Touber & Sandham 2009a), it is argued
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that the possible negative contribution of M in (5.17) remains small so that (5.17)
becomes

1

h

∫ h

0

M
∣∣
ξ=1

dy = RM3. (5.19a)

Similarly, the fluctuating component M′|ξ = 1 (shown in figure 13c) is related to M′
3

by invoking the mean-value theorem:

1

h

∫ h

0

M′|ξ=1 dy = r ′ (M3 − M3

)
, (5.19b)

where r ′ is a real number. As for the pressure p3, when the reflected shock moves
back and forth, M3 will fluctuate and those changes can be expressed in terms of a
series expansion in η/h0:

M3 = M3 + D
η

h0

+ O

(
η2

h2
0

)
, (5.20)

where D is a constant defined in (C 18) in Appendix C. Using (5.16), (5.19) and (5.20)
in (5.15) gives

∆2 = RM3h0 − δ̄2,ξ=0︸ ︷︷ ︸
Θ2

+ (RM3 + r ′D)︸ ︷︷ ︸
κ2

η + O

(
η2

h0

)
, (5.21)

assuming that the fluctuations of the momentum thickness at ξ = 0 are negligible
compared with the variations at ξ =1 (i.e. δ̃2,ξ = 0 ≈ 0) and where terms Θ2 and κ2 are
identified according to (4.11). To be consistent with (5.8), we must take R such that

R =
1

M3

(
δ̄2,ξ=0

h0

− 1

γM 2
1

Θp

h0

)
. (5.22)

The term in δ̄2,ξ =0 is problematic since the momentum thickness at the shock foot
is different from that of the incoming boundary layer and therefore needs to be
modelled. The noticeable linear relationship between L/δ0 and (p2 − p1)/(2τw) in
figure 7 of Touber & Sandham (2009a) suggests that the momentum thickness at the
shock foot may be related to the pressure jump p2 − p1 as follows:

δ̄2,ξ=0

h0

= r ′′ 2τw

p+
2 − p1

L

h0

, (5.23a)

where the ratio δ̄2,ξ = 0/δ0 was considered constant and r ′′ is a positive real

number to be determined from the LES data. Noting that 2τw = C̄f0
p1γM 2

1 and
h0/L = tan α tan β/(tan α + tan β), one finds

δ̄2,ξ=0

h0

= r ′′ γM 2
1C̄f0

p+
2 /p1 − 1

tan α + tan β

tan α tan β
. (5.23b)

Hence, the following expression for κ2:

κ2 = r ′′ γM 2
1C̄f0

p+
2 /p1 − 1

tan α + tan β

tan α tan β
− 1

γM 2
1

Θp

h0

+ r ′D. (5.24)

The factors r ′ and r ′′ are computed from the LES. Using the narrow-span LES results,
one finds r ′ = −0.14 and r ′′ = 0.2 (giving κ2 ≈ 0.27). Similar to r in (5.7), r ′ is assumed
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to remain constant in time. This completes the modelling of the unknowns k, Θρ , κ2

and κ1 in (4.22).

6. Closed form of the low-order stochastic model and some solutions

6.1. Final form of the model

Upon substituting (5.4), (5.7), (5.11d), (5.14) and (5.24) into (4.22), one can write the
following closed form of the model:

1

ū1

dε

dt
+ φ

ε

L
= ΠC ′′

f0
(t), (6.1a)

with

Π =
tan β

2F ′(0) (tan α + tan β)
, (6.1b)

φ =
2γ + γ (γ − 1) M 2

1

(γ + 1) [1 + (1 − r) P2 − rP3]

{
Π

[(
1

tan α
+

1

tan β

)
(C̄f0

− Λ)

+ C̄f0

tan α

tan β

]
+

(
1 − tan α tan β

tan α + tan β

)[
r ′′ γM 2

1C̄f0

P2 − 1
− r ′D

− r
P2�

γ + 1

(
M2

M1

)2
]}

, (6.1c)

� =
tan α + tan β

tan β (1 − 1/ tan α) − 1
sin (2α) sin [2 (α + θ)], (6.1d)

D =
M 3

M 1

{(
1

2

√
R3

P3

− M 3

M 1

)
A +

1

2

√
P3

R3

B +

(
M 1

M 3

√
R3P3 − 2P3

)
C

}
, (6.1e)

A =
γ�M 2

2

1 + γ
P2, (6.1f)

B = �

[
1

2 sin2 (α + θ)
− (γ − 1) M 2

2

4 + 2 (γ − 1) M 2
2 sin2 (α + θ)

]
R3, (6.1g)

C =
M 3

M 1

{
�

[
(γ − 1) M 2

2

8 + 4 (γ − 1) M 2
2 sin2 (α + θ)

− γM 2
2

2 (1 − γ) + 4γM 2
2 sin2 (α + θ)

]

− (tan α + tan β) cos2 α

tan β (1 − 1/ tan α) − 1

}
, (6.1h)

where α, β , P2 ≡ p+
2 /p1, P3 ≡ p̄3/p1, R3 ≡ ρ̄3/ρ1, M 2 and M 3 are computed from the

inviscid shock-reflection problem for a given pair of wedge angle θ and upstream
Mach number M 1. Factors F ′(0), r , r ′ and r ′′ are assumed to take the values of 0.12,
0.2, −0.14 and 0.2, respectively. The term C̄f0

is an input parameter, together with
the upstream Mach number M 1 and wedge angle θ . The coefficient Λ, although of
the same order as C̄f0

, is not an input parameter and is not generally known. In this
work, it is taken to be 3 × 10−3 (from the LES). The term C ′′

f0
corresponds to the

skin-friction turbulence-related variations at the reflected shock foot and therefore
constitutes the dynamical-system input signal.
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6.2. Solution for white-noise forcing: shock-foot and pressure spectra

As mentioned earlier, the model system (6.1a–h) is a first-order linear stochastic
differential equation resembling the Langevin equation for Brownian motion, written
as

ε̇ + Φε = Γ (t), (6.2a)

where in the present case Φ = ū1φ/L and Γ = ū1ΠC ′′
f0

. If Γ is taken to be a Langevin
force with zero mean and with a correlation function proportional to a Dirac function
(δ),

Γ (t) = 0, and Γ (t)Γ (t ′) = qδ(t − t ′), (6.2b)

with q being the proportionality coefficient, then (6.2a) is equivalent to (3.1) in Risken
(1989) and the system (6.2 a, b) can be solved with the correlation function of the
shock displacement ε given by (see (3.9) in Risken 1989)

ε(t0)ε(t0 + τ ) = ε2(t0) e−Φ(2t0+τ ) +
q

2Φ

[
e−Φ|τ | − e−Φ(2t0+τ )

]
, (6.3a)

where t0 is a chosen time and τ is the time lag separating the actual time from t0. To
remain general, τ can be taken both positive and negative. If t0 is taken such that
ε(t0) = 0, (6.3a) becomes

ε(t0)ε(t0 + τ ) =
q

2Φ
e−Φ|τ |[1 − e−2Φt0

]
. (6.3b)

Note that, dimensionally speaking, the damping coefficient Φ ≡ 1/τs is the inverse
of a time so that Φt0 is the ratio between t0 and the system characteristic time
scale τs . If t0 is chosen long after the initial transients from starting up the flow, t0
will be significantly larger than τs , so that Φt0 ≫ 1. The autocorrelation function of
the shock-foot motions in response to a white-noise forcing with amplitude 2q will
therefore become

ε(t0)ε(t0 + τ ) =
q

2Φ
e−Φ|τ |. (6.3c)

By definition, the power spectral density (PSD, denoted by S) is the Fourier transform
of the autocorrelation function, hence

S(f ) =
q/Φ2

1 + (2πf/Φ)2
=

A0

1 + (St/φmax )2
, (6.4)

where A0 ≡ q[L/(ū1φ)]2, φmax ≡ φ/(2π) and St is the Strouhal number (St = f L/ū1).
In general, one is interested in the wall-pressure PSD near the mean shock-foot
position rather than the PSD of the shock-foot position itself. Let us assume that the
instantaneous pressure at the mean shock-foot position x̄0 may be approximated by
the mean pressure at x̄0 − ε:

pw(x̄0, ts) ≈ p̄w(x̄0 − ε). (6.5a)

The above equation is not expected to be correct on fast time scales, hence the use
of ts , which was defined in (3.2). Since the shock motions in this study are considered
small compared with the interaction length, one can expand (6.5a) using the first term
in ε:

pw(x̄0, ts) ≈ p̄w(x̄0) − dp̄

dx

∣∣∣∣
x̄0

ε. (6.5b)
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For the slow time scales considered here, we have p(ts) − p̄ ≈ p̃; hence

p̃w(x̄0, ts) ≈ − dp̄w

dx

∣∣∣∣
x̄0

ε. (6.5c)

Therefore, the autocorrelation of the pressure fluctuations near the mean shock-foot
position can be approximated by the shock-foot autocorrelation function using

p̃w(x̄0, t0)p̃w(x̄0, t0 + τ ) ≈
(

dp̄w

dx

∣∣∣∣
x̄0

)2

ε(t0)ε(t0 + τ ), (6.6)

for sufficiently large time lags τ . Then, the wall-pressure PSD near the mean shock-
foot position, denoted by Sp , is

Sp(St ) ≈ A0

(
dp̄w/dx|x̄0

)2

1 + (St/φmax )2
. (6.7)

6.3. Solution for forcing by synthetic turbulence

It is emphasised that (6.7) is the response of the model to white-noise forcing and
that the solution is valid only for sufficiently low frequencies (typically, St < 1). As
an alternative, in the event that the forcing term C ′′

f0
is known, one can numerically

integrate (6.2a). In practice, this may not be needed and (6.7) may be sufficiently
accurate. To convince ourselves, we will use an artificial signal for C ′′

f0
, representative

of the incoming turbulence. To do so, one can employ a digital filter approach,
similar to that used to generate the inflow conditions for the LES. In this case,
the problem is one-dimensional, and starting from N normally distributed random
numbers {an}0�n�N−1 with zero mean and unit variance (i.e. an = 0, anan =1 and
anam =0 if n = m), the following synthetic turbulence series is produced:

C ′′
f0

(t0 + n�t) = C ′′
f0

(t0 + (n − 1)�t) exp

(
−π�t

2τc

)
+ an

√

q

(
1 − exp

(
−π�t

τc

))
,

C ′′
f0

(t0) = a0
√

q and, n ∈ {1, . . . , N − 1},

⎫
⎪⎬

⎪⎭

(6.8)

where q is the imposed variance of C ′′
f0

(i.e. q =C ′′
f0

C ′′
f0

) and τc is the characteristic time

scale of the correlation. In the present case, we take q ≈ 7 × 10−4, τc = 5 × 10−2ū1/L,
�t = 5 × 10−3ū1/L and N = 5 × 108.

Once the synthetic signal C ′′
f0

is obtained using (6.8), (6.1a) is integrated numerically
using a fourth-order Runge–Kutta method, giving ε(t), which is then used to compute
S(f ). If the wall-pressure PSD near the mean shock-foot position is of interest,
the pressure-gradient conversion factor may be applied (see (6.6)). Note that for the
weighted spectra, the correction is not necessary since the pressure-gradient factor
term will appear in both the numerator and denominator. This equivalence between
the shock-displacement and wall-pressure weighted spectra will be used to directly
compare the model predictions with the experimental and numerical results, which
are based on the pressure rather than the shock displacement itself.
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Figure 14. (a, b) PSD and weighted PSD from the stochastic ODE using different forcing: a
synthetic turbulence signal based on a one-dimensional digital filter approach (see § 6.3), the
same synthetic turbulence signal but high-pass filtered with cutoff frequency fc = 5ū1/L, and
white noise (see § 6.2).

7. Model performance and discussion

7.1. Model results compared with LES and experimental findings

Before comparing the predicted spectrum with experiment and LES, it is important
to consider the effect of the choice of forcing as this may have implications for the
discussion. First, the analytical solution to white noise (see § 6.2) is considered. Second,
the synthetic turbulence signal described in § 6.3 is used to integrate the governing
equation (6.1a). Finally, a high-pass filtered version of the same synthetic turbulence
signal is examined. In all cases, the flow conditions correspond to the IUSTI 8◦ case.
Results are reported in figure 14.

First of all, it is seen that in the case of the white-noise and synthetic-turbulence
forcing, the resulting shock motions exhibit significantly amplified low-frequency
motions whereas the contributions of the higher frequencies are weaker than in the
forcing itself. Moreover, it is found that at low frequencies the analytical solution to
white noise is identical to the response to the synthetic-turbulence forcing. This is due
to the particular synthetic-turbulence spectrum resembling that of white noise at low
frequencies (see figure 14a). These results suggest that the model is not sensitive to the
high-frequency content of the forcing, but to whether or not a level of noise is present
at low frequencies. To test this idea, the synthetic turbulence was high-pass filtered
to remove the low-frequency noise. As a consequence, the low-frequency motions
disappear and the high-frequency content is reduced compared to the level of the
forcing. Therefore, one important property of the system is that it acts as a low-pass
filter. As such, it does not transfer energy from the higher to the lower frequencies
but simply damps any fluctuations greater than a cutoff frequency while it amplifies
any fluctuations smaller than this cutoff frequency. In fact, this is clear from (6.4),
and figure 14 simply provides numerical evidence of the low-pass filtering property
of (6.1a).
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Figure 15. Weighted spectra from the model compared with the LES and experimental results.
The LES spectrum is taken from figure 17 in Touber & Sandham (2009b) and the experimental
data from Dupont et al. (2006). Both the LES and experimental data are from wall-pressure
probes near the mean shock-foot position. The experimental signal was low-pass filtered with
cutoff frequency fc =2.5ū1/L. The premultiplied spectra were normalised using the power
available at low frequencies only (i.e. for the LES signal, the peak at higher frequencies is not
included in the normalisation).

From (6.4) or (6.7), it is straightforward to see that the system is a first-order
low-pass filter with cutoff Strouhal number φ/(2π). The PSD of the shock motions
or wall-pressure fluctuations near the mean shock foot rolls off as S−2

t . Moreover,
considering the premultiplied spectra (i.e. f × S(f )), one can show that there exists
a maximum at φ/(2π), which will be denoted by φmax . Note that it coincides with the
frequency (i.e. Strouhal number here) where the PSD is tangent to S−1

t , as indicated in
figure 14(a). This is the frequency typically quoted when characterising the property of
the low-frequency oscillations (see e.g. Dupont et al. 2006). Incidentally, it corresponds
to the cutoff frequency of the dynamical system (6.1).

On the basis of the above results, it appears justified to simply use a white-noise
forcing to predict the wall-pressure weighted spectra and directly compare the result
with the low-frequency motions observed both numerically and experimentally. Such
a comparison is provided in figure 15, where the model is seen to be capable of
predicting reasonably well not only the frequency of the most energetic low-frequency
motion but also the broadband nature of the dynamics, which is an important
aspect of the problem. Note that, in principle, the model can also predict the absolute
spectral amplitude of the shock-foot displacement provided that the interaction length
and the variance of the white noise are known. This encouraging result and the
implications for understanding the underlying source of the low-frequency motions
will be discussed in § 7.3. Before doing so, we would like to take advantage of the model
to describe the map of φmax for any given combination of upstream Mach number
and wedge angle and discuss the sensitivity of the model to the choice of the constant
values.
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Figure 16. Predicted most energetic low frequency φmax for different (M 1, θ ) pairs. In (a),
which is the map of φ/(2π), the solid white line gives the φmax = 0.035 contour. The dashed
line and dash-dotted line delimit two regions, labelled 1 and 2. Region 1 corresponds to Mach
reflection cases and region 2 to cases where no oblique incident shock is formed. In (b), the
Mach 2.3 case of IUSTI is described for a wide range of wedge angles. The cases where
M 1 = 2 and M 1 = 3 are also provided. For all cases, a variation of ±0.1 in the upstream Mach
number value is applied to look at the sensitivity of the result to M 1. The narrow-span LES
result is also indicated together with the experimental results of Dupont et al. (2006). In both
(a) and (b), the boundary-layer skin-friction properties were those of the IUSTI flow case.

7.2. Cutoff frequency map and sensitivity to the model constants

One great advantage of the present model is the possibility of using it for any given
values of M 1 and θ . Figure 16(a) shows the map of φmax for M 1 ranging from 1
to 6 and θ from 2◦ to 30◦, whenever a regular reflection exists. The first remark
is that most values are within the range 10−2 to 10−1, which is consistent with
the experimental observations of SBLI (see Dussauge, Dupont & Debiève 2006, for
example). Additionally, it is found that for a constant wedge angle, φmax increases with
increasing Mach number and for a constant upstream Mach number, φmax decreases
with increasing wedge angle. The latter trend can be tested against the experimental
results of Dupont et al. (2006), as shown in figure 16(b). The agreement is well within
the model and measurement uncertainties.

Note that φmax is expected to depend on the boundary-layer properties. Indeed,
φ is explicitly related to the boundary-layer skin friction in (6.1c) and this could
affect the results presented in figure 16(a), where C̄f0

= 1.35 × 10−3. In addition, the
modelling constants F ′(0), r, r ′, r ′′ and Λ may all have significant impacts on the
map of φmax . To estimate the relative sensitivity to each of those constants, the map
shown in figure 16(a) was computed with each constant successively doubled and
halved (see Touber 2010). Overall, the monotonic trends are found to be preserved
with steeper/more gradual slopes and/or increased/reduced levels of φmax .

Two important results arose from the sensitivity study. First, the sensitivity of
the model to the mean boundary-layer properties is weak for C̄f0

and insignificant
for r ′′, suggesting that the map in figure 16(a) is a good estimate for other mean
boundary-layer properties (as long as the hypotheses used to derive the model hold).
The mean boundary-layer properties thus play a major role in setting the interaction
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length (see the steady-state equation (4.22a)) but their effect on the final dynamical
equation is only weak. Second, the accuracy of the model for κ2 and to a lesser extent
for κp is crucial. While r can be easily determined to relatively good accuracy (see
§ 5), r ′ is the most critical aspect of the present model and further improvements
could be sought in the future. Nevertheless, the overall monotonicity of the map
of φmax and the order of magnitude of the predicted φmax are maintained even for
these sensitive cases. This demonstrates that the Strouhal-number value for the most
energetic low-frequency shock motions is robust, with values remaining below 0.1 for
a wide range of configurations, as argued by Dussauge et al. (2006).

Finally, it is important to bear in mind that the model is based on an approximate
form of the momentum integral equation which itself relies on four assumptions (see
§ 4.3), among which two are of primary importance. First, the interaction must be
sufficiently large for the shock-crossing point to be above the incoming boundary
layer. Therefore, one does not expect the model to be correct for weak interactions
(i.e. for the smallest (p+

2 −p1)/τw values). Second, the interaction was considered to be
two-dimensional. Thus, any large spanwise wrinkling of the shock is not considered.
In both cases, it would be possible to extend the model and release those constraints
but this has been left for future work. We now proceed to a more general discussion
about the contribution of the model to the understanding of the low-frequency shock
motions.

7.3. Discussion and implications with respect to the low-frequency unsteadiness

Plotkin (1975), in the context of the compression-corner configuration, first postulated
that the reflected shock could obey a stochastically forced first-order ordinary equation
which is mathematically identical to that derived here (see (6.1a)). The fact that the
above lengthy derivations lead to the same governing equation as that proposed by
Plotkin (1975) is comforting given the completely different approaches undertaken. In
the present approach, the final governing equation is derived from the Navier–Stokes
equations. To some extent, it may be seen as a proof of Plotkin’s postulate (although
this was not our original intention), with two distinct advantages that the underlying
assumptions may be more clearly identified and that the time scale of the restoring
mechanism is formally expressed as a function of the problem input parameters. In
Plotkin (1975), one needs to determine this constant experimentally, resulting in a
lack of applicability of the model, despite its mathematically appealing form. To the
best of our knowledge, since the original publication of Plotkin (1975), only the two
papers by Poggie & Smits (2001, 2005) offer careful comparisons between Plotkin’s
model and experimental data, in each case with success.

Poggie & Smits (2001) argue that, although the final model is described by a linear
equation, it does not mean that the nonlinearities of the system are not accounted for.
Their argument is that if one had considered a linearised theory (i.e. linearised Euler
equations), the shock-motion spectrum would be the same as that of the incoming
turbulence, which is not the case in the model. In the present derivation, one can see
that, while the governing equation for the shock motions was clearly linearised (see
steps between (4.19) and (4.21)) on the basis of sufficiently small shock displacements
relatively to the interaction size, other significant nonlinear effects are mechanically
embedded in the time scale φ−1. Indeed, looking at the constituents of φ, one can
see that although the model is expressed in the form of point-particle dynamics (i.e.
the shock foot position), it does not convey a direct relation between a given velocity
fluctuation and the shock response to it, as linearised Euler would do, but instead
it accounts for integrated effects by means of the different thicknesses (see (4.2a–d )),
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which are nonlinear functions of the velocity perturbations. In other words, the model
accounts for the nonlinear coupling between the shock system and the boundary layer.

As mentioned in the previous section, the model describes this coupled
shock/boundary-layer system as a low-pass filter with characteristic time scale
φ−1. One remarkable result is that this time scale is significantly larger than any
characteristic time scales of the incoming boundary layer (φ/(2π) is in the 10−2 to
10−1 range, giving ts ∼ 10 to 100L/ū1 to compare with tf = δ0/ū1 ∼ L/ū1 assuming
that the interaction length scales with δ0). This conforms to experimental observations
(Dupont et al. 2006), and the known issue in numerical simulations that such flows
have long initial transients, even for laminar cases (indeed, in the absence of forcing,
the convergence to the steady solution would be as exp(−t/ts)).

The low-pass filtering property of the system indicates that, strictly speaking, no
transfer of energy from the higher to the lower frequencies is occurring. Instead,
any high frequency is damped and any low frequency is amplified, with the frontier
between high and low being determined by φ. This was shown mathematically
through the model response to white-noise forcing and numerically through direct
integration of the response to synthetic turbulence signals. Therefore, the system
itself is simply amplifying existing low-frequency fluctuations, even if energetically
insignificant, while it filters out the high-frequency fluctuations, even if energetically
significant. Moreover, the resulting broadband spectrum about a particular Strouhal
number is not a property of the forcing but a characteristic of the shock/boundary-
layer system itself.

On the basis of the preceding discussion, it is inferred that the origin of the
low-frequency oscillations is not in the forcing but in the dynamics of the system
formed by the shock/boundary-layer interaction. Of course, if one applies any specific
forcing below the natural frequency of the system, such forcing will be picked up
and magnified. A specific forcing could be any significantly long upstream coherent
structures (see Ganapathisubramani et al. 2007, 2009, and references therein) or
particular flow features within the interaction itself (see Pirozzoli & Grasso 2006;
Dussauge & Piponniau 2008; Piponniau et al. 2009, and references therein). However,
we stress that, mathematically speaking, these are not necessary and the low-
frequency motions can simply arise from a background (white) noise, as successfully
demonstrated in figure 15.

8. Conclusions

The main contribution of this paper is the derivation of a stochastic ODE for the
reflected-shock-foot motions, starting from the Navier–Stokes equations and based
on some assumptions that were checked using LES data. The general form (4.16) of
the governing equation relies on the assumed existence of a separation of variables
(4.8), which is well supported by the LES data, allowing a transformation of what
was initially a partial differential equation into an ordinary one. The derivation
assumes two-dimensional motions (i.e. the spanwise wrinkling of the shock was not
considered) with the shock-crossing point located above the incoming boundary-
layer height δ0. Under such conditions, (4.16) was derived and then linearised on the
basis of sufficiently small shock displacements and the analysis of LES data. This
final form of the governing equation was found to be mathematically identical to
the one postulated by Plotkin (1975) and capable of reproducing the wall-pressure
low-frequency spectrum in the vicinity of the mean shock-foot position.
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Upon modelling the constituents of the derived governing equation, the dynamical
system could be closed and expressed in terms of its input parameters: the upstream
Mach number M 1, the wedge angle θ and the upstream boundary-layer properties
(i.e. skin friction and momentum thickness). Although the upstream boundary-layer
properties are found to be important for setting up the interaction length, the
dynamical system was shown to be mainly controlled by M 1 and θ . A wide range
of input (M 1, θ) pairs were tested and the predicted most energetically significant
low-frequency motions, expressed in the form of the Strouhal number St , were shown
to remain in the range 0.01 to 0.1, confirming the experimental evidence collected in
Dussauge et al. (2006). The most energetic Strouhal number was found to increase
with increasing M 1 for a constant wedge angle θ , whereas it decreased with increasing
wedge angle for constant M 1.

Mathematically speaking, the derived governing equation was shown to correspond
to a first-order low-pass filter, and the analytical spectrum derived from forcing the
system with white noise was shown to be in excellent agreement with the available
experimental and numerical spectra. This result is consistent with the findings of
Plotkin (1975) and Poggie & Smits (2001, 2005) and leads to the suggestion that the
low-frequency motions observed in SBLI need not be a characteristic of the forcing
but simply the result of the low-pass filtering property of the dynamical system formed
by the coupling between the boundary layer and the reflected shock, as demonstrated
by the white-noise forcing. This does not mean that specific forcing from upstream
(see Ganapathisubramani et al. 2007, amongst others) or downstream (see Pirozzoli &
Grasso 2006; Robinet 2007; Piponniau et al. 2009; Touber & Sandham 2009b) does
not play a role, but that they are not necessary. Obviously, if present and acting below
the system cutoff frequency, they will inevitably be picked up by the system.

While further improvements to the proposed model are clearly possible (e.g. to
include the shock spanwise wrinkling, derive a better model for κ2, extend the model
to compression ramps and/or hot/cold walls), it is interesting to comment on the
implications of this work to efforts in controlling this flow. On the basis of the above
discussion, there is no reason to believe that a periodic excitation could be of any
help in inhibiting the low-frequency motions. From the dynamical-system point of
view, there are two possible approaches: remove any low-frequency content in the
forcing or modify the natural frequency of the system. The first option seems rather
impracticable and it is probably better to focus on the second option. Obviously,
one cannot modify the Navier–Stokes equations and a practical possibility is to
modify the boundary conditions. Thus, one would need to implement wall-boundary
conditions such that the net effect on the coupled shock/boundary-layer system
may also be written in the form of a first-order linear ODE with ideally the same
characteristic frequency as the natural system but with opposite sign. Supposing that
such implementation is possible, the control system would then need to act on time
scales of the order of 10δ0/ū1, with the potential risk of exciting the system’s natural
frequency.
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Appendix A. Proof of the phase- and conditional-average relationships
inherited from hypothesis 1

A.1. Proof of the first corollary

Starting from the triple decomposition (3.3a), invoking the linear and scalar-
conserving properties of the conditional-averaging operator and assuming that
〈u′′

i 〉ε0,�σ = 0, it is straightforward to write

〈ui〉ε0,�σ =
1

N(Aε0,�σ )

∫

Aε0,�σ

(ūi + ũi + u′′
i ) dt = 〈ũi〉ε0,�σ + ūi . (A 1)

By introducing hypothesis 1 (see (3.4)) into the above equation, one finds

〈ui〉ε0,�σ − ūi =
1

N(Aε0,�σ )

∫

Aε0,�σ

ũi(ts) dts =
1

N(Aε0,�σ )

∫

Aε0,�σ

ũi(ε(ts)) dts . (A 2)

Noting that the above integration is performed on the set Aε0,�σ , by definition of
Aε0,�σ one can write

ε(ts) = ε0 + ϕ(ts)�σ, (A 3)

where ϕ is a bounded function in [0, 1]. If the phase-fluctuation velocity field ũi(ε)
is continuously differentiable on [ε0, ε0 + �σ ], Taylor’s theorem with the Lagrange
form of the remainder may be written as

ũi(ε(ts)) = ũi(ε0) + �σ q0(ts),

with |q0(ts)| � ϕ(ts) sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣. (A 4)

The condition that ũi(ε) be continuously differentiable is questionable due to the
presence of shocks, but this is purely a mathematical concern here, since the numerical
velocity fields are differentiated across shockwaves in the process of solving the
Navier–Stokes equations. Thus, we argue that in practice the remainder is well
defined and bounded. Next, (A 4) is used in the integral (A 2):

〈ui〉ε0,�σ − ūi =
1

N(Aε0,�σ )

[∫

Aε0,�σ

ũi(ε0) dts +

∫

Aε0,�σ

�σ q0(ts) dts

]
. (A 5)

The first integral is trivial since the integrand does not depend on ts . Moreover,
given the definition of N(Aε0,�σ ) in (3.1b), the first term is simply ũi(ε0). The second
integral concerns a bounded function of ts ∈ Aε0,�σ and is therefore controlled by
the supremum of the function times the integral range. Hence

〈ui〉ε0,�σ − ūi = ũi(ε0) + �σQ0(Aε0,�σ ), with |Q0(Aε0,�σ )| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ .

(A 6)
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For simplicity, (A 6) can be expressed in the Landau notation by noting that the
remainder is of the order of �σ :

〈ui〉ε0,�σ − ūi = ũi(ε0) + O(�σ ). (A 7)

In words, (A 7) simply expresses the idea that on Aε0,�σ , the phase-fluctuation field
ũi may be approximated by 〈ui〉ε0,�σ − ūi with an error of the order of �σ , provided
that hypothesis 1 is satisfied.

A.2. Proof of the second corollary

For the second corollary, we still consider that the phase-fluctuation velocity field is
continuously differentiable on [ε0, ε0 + �σ ] and therefore start from (A 4) to write
that for ts ∈ Aε0,�σ :

ũi(ε(ts))ũj (ε(ts)) = [ũi(ε0) + �σ q0(ts)]
[
ũj (ε0) + �σ s0(ts)

]
,

with |q0(ts)| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ , |s0(ts)| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣. (A 8)

Equation (A 8) can then be integrated over Aε0,�σ :
∫

Aε0,�σ

ũi(ε(ts))ũj (ε(ts)) dts =

∫

Aε0,�σ

[ũi(ε0) + �σ q0(ts)]
[
ũj (ε0) + �σ s0(ts)

]
dts . (A 9)

Terms ũi(ε0), ũj (ε0) being independent of ts , and q0(ts), s0(ts) being bounded functions
on Aε0,�σ , (A 9) becomes

∫

Aε0,�σ

ũi(ε(ts))ũj (ε(ts)) dts = [ũi(ε0)ũj (ε0) + �σ {Q0(Aε0,�σ )ũj (ε0)

+ S0(Aε0,�σ )ũi(ε0)} + �σ 2M0]N(Aε0,�σ ),

with |Q0(Aε0,�σ )| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ , |S0(Aε0,�σ )| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣

and |M0| � sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ sup
ε∈[ε0,ε0+�σ ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣ . (A 10)

Using Landau’s notation, the second corollary can be expressed as
∫

Aε0,�σ

ũi(ε(ts))ũj (ε(ts)) dts = [ũi(ε0)ũj (ε0) + O(�σ )]N(Aε0,�σ ). (A 11)

A.3. Estimation of the phase-fluctuation stress tensor

Starting with the stress tensor computed from the conditionally averaged fields,

I =
1

T

N−1∑

k=0

[〈ui〉εmin+k�σ,�σ − ūi][〈uj 〉εmin+k�σ,�σ − ūj ]N(Aεmin+k�σ,�σ ), (A 12)

where N = (εmax − εmin)/�σ with εmax = max(ε(t)), εmin = min(ε(t)), t ∈ [0, T ]; it is
possible to use the first corollary to write

I =
1

T

N−1∑

k=0

[ũi(εmin + k�σ ) + �σQ0(Aεmin+k�σ,�σ )][ũj (εmin + k�σ )

+ �σS0(Aεmin+k�σ,�σ )]N(Aεmin+k�σ,�σ ), (A 13)
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and re-arrange to

I =
1

T

N−1∑

k=0

[ũi(εmin + k�σ )ũj (εmin + k�σ ) + �σ {Q0(Aεmin+k�σ,�σ )ũj (εmin + k�σ )

+ S0(Aεmin+k�σ,�σ )ũi(εmin + k�σ )}
+ �σ 2Q0(Aεmin+k�σ,�σ )S0(Aεmin+k�σ,�σ )]N(Aεmin+k�σ,�σ ). (A 14)

The form (A 10) of the second corollary is introduced in (A 14) to find

I =
1

T

N−1∑

k=0

∫

Aεmin +k�σ,�σ

ũi(ε(ts))ũj (ε(ts)) dts + J, (A 15)

where

J =
1

T

N−1∑

k=0

�σ 2 {Q0(Aεmin+k�σ,�σ )S0(Aεmin+k�σ,�σ )

− M0(Aεmin+k�σ,�σ )} N(Aεmin+k�σ,�σ ). (A 16)

Since the functions Q0, S0, M0 are all bounded, the sum J can be crudely bounded
by

J �
�σ 2

T
M

N−1∑

k=0

N(Aεmin+k�σ,�σ ), (A 17)

with M a constant taken to be

M = max
k∈{0,...,N−1}

[
sup

Aεmin +k�σ,�σ

|Q0(Aεmin+k�σ,�σ )S0(Aεmin+k�σ,�σ )|

+ sup
Aεmin +k�σ,�σ

|M0(Aεmin+k�σ,�σ )|
]
. (A 18)

By definition of N, the sum on all N(Aεmin+k�σ,�σ ) is simply equal to T , so that

I =
1

T

N−1∑

k=0

∫

Aεmin +k�σ,�σ

ũi(ε(ts))ũj (ε(ts)) dts + K�σ 2, with K � M. (A 19)

Invoking the additivity properties of the integral, the sum over all the subsets
Aεmin+k�σ,�σ of [0, T ] can be changed into the integral over their union:

I =
1

T

∫
N−1⋃
k=0

Aεmin +k�σ,�σ

ũi(ε(ts))ũj (ε(ts)) dts + K�σ 2. (A 20)

Given the definition of N , the union of the subsets Aεmin+k�σ,�σ spans the full time
interval [0, T ] only once, so that (A 20) becomes, using Landau’s notation,

I =
1

T

∫

T

ũi(ε(ts))ũj (ε(ts)) dts

︸ ︷︷ ︸
ũi ũj

+O(�σ 2). (A 21)
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Therefore, to second order in �σ , we have

ũi ũj ≈ 1

T

N−1∑

k=0

[〈ui〉εmin+k�σ,�σ − ūi][〈uj 〉εmin+k�σ,�σ − ūj ]N(Aεmin+k�σ,�σ ). (A 22)

Appendix B. Derivation of the momentum integral equation

Let us start from the continuity equation and the streamwise component of the
momentum equation:

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂z
= 0, (B 1a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂p

∂x
+

1

Re

[
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

]
, (B 1b)

τij = µ

(
∂uj

∂xi

+
∂ui

∂xj

− 2

3
δij

∂uk

∂xk

)
. (B 1c)

Equation (B 1b) can be integrated in the wall-normal direction up to h (see figure 5
for the notations):

∫ h

0

(
ρ

∂u

∂t
+ ρu

∂u

∂x
+ ρw

∂u

∂z

)
dy +

∫ h

0

ρv
∂u

∂y
dy

︸ ︷︷ ︸
A

=

∫ h

0

(
−∂p

∂x
+

1

Re

[
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

])
dy. (B 2)

Term A can be integrated by parts and together with (B 1a) gives

A = [ρuv]h0 −
∫ h

0

u
∂ρv

∂y
dy = −uh

∫ h

0

(
∂ρ

∂t
+

∂ρu

∂x
+

∂ρw

∂z

)
dy

+

∫ h

0

u

(
∂ρ

∂t
+

∂ρu

∂x
+

∂ρw

∂z

)
dy, (B 3)

where the no-slip boundary condition at y = 0 was used to eliminate ρuv|y =0. Equation
(B 2) can be re-written, using (B 3):

∫ h

0

ρ
∂u

∂t
dy − uh

∫ h

0

∂ρ

∂t
dy +

∫ h

0

u
∂ρ

∂t
dy

︸ ︷︷ ︸
a

+

∫ h

0

ρu
∂u

∂x
dy − uh

∫ h

0

∂ρu

∂x
dy +

∫ h

0

u
∂ρu

∂x
dy

︸ ︷︷ ︸
b

+

∫ h

0

ρw
∂u

∂z
dy − uh

∫ h

0

∂ρw

∂z
dy +

∫ h

0

u
∂ρw

∂z
dy

︸ ︷︷ ︸
c

=

∫ h

0

−∂p

∂x
dy

︸ ︷︷ ︸
d

+
1

Re

∫ h

0

∂τxy

∂y
dy

︸ ︷︷ ︸
e

+
1

Re

∫ h

0

∂τxx

∂x
dy

︸ ︷︷ ︸
f

+
1

Re

∫ h

0

∂τxz

∂z
dy

︸ ︷︷ ︸
g

. (B 4)
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To re-arrange terms a to g, we have to commute the integration and derivation
operators. To do so, we recall Leibniz’s rule

∂

∂α

[∫ h

0

f dy

]
=

∫ h

0

∂f

∂α
dy + f (y = h)

∂h

∂α
− f (y = 0)

∂0

∂α︸︷︷︸
= 0

. (B 5)

Term a can be re-arranged using Leibniz’s rule:

a =

∫ h

0

∂ρu

∂t
dy − uh

∫ h

0

∂ρ

∂y
dy =

∂

∂t

[∫ h

0

ρu dy

]
− ρhuh

∂h

∂t

−uh

(
∂

∂t

[∫ h

0

ρ dy

]
− ρh

∂h

∂t

)

=
∂

∂t

[∫ h

0

ρu dy

]
− uh

∂

∂t

[∫ h

0

ρ dy

]
. (B 6)

Equation (4.2a) can be re-arranged:

ρhuhδ1 = ρhuh

∫ h

0

(
1 − ρu

ρhuh

)
dy =

∫ h

0

ρhuh

(
1 − ρu

ρhuh

)
dy = ρhuhh −

∫ h

0

ρu dy,

(B 7)
where the independence of ρh and uh on y (uh = uh(x, z, t)) was used. The same
manipulation can be performed with (4.2d) and term a becomes

a = ρh (h − δ1)
∂uh

∂t
+ uh

∂

∂t
[ρh(δρ − δ1)]. (B 8)

Similarly, term b is re-arranged using Leibniz’s rule:

b =

∫ h

0

∂ρuu

∂x
dy − uh

∫ h

0

∂ρu

∂x
dy =

∂

∂x

[∫ h

0

ρuu dy

]
− ρhuhuh

∂h

∂x

−uh

(
∂

∂x

[∫ h

0

ρu dy

]
− ρhuh

∂h

∂x

)

=
∂

∂x

[∫ h

0

ρuu dy

]
− uh

∂

∂x

[∫ h

0

ρu dy

]
. (B 9)

From (4.2b), one finds

ρhu
2
hδ2 = ρhu

2
h

∫ h

0

ρu

ρhuh

(
1 − u

uh

)
dy = uh

∫ h

0

ρu dy −
∫ h

0

ρuu dy

= ρhu
2
h (h − δ1) −

∫ h

0

ρuu dy, (B 10)

so that b becomes

b = ρhuh (h − δ1)
∂uh

∂x
− ∂

∂x

[
ρhu

2
hδ2

]
. (B 11)
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Invoking Leibniz’s rule again, c is rearranged:

c =

∫ h

0

∂ρuw

∂z
dy − uh

∫ h

0

∂ρw

∂z
dy =

∂

∂z

[∫ h

0

ρuw dy

]
− ρhuhwh

∂h

∂z

− uh

(
∂

∂z

[∫ h

0

ρw dy

]
− ρhwh

∂h

∂z

)

=
∂

∂z

[∫ h

0

ρuw dy

]
− uh

∂

∂z

[∫ h

0

ρw dy

]
. (B 12)

Note that h is, by construction, allowed to depend on z but is independent of x, so
that term d becomes

d = −
(

∂

∂x

[∫ h

0

p dy

]
− ph

∂h

∂x

)
= − ∂

∂x

[∫ h

0

p dy

]
. (B 13)

From (4.2c), noting that ph does not depend on y, one finds

phδp = ph

∫ h

0

(
1 − p

ph

)
dy = phh −

∫ h

0

p dy, (B 14)

so that

d =
∂

∂x
[ph(δp − h)]. (B 15)

Term e can be easily integrated to give (using the definition (4.3))

e =
1

Re

{[
µ

(
∂v

∂x
+

∂u

∂y

)]

y=h

−
[
µ

∂u

∂y

]

y=0

}
=

µh

Re

(
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

)
− 1

2
Cf ρhu

2
h.

(B 16)

Terms f and g are rearranged, using Leibniz’s rule and the independence of h on x:

f =
1

Re

(
∂

∂x

[∫ h

0

τxx dy

]
− τxx |y=h

∂h

∂x

)
=

1

Re

∂

∂x

[∫ h

0

τxx dy

]
, (B 17)

g =
1

Re

(
∂

∂z

[∫ h

0

τxz dy

]
− τxz|y=h

∂h

∂z

)
. (B 18)

Using (B 8) to (B 18) in (B 4) leads to (4.1):

ρh (h − δ1)

[
∂uh

∂t
+ uh

∂uh

∂x

]
+ uh

∂

∂t
[ρh(δρ − δ1)] − ∂

∂x

[
ρhu

2
hδ2

]
+

∂

∂z

[∫ h

0

ρuw dy

]

− uh

∂

∂z

[∫ h

0

ρw dy

]
=

∂

∂x
[ph

(
δp − h

)
] +

µh

Re

[
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

]
− 1

2
Cf ρhu

2
h

+
1

Re

∂

∂x

[∫ h

0

τxx dy

]
+

1

Re

(
∂

∂z

[∫ h

0

τxz dy

]
− τxz|y=h

∂h

∂z

)
. (B 19)
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Appendix C. Series expansions of the oblique-shock relations

C.1. Expansion of sin2(ι + θ)

To derive the following series expansions in terms of η/h0, the notations presented in
figure 10 will be used. From this figure, one can write the geometrical relations:

tan α =
h0

l0
, (C 1a)

sin ι =
h0 + η√

(h0 + η)2 + (l0 − ε + s)2
, (C 1b)

cos ι =
l0 − ε + s√

(h0 + η)2 + (l0 − ε + s)2
. (C 1c)

From (4.12) and (4.13) it is straightforward to show that

s − ε = η

[
1 − k

k tan β

]

︸ ︷︷ ︸
K0

. (C 2)

From trigonometric identities, one can write

sin2 (ι + θ) = sin2 ι cos2 θ + cos2 ι sin2 θ + sin ι cos ι sin (2θ). (C 3a)

Using (C 1b, c) and (C 2),

sin2 (ι + θ) =
1

h2
0 + η2 + 2h0η + l20 + K2

0η
2 + 2l0K0η

{(
h2

0 + η2 + 2h0η
)
cos2 θ

+
(
l20 + K2

0η
2 + 2l0K0η

)
sin2 θ +

(
h0l0 + h0K0η + l0η + K0η

2
)
sin (2θ)

}
.

(C 3b)

Upon multiplying both the numerator and denominator of the right-hand side of
(C 3b) by 1/h2

0 and defining q ≡ η/h0, (C 3b) becomes

sin2 (ι + θ) =
1

1 + q2 + 2q + (l0/h0)2 + K2
0q

2 + 2(l0/h0)K0q

{(
1 + q2 + 2q

)
cos2 θ

+
(
(l0/h0)

2 + K2
0q

2 + 2(l0/h0)K0q
)
sin2 θ

+
(
l0/h0 + K0q + (l0/h0)q + K0q

2
)
sin (2θ)

}
. (C 3c)

Substituting (C 1a) into the above equation gives

sin2 (ι + θ) =
1

1 + q2 + 2q + 1/ tan2 α + K2
0q

2 + 2K0q/ tan α

{(
1 + q2 + 2q

)
cos2 θ

+
(
1/ tan2 α + K2

0q
2 + 2K0q/ tan α

)
sin2 θ

+
(
1/ tan α + K0q + q/ tan α + K0q

2
)
sin (2θ)

}
. (C 3d)

Factorising (C 3d) by 1/(1 + 1/ tan2 α) and noting that sin2 α = 1/(1 + 1/ tan2 α), one
finds

sin2 (ι + θ) =
sin2 α

1 + 2C1q + C2q2

{(
1 + 2q + q2

)
cos2 θ

+
(
1 + 2K1q + K2

1q
2
)
sin2 θ/ tan2 α

+
(
1 + q (1 + K1) + K1q

2
)
sin (2θ) / tan α

}
, (C 3e)
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where C1 ≡ (K1+tan2 α)/(1+tan2 α), C2 ≡ (K2
1 +tan2 α)/(1+tan2 α) and K1 ≡ K0 tan α.

If the study is restricted to shock oscillations such that q ≪ 1, one can expand the
fractional term, i.e.

1

1 + 2C1q + C2q2
= 1 − 2C1q +

(
4C2

1 − C2

)
q2 + O(q3). (C 4)

Using (C 4) in (C 3e) and retaining only terms up to the first order in q , one finds

sin2 (ι + θ) = sin2 α
{
[1 + 2q (1 − C1)] cos2 θ + [1 + 2q (K1 − C1)] sin2 θ/ tan2 α

+ [1 + q (1 + K1 − 2C1)] sin (2θ) / tan α} + O(q2), (C 5a)

which upon regrouping terms of similar orders gives

sin2 (ι + θ) =

sin2 (α + θ)
︷ ︸︸ ︷
sin2 α cos2 θ + cos2 α sin2 θ + sin (2θ) sinα cosα

+
{
2 (1 − C1) cos2 θ sin2 α + 2 (K1 − C1) sin2 θ cos2 α

+ (1 + K1 − 2C1) sin (2θ) sinα cos α} q + O(q2). (C 5b)

It is relatively straightforward to see that K1 − C1 = sin2 α(K1 − 1) and 1 − C1 = (1 −
K1) cos2 α, which if combined gives 1 + K1 − 2C1 = (1 − K1) cos(2α) using the relation
cos(2α) = cos2 α − sin2 α. On the basis of those remarks and after few manipulations
of trigonometric identities, (C 5b) simplifies to

sin2 (ι + θ) = sin2 (α + θ) +

{
1 − K1

2
sin (2α) sin (2α + 2θ)

}
q + O(q2). (C 5c)

Using the definitions of K1 and K0, (C 5c) becomes

sin2 (ι + θ) = sin2 (α + θ)

+
1

2

[
1 +

tan α

tan β

(
1 − 1

k

)]
sin (2α) sin (2α + 2θ) q + O(q2). (C 5d)

If we now assume that k can be modelled according to (5.4), (C 5d) becomes

sin2 (ι + θ) = sin2 (α + θ) +
1

2
�(α, β, θ) q + O(q2), with

�(α, β, θ) =
tan α + tan β

tan β (1 − 1/ tan α) − 1
sin (2α) sin [2 (α + θ)]. (C 6)

C.2. Expansion of p3/p1

The pressure in region 3 varies according to

p3

p1

=
p+

2

p1

{
1 +

2γ

1 + γ

[
M 2

2 sin2(ι + θ) − 1
]}

. (C 7)

Using (C 6), (C 7) can be expanded as

p3

p1

=
p+

2

p1

{
1 +

2γ

1 + γ

[
M 2

2

(
sin2 (α + θ) +

1

2
�(α, β, θ)

η

h0

)
− 1

]}
+ O

(
η2

h2
0

)
,

(C 8a)

where the mean pressure in region 3 (i.e. p̄3) can be identified:

p3

p1

=
p̄3

p1

+
p+

2

p1

γ

1 + γ
M 2

2�(α, β, θ)
η

h0

+ O

(
η2

h2
0

)
. (C 8b)
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Hence

p3

p1

=
p̄3

p1

+ A
η

h0

+ O

(
η2

h2
0

)
, with A =

p+
2

p1

γ�M 2
2

1 + γ
. (C 9)

C.3. Expansion of ρ3/ρ1

The density in region 3 varies according to

ρ3

ρ1

=
ρ+

2

ρ1

{
(γ + 1) M 2

2 sin2 (ι + θ)

2 + (γ − 1) M 2
2 sin2 (ι + θ)

}
. (C 10)

Substituting (C 6) into (C 10) gives

ρ3

ρ1

=
ρ+

2

ρ1

[
a0

b0

+
γ + 1

2b0

M 2
2� q + O(q2)

] [
1 +

γ − 1

2b0

M 2
2� q + O(q2)

]−1

, (C 11a)

where a0 ≡ (γ + 1)M 2
2 sin2(α + θ), and b0 ≡ 2 + (γ − 1)M 2

2 sin2(α + θ). The term with
power −1 can be expanded, leading to

ρ3

ρ1

=
ρ+

2

ρ1

[
a0

b0

+
γ + 1

2b0

M 2
2� q + O(q2)

] [
1 − γ − 1

2b0

M 2
2� q + O(q2)

]
, (C 11b)

=
ρ+

2

ρ1

a0

b0

[
1 − γ − 1

2b0

M 2
2� q +

γ + 1

2a0

M 2
2� q

]
+ O(q2). (C 11c)

Noting that a0/b0 = ρ̄3/ρ
+
2 , (C 11c) can be written as

ρ3

ρ1

=
ρ̄3

ρ1

+ B
η

h0

+ O

(
η2

h2
0

)
,

with B = �

[
1

2 sin2 (α + θ)
− (γ − 1) M 2

2

4 + 2 (γ − 1) M 2
2 sin2 (α + θ)

]
ρ̄3

ρ1

. (C 12)

C.4. Expansion of M3/M1

The Mach number in region 3 is computed according to

M 3

M 1

=
1

M 1 sin ι

√
1 + (1/2) (γ − 1) M 2

2 sin2 (ι + θ)

γM 2
2 sin2 (ι + θ) − (γ − 1) /2

. (C 13)

Substituting (C 6) and denoting �(α, β, 0) by �0, one finds

M 3

M 1

=
1

M 1

[
sin2 α +

1

2
�0q + O(q2)

]−1/2 [
1 +

γ − 1

2
M 2

2

(
sin2(α + θ) +

1

2
�q + O(q2)

)]1/2

×
[
1 − γ

2
+ γM 2

2

(
sin2 (α + θ) +

1

2
� q + O(q2)

)]−1/2

. (C 14a)

Each terms in powers of ±1/2 can be expanded up to the first order:

M 3

M 1

=
1

M 1

[
1

sinα
− �0

4 sin3 α
q + O(q2)

][√
b0

2
+

(γ − 1) M 2
2�

8
√

b0/2
q + O(q2)

]

×
[

1√
c0

− γM 2
2�

4 c
3/2
0

q + O(q2)

]
, (C 14b)
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where b0 is the same as in (C 11a) and c0 =(1 − γ)/2 + γM 2
2 sin2(α + θ). Regrouping

terms of similar orders in q , one finds

M 3

M 1

=
M 3

M 1

{
1 +

1

4

[
(γ − 1) M 2

2�

b0

− γM 2
2�

c0

− �0

sin2 α

]
q

}
+ O(q2), (C 14c)

where M 3 =
√

b0/(2c0 sin2 α). Hence

M 3

M 1

=
M 3

M 1

+ C
η

h0

+ O

(
η2

h2
0

)
,

with C =
M 3

M 1

{
�

[
(γ − 1) M 2

2

8 + 4 (γ − 1) M 2
2 sin2 (α + θ)

− γM 2
2

2 (1 − γ) + 4γM 2
2 sin2 (α + θ)

]

− (tan α + tan β) cos2 α

tan β (1 − 1/ tan α) − 1

}
. (C 15)

C.5. Expansion of ρ3u3(1 − u3/u1)/(ρ1u1)

To expand ρ3u3(1 − u3/u1)/(ρ1u1), let us first note that

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

M 3

M 1

(√
ρ3p3

ρ1p1

− M 3p3

M 1p1

)
. (C 16)

Using (C 9), (C 12) and (C 15), (C 16) becomes

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

[
M 3

M 1

+ Cq + O(q2)

]{[(
ρ̄3

ρ1

+ Bq + O(q2)

)(
p̄3

p1

+ Aq +O(q2)

)]1/2

−
(

M 3

M 1

+ C q + O(q2)

)(
p̄3

p1

+ Aq + O(q2)

)}
. (C 17a)

Expanding the square root and the products inside the curly brackets leads to

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

[
M 3

M 1

+ C q + O(q2)

]{√
ρ̄3p̄3

ρ1p1

+
1

2

√
ρ1p1

ρ̄3p̄3

(
ρ̄3

ρ1

A +
p̄3

p1

B

)
q

− M 3p̄3

M 1p1

−
(

M 3

M 1

A +
p̄3

p1

C

)
q + O(q2)

}
. (C 17b)

The last product is then expanded to give

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

M 3

M 1

(√
ρ̄3p̄3

ρ1p1

− M 3p̄3

M 1p1

)
+

M 3

M 1

{
1

2

√
p1ρ̄3

p̄3ρ1

A +
1

2

√
ρ1p̄3

ρ̄3p1

B

− M 3

M 1

A − p̄3

p1

C +
M 1

M 3

C

(√
ρ̄3p̄3

ρ1p1

− M 3p̄3

M 1p1

)}
q + O(q2).

(C 17c)

The first term in (C 17c) is ρ̄3ū3(1 − ū3/u1)/(ρ1u1), so that

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

ρ̄3ū3

ρ1u1

(
1 − ū3

u1

)
+

M 3

M 1

{(
1

2

√
p1ρ̄3

p̄3ρ1

− M 3

M 1

)
A +

1

2

√
ρ1p̄3

ρ̄3p1

B

+ C

(
M 1

M 3

√
ρ̄3p̄3

ρ1p1

− 2
p̄3

p1

)}
q + O(q2). (C 17d)
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Hence

ρ3u3

ρ1u1

(
1 − u3

u1

)
=

ρ̄3ū3

ρ1u1

(
1 − ū3

u1

)
+ D

η

h0

+ O

(
η2

h2
0

)
,

with D =
M 3

M 1

{(
1

2

√
p1ρ̄3

p̄3ρ1

− M 3

M 1

)
A +

1

2

√
ρ1p̄3

ρ̄3p1

B +

(
M 1

M 3

√
ρ̄3p̄3

ρ1p1

− 2
p̄3

p1

)
C

}
,

(C 18)

where A, B and C are defined in (C 9), (C 12) and (C 15), respectively.
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