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Low-Pass Filtering SC-DAC for Reduced Jitter

and Slewing Requirements on CTSDMs

Dries Vercaemer , Johan Raman, and Pieter Rombouts

Abstract— In this paper, a technique is introduced that
improves the performance of one-bit continuous-time sigma
delta modulators (CTSDMs) using a low-pass filtering switched
capacitor digital to analog converter (LPSC-DAC). This DAC
effectively combines an infinite impulse response filter with
a switched capacitor resistor DAC (SCR-DAC). The resulting
DAC is inherently immune toward inter-symbol interference.
Moreover, by filtering the feedback signal in the discrete-time
domain, the jitter robustness of the modulator is greatly improved
and most importantly the slewing requirements on the OpAmps
in the modulator’s loop filter are greatly relaxed up to a level
that the OpAmps can be scaled down toward their ultimate
noise limited power level. Furthermore, this LPSC-DAC does not
suffer from the SCR-DAC’s disadvantageous trade-off between
the modulator’s jitter, slewing, and anti-aliasing performance.
We also show how to compensate for the extra pole of the
LPSC-DAC, such that the CTSDM’s loop filter, noise- and
signal-transfer function remains unchanged. As a result, this
technique is completely transparent to the system level designer
and established system-level design techniques for sigma delta
modulators remain applicable.

Index Terms— Analog-to-digital conversion, pulse-width
modulation, small area ADC, CTSDM, low power, SC-DAC.

I. INTRODUCTION

ONE-BIT continuous-time sigma delta modulators

(CTSDMs) have gained renewed attention over

their multi-bit counterparts thanks to their small size and

simplicity [1]–[5]. These advantages come from the fact

that multi-bit CTSDMs need a multi-bit quantizer and a

linear multi-bit feedback digital to analog converter (DAC).

Due to the reduced voltage headroom (inherent to today’s

ultra deep sub-micron technology), it is difficult to design

reliable multi-bit quantizers. Today, linearizing a multi-bit

DAC is mature (e.g. through dynamic element matching

or calibration) but still introduces a considerable silicon

area overhead. One-bit CTSDMs don’t need these multi-bit

blocks whereas they fully exploit the fact that the devices

in modern ultra deep sub-micron technology are very fast.
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Fig. 1. Low-pass filtering and compensation scheme of [3].

This allows for high over sampling ratios (OSRs), such

that good performance can easily be obtained with one-bit

modulators. All these elements shift the balance in favor of

one-bit CTSDMs.

Nevertheless, one-bit modulators also face challenges. High

OSR means that one-bit designs drive their loop filter with

high-frequency full scale DAC-pulses, resulting in stringent

slew rate requirements on the OpAmps. Furthermore, using

full scale pulses increases the errors caused by jitter or

inter-symbol interference (ISI) at the DAC. A possible solution

to the slew rate problem is filtering the DAC signal. Here

we can consider two families of techniques. The first are

finite impulse response DAC (FIR-DAC) techniques, which

have been studied in [5]–[11]. In this work we will focus

on a second family: i.e. analog filtering techniques. As will

become clear later on, the proposed approach is in every

aspect competitive with the FIR-DAC approach. Moreover,

the technique is orthogonal to the FIR-DAC approach and

hence these techniques could be combined if needed.

First variants of the analog filtering approach were proposed

in [3] and [11]–[13]. It consists of adding a passive low-pass

filter in front of the first OpAmp in the loop filter. This reduces

the voltage swing and required slew rate of the first OpAmp

in the loop. Unfortunately, adding this filter to the loop puts

constraints on the modulator’s noise transfer function (NTF)

such that the noise shaping is affected. Solutions for this

problem have been proposed in [3] and [12]. In the former,

an extra zero is added to the loop filter after the first OpAmp

to cancel the pole introduced by the low-pass filter, leading

to the system of Fig. 1. As a result, the technique of [3]

is completely transparent on the system level, leaving the

loop filter, noise transfer function (NTF) and signal transfer

function (STF) unchanged. Unfortunately this approach does

not improve errors introduced at the DAC, like jitter or ISI.

This is because the filtering happens in the continuous-time
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Fig. 2. LPSC-DAC and integrator.

Fig. 3. Clock phases.

domain after the DAC and hence errors introduced at the DAC

have already entered the system and will directly affect the

modulator’s performance. Inspiration for an improved analog

filtering technique can be found in [4]. Here, a passive-active

modulator without OpAmps is presented. Instead, switched

capacitors and passive RC-filters are used to implement (lossy)

integrators, while the gain is provided by differential pairs

and the 1-bit quantizer. In this work we elaborate the core

switch-capacitor-RC circuit of [4] and show that it actually

performs its filtering in the discrete-time domain. This means

it can reduce DAC-errors such as jitter or ISI. We will denote

this DAC structure as a low-pass filtering switched capacitor

DAC (LPSC-DAC). However, similar as in other filtering

techniques [3], the loop’s noise- and signal transfer functions

are again affected and we explain how this can be solved by

a compensation scheme similar to the one of [3].

Below, the resulting LPSC-DAC CTSDM is analyzed exten-

sively with respect to the modulator’s noise, slewing, jitter

and anti-aliasing performance. It is found that the resulting

structure has very good performance on each of these aspects.

II. SWITCHED CAPACITOR LOW-PASS FILTERING DAC

Fig. 2 shows the proposed low-pass filtering switched capac-

itor DAC embedded in an RC-integrator as would be the case

at the input of a CTSDM. φ1 and φ2 are non-overlapping clock

signals with the same period as the sampling clock, Ts , and a

duty cycle slightly smaller than 50 %, as shown in Fig. 3. To

simplify the following analysis, we will however neglect the

time of non-overlap between φ1 and φ2, such that Ts = T1+T2.

During φ1, the capacitor Cs is either charged to the reference

voltage Vre f , or discharged to ground, depending on the value

of the bit y(n). We will assume that Vre f equals unity to

simplify the following analysis. During φ2, this capacitor is

placed in parallel with the capacitor Clp , and their charge is

redistributed. The charge on Clp constantly leaks through the

resistor R into the nullator node of the OpAmp. This results

in a current which is integrated onto the feedback capacitor C .

We will consider this current, iR on Fig. 2, as the output signal

of the LPSC-DAC.

In order to analyze the behavior of this structure, we start

by examining what happens with the voltage vR , during

switching. If we define vR(0−, n) as the value of vR at the

instant just before the n’th rising edge of φ2, and vR(0+, n),

as the voltage just after, we can write down the following

relationship, assuming ideal switches and using conservation

of charge:

vR(0+, n) =
Cs y(n) + ClpvR(0−, n)

Clp + Cs

(1)

= αy(n) + (1 − α)vR(0−, n) (2)

α =
Cs

Cs + Clp

(3)

During clock phase φ2, vR(t) exponentially decays, with time

constant R(Cs + Clp). During φ1, the time constant is RClp .

Note that the charge on Clp does not change on the falling

edge of φ2. This behavior is illustrated in Fig. 4a (bold black

line). The total decay over one clock period is then given by:

γ = e
− T1

RClp e
− T2

R(Cs +Clp ) (4)

Combining this with Eq. (2) results in the following relation-

ships:

vR(0−, n) = γ vR(0+, n − 1) (5)

vR(0+, n) = αy(n) + (1 − α)γ vR(0+, n − 1) (6)

To ease notation we will rename the sequence vR(0+, n)

as v(n). Now, this sequence v(n) depends in a linear

time-invariant way on the input sequence y(n). And hence,

we can write down the corresponding Z-domain transfer

function, Hlp(z):

V (z)

Y (z)
= Hlp(z) =

α

1 − (1 − α)γ z−1
(7)

Clearly, this transfer function corresponds to a discrete-time

first-order low-pass filter.

The continuous-time waveform vR(t) is the convolution of

the discrete-time signal v(n) with the exponentially decaying

pulse shown on Fig. 4a (bold black line). As explained above,

the exponential decay has a slightly different time constant

during φ1 than during φ2. In practice this can be accurately

approximated as one effective time constant, chosen to result

in the same total exponential decay during a clock cycle:

τ = −
Ts

ln(γ )
= RClp

Ts

Ts − αT2
(8)

As will become clear later on, in a practical sizing α will

normally be quite small. In this case, the equation can be

simplified into:

τ ≈ RClp (9)

Since the exponential pulse starts on the rising edge of φ2,

it is delayed for a duration T1 with respect to the rising edge
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Fig. 4. Actual pulse (solid black) and its single exponential approximation
(dashed gray) for (a) an unrealistically small value of the time constant τ
and (b) for a typical value of the time constant.

of the clock signal. This leads us to the following expression

for the exponential pulse in the Laplace domain:

P(s) =
1 − γ e−sTs

1 + sτ
τe−sT1 (10)

The impulse response of Eq. (10) is illustrated on Fig. 4

for two different sizings, together with the actual pulse with

varying time constant. For Fig. 4a the value of τ was chosen

very small to clearly illustrate the difference in pulse shape.

As will be explained in section IV, in an actual design τ will

be made quite large to optimally benefit from the filtering of

the DAC. A pulse with such a sizing (RClp = 80
ωs

) is shown

in Fig. 4b. ωs represents the angular sampling frequency:

ωs = 1
2πTs

. In both sizings, Cs was equal to Ts

R
. As can be seen

on Fig. 4b, the exponential pulse is very well approximated if

Clp is much higher than Cs .

The output signal of the LPSC-DAC, the current iR (anno-

tated in Fig. 2), is simply vR divided by R, assuming that the

OpAmp is ideal. Using this observation, we obtain the transfer

function DAC(s) from y(n) to iR :

DAC(s) =
1

R
P(s) Hlp(z)|z=esTs (11)

Eq. (11) represents the product of a discrete-time low-pass

filter and a delayed exponential DAC-pulse. This justifies the

name for this circuit (see Fig. 2): low-pass filtered switched

capacitor DAC, or LPSC-DAC.

The discrete-time impulse response of Hlp(z) is illustrated

in Fig. 5. Here again the sizing motivated in section IV is

used: RClp = 80
ωs

and Cs = Ts

R
. The total impulse response

of the LPSC-DAC is shown on Fig. 6, where the black dots

represent the output samples of the discrete-time filter, while

the gray lines show the exponential pulses, approximated with

the constant time constant of Eq. (8). It is clear that the

DAC-pulse is spread out over several clock periods due to the

filtering operation. This reduces the peak value of the pulse,

which is beneficial for slewing considerations. Lastly we also

expect this LPSC-DAC to be immune against inter-symbol

interference (ISI), similarly to a switched capacitor DAC (SC-

DAC [14]). Parasitic effects, such as charge injection, happen

every clock cycle and do not depend on the derivative of the

digital input signal as is the case with an NRZ-DAC. Simula-

tions on a modulator with an LPSC-DAC, implemented with

transistor switches, confirmed mismatch and charge injection

did not result in ISI.

Fig. 5. Impulse response of Hlp(z).

Fig. 6. Impulse response of the overall LPSC-DAC.

III. SDM WITH LPSC-DAC AND COMPENSATION

It is our goal to use the LPSC-DAC in the first stage of

a CTSDM. However, from the analysis above we know that

the LPSC-DAC operation consists of the combination of a

discrete-time first-order low-pass filter effect and a delayed

exponentially decaying pulse. Due to this, incorporating the

LPSC-DAC in a CTSDM will increase the order of the SDM’s

total loop filter by one. This effect is undesired because it

puts limitations on the modulator’s NTF and STF, impeding

a typical top-down design of the modulator (with a first

NTF synthesis step and a mapping of the NTF to modulator

structure in a second step). To make the technique transparent

on the system level, we need to restore the loop filter’s order.

To achieve this, we propose to add an extra compensating

zero to the modulator’s loop, somewhat similar to established

excess loop delay (ELD) compensation techniques [15], [16].

Like with ELD-compensation, this zero can be implemented

in several ways. However, for maximal generality, we add the

zero to the forward loop filter H(s) as the factor (1 + sτc)

shown in Fig. 7. Unfortunately, adding the zero in the forward

filter path will still not suffice to preserve the system level

behavior, since it will change the STF. As will become clear

later on in section IV, the introduced compensating zero

can be a lot lower than the clock frequency, which would

significantly change the filtering characteristic of the STF.

For full compensation, it is therefore necessary to add a

low-pass filter in front of the loop, as was also done in [3]

for a system with an NRZ-DAC. Fig. 7 shows the resulting

proposed system. Rin represents the impedance level of the

input branch. H(s) is the continuous-time loop filter of the

modulator, which is conventionally implemented as a cascade

of integrators with feedforward and/or feedback paths. Heq(z)



1372 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 4, APRIL 2019

Fig. 7. System level diagram of CTSDM with LPSC-DAC and compensation.

is the corresponding equivalent discrete-time loop filter. In a

typical top-down design of the modulator, first a desired NTF

is synthesized, which leads to a desired Heq(z) [17], [18].

Then, in a subsequent step the continuous-time filter H(s)

needs to be calculated such that the loop with the DAC and the

sampling implements the discrete-time filter Heq(z). For the

LPSC-DAC, the integrator coefficients of H(s) and the value

of the zero τc are found by solving the following equation:

Heq(z) = [H(s)(1 + sτc) DAC(s)]∗ (12)

Here the notation [ ]∗ is used to represent the sampling

operation as in [19] and [20]. The s-domain filter coefficients

corresponding to the solution of this equation can be found by

some numerical routine e.g. using the c2d and d2c functions

in Matlab. It is also possible to derive exact closed form

expressions for τc and the s-domain integrator coefficients,

however these expressions are quite long even for moderate

orders of Heq(z). However, in practice, the value of τ should be

relatively large (see below). In this case, we found that τc does

almost not depend on Heq(z), and can be well approximated

as:

τ � Ts, T1 ≈
Ts

2
⇒ τc ≈ τ

1

RCs fs + 1
(13)

fs is the sampling frequency: fs = 1
Ts

. Fig. 8 shows a

plot of τc together with the approximation of Eq. (13) for

two different sizings of the loop filter as a function of the

normalized analog filter bandwidth Ts

2πτ
. Here, the exact value

of τc was calculated by numerically solving Eq. (12). Both

considered loop filters were third order filters designed using

the sigma delta toolbox [17] but with different values for the

maximum NTF gain, H∞: i.e. H∞ = 1.5 and H∞ = 2. Cs

was chosen equal to Ts

R
. Fig. 8 shows excellent correspondence

between the approximation Eq. (13) and the exact value

of τc, except for very high values of the normalized analog

filter bandwidth. On the figure we have also indicated the

practically useful range which corresponds to the range where

the normalized analog filter bandwidth is smaller than 1/40.

As we will see below, this corresponds to oversampling ratios

that are larger than 20, which is almost always the case for

single bit 61 modulators. For values of τ inside this range,

the maximum error is within 1.5 %.

To understand this result, it is helpful to consider Fig. 9. It is

a low frequency approximation of the circuit of Fig. 2, where

the switched capacitor Cs has been replaced by its equivalent

Fig. 8. Exact value of τc normalized to Ts and its approximation of Eq. (13)

as a function of the normalized analog filter bandwidth
Ts

2πτ for two different
sizings of the loop filter.

Fig. 9. Low frequency approximation of the circuit of Fig. 2.

resistor Req [21]:

Req =
Ts

Cs

(14)

It is clear that R, Req and Clp form a passive low-pass

filter. Hence, in this approximation, the circuit collapses to

the system of [3], shown on Fig. 1, where τc must be equal to

the time constant τeq formed by R, Req and Clp . This leads

to:

τc = τeq = Clp

RReq

R + Req

(15)

Combining this with the approximation of Eq. (9) leads to

Eq. (13).

It is important to note that the equivalent resistor analysis is

only approximate: it helps in the intuitive understanding of the

expression for τc but in reality the LPSC-DAC circuit of Fig. 2

performs its filtering in the discrete-time domain in front of

the DAC. As a result, contrary to the system of Fig. 1, errors

introduced at the DAC are reduced, as we will show in the

following sections.

To complete the system level design, we need to find a

sizing strategy for the LPSC-DAC’s time constant τ . Ideally

we would like an aggressive filter with a very large value of τ .

As we will show in the next section however, if τ is chosen

too large, the modulator’s thermal-noise level will increase. To

explore this trade-off, we need to look at the circuit level of

the CTSDM.

IV. CIRCUIT IMPLEMENTATION

Fig. 10 shows the single-ended representation of a circuit

level implementation of the modulator of Fig. 7. The inverting
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Fig. 10. 3rd order 1-bit CIFF-FB CTSDM with LPSC-DAC and compensation.

buffers represent the crossing of two differential wires. The

modulator has a CIFF-FB loop filter, but it has the same STF

as a CIFF-modulator because of the feed-in path to the third

integrator. The signal swing at the output of the first integrator

is also identical to the swing of the corresponding signal in

a CIFF-loop filter. The additional low-pass filter in front of

the modulator is implemented using the resistance of the first

integrator and an additional capacitor Clp,in . The extra zero
−1
τc

in the loop filter is realized with two extra capacitors at

the input of the third integrator, labeled CA on Fig. 10.

A. Noise

For the noise analysis we will focus on the resistors in the

input branch, the LPSC-DAC and on the OpAmp of the first

integrator. We will assume that the input referred contribution

of all noise sources further in the loop filter are adequately

suppressed by the gain of the first integrator. Also, we will

neglect the contribution of the local feedback resistor Rg , since

it is always much larger than Rin . Furthermore, we will assume

that the modulator’s STF has unity in-band gain. To guarantee

this, the following requirement needs to be fulfilled:

Rin = R0 + R1 = R + Req (16)

The switch driven by φ1 on Fig. 10 introduces noise

with a spectral density of kT

Cs
fs
2

. From the perspective of the

other switch, driven by φ2, the capacitors Cs and Clp are in

series, which under the assumption that Cs � Clp means it

introduces noise with the same spectral density as the first

switch. As a result, the switched capacitor Cs introduces the

same baseband noise as its equivalent resistance Req . We can

therefore approximate the in-band mean square noise voltage,

by replacing the switched capacitor Cs with its low frequency

equivalent resistance Req , which greatly simplifies the fol-

lowing analysis. This also means that we neglect aliasing of

out-of-band OpAmp or resistor noise, but as we will show

in section VI, the LPSC-DAC is quite robust against aliasing

such that this approximations is justified.

For frequencies above the low-pass filter cut-off frequency,

the input referred noise contributions of R1, R and the OpAmp

are amplified, because these noise components are injected

after the low-pass filter. Hence, the low-pass filter’s bandwidth

should not become too small, to avoid that the modulator’s

thermal in-band noise would increase. We will assume τ � Ts

to obtain accurate and concise analytical expressions for the

noise behavior. This corresponds to the expected worst case

noise behavior and it allows to make use of Eq. (13).

After a straightforward calculation, the following expression

can be found for the in-band noise voltage variance, from the

input resistors and the LPSC-DAC (in a differential design):

V 2
R,L PSC = 4kT B4Rin

[

1 +
(2π Bτc)

2

3

(

Rin

2R1
+

Rin

2R

)]

(17)

T represents the temperature in Kelvin, k is Boltzmann’s

constant, and B stands for the modulator’s bandwidth. The

modulator’s in-band, input referred mean square noise voltage

due to white noise of the OpAmp can be approximated as

follows, again assuming τ � Ts and provided the first

integrator has high in-band gain:

V 2
O A,L PSC ≈

4

3

4kT B

gm

[

4 +
(2π Bτc)

2

3

(

Rin

R1
+

Rin

R

)2
]

(18)

Here, we assumed that two differential pair transistors with

transconductance gm dominate the OpAmp’s noise. For ease

of comparison, we also present the noise for a reference

modulator with the same impedance level, but using a regular

switched resistor NRZ-DAC:

V 2
R,re f = 4kT B4Rin (19)

V 2
O A,re f ≈ 4

4

3

4kT B

gm

(20)

Again we assumed high in-band gain for the first integrator

and a noise dominant transistor pair in the OpAmp.

To verify these analytical results, we performed a

case study on a typical SDM designed using Schreier’s

16-toolbox [17], [18], for an over-sampling ratio of 50 and

an NTF H∞ value of 1.5. The resulting discrete-time loop
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Fig. 11. In-band noise power generated by the first OpAmp and the
input resistors of the circuit of Fig. 10, for swept LPSC-DAC bandwidth.
Normalized to corresponding noise power in a modulator using NRZ-DAC.

filter Heq(z) is shown in table I. For this modulator prototype,

we investigated the noise performance over a range of varying

values of τ . For every value of τ , the corresponding loop

filter parameters (H(s) and τc) were calculated by numerically

solving Eq. (12). Here, all input resistors (R0, R1, R and Req )

were chosen equal to minimize the size of Clp,in and Clp, f b.

The results are summarized in Fig. 11 which shows the

contribution to the total in-band noise power of both the input

resistors as well as the first OpAmp, as a function of τ . Both

contributions are normalized to their corresponding level in a

conventional CTSDM with NRZ-DAC, i.e. Eqs. (19) and (20).

As can be seen, the analytical approximations match perfectly

with the simulations. It is also clear that choosing the LPSC-

DAC’s bandwidth too low will dramatically increase the noise

level of the modulator. However for this OSR there is a large

range for τ , where the noise level remains unchanged and

remains identical to the noise level for an NRZ-DAC.

Based on this analysis, we decided to choose the value

of τ such that the resulting increase of thermal noise is not

more than 1 dB. For this, we define gm,min as the noise

optimal gm value which is such that the OpAmp generates

the same amount of noise as the input resistors. This leads to

the following noise limited sizing:

gm = gm,min =
4

3

1

Rin

, R = R1 =
Rin

2
, τ =

1
5
4

2π B
(21)

The total noise increase with this sizing is only 0.93 dB.

With regard to finding the value of the compensation time

constant τc, we found that the approximation of Eq. (13)

is very accurate for this sizing of τ . All the corresponding

modulator parameters are listed in table I, and will be used

for the remaining simulations.

B. Slewing

Even though the bandwidth of the low-pass filter is limited

by noise considerations, it is still very effective in reducing the

required output current. Fig. 12 shows a first simulation result

for the output current of the first OpAmp in the loop filter, both

for a modulator with an LPSC-DAC and a modulator with an

TABLE I

PARAMETERS OF THE THIRD ORDER CTSDM USED IN

THE SIMULATIONS AND DEPICTED ON FIG. 7

Fig. 12. OpAmp output current for modulator with NRZ (black) and
LPSC-DAC (gray).

NRZ-DAC. The OpAmps were ideal for this simulation and

the input signal was a −3 dBfs sine wave with a frequency at

the edge of the modulator’s bandwidth,
fs

100
. Both modulators

had the discrete-time equivalent loop filter shown in table I.

The simulation clearly shows that the total current level at

the output of the first OpAmp is heavily reduced by using an

LPSC-DAC.

For better comparison with existing filtering techniques,

we also designed a modulator with a FIR-DAC [5], [6], [8],

[9]. We choose a FIR-filter with four equal taps, and its

effect on the loop filter has been compensated such that the

equivalent discrete-time loop filter Heq(z) remains unchanged.

This required adding a FIR-DAC in the inner feedback path

of the modulator and recalculating the integrator coefficients.

For a second set of simulations, we implemented the OpAmp

of the first integrator of both modulators (FIR-DAC and LPSC-

DAC) using a macro-model of a single stage OpAmp, whose

output current is a non-linear function of its differential input

voltage according to the well-known square law Fet-model:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Iout = −Id
gm Vin

Id

< −
√

2

Iout = gm Vin

√

1 −
(

Vin gm

2Id

)2 ∣

∣

∣

∣

gm Vin

Id

∣

∣

∣

∣

<
√

2

Iout = Id
gm Vin

Id

>
√

2

(22)

We also added an output impedance equal to 100
gm

, to ensure a

fixed 40 dB DC-gain. To assess the efficiency of our technique,

we investigated the case where the OpAmp is squeezed into

its ultimate noise limited sizing. Two quite extreme sizings of

gm were examined: i.e. gm,min and 2gm,min . The loop gain

of the feedback OpAmp circuit is very low at such a low

value of gm . This affects the time constant of the integrator

and the input impedance at the OpAmp inverting terminal.
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Fig. 13. Simulated SNDR for a modulator with an LPSC-DAC and another
modulator with a four-tap FIR-DAC. Both modulators where sized to have
the Z-domain loop filter of table I. The first OpAmp is a macro-model of a
simple differential pair with varying gm and gm/Id and fixed 40 dB DC-gain.

To correct these effects, we rescaled the integrating capacitor,

such that the poles and zeros of the modulator’s loop filter

remain unaffected [22], [23]. This also required rescaling the

low-pass capacitors Clp, f b and Clp,in , and adding a resistor in

series with the integrating capacitor to cancel the feed-forward

zero of the integrator. We ran a batch of simulations on this

circuit. The input signal frequency was set at a fourth of

the modulator’s bandwidth. The quantizer was dithered to

reduce limit cycles. We varied the
gm

Id
of the transistors in

the differential pair, and for all values the SNDR of the two

modulators was simulated with a −3 dBfs input signal. The

results are shown on Fig. 13. The top two lines represent the

simulated SNDR values of the LPSC-DAC modulator, for both

gm values. It can be observed that the LPSC-DAC modulator’s

performance is only degraded for high values of
gm

Id
(and hence

very small current levels). This illustrates the relaxed slew rate

requirement of the LPSC-DAC, as well as its ability to cope

with a high impedance nullator node.

The bottom two lines on Fig. 13 show the results for

the modulator with a four-tap FIR-DAC. It is clear that the

SNDR is heavily limited by slewing, and all SNDR values are

worse than the values for the modulator with the LPSC-DAC.

This indicates that a four-tap FIR-DAC is not as efficient as

an LPSC-DAC in reducing slewing requirements. One could

think of increasing the number of FIR-DAC taps to improve

the FIR-DAC performance, but this also increases several

undesirable effects as described in [8]. The two most important

issues are the following. First, the number of resistors in the

FIR-DAC goes up with the order n, as do the size of these

resistors, such that their combined chip area increases as n2,

as well as their total parasitic capacitance on the nullator node

of the integrator. Second, increasing the order of a FIR-DAC

also increases the signal swing of the modulator’s input signal

related component at the output of the first integrator in the

loop filter. The reason for this is that the FIR filter adds

phase shift in the feedback path, which leads to reduced

cancellation of the modulator’s input signal with the input

signal component in the modulator’s feedback signal. A mod-

ulator with an LPSC-DAC and the proposed compensation

technique does not suffer from this drawback since it filters in

both the feedback and the input branch. To asses this effect,

we investigated our test vehicle modulator of table I for the

case of a FIR-DAC. We found that for a full scale input signal,

the signal swing at the output of the first OpAmp, was more

than double when using a four-tap FIR-DAC compared to

an LPSC-DAC implementation. Moreover, this signal swing

was even further increased for FIR-DACs with more than four

taps, as the reduction in quantization noise due to increased

filtering was not enough to compensate for the increased

swing of the input signal component. At this point we should

note that the LPSC-DAC also suffers from an area penalty.

This is mainly due to the added low-pass capacitors Clp,in

and Clp, f b. Actually in practice these additional capacitors

will typically be the largest capacitors in the overall circuit.

Therefore, in a differential design they should be implemented

as fully differential capacitors between the differential lines,

which saves a factor 4 relative to implementing each of them

as 2 separate capacitors to ground in each of the differential

branches. To give a numerical idea of the actual area overhead

we can refer to our previous work [3], which is a 3rd order

single bit design (of similar complexity as Fig. 10), with

12-bit resolution and 20 MHz bandwidth in 65 nm CMOS.

If we would modify this design to incorporate the proposed

LPSC-DAC, we estimate that the resulting circuit would have

a total active area around 0.01 mm2. The low-pass filtering

capacitors, Clp,in and Clp, f b, would occupy around 15 % of

this area.

Finally, an important side comment is that the FIR-DAC

approach is orthogonal to the proposed LPSC-DAC

approach. Hence, it is relatively straightforward to combine

them, which could be beneficial (e.g. at a different OSR than

the one used for our simulations). Note that to implement

an n-tap FIR filter with LPSC-DACs, n low-pass filtering

capacitors are needed, whose size is n times smaller compared

to a single LPSC-DAC, meaning that the total capacitor area

to implement the LPSC-DAC technique is essentially

independent of the FIR-DAC order.

Lastly, we also simulated a modulator with an NRZ-DAC,

without any filtering technique. All SNDR values were lower

than 50 dB and heavily limited by slewing, confirming that

some kind of filtering or current reducing technique is neces-

sary in 1-bit modulators to obtain a power efficient design.

C. Variability

Eq. (15) shows that the proposed compensation technique

consists of matching an RC time constant with a time constant

implemented with both a switched capacitor and an ordinary

resistor. Since PVT-variations [12], [23], [24] have a different

impact on the switched capacitor than on the resistors, they

will result in mismatch between these time constants. PVT-

variations will also cause a mismatch between the equivalent

resistance of the two input branches of the first integrator.

If the equivalent resistor formed by the switched capacitor Cs

no longer matches the other resistors, Eq. (16) will no longer

be fulfilled. As a result, the DC-gain of the STF will no longer

be unity. We performed simulations on the design of table I
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TABLE II

PEAK SNDR FOR SEVERAL CORNERS FOR THE MODULATOR OF FIG. 7
WITH PARAMETERS IN TABLE I, AS WELL AS A COMPARABLE

MODULATOR WITH AN NRZ-DAC

to illustrate the sensitivity of the compensated LPSC-DAC

scheme to PVT-variations. R and Req were chosen equal.

As well as the nominal case, a fast and a slow corner were sim-

ulated, meaning that all RC time constants were respectively

decreased and increased with 30 %. The peak SNDR was

determined for every corner by simulating with several input

signal amplitudes. For reference, a conventional CTSDM with

a switched-resistor NRZ-DAC but the same discrete-time loop

filter, was also simulated under fast and slow corners. Table II

shows the results. The simulations show that the modulator

with LPSC-DAC is actual more robust against time constant

variations than the reference modulator with NRZ DAC. In fact

for this design the reference modulator is unstable in the

fast corner, while the modulator with LPSC-DAC remains

functional. This can be explained by again referring to Fig. 9,

showing the low frequency approximation of the LPSC-DAC

together with the first integrator. The time constant of the

integrator in this circuit is given by

τint =
C(1 + RCs fs)

Cs fs

(23)

In a conventional RC-integrator, a change of 30 % in RC

time constants directly translates into a 30 % change of the

time constant in the loop filter. However because half of

the resistance is implemented as a switched capacitor in this

design, a 30 % change of RC-time constants results in only

15 % deviation on the integrator’s time constant. This inherent

compensation effect seems to be more important than any neg-

ative effect on the modulator’s stability caused by mismatch

between the LPSC-DAC’s pole and the compensating zero.

V. JITTER

Jitter is an important issue in one-bit CTSDMs. Since

one-bit DACs have full scale pulses, deviations in the

pulse-widths result in large error signals. It is therefore nec-

essary to analyze this behavior. We start by examining the

effect of jitter on an isolated LPSC-DAC, after which we will

consider a CTSDM in its entirety.

A. Jittered LPSC-DAC

Consider a jittered clock signal, whose rising edges occur

at the following time instants:

tr (n) = (n + j (n))Ts, n ∈ N (24)

Where j (n) is a stochastic process whose power spectral

density (PSD) is not necessarily white. In fact, a clock signal

generated by a PLL usually has low-pass jitter [25]. We

assume j (n) has a variance σ 2
j and a zero mean, such that Ts

represents the effective clock period. If a DAC, with a given

input signal y(n), is driven by a jittered clock, its output pulses

will be different from those generated by the same DAC driven

by an ideal jitterless clock. We call the difference between

those two outputs the “jitter-caused error”, and we will model

it as an additive error.

To determine this error, we will again assume that Clp � Cs

such that the exponential decay of the LPSC-DAC pulses is

constant during one clock cycle (see discussion in section II).

This means that only jitter on the rising edge of φ2 results

in an error. Jitter will change both the width and the timing

of the exponential pulses. The pulses without jitter have a

fixed exponential decay, γ , but by changing the pulse-width,

the decay now varies from cycle to cycle. We call this jitter

dependent decay γ j (n):

γ j (n) = γ e−Ts
j (n)− j (n−1)

τ (25)

The discrete-time filter Hlp(z), becomes a time-varying filter

because of jitter. We examine its output v(n) (defined in

section II), assuming y(n) and j (n) are zero for n < 0:

v(n) = α

n
∑

k=0

y(n − k)(1 − α)k
k−1
∏

l=0

γ j (n − l) (26)

= α

n
∑

k=0

y(n − k)[γ (1 − α)]ke−Ts
j (n)− j (n−k)

τ (27)

Taking into account the effect of jitter on the timing and expo-

nential decay of the pulses leads to the following expression

for the output current of the jitter affected LPSC-DAC:

iR(t) =
1

R

∞
∑

n=0

(

v(n) − γ j (n)v(n − 1)
)

pe(t − (n + j (n))Ts)

(28)

pe(t) = He(t − T1)e
− t−T1

τ (29)

He(t) represents the Heaviside function. iR is the current

injected in the first integrator by the LPSC-DAC (see Fig. 2).

Similar to the approach in [26], we will approximate the

jitter-caused error with a first-order Taylor series. This is

accurate, since jitter is typically small, and it allows us to

model the effect of jitter as an additive error. This results in:

iR(t) ≈ iR(t)| j=0 +
∞
∑

k=0

j (k)
diR(t)

d j (k)

∣

∣

∣

∣

j=0

(30)

= iR,0(t) + iR, j (t) (31)

iR, j (t) represents the jitter caused error, while the

LPSC-DAC’s output in the absence of jitter is represented

by iR,0(t). Combining Eqs. (27), (28) and (30) gives us an

expression for iR, j (t), as shown at in Eq. (32) at the bottom

of the next page. p0
e(t) represents the derivative with respect

to time of the exponential pulse pe(t) and v0(n) is the output

signal of the discrete-time filter Hlp(z) in the absence of jitter.

Fig. 14 shows a signal flow diagram of Eq. (32).
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Fig. 14. Graphical representation of Eq. (32), the approximated jitter error
at the output of the LPSC-DAC.

B. Jittered Modulator

If a CTSDM is driven by a jittered clock, this will result

in errors at the sampler and at the DAC. Errors introduced at

the sampler are usually neglected during jitter analysis, since

they are shaped out of band by the NTF, in a similar manner

as quantization noise [26]–[31]. Errors introduced at the DAC

however are shaped by the STF, since they are injected at

the modulator’s input, and they can cause a significant error

component in the modulator’s output signal:

y(n) = y j (n) + y0(n) (33)

y j (n) represents the jitter-caused error component in the

modulator’s output signal, while y0(n) is the output signal

of the modulator driven by a perfect jitter-less clock. Since

the jitter caused error introduced at the DAC itself depends on

y(n), finding the jitter noise at the modulator’s output requires

solving a non-linear equation. However, the jitter induced

error at the DAC is quite small, so we can neglect higher

order contributions to the jitter noise y j (n), and assume that

iR, j (t) only depends on y0(n). This linearizes the problem

and allows us to consider the effect of jitter on the CTSDM

as an additive error. The same approach has been followed in

previous publications considering NRZ-DACs [29]–[31]. By

referring the jitter-induced error current to the input of the

modulator of Fig. 7, and filtering by the STF, we obtain the

following expression for y j (n):

y j (n) = iR, j (t) ⊛ L
−1 {Rin(1 + sτc) STF(s)} (34)

⊛ stands for the convolution operator, while L−1 indicates the

inverse Laplace-transform. Using this expression, we arrive at

the power spectral density (PSD) of the jitter caused error at

the modulator’s output:

Sy j (ω) ≈
1

2π

∫ π

−π

[

Sy0(ν)S j (ω − ν)

∣

∣

∣

∣

TF(ω, ν)

∣

∣

∣

∣

2
]

dν (35)

Sy0(ω) is the PSD of y0(n), the modulator’s output in the

absence of jitter. S j (ω) represents the PSD of j (n). TF(ω, ν)

is shown page wide in Eq. (36), as shown at the bottom of

the page. We approximated the STF as unity, since we are

only interested in the in-band jitter-caused noise. If S j (ω)

and Sy0(ω) are known, this expression allows us to accurately

calculate the jitter caused noise at the modulator’s output.

In the conventional linearized model of a CTSDM, y0(n)

consists of two components; shaped quantization noise and

an input signal related component. Similarly, modulation

due to jitter will cause two additional error components in

the modulator’s output signal; one related to modulation of

the quantization noise, y j,q(n) and an input signal related

component, y j,x(n).

y j (n) = y j,q(n) + y j,x(n) (37)

The input signal modulation, y j,x(n), is fundamentally tied to

sampling with jitter, and it causes a skirt around the input

tone, regardless of the shape of the DAC pulse [27], [28].

We will therefore focus on the modulated quantization noise

component. If we assume that the quantization noise and the

input signal are uncorrelated, we can calculate the PSD of

the modulated quantization noise component in the CTSDM’s

output signal in a straightforward way by replacing Sy0(ω)

in Eq. (35) with the PSD of the shaped quantization noise,

leading to:

Sy j,q (ω) =
σ 2

q

2π

∫ π

−π

S j (ω − ν) |TF(ω, ν) NTF(z)|2
z=e jν dν

(38)

σ 2
q represents the variance of the white quantization noise. For

a modulator with a high OSR, the in band jitter error related to

the quantization noise can be well approximated by its value

at DC:

Sy j,q (ω) ≈ Sy j,q (0)

=
σ 2

q

2π

∫ π

−π

[

S j (ν) |TF(0, ν) NTF(z)|2
]

z=e jν
dν (39)

Here,

TF(0, ν) =
γ Rin

R
αγ [Hlp(z)z

−1 − Hlp,DC]z=e jν (40)

iR, j (t) = −
Ts

R

∞
∑

n=0

(v0(n) − γ v0(n − 1)) j (n)p0
e(t − nTs)

+
α2γ Ts

Rτ

∞
∑

n=0

n−1
∑

k=0

y(n − k − 1)(γ (1 − α))k( j (n) − j (n − k − 1))pe(t − nTs) (32)

TF(ω, ν) =
Rin

R

1 + jωτc

1 + jωτ

[

Hlp(z)(z
−1αγ − (1 − γ z−1) jωτ) − αγ Hlp(e

jω)e− jω
]

z=e jν
(36)
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We can further simplify Eq. (39) by observing that the NTF

is very small at in-band frequencies. This means that the

integration over ν in Eq. (39) will mainly be determined by

out of band values of ν. We can use this to further simplify

TF(0, ν) by its high frequency value. Since the factor Hlp is a

first-order low-pass filter with cut-off angular frequency 1/τc,

the factor [Hlp(z)z
−1 − Hlp,DC] can be considered constant

above 1/τc.1 This means that in the expression of Eq. (39),

the following approximation can be made:

TF(0, ν) ≈
γ Rin

R
αγ [Hlp(z)z

−1 − Hlp,DC]z=−1 (41)

Now, by using, α ≈ Ts R
τ Req

and γ ≈ 1 − Ts

τ
, and neglecting

lower order terms in τ , we obtain:

TF(0, ν) ≈
Ts R

τ Req

(42)

Which allows to establish the following simplified expression

for the in band jitter induced noise spectral density:

Sy j,q (ω) ≈
∣

∣

∣

∣

Ts R

τ Req

∣

∣

∣

∣

2 σ 2
q

2π

∫ π

−π

S j (ν)
[

|NTF(z)|2
]

z=e jν
dν (43)

We can compare the approximation of Eq. (43) with the

modulated quantization noise of a CTSDM using a conven-

tional NRZ-DAC [30], [31]:

Sy j,q ,N R Z (ω)=
σ 2

q

2π

∫ π

−π

S j (ω−ν)
∣

∣

∣(1−z−1) NTF(z)
∣

∣

∣

2

z=e jν
dν

(44)

For an NRZ-DAC, the NTF is differentiated before modula-

tion. This differentiation has gain for the frequencies where the

NTF is high, leading to increased jitter noise. By compensating

this differentiation with low-pass filtering, the LPSC-DAC

reduces quantization noise modulation. It is clear that the

LPSC-DAC will strongly reduce the total amount of in-band

jitter-caused modulated quantization noise for large τ . Lastly,

the power spectral density of the jitter-modulated quantization

noise of a modulator with a FIR-DAC is given by:

Sy j,q ,F I R(ω)

=
σ 2

q

2π

∫ π

−π

S j (ω − ν)
∣

∣

∣F(z)(1 − z−1) NTF(z)
∣

∣

∣

2

z=e jν
dν (45)

Here F(z) represents the FIR-DAC’s transfer function.

We have only taken into account the jitter noise of the

outer FIR-DAC, and neglected the contribution of the inner

compensating FIR-DAC.

C. Simulation

We performed comparative simulations for our prototype

3rd order modulator (see table I), both for the LPSC-DAC

version of Fig. 10 as well as for a similar circuit with a

four-tap FIR-DAC with inner compensating FIR-DAC. For

these simulations, we only applied jitter at the outer DAC

(either LPSC or FIR). We considered first-order shaped jitter

1This can be understood by using the following omega domain approxima-

tions Hlp ≈ Hlp,DC /(1 + jωτc) and 1 − z−1 ≈ jωTs

Fig. 15. Simulated and analytically derived Dynamic range for modulators
with four-tap FIR-DAC & LPSC-DAC for several jitter-bandwidths.

Fig. 16. Linearized CTSDM without quantization noise.

with bandwidth f j , similar as in [31]. The jitter standard

deviation was chosen (unrealistically) high, σ j = 4.5 %, so the

jitter noise dominates over the quantization noise. We applied

a very small input signal so that the modulator’s in-band noise

is dominated by the jitter-modulated quantization noise rather

than the jitter-modulated input signal, the former being the

main focus of the above analysis. We swept the bandwidth of

the clock jitter, j (n), while keeping the jitter variance constant,

and calculated the modulators’ dynamic range, both through

simulation and analytically. In the simulation, as before,

we added dither to get rid of limit cycles. For the modulator

with an LPSC-DAC, we used the analytical expressions of

both Eq. (35) as well as the more simplified approximation

of Eq. (43) to calculate the dynamic range. For the modulator

with a FIR-DAC, the analytical expression of Eq. (45) is used.

The resulting plot, Fig. 15, shows excellent correspondence

between the simulation results and the analytically derived

values. The simple approximation is also quite accurate. From

Fig. 15 it is clear that the considered LPSC-DAC modulator

has less jitter caused-modulation of the quantization noise,

over all simulated jitter bandwidths, than the example design

using a four-tap FIR-DAC. Of course the jitter performance

of the FIR-DAC will improve as the number of taps goes

up, but as we stated in section IV, there are limitations on

the order of the FIR filter. Again, for certain designs with

stringent jitter requirements, it might be interesting to combine

an LPSC-DAC with an FIR-DAC.

VI. ANTI-ALIASING FILTERING

A. Analysis

CTSDMs are known to exhibit good anti-aliasing filtering.

This can be explained by considering Fig. 16. It shows a model

of a CTSDM where the sampler and the loop filter have been

shifted in front of the summation. This transformed diagram
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is strictly equivalent to the original diagram because filtering

and sampling are linear operations. The only non-ideality is the

omission of the quantizer, which we have simply linearized as

a unity gain. This is justified because in this analysis, we focus

on the STF and hence quantization noise is not taken into

account.

The system of Fig. 16 contains two samplers, one in front

of the loop, and one in the feedback path. The sampler, filter

and DAC in the feedback path form a system with a digital

input and a digital output. The corresponding loop filter is

the modulator’s equivalent discrete-time loop filter Heq(z).

By inspection, we immediately obtain for this system the

following well known expression:

Y (z) = [H(s)X (s)]∗
1

1 + Heq(z)
= [H(s) NTF(z)X (s)]∗

Here, as before the notation [ ]∗ is used to represent the

sampling operation [19]. This can be interpreted in the sense

that the input signal is filtered by the signal transfer function

STF and subsequently is sampled:

STF(s) =
H(s)

1 + Heq(z)

∣

∣

∣

∣

z=esTs

= H(s) NTF(z)|z=esTs (46)

Since the NTF, has notches around integer multiples of the

sampling frequency fs , the STF will also have these notches,

which means it provides excellent anti-aliasing filtering.

It is well known that using a switched capacitor digi-

tal to analog converter (SC-DAC [14]) in combination with

unavoidable OpAmp non-idealities degrades this anti-aliasing

behavior [32]. With an SC-DAC, the loop filter H(s) will

become a linear periodically time-varying filter, which causes

aliasing. Since the SC-DAC is connected to the input of

the loop filter, aliasing will occur before the input signal

enters the loop. These in-band aliased components enter the

modulator directly at its input and therefore appear (unsup-

pressed) at the output. As a result, this aliasing mechanism

is virtually independent of the rest of the modulator loop

filter, as long as the STF has a signal band gain close to

unity. Only the loop filter’s input circuit is important. In [32],

this aliasing mechanism is analyzed extensively and it is

shown that the anti-aliasing performance of a CTSDM with a

straight SC-DAC is catastrophically affected. For this reason,

and also to limit the slew-rate of the DAC-pulse, a resistor

should be added in series with the switched capacitor to

improve anti-aliasing filtering, resulting in a switched capaci-

tor resistor-DAC (SCR-DAC). Unfortunately this deteriorates

the jitter performance in an unfavorable trade-off.

We expect the LPSC-DAC to offer far improved

anti-aliasing performance compared to an SC(R)-DAC, when

used in a CTSDM. The reasons are as follows. Firstly the input

signal is filtered by a simple passive low-pass filter before

it is connected to the time-variant LPSC-DAC. Secondly,

the switched capacitor Cs is separated from the loop filter

with the relatively large resistor R, which is not switched.

Furthermore, Cs is placed in parallel with the large fixed

capacitor Clp , hence the total capacitance variance over time

remains limited.

Fig. 17. The linearized first-order modulator with LPSC-DAC used to analyze
aliasing.

Based on the state-space analysis techniques explained

in [32], we performed an approximate analytical study of the

aliasing from fs to DC, for the case of our LPSC-DAC. As

explained above, for the considered aliasing mechanism only

the input stage matters and the overall modulator architecture

is not so important. We therefore performed our study on the

greatly simplified circuit shown on Fig. 17. Here, as in [32],

the modulator is simplified into a first-order version and the

quantizer is linearized. Moreover the sampler in the forward

path is removed to reduce the number of states. Instead

the output signal is directly sampled on Cs at the falling

edge of φ1, which also removes the feedback delay of the

modulator. The resistors in the LPSC-DAC are chosen equal

and a large value of τ is assumed. The OpAmp is modeled

as a simple transconductance gm as in [32]. In this circuit,

the compensating zero τc is implemented through the feedback

resistor Rz . We chose C = 1
fs Rin

, to further simplify the

analysis. Our test vehicle’s sizing is summarized as:

Rin = 2R, Cs =
1

R fs

, τc ≈
RClp

2
, Rz =

τc

C
(47)

After a straightforward application of the state-space technique

described in [32], we obtain the following expression for the

direct aliasing from fs to DC:
∣

∣

∣

∣

STF( fs)

STF(0)

∣

∣

∣

∣

≈
1

2

1

(gm
Rin

4
+ 1)(2π RClp fs)2

(48)

Examining this result, we see that the aliased components

are suppressed by the loop gain of the feedback OpAmp

circuit implementing the first integrator. This loop gain (at high

frequency) is given by gm
Rin

4
. Additionally, aliasing is heavily

suppressed by the square of the high-frequency attenuation of

the passive low-pass filter.

B. Simulation

We performed circuit level simulations on three CTSDMs;

one with an LPSC-DAC another with an SCR-DAC and a third

with a FIR-DAC. Again all modulators have the equivalent

discrete-time loop filter shown in table I. The modulators

with FIR-DAC and LPSC-DAC are identical to those used

for the simulations in section IV and V. The time constant

of the SCR-DAC was chosen to be 0.2Ts . For this value,

the SCR-DAC modulator has a comparable jitter performance

as the LPSC-DAC modulator, and markedly worse slewing
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Fig. 18. Simulated STF of three modulators with different DACs, with
gm = 10gm,min in the first OTA. The approximation of Eq. (48) is also
shown.

Fig. 19. Detail of simulated STF of three modulators with different DACs,
with a simple gm = 10gm,min in the first OTA.

behavior. The comparator for both systems was shorted to

allow for a simulation using linear periodic analysis. The

first OpAmp in all three loop filters was implemented as a

single transconductance, gm , with an output impedance 100
gm

for 40 dB DC-gain. The second and third OpAmps are ideal

with quasi-infinite amplification. Again the low-pass filtering

capacitors and the feedback capacitors of the first integrators

were scaled to compensate for the effect of low gm values,

as we did in section IV. Fig. 18 shows the simulated STF

of the modulators for gm = 10gm,min . The calculated value

of the STF at fs according to the approximate expression of

Eq. (48) is indicated as well. It is clear that a modulator

with an SCR-DAC has awful anti-aliasing filtering, particularly

around fs . This is partly because the first notch in the STF

is shifted out of band, an effect that is also discussed in [32].

The modulator with a four-tap FIR-DAC shows slightly more

peaking than the other modulators [8]. Apart from this, on this

scale, the FIR-DAC’s STF is almost indistinguishable from the

LPSC-DAC’s STF.

To illustrate the LPSC-DAC’s effect on the modulator’s

aliasing behavior, we have to look at the detail of the modula-

tors’ STF in the first aliasing band which is centered around fs .

This is shown on Figs. 19 and 20 for two different values

of gm . Again, the calculated value of the STF at fs according

to Eq. (48) is indicated, and it matches the simulation very

well. However, it is also clear that the worst case aliasing

frequency does not correspond to fs but instead to the edges

Fig. 20. Detail of simulated STF of three modulators with different DACs,
with a simple gm = gm,min in the first OTA.

of the alias band. For gm = 10gm,min , this worst case

anti-aliasing filtering is virtually the same for the LPSC-DAC

as for the FIR-DAC with a difference of only 1.3 dB on a

total of 70.9 dB. For the case of gm = gm,min , the worst

case anti-aliasing filtering of the LPSC-DAC is slightly more

affected, but it is still within 4 dB from that of the the

FIR-DAC modulator. For both considered values of gm the

anti-aliasing performance of the SCR case is catastrophically

affected.

VII. CONCLUSION

We proposed to introduce a low-pass filtering switched

capacitor DAC into the loop of a CTSDM. It was shown

that this circuit filters the modulator’s feedback signal in

the discrete-time domain. We have shown that by adding a

compensating zero in the loop, the effect of this filter toward

the equivalent discrete-time loop filter can be removed entirely.

Additionally by adding an extra low-pass filter, the STF can be

restored. This way, the technique is transparent on the system

level and compatible with any existing system-level modulator

synthesis technique.

The advantage of the technique is that the requirements on

the OpAmps in the loop are greatly relaxed up to a level that

the OpAmp power can be cut down toward its bare white

noise limited value. To achieve this, the time constant of

the LPSC-DAC should be suitably sized. For this we have

analyzed the noise behavior of the LPSC-DAC and we have

defined optimal design guidelines for the time constant of the

LPSC-DAC which should be set appropriately such that the

modulator’s in-band noise level remains unaffected.

Furthermore, we have analyzed the jitter sensitivity and

anti-aliasing filtering of the LPSC-DAC modulator, and we

have derived simple but accurate analytical expressions, which

are confirmed by simulation results. The conclusion of the

analysis is that our technique offers excellent jitter sensitivity

and maintains very good anti-aliasing filtering, even for the

most interesting case where the OpAmp power is cut down to

its bare limit.
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