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Abstract. Extracting semantic meaning of locations enables a large
range of applications including automatic daily activity logging, assisted
living for elderly, as well as the adaptation of phone user profiles accord-
ing to user needs. Traditional location recognition approaches often rely
on power-hungry sensor modalities such as GPS, network localization or
audio to identify semantic locations, e.g., at home, or in a shop. To enable
a continuous observation with minimal impact on power consumption,
we propose to use low-power ambient sensors – pressure, temperature,
humidity and light – integrated in phones. Ambient fingerprints allow
the recognition of routinely visited places without requiring traditional
localization sensing modalities. We show the feasibility of our approach
on 250 hours of data collected in realistic settings by five users during
their daily transition patterns, in the course of 49 days. To this end,
we employ a prototype smartphone with integrated humidity and tem-
perature sensor. We achieve up to 80% accuracy for recognition of five
location categories in a user-specific setting, while saving up to 85% of
the battery power consumed by traditional sensing modalities.

1 Introduction

Location is one of the most common information types humans frequently use in
their daily lives, either for navigation to a destination, geo-tagging images with
visited spots, or for discovering points of interests on maps. It has been shown
that location is a powerful cue for human activities [15] and gained popularity
in activity recognition [10] or for learning daily routines automatically [9].

The notion of location has various meanings: it can be expressed in geographic
coordinates, e.g., latitude and longitude, as human readable addresses such as
street name and number, or as logical labels of the places, e.g., Central Park,
the McDonald’s around the corner [1]. Our understanding of location refers to
routinely visited places in daily life. We refer to these as semantic locations, as
introduced in [16]. Examples include someone’s home or office, but also non-fixed
locations such as commuting by train, or in a shop, which can map to different
physical locations. This information can be fed into location-based services or
applications, such as refined searches of places of interest, targeted advertise-
ment, urban planning, analysis of user patterns or triggering user profiles on the
handset.
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State of the art systems for semantic localization rely on modalities such
as GPS [9], WiFi, Bluetooth beacons [4] or audio [5] [11]. While feasible for
sporadic localization, their power consumption hinders continuous monitoring
[3,14]. More power efficient approaches use triangulation with cell towers based
on signal strength. Apple’s iOS region monitoring service, for instance, makes use
of this to continuously monitor if a user enters or exits a certain zone. However,
localization is coarse in the range of 100s of meters of radius, even with good
network coverage, and is designed for fixed geographic locations only.
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Fig. 1. Recognizing semantic locations (e.g., home, train, office, shop, and outdoors)
using low-power sensors from the phone: atmospheric pressure, light, temperature, and
humidity

In this work, we propose an alternative path to identify routinely visited
locations. We investigate ambient characteristics (i.e. barometric pressure, tem-
perature, light, and humidity) for fingerprinting locations. Observation of such
characteristics and their variations by a combined set of low-power ambient sen-
sors can indicate whether a user is indoors or outdoors, distinguish between
different indoor places or even indicate the means of transportation. For exam-
ple, home or office are characterized by a location-specific pressure value ranges.
Also, indoor places such as corridors or elevators are characterized by specific and
constant light. To capture such characteristics continuously, we employ ambient
sensors, i.e., pressure, light sensors, thermometers and hygrometers integrated
in a commodity smartphone. With combinations of these sensors we capture a
rich set of ambient characteristics that allows to recognize a variety of personal-
ized semantic locations that are routinely visited. The sensor’s low power profile
allows us to minimize the power consumption. In addition, such sensors become
lately embedded in commercially available phones, e.g., Samsung Galaxy S4.
This gives the opportunity to assess the semantic location of the phone’s user in
a realistic and non-intrusive manner.

To study our hypothesis we collected a real-life dataset from five subjects
during 49 days. Subjects recorded sensor data using a prototype phone during
daily-life activities and they annotated their semantic locations. To study the
feasibility of ambient fingerprinting for semantic localization, we formulate the
semantic location recognition as a supervised machine learning task.

Our main contributions are as follows: (i) We implement a sensing and recog-
nition platform allowing us to gather, visualize and analyze data from the sensors
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incorporated in customized smartphone, (ii) we recorded a large and naturalistic
dataset from various users for testing the feasibility of our hypothesis, and (iii)
we show the effectiveness both in terms of recognition performances and power
consumption for ambient sensing for distinguishing typical daily locations visited
by a user.

The remainder of this paper is structured as follows. In Section 2 we present
the rationale for using ambient sensing data to do semantic location recognition.
Section 3 reviews the state of the art in semantic localization and power-saving
approaches for activity and context recognition. In Section 4 we describe the
collected dataset. Further, Sections 5 and 6 present the experimental results on
recognition performances and power consumption of the ambient sensors from
the smartphone. Finally in Section 7 we discuss and conclude our work.

2 Multimodal Ambient Sensing for Semantic Localization

Our goal is to study whether we can recognize different semantic locations from
a user’s daily-life pattern using multimodal ambient sensing, such as tempera-
ture, humidity, pressure and light of the different locations. We postulate that
semantic locations such as the home, office, car, train, restaurant, or pub that
are visited by a person are defined by a specific combination of values from these
sensors, and these combinations form the fingerprint of the location. For exam-
ple, homes, offices, and even public transportation tend to have constant ranges
of temperature and humidity, as they are equipped with air-conditioned systems
set to maintain these ambient conditions constant. Restaurants and pubs tend
to have higher temperature values than other living places, due to cooking or
because they are crowded.

Our research question is: Is multimodal ambient-based fingerprinting sufficient

to discriminate between the locations? As in [1] we believe that these fingerprints
are not necessarily unique and can be shared between different places. Nev-
ertheless, the ambient fingerprints of more general categories, e.g., train, car,

restaurant, are expected to be sufficiently different, thus allowing to distinguish
between them. Also, people have their own set of semantic locations, that are
visited during the daily-life pattern. Thus for a user-centric approach, we need
only the fingerprints of the places visited by that specific user.

To evaluate the informative power of the multimodal ambient sensing data,
we formulate the semantic location recognition approach as a standard super-
vised machine learning task. To capture the ambient conditions for semantic
localization we use light, barometric pressure, humidity, and temperature sen-
sors embedded in a phone. We follow the same steps as in the case of an activity
recognition problem solved with supervised machine learning techniques [17],
and use data collected from the sensors and the annotated semantic locations to
learn how to distinguish between the different locations. For that we follow the
next steps: the acquired continuous data is segmented into non-overlapping time
windows. We extract mean, standard deviation, min- and max-values for each
of the four sensing modalities, and label them with their equivalent semantic
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location. The resulted feature vectors are then fed into a C4.5 classification tree
to learn a discriminative model of the semantic locations. C4.5 was chosen be-
cause of its low computational complexity, which makes it appealing for a future
deployment directly on the phone.

3 State of the Art

Location and Semantic Location. In [2] GPS data is used for mining seman-
tic locations such as shopping malls and restaurants. However, continuous use
of GPS localization is extremely power-hungry [3, 14]. Furthermore, it relies on
good GPS perception which can be inhibited when the phone is held in pocket
or bag for example or fails completely for indoor locations. WiFi, GSM signa-
tures and Bluetooth-based localization can replace or compensate GPS data [6]
to automatically assess the personal semantic locations and daily routines of the
user, but the frequency at which the Bluetooth module needs to be used might
impact negatively the battery life [3]. Audio is a very rich source of informa-
tion to capture a location’s characteristics [5,11,19,20], but comes at significant
battery drainage.

The idea of using small wearable devices with embedded sensors such as light,
pressure, acceleration, audio and temperature to detect the context of an individ-
ual roots back to the work of Schmidt et al. [21]. Low-power sensing approaches
like fingerprinting of room colors and sensing of pressure, light intensity, tem-
perature and humidity have been considered [13], but always in addition to
power-hungry modalities [1, 8]. Pressure sensing has been used in isolation but
only in a constrained setting of recognizing subway stations [23].

Ravi et al. [18] use the light properties of the indoor places, e.g., offices and
corridors of a CS department for fingerprinting and indoor localization. Azyzian
et al. [1] propose SurroundSense, a mobile framework to detect the logical in-
door locations, e.g., Starbucks, McDonald’s, by creating a fingerprint of each
indoor location based on the data collected from ambient sound, light, color, or
RF layout-induced user movement. Lane et al. [7] use accelerometer, light and
temperature data for the so-called ambient beacon localization to distinguish dif-
ferent regions of mobile sensors. However, their evaluation relies on simulated
data with a limited number of locations.

Power Saving. Wang et al. [22] propose a framework for energy efficient mobile
sensing by using a hierarchical sensor management strategy to recognize the user
states and detect state transitions. A minimum set of sensors are turned on to
monitor the current state of the user, and a new set of sensors is triggered only
when it is necessary to detect a state transition. The evaluation done on ten
users over one week shows that their approach can increase the battery life up
to 75%, while identifying the end-user activities. Yan et al. [24] seek to reduce the
energy consumption on the mobile phones for continuously detecting locomotive
activities by adapting the accelerometer sampling frequency manually creating
groups of activities for each sampling rate. Lu et al. [12] propose Jigsaw, an
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engine for continuous sensing for mobile phones which are dynamically turning
on/off the acceleration, GPS and audio sensors.

4 Dataset Collection

We gathered data from five subjects (S1 to S5): two graduate students and three
employees working in different companies, two females and three males, with ages
varying between 26 and 51 years. Except for two employees, all subjects exhibit
a regular daily life, consisting of working, leisure time at home, commuting, or
shopping.

4.1 Sensing Platform

We used a modified Samsung Galaxy Nexus phone, courtesy of Sensirion AG1,
with four ambient sensors integrated. Pressure and light sensors are incorporated
off the shelf. In addition, temperature and relative humidity sensors have been
integrated (see Fig 2(a)). For comparison to state of the art localization, we
obtained location from Android location services and we gathered data from the
microphone to compare to localization approaches based on audio. The data was
recorded in the background by an Android application and stored locally, with
each user visiting between 4 and 11 semantic locations.

(a) (b) (c) (d)

Fig. 2. (a) The modified Samsung Galaxy Nexus with added temperature and humid-
ity sensors, (b, c) screenshots of the Android application for data gathering, and (d)
an illustration of different phone wearing-contexts for a user during its daily-pattern
(pocket, backpack, hand, table)

1 http://www.sensirion.com

http://www.sensirion.com
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4.2 Data Recording

Subjects were asked to use the prototype phone for the data collection as if it
was their own. This naturalistic usage resulted in different placements of the
phone, e.g., different pockets, in the backpack, purse, on the table, on the couch.
Variations of the placement occurred between different users as well as for single
users, e.g., wearing the phone in the purse while commuting or wearing it in the
trouser’s pocket during work or putting it on the office desk. Users recorded data
for at least five consecutive days. Additionally, arbitrary days within a month
have been recorded. In total, we gathered 250 hours of data, during 49 days of
sensor data from five users in realistic settings.

Table 1. User-annotated semantic locations

High level category Semantic Location

Outdoors general outdoors

Indoor public places Opera, Theater, Cinema, Church, Shop, Department store,
Mall, Pub, Restaurant, Cafeteria, Seminar room

Indoor personal places Home (living room, office home, bedroom, bathroom,
kitchen), Office (office room, meetings room, conference
room), Friends home, Indoor (other)

Transportation Tram, Train, Car, Bus, Funicular

4.3 Data Annotation

The Android application used for data recording offers user interfaces to label
semantic locations. It contains a list of predefined categories, e.g. home, tram,

train, car, but gives the option to add individual categories (Fig 2(c)). This
allows to capture a personalized set of the semantic locations in which individual
subjects reside. Table 1 contains the sum of all semantic locations grouped in
categories that were labeled by all subjects during data collection. Subjects did
not visit all the locations enumerated, but only a subset of locations visited
on a week-pattern basis for each of them. In total we obtained labeled data
for 26 categories of semantic locations. Users provided annotations in real-time
when changing their location, resulting a total of about 1000 location changes.
Annotations were not always provided at the exact time of location change.
However, the users remained in the locations for a sufficient time and annotated
data correctly, allowing to neglect this label noise.

5 Location Recognition Experiments

Each subject experienced an individual lifestyle with specific activities and se-
mantic locations during the recording days. Also, the same semantic location
category, e.g. home, office, had different ambient signatures for each subject, i.e.,
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home category for S1 does not have the same ambient fingerprint as home cate-
gory of S5. Therefore, we consider for the semantic-location recognition model a
subject-dependent learning and classification scheme, as semantic categories are
specific for each individual user.

5.1 Evaluation

We compare our approach based on low power sensors – temperature (T), hu-
midity (H), pressure (P), light (L) – to two baseline approaches: (1) standard
Android localization using GPS and WiFi/GSM fingerprinting, and (2) local-
ization using audio data collected with the smartphone microphone. The time-
series collected from the sensors are divided into non-overlapping segments of
W seconds. For each window we consider latitude and longitude data obtained
from Android’s location manager, as standard localization data. For audio local-
ization, we extract from the time-window 13 Mel-frequency cepstral coefficients

(MFCC) channels, and for each MFCC channel we compute mean and standard

deviation as features. An experimental evaluation of multiple window lengths
W ∈ {5s, 10s, 15s, ...30s}, showed similar performance results for semantic lo-
cation recognition. Therefore, we fixed the window size to W = 10s. For both
baselines we use the same machine learning technique, i.e, C4.5 trees, as for our
approach with low-power sensors. This paper does not aim to find the best per-
forming algorithm for semantic localization for each type of sensor. Our objective
is to investigate the feasibility of using ambient low-power sensors data from a
smartphone for semantic location of the smartphone’s user. Thus, we fixed the
classifier to C4.5 trees throughout the remainder of the paper.

To evaluate the semantic location recognition performance, we conduct for
each of the five subjects a leave-one-recording-out cross-validation. We report
the accuracies averaged per category, so the semantic location in which the users
reside in.

5.2 Visual Inspection of Ambient Sensor Data

Fig. 3 illustrates how data from ambient sensors in the phone characterizes
several daily locations. It shows 90 minutes of continuous sensor data and the
corresponding localization tracks collected from a phone. The subject wore the
phone in the trousers pocket, used different transportation modes (car, tram)
and visited typical locations during her daily life (home, office, restaurant). The
variations of the sensor readings can be clearly seen during the location changes.
The pressure is constant at the home, office and restaurant locations, since they
lie at a certain altitude. Furthermore, temperature and humidity have different
ranges across locations. The light intensity is informative at the beginning and
at the end of this recording, since the phone was put on the table at home and
in the office, yielding a characteristic light intensity, i.e., in the office there were
neon tubes, whereas at home there were traditional, warmer light bulbs.

We observe that for each semantic location, the data variations contain dis-
criminative information, that form a signature of various activities, e.g., when
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Change of phone's context

(from pocket to on table)

Altitude changes

when driving

Semantic location changes

(a) Ambient Sensors (b) GPS/WiFi/GSM

Fig. 3. An example of 90 minutes of multimodal data from (a) low-power ambient
sensors from the phone (temperature, humidity, pressure, light), and (b) Android Lo-
cation Service (GPS, WiFi/GSM). Semantic locations can be inferred from the data
patterns (for ambient sensors) as well as directly from the physical coordinates

the phone’s context changed from in the pocket to on the table, in the office loca-
tion. Temperature and humidity data gives the same clues, and furthermore we
can easily see the moment when the location changes. When in the car or tram,
the pressure is varying, being dependent on the altitude and weather conditions,
thus giving a clue on the moving semantic location of the user. Fig. 3(b) shows
the physical coordinates, which were obtained by Android Location service –
GPS, WiFi and GSM data. These location signatures are sufficient to provide
information about the locations and the moving pattern of the user. However,
GPS failed to acquire the satellites when indoors or even when the phone was
placed in the pocket. Locations obtained from WiFi and GSM triangulation are
partially imprecise, e.g., some coordinates are in the middle of the lake, while
some others describe multiple semantic locations such as home, outdoors, and
car. This can be only remediated by large temporal smoothing windows. Fig. 4
shows additional examples of multimodal ambient sensing data from two other
subjects. In Fig. 4(a) data is collected from a user with a regular daily pattern
that commutes in the morning. Again one can observe clear differences in tem-
perature, humidity and pressure signatures between the fixed semantic locations,
e.g., home and office and transportation, thus making it possible to distinguish
between them and outdoors category. Light sensor data gives discriminative
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Phone's context change

(from pocket to table)

Pressure is dependent on the altitude

Change of semantic location

(a) Subject 1

Change of the semantic location

(b) Subject 3

Fig. 4. Example of ambient sensing data from two different subjects: (a) from a sub-
ject with a fixed daily-pattern in the morning, and (b) from a subject with complex
transitions over the day
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information only in case of office location. Fig. 4(b) shows data from a user
with a more complex daily-pattern, containing many transitions between the
seven semantic locations. Still, we observe specific combinations for locations
such as cinema, office, restaurant and home. For the shop category, respectively
location, the data exhibits variation, as there are two distinct shops that are vis-
ited by the user. Furthermore, in temperature and humidity data are signatures
of transition from one semantic location to another, e.g., from car to outdoors,
outdoors to shop, office to restaurant. As in the previous figure, the light sensor
data changes give information when the context of the phone changes, e.g., on
the table, in the pocket.

Further, Fig. 5 presents a visualization example of the average temperature
vs. the average humidity values for the dataset S1 with four semantic locations
(office, home, train and outdoors) to which the null category is added. Same as
before, the original time series was cut into windows of 10 seconds. We observe
the data has a fibrous appearance, being clustered in threadlike series, corre-
sponding to different recordings. Even if overlapping, data tends to form stable
clusters corresponding to the different labeled locations. For example, home and
office data formed two distinct, non-overlapping clusters. Although spread on a
larger area, the train-category data is also grouped in a distinct cluster.
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Fig. 5. A scatter plot with temperature vs. humidity for S1 dataset, with 5 semantic
location categories

5.3 Overall Recognition Performances

Table 2 contains the overall semantic location recognition results for ambient
sensors, audio, and physical location data gathered for each of the five subjects,
with the locations specific for each user’s weekly pattern.

For the multimodal ambient sensing we evaluate different subsets of data: TH
(temperature and humidity data), THP (temperature, humidity and pressure),
THL (temperature, humidity and light) and THPL (temperature, humidity, pres-
sure and light). In case of low-power sensing models, the best results are obtained
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Table 2. Average accuracies (%) over all categories for each subject dataset, for
semantic-location detection, in case of using low-power sensing data (different sub-
sets), audio data, and location data (GPS and WiFi/GSM coordinates), for W = 10s
windows

Subject S1 S2 S3 S4 S5

TH 70 48.6 32.5 71.9 47.1
THP 69.5 61.6 41.9 73.3 55.3

THL 76.3 45 35.6 63.4 40.4
THPL 80.3 59.6 41.3 66.3 43.9

Audio 51 26.6 39.5 46.9 33.1
Location 55.5 40.7 38.7 61.4 38.6

Number of

Semantic 5 7 12 5 9

Locations

when using THP (for S2, S3, S4, S5) and THPL (for S1). For all subjects the
ambient-sensors-based recognition methods outperform the recognition methods
based on physical coordinates location and audio data, with up to 25% improve-
ment, for the S1 dataset. The recognition performances are strongly linked to the
number of semantic locations and also to the subject’s daily pattern: S1 dataset
has only 4 semantic locations, data being gathered from a corporate employee
with a regular daily pattern. The other extreme is dataset S3, from a graduate
student with a more complex and not often repetitive daily pattern – after the
working hours, the subject was having different recreational activities, consist-
ing of cinema, theater, opera, shops semantic locations. This subject visited 11
semantic locations and some of them were complex in terms of data variations
- e.g., the shop includes data from different smaller clothing shops, department
stores and grocery stores.

As a general observation from all the performance results on the five datasets,
data from light sensor seems to not be as informative as expected. A reason is
that light data is strongly related to the context of the phone, i.e., where the
phone is placed, and not to the location visited by the user. For example, light
information can be the same when the user visits home, outdoors, train, car,

office personal locations, because the phone is located in the pocket, so light
data obtained will have similar values, which will not help discriminate between
the locations. So the best combination of ambient sensors to create a fingerprint
range of visited locations are temperature, humidity and barometric pressure.

Low-power, audio and location-based recognition are equally affected by the
label noise. Previous studies [9] showed that GPS is sufficient to provide infor-
mation about outdoors locations. However, in these studies the GPS unit was
attached to the user’s hat or backpack for better accuracy. In our study we found
that in a realistic setup, i.e. phone placed in the pocket or in bag, indoors, or
even in the trains, the GPS did not produce any location data in 39% of the
time, as only 45 out of 113 recordings were containing GPS data. When no data
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from GPS were available, we took into account the information from network
localization. However, the coarse location estimation leads to the confusions and
low recognition rate of semantic locations. In contrast our proposed set of am-
bient sensors does not suffer from signal loss and continuously acquires ambient
parameters.

5.4 How Informative Is the Multimodal Ambient Sensing Data?

Fig. 6 contains the confusion matrices for the combinations of low-power ambient
sensing data that performed best in detecting the semantic locations, for datasets
S1 and S5. For S1 dataset, while home and office are well recognized, there
are confusions for train and outdoors. The ambient sensing data converges in
describing the fixed semantic locations, e.g., home, office, while transportation
is strongly connected to the outdoors conditions. In case of dataset S5, most of
the confusions appear between the indoor locations, e.g., bathroom is detected
sometimes as home or office, home is mislabeled as office. Even if the ambient
data describing the home and office locations is different, for this particular
dataset the home category was under-represented compared with the office, thus
resulting in these confusions. Similar to dataset S1, there are confusions between
modes of transportation, i.e., tram and train.
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Fig. 6. The confusion matrices for location recognition for datasets S1 and S5

The indoor category contains all the indoor data that was not included in the
other semantic locations. Being a general category, indoor is often mislabeled as
outdoors, car, or office. The ambient sensors measurements are different for each
indoor location, therefore this category cannot be reliably detected.

6 Power Consumption Experiments

In this section we perform an analysis of the power consumption of the smart-
phone sensors. We begin with a rough estimation of consumption based on sensor
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datasheet figures. Then, we empirically study the battery drainage during data
collection with different combinations of sensors.

6.1 Datasheet-Based Consumption Estimation

In Fig. 7 we plot the distributions of semantic localization accuracies reported
to the power consumption of the sensing modalities. The horizontal axis shows
a coarse estimation of the power consumption. We used the values provided in
the datasheets by the sensor manufacturers for the prototype used in recordings.
Surprisingly, using ultra-low-power sensors does not come at an expense of the
performance detection, but it rather introduces more variance in the results. The
THP combination appears to be the most stable one, having higher median and
more compact distribution compared to all others. In theory this combination is
up 180x less power-hungry than audio and location based recognition. However,
the measurements do not include the computational effort for semantic location
detection.
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Fig. 7. Distribution of the accuracies for different sensor combinations versus power
consumption. The boxes represent the 75th percentile. The consumption is given for a
sampling frequency of 1Hz, apart from audio, where the sampling frequency is 16kHz.

6.2 Empirical Consumption Study

The total power consumed during data gathering is Ptotal = Psensor+Pgathering .
Psensor is the power consumed to run the sensor and its associated analog to
digital converters. Pprocessing is the power consumed while moving, storing and
processing the data from the sensor. It includes the consumption of the processor,
system memory, system storage and various system buses. In the previous section
we took into account only Psensor . For a more realistic evaluation, we have to
include the second component. To this end, we monitor the battery level while
running the data gathering application for the different combination of sensors
used in the performance evaluation section.

The results are plotted in Fig. 8 for (a) the prototype phone with temperature
and humidity sensor integrated, used during the recordings, and (b) the recently
released Samsung Galaxy S4, which has the same humidity-temperature sensor
integrated. For both phones, temperature-humidity, pressure and light sensors
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were set at the highest sampling rate from Android API, as they were used during
the data gathering experiments. The audio data was gathered at 16kHz. All the
empirical battery consumption experiments were performed in similar settings
as the data gathering for dataset S3. As expected, the most power hungry data
were from GPS/WiFi/GSM and audio. Surprisingly for the THPL combination
of sensors the battery consumption was similar as in case of audio and location
data, but only for the Samsung Galaxy S4 phone.
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Fig. 8. The measured battery level in case of collecting different sensor data combina-
tions from (a) the prototype phone with temperature-humidity sensor integrated, and
(b) a Samsung Galaxy S4 phone

However, in the previous performance analysis experiments for semantic lo-
cation detection we concluded that light data is not informative enough to help
to discriminate between different locations. So our target for power consump-
tion analysis was the temperature, humidity and pressure (THP) combination.
Still, with the other combinations that do not imply light sensor, we can save
from 65% (THP) up to 85% (TH) of battery in case of Samsung Galaxy S4. We
expect to increase the power savings when setting the ambient sensors to lower
sampling rates in Android API.

In case of the phone prototype, for gathering all the ambient sensing combi-
nations, we can save from 70% of battery (THPL) to around 85% (TH), when
compared to gathering audio and standard location data.

7 Conclusion

Many mobile computing applications benefit from knowing the user’s semantic
location. In this work we study the feasibility of recognizing semantic locations
from low-power ambient sensors embedded in phones. We gathered 250 hours of
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data from five subjects in a naturalistic setting during typical phone usage. In to-
tal 26 labeled semantic locations, e.g., office, shop, church have been annotated.
Experimental results show that semantic location recognition with low-power
ambient sensors can be an alternative to standard localization methods, i.e.,
GPS/WiFi/GSM and audio, while significantly reducing the power consump-
tion and saving up to 65% of battery power for the THP sensor combination,
and up to 85% for the TH combination.

Experiments show that the best combination of low-power ambient sensors
to create discriminative fingerprints of locations visited by an user during a
week-pattern are temperature, humidity and pressure. Allowing for continuous
monitoring of the user’s location it can serve as trigger for location changes,
e.g., entering/exiting train, leaving/entering shop, for applications. Furthermore
such triggers can be released for locations that are not attached to fixed world
coordinates, e.g., in the train, in the car.

The clear visibility of location changes in the data is promising and we plan on
investigating location changes as triggers. For example, more power-consuming
modalities can be triggered only when a change in the low-power sensor data
was observed. The limitation, however with our current supervised classification
approach, is to require the user to annotate the data. In future research we will
explore transfer learning techniques and make use of third party sources.
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