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Abstract 

5G and forthcoming 6G communication systems require dielectric ceramics with low 

relative permittivity (εr) and near-zero temperature coefficient of resonant frequency (τf) 

for the lower part of the microwave (MW) band and at sub-Terahertz. Mg2Al4Si5O18 

(MAS) ceramics are promising candidates due to their low εr (~6) and high-quality 

factor (Q×f >40,000 GHz) but have a large f. In this study, 5.5wt% TiO2 (MAS-T5.5) 

was used to adjust τf of MAS to -2.8 ppm/℃ whilst retaining low εr (5.24) and good 

Q×f (33,400 GHz), properties consistent with those obtained by infrared reflectance. A 

demonstrator microstrip patch antenna with gain 4.92dBi and 76.3% efficiency was 

fabricated from MAS-T5.5. 

 

Keywords: Cordierite; Low permittivity; Terahertz; Patch antenna 

 

1. Introduction 

As 5G mobile communication technology develops, the trend is to move towards 

higher frequency bands, the so-called millimeter wave region, to enable faster data 

transmission speeds and larger information carrying capacity. 5G and its successor 6G 

will give birth to the ‘internet of things’ and enable ‘big-data’ to be transmitted through 

the mobile network for the development of smart energy efficient cities and autonomous 

transport systems. The construction of 5G and 6G base stations will guide the 

development of new materials, promote artificial intelligence, new concepts in 

electronics and provide strong support for sustainable growth of the global economy.  
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Microwave dielectric resonators are widely used in mobile base stations, satellite 

communications, military radar, global positioning systems (GPS), Bluetooth 

technology and other engineering fields [1-4] The time delay in a resonator has the 

following relationship with the relative permittivity (εr) [5-6]: 

 𝑡𝑑 = 𝐿 √𝜀𝑟𝑐  (1) 

where 𝑐 represents the velocity of light and 𝐿 is signal transmission distance. The 

low time delay of 5G communication therefore requires the dielectric to have a low εr 

and silicate ceramics are consequently important for future millimeter wave 

technologies [7-10]. Orthorhombic cordierite (Mg2Al4Si5O18, MAS) microwave ceramics 

have low relative permittivity and dielectric loss and were originally reported by Ohsato 

et al., εr ≈ 6，Q×f ≈ 40,000GHz and τf ≈ -24 ppm/℃ [11-12]. However, its large f and, to 

a lesser degree, its high sintering temperature (~1400℃) provide potential barriers to 

commercialization. In previous studies, materials such as SrTiO3
[13], CaTiO3

[14], TiO2
[15] 

and Mg2SiO4
[16] were added to MAS in an attempt to improve MW dielectric properties 

The most promising results were achieved for composites of 0.75Mg2Al4Si5O18-

0.25TiO2, reported to have τf = -0.2 ppm/℃ [15], and (1-x)Mg2Al4Si5O18-xMg2SiO4
[16] 

which reduced the sintering temperature to 1340℃ for 50 wt% Mg2SiO4, improved Q×f 

(76,374 GHz) but had little impact on τf  (-24 ppm/℃). Although improvements in Q×f 

and sintering temperature are important, the primary motivation to facilitate 

commercialization of MAS is to achieve close to zero f and therefore our study will 

optimize TiO2 concentration. 

At present, both mobile phones and wireless network cards support a 2.4 GHz 



4 

band which passes largely unhindered through masonry in cities. However, its limited 

bandwidth means that it rapidly becomes crowded, and signals are often dropped when 

connecting to multiple peripherals. 5.8 GHz transmission is more stable due to fewer 

consumer devices but requires antennas to work at higher frequencies and thus materials 

such as MAS with low εr are important for current micro- as well as future millimeter 

wave technology [17-23]. (1-x)Mg2Al4Si5O18-xTiO2 (x = 0-5.5 wt%) microwave ceramics 

(Abbr. MAS-Tx=0-5.5) were therefore prepared by solid-state reaction. The effect of TiO2 

concentration on crystal structure, density, and microwave dielectric properties of MAS 

ceramic were investigated, and a demonstrator 5.8 GHz microstrip patch antenna 

fabricated. 

2 Experimental 

2.1 Preparation of MAS-T0-5.5 ceramics 

High purity raw materials of MgO (99.99%), Al2O3 (99.99%), SiO2 (99.99%) were 

weighed based on the stoichiometric formula of MAS. Raw materials were ball milled 

6 h with ethanol. After drying, mixtures were calcined 4h at 1400℃ to synthesize MAS. 

TiO2 (99.99%) with different mass fraction were added into MAS powders and then ball 

milled. Dried MAS-T slurries were added with 8% PVA as binder, the powders were 

ground and pressed into cylindrical samples in a steel die at 100 MPa. Finally, the 

samples were sintered 4h at 1300-1400℃ after burning-out the binder at 600℃. 
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2.2 Design of MAS-T5.5 patch antenna 

When the center frequency of the antenna and the relative permittivity of the 

substrate are clear, the basic size of the patch can be obtained by the following formula 

[24-25]: 

 𝑊𝑝 = 𝑐2𝑓𝑟 √ 2𝜀𝑟+1 (2) 

 𝐿𝑝 = 𝑐2𝑓𝑟√𝜀𝑒𝑓𝑓 − 2∆𝐿 (3) 

where 𝑐 represents the speed of light, 𝑓𝑟 is the center frequency of the antenna,  𝑊𝑝 

and 𝐿𝑝 are the width and length of the patch, the center frequency 𝑓𝑟 is set to 5.8GHz. 

The effective permittivity 𝜀𝑒𝑓𝑓 , and correction length ∆𝐿  can be calculated by the 

following equations [26]: 

 𝜀𝑒𝑓𝑓 = 𝜀𝑟+12 + 𝜀𝑟−12√1+12ℎ/𝑊𝑝 (4) 

 ∆𝐿 = 0.412ℎ (𝜀𝑒𝑓𝑓+0.3)(𝑊𝑝 ℎ⁄ +0.264)(𝜀𝑒𝑓𝑓−0.258)(𝑊𝑝 ℎ⁄ +0.8) (5) 

where ℎ  is the thickness of the ceramic substrate. CST 2020 software was used to 

simulate the antenna prototype to get the final patch size. 

2.3 Manufacture of MAS-T5.5 patch antenna 

With the help of adding 5 wt% PVA, MAS-T5.5 powder was pressed into a 2 mm 

thick sample by a 20 mm× 20 mm custom-made mold, which was sintered 6 hours at 

1350℃ to obtain ceramic substrate. Using dimensions predicted by the CST simulation, 

double-sided conductive copper foil was cut and adhered to the ceramic substrate with 

a SubMiniature version A(SMA) connector soldered onto the patch to connect the 
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ground plane and surface electrode. 

2.4 Characterization 

Crystal structure was analyzed on crushed and ground ceramic powders with a 

Rigaku, SmartLab9KW, X-ray diffractometer (XRD) using Cu Kα radiation. Powder X 

and FullProf software were used to refine the XRD data to obtain the crystal structure 

and lattice parameters. After polishing and thermal etching at a temperature of 150°C 

lower than the sintering temperature for 1 hour, the surface microstructures of sintered 

ceramics were observed by scanning electron microscopy (SEM, JEOL, JSM-1T500HR) 

and the elemental composition was analyzed by energy dispersive spectrometer (EDS). 

Raman spectra was obtained by 2 mm thick samples and a LabRAM HR800 

spectrometer operated with a 532 nm laser. Infrared reflectance spectra were collected 

with 2 mm thick samples on the IFS 66v/S beam line of the Hefei National Synchrotron 

Radiation Laboratory. 5-6 mm thick ceramic samples were measured on an Agilent 

E8362B network analyzer using the TE01δ mode dielectric resonator method to obtain 

the εr and Q×f values. τf was obtained using equation (6): 

 𝜏𝑓 = 𝑓2−𝑓1𝑓1×(𝑇2−𝑇1) × 106 (6) 

where 𝑓1  and 𝑓2  are the resonant frequency at 25°C and 85°C, respectively. The 

dielectric properties at THz frequencies were measured using a THz-TDS (THz time-

domain spectroscopy) system (from TeTechs Ltd). Thin polished plane-parallel 

specimens were measured from 0.2 THz to 2 THz in transmission mode to obtain the 

permittivity and loss tangents [27]. 
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The reflection coefficient S11 of the patch antenna was obtained using a network 

analyzer (N5234B, Keysight) and its efficiency and radiation pattern in the far field 

determined in a microwave anechoic chamber (SATIMO SG24). 

3 Results and discussion 

The bulk density of MAS-T0-5.5 ceramics at different sintering temperatures are 

shown in Figure 1. The optimal sintering temperature decreases with the increase in 

fraction of TiO2. The maximum bulk density of MAS-T5.5 is 2.481g/cm3 at 1320°C 

which corresponded to a relative density of 95%. 

 

Figure 1. The bulk density of MAS-T0-5.5 ceramics as a function of sintering 

temperature. 
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Figure 2. XRD patterns of MAS-T0-5.5 ceramics. 

 

Figure 2 displays the XRD patterns of MAS-xT ceramics. When x=0, the 

diffraction peaks correspond to the Mg2Al4Si5O18 cordierite phase (JCPDS No.82-1541) 

with a space group of Cccm (66). As x increases, diffraction peaks of TiO2 are 

simultaneously observed alongside those of the cordierite phase. XRD data from MAS-

T5.5 were refined to determine the concentration of Ti in the cordierite structure, Table 

S1 (Supporting Information) and Figure 3a. Refinements indicate that Ti is most likely 

to occupy the Si3 position in the cordierite phase, and that the weight fractions of MAS 

and TiO2 are 95.72% and 4.28%, respectively, which suggests that only a small 

concentration of TiO2 (~1%) resides within the MAS. The refined structure parameters 

of MAS and TiO2 are listed in Table S2 and Table S3 (Supporting Information). The 

orthorhombic crystal structure of MAS is shown in Figure 3b (a-b plane) and Figure 3c 

(a-c plane). MAS has a layered structure, in which [Mg6] hexagons are connected by 
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[AlO4] and [SiO4] tetrahedra, with [Al2Si4] hexagons connected by O atoms. The crystal 

structure of rutile TiO2 is shown in Figure 3d.  

 

Figure 3. (a) Rietveld refinement of MAS-T5.5 ceramic. (b-c) The crystal structure 

schematics of MAS on the a-b plane and a-c plane. (d) Schematic of rutile TiO2. 

 

The SEM images of MAS-Tx (x = 1.5, 2.5, 5.5) ceramics sintered at the optimal 

sintering temperature are shown in Figure 4a-c, the corresponding grain distribution 

displayed in Figure 4d-f. It is observed that the average grain size of MAS-T ceramics 

decreases from 1.19 μm to 1.09 μm, which suggests that the addition of TiO2 inhibits 

the grain growth of MAS. The standard deviation of grain size distribution 

correspondingly decreases, indicating that the grain size distribution gradually becomes 

uniform. Meanwhile, the EDS elemental mapping results are given in Figure S1 
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(Supporting Information), which show that the distribution of TiO2 is random and 

uniform in MAS host. 

 

Figure 4. SEM images of the polished and thermal etched surfaces of MAS-Tx 

ceramics (a) x = 1.5, (b) x = 2.5, (c) x = 5.5; The grain size distribution of MAS-Tx 

ceramics (d) x = 1.5, (e) x = 2.5, (f) x = 5.5. 

 

The microwave dielectric properties of MAS-T0-5.5 ceramics are shown in Figure 

5. With the increase of TiO2 concentration, εr increases from 4.63 to 5.24 which is 

attributed to the enhanced density of composite ceramics and the higher εr of TiO2
[28-29]. 

The Q×f of the MAS is 50,560GHz but increases to 61,720GHz for x=1.5, indicating 

that in small concentrations, TiO2 can reduce dielectric loss (tan). τf of MAS is tuned 

close to zero (-2.8ppm/°C) with x = 5.5, due to the positive τf of TiO2. Table 1 lists the 

recently reported properties of composite ceramics. It should be noted that the MAS-

T5.5 ceramic in this work has a smaller εr and a relatively high Q×f value [30-34]. 
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Figure 5. Microwave dielectric properties of MAS-T0-5.5 ceramics as a function of 

TiO2 weight fraction. 

 

Table 1. Comparison of microwave dielectric properties at terahertz band. 

Composition εr Q×f(GHz) Ref 

(Ba0.2Sr0.8)0.75La4.25Ti3.75Al0.25O15 45 ~100,000@1THz [30] 

La2Ti2O7 27 ~10,000@1THz [31] 

Sm(Nb0.7V0.3)O4 20 ~10,000@1THz [32] 

Co0.5Sn0.5TaO4 16 ~80,000@1THz [33] 

Zn2SiO4 6 ~200,000@1THz [34] 

Mg2Al4Si5O18-5.5 wt%TiO2 4.5 ~160,000@1THz This work 

 

Lattice vibration modes and crystal structure of microwave dielectric ceramic are 

often analyzed by Raman spectroscopy[35-38]. The cordierite structure with Cccm 

symmetry has 174 vibrational modes derived from the group theoretical calculations: 𝛤 = 23𝐴𝑔 + 25𝐵1𝑔 + 19𝐵2𝑔 + 20𝐵3𝑔 + 
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 17𝐴𝑢 + 19𝐵1𝑢 + 25𝐵2𝑢 + 26𝐵3𝑢 (7) 

where 87 g-modes are Raman-active; 67 u-modes are IR-active, 17 Au-modes are 

inactive [39]. The Raman spectra of MAS-T0-5.5 ceramics are shown in Figure 6a. The 

peaks at 554 cm-1 and 576 cm-1 correspond to the stretching vibration of Mg-O bond, 

which are affected by the Ti-O bond and their relative strength gradually weakens as 

shown in Figure 6b. The origin of 121 cm-1 and 154 cm-1 peaks are bending vibrations 

of the Si-O bond, the peaks at 971 cm-1, 1008 cm-1 and 1191 cm-1 are stretching 

vibrations of the Si-O bond and the peaks at 295 cm-1 and 674 cm-1 are related to the 

stretching vibration of the Al-O bond [40-42]. All Raman bands belong to either MAS or 

TiO2 as shown in Fig 6b, indicating the coexistence of MAS and TiO2, consistent with 

the XRD and SEM results. 

 

Figure 6. (a) Raman spectra of MAS-T0-5.5 ceramics. (b) Raman peak splitting results 

at 500-660cm-1. 

 

   εr and tanδ of MAS-Tx(x=0, 1.5, 5.5) ceramics from 0.2 THz to 2 THz are shown in 

Fig. 7a,b. εr in the THz band is smaller than that at microwave frequencies, which is 
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attributed to intrinsic factors such as dipoles and lattice vibrations. The intrinsic 

microwave dielectric properties of MAS-Tx (x=0, 1.5, 5.5) ceramics were further 

investigated by infrared reflectance, and the results analyzed using a classical harmonic 

oscillator model[43-47]: 

 𝑅(𝜔) = |√𝜀∗(𝜔)−1√𝜀∗(𝜔)+1|2
 (8) 

 𝜀∗(𝜔) = 𝜀′(𝜔) − 𝑖𝜀′′(𝜔) = 𝜀∞ + ∑ 𝑆𝑗𝜔𝑗2−𝜔2+𝑖𝜔𝛾𝑗𝑛𝑗=1  (9) 

where ε∞ represents the optical permittivity produced by electron polarization, n is 

the number of active optical modes, 𝑆𝑗 , 𝜔𝑗  and 𝛾𝑗  are the plasma frequency, 

eigenfrequency and damping constant of the j-th mode, respectively. Further we can 

obtain the imaginary and real parts of the dielectric constant: 

 𝜀′(𝜔) = 𝜀∞ + ∑ 𝑆𝑗(𝜔𝑗2−𝜔2)(𝜔𝑗2−𝜔2)2+𝜔2𝑟𝑗2𝑛𝑗=1  (10) 

 𝜀′′(𝜔) = ∑ 𝑆𝑗𝜔𝑟𝑗(𝜔𝑗2−𝜔2)2+𝜔2𝑟𝑗2𝑛𝑗=1  (11) 

The infrared reflection spectrum, fitted using 17 modes (Table S6, Supporting 

Information; Figure 7c), and the complex dielectric constants of MAS-T5.5 ceramic are 

shown in Figure 7c-d. The 171.57cm-1 mode at 29.6% has the highest contribution to 

tan. The dielectric properties measured in the microwave and the THz band are marked 

by black circles and blue triangles, respectively. Compared with x = 0 and 1.5 (Figure 

S2, Supporting Information), the calculated r and tan are in good agreement with the 

measured results for x = 5.5, indicating that the dielectric properties of MAS-Tx (x=0, 

1.5, 5.5) ceramics mostly arise from lattice vibration and ion displacement polarization. 
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Figure 7. (a-b) The permittivity and tan of MAS-Tx(x=0, 1.5, 5.5) ceramics at 

0.2THz-2THz. (c) Experimental and fitted infrared reflectance spectra of MAS-T5.5 

ceramic. (d-e) The complex dielectric constants of MAS-T5.5 ceramic. 

 

With the rapid development of wireless communication technology, antennas have 

received widespread attention as a key device for signal transmission and reception [48-

50]. MAS-T5.5 ceramics have a low εr and near-zero τf, and are thus promising candidates 

for 5G/6G technology. MAS-T5.5 was chosen as the substrate to fabricate patch antennas 

aiming for the Sub-6GHz. The initial size of the patch is calculated by the above 

formula of (2)-(5) in experimental part, where ℎ  is the thickness of the ceramic 

substrate and the center frequency 𝑓𝑟 is set to 5.8GHz. The dimensions of the ceramic 

substrate and patch obtained by simulation are displayed in Figure 8a. The size of MAS-

T5.5 substrate is 17mm × 17mm × 1.15mm, the length and width of the patch are 11.1mm 

and 14.9mm, respectively. Figure 8b also provides a picture of the antenna being 
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measured in the microwave anechoic chamber. In general, the reflection coefficient (S11) 

of the antenna indicates the amount of energy reflected. The simulated and measured 

S11 of the patch antenna at various frequencies are shown in Figure 8c. The experimental 

S11 results illustrate that the center frequency and bandwidth are 5.86 GHz and 120 

MHz, in keeping with the simulated results. The simulated and measured radiation 

pattern at 5.86 GHz after normalization is plotted in Figure 8 d, e, with similar patterns 

on the E (phi = 0) and H planes (phi = 90). The antenna has good radiation 

characteristics and its radiation direction is perpendicular to the patch. Moreover, the 

angular width of 3dB is about 88° from the E plane, which is close to 96.6° obtained by 

simulation. The patch antenna is biased toward the directional radiation mode, and the 

maximum radiation direction is at 0°. The simulated and measured gain and efficiency 

of the antenna are shown in Figure 8f. The measured gain at 5.86GHz is 4.92dBi, 

indicating that the patch antenna has good directivity at the operating frequency. The 

maximum efficiency of the antenna is 85.2% at 5.79 GHz, while the maximum 

efficiency of the simulation is 68%, and the efficiency at 5.86 GHz is 76.3%. The 

efficiency of Wi-Fi antennas in electronic products is usually around 70%[51-52] and 

therefore, patch antennas based on MAS-T5.5 are considered suitable for 5 GHz Wi-Fi 

antenna applications. 

 



16 

 

Figure 8. (a) The dimensions of antenna substrate and patch. (b) The microwave 

anechoic chamber system. (c) Simulated and experimental S11 of the patch antenna. 

(d) Simulated and measured radiation pattern at E plane. (e) Simulated and measured 

radiation pattern at H plane. (f) Simulated and measured gain and efficiency. 

 

4 Conclusions 

In this work, the τf of MAS based ceramics is optimized by forming a composite 

with TiO2. The XRD, SEM and Raman spectra results illustrate that the MAS and TiO2 

coexist but Rietveld refinement indicates partial interaction in which ~1%wt of TiO2 

diffuses into the MAS lattice, with Ti preferentially occupying Si3 positions. 

Temperature stable composites are achieved for x = 5.5 with εr = 5.24，Q×f = 33,400 

GHz and τf = -2.8 ppm/℃. Patch antennas based on MAS-T5.5 ceramic substrates were 

fabricated with a measured center frequency of 5.86 GHz with S11 -22.76 dB and 

bandwidth of 120 MHz at -10 dB, in good agreement with the simulations. The radiation 
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pattern at 5.86GHz demonstrates good antenna characteristics with excellent gain 

(4.92dBi) and efficiency (76.3%) at center frequency, indicating that the MAS-T5.5 

patch antennas are suitable for 5 GHz Wi-Fi applications. 
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