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•  The convergence of application specific processors and 
multicore systems  

•  New phase where we see two distinctive computing 
architectures emerging  

Current System Trends 

Massive parallel homogenous cores Heterogeneous many-core architectures  
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•  Tilera-‐like	  homogenous	  
architectures:	  servers,	  cloud	  

compu8ng…	  

•  Great	  for	  trivially	  parallel	  
applica8ons	  

•  Having	  similar	  cores	  on	  the	  die	  
makes	  the	  manufacturing	  and	  

tes8ng	  process	  more	  manageable	  

•  Homogeneous	  collec8on	  of	  cores	  

also	  keeps	  the	  so?ware	  support	  

model	  simple	  

•  Lack of specialization of 
hardware to different tasks 

Homogeneous Many-cores 
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•  Integration of heterogeneous 
technologies  

•  These SoC architectures have 
large number of processing units  

–  programmable RISC/CISC cores, 
memory, DSPs, and accelerator 
function units/ASIC 

•  Logic diagram of the hardware 
processing units in a typical 
smart phone today 

 

Heterogeneous Many-cores 
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•  SoC architectures need more research and standardization to 
encourage high degree of reusability 

Complex SoC Architectures 

SoC design complexity trends [International Technology Roadmap for Semiconductors 2011 Report]  
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•  Design of heterogeneous many-core systems shares many of 
the same challenges in general-purpose homogeneous 
architectures, but there are few added design constraints 

•  SoC architectures  are deployed in many computation 
environments that  require concurrent execution of several 
tasks with different, sometimes opposite, performance goals 

•  Integration of different services on the same computing 
platform requires rethinking of the cores, the memory hierarchy, 
and the interconnect network  

•  On these platforms, we need to think not only in terms of tasks 
and task parallelism, but also services and service guarantees 

 

•  Quality of service at the on-chip network level 

Design Challenges 
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Network Impact on Performance 
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Dynamic Nature of On-Chip Routing 
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Dynamic Nature of On-Chip Routing 
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Dynamic Nature of On-Chip Routing 
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Dynamic Nature of On-Chip Routing 
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Conventional Router 

Output	  

Port	  

Output	  

Port	  

Router:	  rou8ng	  phases	  Router	  architecture	  
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 The Hard Real-time Support (HRES) router is able to: 

•   Decouple hard real-time and best effort traffic using a two-
datapath routing scheme 

•  Maximize link throughput and guarantee hard real-time timing 
constraints 

•  Provide fairness of link utilization among the two classes of 
traffic 

•   Be acknowledgment-free, retransmission-free, and lossless 

•  Be deadlock and livelock free with no modification to the 
buffered datapath of the router. 

•  It has low hardware overhead for supporting hard real-time 
communications. 

Network Level Quality of Service 
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Hard Real-time Support (HRES) router  
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Hard Real-time Support (HRES) router  
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           Two-network router                     Single shared crossbar router 

Other Routers 
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Area Comparison of Architectures 

Number ports Cell area

HRES router 392 47190.44

Two-Network router 721 51766.84

Single crossbar router 392 52812.94

•  Two-network router has duplication of wires and logic 

–  Lead to more cell area 

–  Changes in the network interface  

•  Single large crossbar: switch arbitration logic is modified to 
give priority to the real-time traffic  

–  Increase in switch arbitration datapath and router critical path 

–  Real-time and normal traffic requests must be serialized 
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Area and Power 

•  Comparable logic area at 
the different design points 

•  IBM 45-nm SOI CMOS 
technology cell library 

•  Comparable static power at 
the different design points 
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QoS-Aware On-Chip Routing 
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QoS-Aware On-Chip Routing 
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•  In a modern automobile there are as many as as 70 electronic 
control units (ECUs) embedded in a vehicle* 

•  In the HEV, a motor drive, with a controlled inverter system, is 
needed to deliver powerful and efficient drive to the electric motor 

•  Mixed-criticality application: hard real-time and best effort 

Hybrid electric vehicle (HEV) Application 

* 2009 Automotive Embedded Systems Handbook 

Start of 

 System-Step

Gas Pedal 

& brake

Crash

 Sensors

Engine

Converter

Battery

 Pack

Synchronous 

Motor & drive

Planetary 

Gear

Synchronous 

Generator 

& Drive

Previous 

State

 Variables

Previous 

Distributed 

 Control

 State

Guards 

Evaluation

State 

Selection

Continuous 

State 1

Continuous 

State 2

Continuous 

State 3

State 

Variables 

Control 

System

Emulator 

Data 

Storage

Input 

Analysis

Control 

Algorithm

Monitoring 

Unit

Monitoring 

Unit

 Data Storage

Distributed 

Control

Output 

Signals

 Actuators

 

System 

 Components

End of 

 System-Step



Computer  Architecture  and
Embedded Systems Laboratory

Evaluation Results 
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Evaluation Results 
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Q	  &	  A	  Sec8on 

More	  Informa+on	  at	  

http://caes.cs.uoregon.edu/	  
	  

	  

Thank	  You	  !	  


