
Low Power Architecture Design
and Compilation Techniques

forHigh-Performance Processors
Ching-Long Su, Chi-Ying Tsui, Alvin M. Despain

Advanced Computer Architecture Laboratory

ACAL-TR-94-01

February 15, 1994

Keywords: Gray Code, Low Power Design, Memory Addressing, Instruction Scheduling

Abstract

Reducing switching activity would significantly reduce power consumption of a processor chip.
In this paper, we present two novel techniques, Gray code addressing and Cold scheduling, for
reducing switching activity on high performance processors.

We use Gray code which has only one-bit different in conseuctive number for addressing. Due to
locality of program execution, Gray code addressing can significantly reduce the number of bit
switches. Experimental results show that for typical programs running on a RISC microprocessor,
using Gray code addressing reduce the switching activity at the address lines by 30~50% com-
pared to using normal binary code addressing.

Cold scheduling is a software method which schedules instructions in a way that switching activ-
ity is minimized. We carried out experiments with cold scheduling on the VLSI-BAM. Prelimi-
nary results show that switching activity in the control path is reduced by 20-30%.

Abstract
Reducing switching activity would significantly

reduce power consumption of a processor chip. In this
paper, we present two novel techniques, Gray code
addressing and Cold scheduling, for reducing switching
activity on high performance processors.

We use Gray code which has only one-bit different
in conseuctive number for addressing. Due to locality of
program execution, Gray code addressing can significantly
reduce the number of bit switches. Experimental results
show that for typical programs running on a RISC micro-
processor, using Gray code addressing reduce the switch-
ing activity at the address lines by 30~50% compared to
using normal binary code addressing.

Cold scheduling is a software method which sched-
ules instructions in a way that switching activity is mini-
mized. We carried out experiments with cold scheduling on
the VLSI-BAM. Preliminary results show that switching
activity in the control path is reduced by 20-30%.

1. Introduction
With recent advances in microelectronic technol-

ogy, smaller devices are now possible allowing more func-
tionality on an integrated circuit (IC). Portable applications
have shifted from conventional low performance products
such as wristwatches and calculators to high throughput
and computation intensive products such as notebook com-
puters and cellular phones. The new portable computing
applications require high speed, yet low power consump-
tion as for such products longer battery life translates to
extended use and better marketability. With the conver-
gence of telecommunications, computers, consumer elec-
tronics, and biomedical technologies, the number of low
power applications is expected to grow. Another driving
force behind design for low power is that excessive power
consumption is becoming the limiting factor in integrating
more transistors on a single chip or on a multi-chip module
due to cooling, packaging and reliability problems. In this
work, we will concentrate on how power consumption can
be minimized for high performance microprocessors.

1.1 Related work
Power consumption in CMOS has three compo-

Low Power Architecture Design and Compilation Techniques for
High-Performance Processors

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain

nents: dynamic power consumption, short circuit current
power consumption, and static power consumption. With
proper circuit design techniques, the latter two compo-
nents can be reduced and are negligible compared to the
dynamic power consumption. Therefore power consump-
tion in CMOS can be described by

Pg = fd CL V2
dd

 where fd is the switching activity, CL is average capaci-
tance loading of the circuit, and Vdd is the supply voltage.
To minimize power consumption, we can reduce fd, CL or
Vdd.

Many researchers have been studying low power/
low voltage design techniques. For example, research is
being conducted in low power DRAM and SRAM
design. Also aggressive supply voltage scaling and pro-
cess optimization are used for power consumption reduc-
tion for active logic circuits [Chandra 92],[Liu 93].
However, lowering the supply voltage may create other
design problems such as reduced noise margin, increased
cross talk, etc. Other researchers are exploring instruction
set architectures and novel memory management
schemes for low power, processor design using self-
clocking, static and dynamic power management strate-
gies, etc.

Recently research has been done in minimizing the
switching activity of the circuit in order to minimize
power. This method is orthogonal to supply voltage
reduction and process optimization and thus can be used
to further reduce power consumption once the supply
voltage and process of the processor are chosen. Cur-
rently most of the work has been carried out in the layout
and logic levels.

In the layout domain, Vaishnav et al. [Vaishnav-
93] propose a low power performance driven placement
procedure which minimizes the length, hence the capaci-
tance loading, of the high switching nets and at the same
time satisfies the delay constraints.

In the logic level, algorithms to synthesize circuits
with minimum switching activities has been developed.
Shen et al [Shen 92] present algorithms for reducing
power consumption during the technology independent
phase of logic synthesis. Prasad et al. [Prasad 93] tackle
the low power kernelization problem in multi-level logic
minimization. During the factorization process, common

csu@usc.edu, tsui@usc.edu, and despain@usc.edu

University of Southern California
Advanced Computer Architecture Laboratory

To appear in Proceedings of the IEEE COMPCON, Febuary 1994.

sub-expressions which result in a maximum reduction in
switching activities are extracted. Roy et al.[Roy 92] pro-
pose a low power state assignment method which uses
simulated annealing to find the state encoding of a finite
state machine which the total probability weighted Ham-
ming distance of the states are minimized. Tsui et. al.[Tsui
93] minimize the weighted switching activity and hence
the power consumption during the technology decomposi-
tion and mapping phase of logic synthesis. All the above
methods assume the switching activities at the circuit
inputs are given and minimize the internal switching activ-
ities based on this assumption.

1.2 Our approach
In this work, we tackle the problem of minimizing

circuit switching activities at a higher level, the architec-
tural level, and we study this in the domain of high perfor-
mance microprocessors. Instead of minimizing the internal
switching activities of each module of the microprocessor,
we minimize the switching at the inputs of the modules.
Specifically, we minimize the switching activities of the
address bus and the instruction bus of the microprocessor
using some novel hardware and software techniques. The
reasons for focusing on the instruction and address buses
are as follows. Switching activity depends on the sequence
of the signal values applied at the inputs of the circuit. For
the datapath of a microprocessor, the signal values at the
inputs depend on the data and hence can only be deter-
mined at run-time. For the instruction and address lines,
the values are related to the static code which can be deter-
mined at complie time. Also for a typical pipelined RISC
processor, the instruction line has to drive many modules
such as the instruction cache, instruction register, the con-
trol path decoder. The address lines also drive many mod-
ules such as Memory Address Register, PC chains and the
I/O pads. Moreover the instruction and address buses are
usually long and have higher routing capacitance. There-
fore they are nets with large capacitance loading and mini-
mizing the switching activity of these nets has a significant
impact on the power consumption of the microprocessor.

In this paper, we present two techniques which
reduce switching activity during program execution. The
first technique, Gray code addressing, is a hardware
method which uses Gray code for instruction addresses.
The second technique, Cold Scheduling, is a software
method which schedules instructions during compilation
to reduce switching activities.

The advantage of Gray code over straight binary
code is that Gray code changes by only one bit as it
sequences from one number to the next. In other words, if
the memory access pattern is a sequence of consecutive
addresses, then each memory access changes only one bit
at its address bits. Due to instruction locality during pro-
gram execution, most of the time memory accesses are
sequential in nature. Therefore a significant number of bit
switches can be eliminated through using Gray code
addressing.

Unlike traditional instruction scheduling which
mainly focuses on scheduling instructions for less pipe-
line hazards, cold scheduling focuses on scheduling
instructions for less switching activities while keeping
performance as high as possible. Cold scheduling can be
easily implemented by modifying a traditional list sched-
uler with a cost function to minimize the switching activi-
ties invoked by executing consecutive pairs of
instructions.

1.3 Organization of the Paper
The rest of the paper is organized as follows. Sec-

tion 2 discusses the significance of the switching activi-
ties at the inputs of a circuit on the overall switching
activities of the circuit. Section 3 evaluates the use of
Gray code as an instruction addressing scheme. We also
compare the switching activities using Gray code
addressing to traditional binary code addressing. Section
4 presents the cold scheduling techniques and some
experimental results. Finally, conclusionary remarks are
provided in Section 5.

2. Switching Activity in Pipelined Processors
Figure 1 shows a typical pipelined circuit of which

each stage consists of a combinational circuit between
two latches. At the beginning of a clock cycle, the input
signals of the combinational circuit are first latched in the
input latch A. They are then evaluated in the combina-
tional circuit and propagated to the output which are
latched in the output latch B at the next cycle. These sig-
nals become the input signals for the combinational cir-
cuit at the next pipeline stage. The switching activities of
the combinational circuits depends on the logic and struc-
ture of the circuit and the switching activities at the out-
put of the input latch. Although there is no general theory
on the relationship between the switching activities of the
inputs and that of the internal nodes of a combination cir-
cuit, we believe that if the switching activities are high at
the inputs, then the internal switching activities at the
combinational circuit also tend to be high and vice versa.

To support this claim, we carried out experiments

on a set of combinational circuit benchmarks obtained
from the ISCAS-89 and MCNC-91 benchmark set, and
studied the effect on the circuit switching activities if the
switching activities at the input lines are reduced. We
used the estimation method in [Ghosh 92] to estimate the

Combina-

latch A latch B

Figure 1 Combinational circuit and latches

Circuit
tional

switching activities. Switching activities are measured as
the expected numbers of switching per cycle. First the
switching activity of each input is set to 0.5 (Model I).
Then it is reduced to 0.42 (Model II) and 0.32 (Model III)
respectively. Table 1 summarizes the circuit switching
activities under different input switching activities.

From the results, we see that in general reducing the
switching activities at the inputs will reduce the total
switching activities of the combinational circuit. The aver-
age reductions are about 11% and 23% when the input
switching activities are reduced by 16% and 36% respec-
tively.

Switching activities at the staging latches of a pipe-
lined microprocessor are affected by various factors. For
latches in the datapath, switching activities are mainly
determined by the run-time data sequences. For latches in
the control path, switching activities are strongly depen-
dent on the instruction execution sequences. Since run-
time data is not well known at compile-time, the impact of
cold scheduling on switching activities at the latches in the
data path is not clear. However, instruction execution
sequences are controlled by the instruction scheduler at
compile-time. The impact of cold scheduling on switching
activity at the latches in the control path is more direct. In
this paper, we will focus on the impact of cold scheduling
for reducing switching activities in the control path.

Dif ferent instruction sequences can have a signifi-
cantly different effect on the switching activities and the
impact depends on the type of architecture. In a CISC pro-
cessor, the impact may not be so obvious since one instruc-
tion may need several processor cycles to execute. In
contrast, for a general pipelined RISC-like processor, in
which most instructions can be executed in one processor

Model I Model II Model III
circuit switching

activity
switching
activity

% of
reduction

switching
activity

% of
reduction

9symml 38.11 33.88 11.1 28.31 25.72
alu4 94.91 93.05 1.96 83.80 11.71

apex6 214.28 186.27 13.07 158.50 26.03
cordic 25.23 24.31 3.65 23.03 8.72
count 37.66 32.16 14.60 27.80 26.18

example 92.17 85.80 6.91 76.38 17.13
f51 27.24 23.74 12.85 19.76 27.46
pair 384.02 352.57 8.19 311.33 18.93
s208 26.57 27.07 -1.88 26.30 1.02
s298 31.81 27.38 13.93 22.99 27.73
s344 44.84 38.33 14.53 32.06 28.50
s400 47.80 38.60 19.25 31.13 34.87
s444 48.55 39.50 18.64 31.91 34.27
s526 51.75 45.83 11.44 38.52 25.57
s820 51.87 45.29 12.69 38.49 25.80
s838 99.65 94.19 5.48 85.99 13.71
s953 49.23 39.68 19.40 32.40 34.19
x1 78.71 71.62 9.01 62.36 20.77
x3 213.42 191.90 10.08 165.93 22.25
x4 140.47 122.35 12.90 103.70 26.18

avg.%
reduction

10.89 22.84

Table 1Circuit switching activities vs input switching activities

cycle, the impact can be significant since an instruction
scheduler has more instructions to schedule.

 To better understand the impact of instruction
sequence on the switching activities in general purpose
processors, we select a RISC-like processor, the VLSI-
BAM [Holmer 90], as an experimental architecture. This
microprocessor is pipelined with data stationally control.
There are five pipeline stages: Instruction Fetch (IF),
Instruction Decode (ID), Instruction Execution (IE),
Memory access (M), and Write Back (WB). The instruc-
tion set of the VLSI-BAM is similar to the MIPS-2000
[MIPS 86] with some extensions for symbolic computa-
tion. Figure 2 shows the pipeline stages and the control
path of the VLSI-BAM processor. For each pipeline
stage, there is an instruction register, a PLA, and a latch
for control signals. Instructions are passed through
instruction registers and decoded by the PLAs in the pipe-
line stages. Control signals which are generated from
PLAs, are latched before they are sent to the datapath.

A cycle-by-cycle instruction-level simulator is
built for collecting the switching activities at the latches
in the control path during execution of benchmark pro-
grams.Benchmark programs used in this paper are shown
in Table 2. The benchmarks are ranging from less than
1,000 cycles to larger than 10,000,000 cycles. These
benchmark programs are selected from the Aquarius
benchmark suite [Haygood 89]. Applications of these
benchmark programs include list manipulation, data base
query, theorem prover, and computer language parser.
Benchmark programs are first compiled through the
Aquarius Prolog compiler [Van Roy 92] into an interme-
diate code (BAM code), which is target machine indepen-
dent. The BAM code is then further compiled into
machine code of the target machine, the VLSI-BAM.

3. Gray Code Addressing
In traditional von Neumann machines, data is

fetched from memory before executed. For binary code
addressing scheme, data and instructions that are
accessed sequentially are located in the memory with
consecutive binary address. For sequential memory
access, next address is obtained by doing a binary incre-
ment on the current address.

Figure 2 Pipeline structure and control path of VLSI-BAM

IF ID EX M WB

PLA PLA PLA PLA PLA

3.1 Binary Code Representation
Binary code addressing system uses base 2. A

binary representation 10010110 is interpreted as
1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 0 x 23 + 1 x 22 +

1 x 21 + 0 x 20 = 170
Table 3 shows 4-bit binary representations and their

corresponding decimal equivalent.

3.2 Gray Code Representation
A Gray code sequence is a set of numbers, repre-

sented as a combination of digits 1s and 0s, in which con-
tiguous numbers have only one bit different. A formal
definition of a Gray code sequence is described as follows
[Hayes 88],
1. G1 = 0, 1.
2. Let Gk = g0, g1,..., g2k-2, g2k-1. Gk+1 is formed by first
preceding all members of the sequence Gk by 0, then
repeating Gk with the order reversed and all members pre-
ceded by 1. In other words,

Gk+1 = 0g0, 0g1,..., 0g2k-2, 0g2k-1, 1g2k-1, 1g2k-2,...,
1g1, 1g0

For example, G2 = 00, 01, 11, 10 and G3 = 000,
001, 011, 010, 110, 111, 101, 100. Clearly the foregoing
construction ensures that consecutive members of a Gray
code sequence differ in exactly 1 bit.Table 4 shows 4-bit
Gray Code representations and their corresponding deci-

Benchmark Cycles

boyer

browse

chat

circuit

semigroup

nand

fastqueens

qsort

reducer

1,138,655

4,560

1,064,197

4,504,940

4,487,201

350,761

27,494,723

18,883,712

3,303,153

Description

Eight queens problem

Quicksort of a 50-element list

A graph reducer for T-combinator

VLSI module generator

A circuit generator

Boyer-Moore theorem prover

Build and query a database

English for database querying

Query a data base

Table 2 Benchmark programs

Binary
code

Binary
code

Decimal
Equivalent

Decimal
Equivalent

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 3 Binary code representation and decimal equivalent

mal equivalent.

3.3 Conversion between Binary and Gray Code
The conversion between binary code and Gray

code is defined as follows. Let B and G be the binary and
the Gray code representations of the same decimal num-
ber respectively represented by:

The conversion of binary code to Gray code is as
follows. Let gi and bi be the ith bit of G and B respectively.
gi is then equal to the exclusive or of bi and bi+1. The most
significant bit of G and B are the same. The following for-

mula summarize the conversion.
For example, let B be a binary number <1,1,0,1>

the decimal equivalent of which is 13. The values of b3,
b2, b1, and b0 are 1, 1, 0, 1 respectively. The Gray code
representation is then equal to <b3, b3 b2, b2 b1, b1
b0> which is equivalent to <1,0,1,1>.

Similarly the conversion of Gray code to binary
code also uses the exclusive or operation. However, it is
more complex. bi is equal to the exclusive or of gi and all
of the bits of G that preceding gi, i.e. gi+1, gi+2,..., gn-1.
The most significant bit of the binary representation and
Gray code representation are the same. The following for-
mula summarize the conversion.

For example, let G be a Gray code number
<1,1,0,1> the decimal equivalent of which is 9. The values
of g3, g2, g1, and g0 are 1, 1, 0, 1 respectively. The binary
code representation is then <g3, g3 g2, g3 g2 g1,
g3 g2 g1 g0> which is <1,0,0,1>.

3.4 Number of Bit Switches in Binary Code vs.
Gray Code

Gray
code

Gray
code

Decimal
Equivalent

Decimal
Equivalent

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 4 Gray code representation and decimal equivalent

B = <bn-1, bn-2,..., b1, b0>
G = <gn-1, gn-2,..., g1, g0>.

Binary code --> Gray code
gn = bn
gi = bi+1 bi (i = n-1, 0)

Gray code --> Binary code

bn = gn
bi = bi+1 gi (i = n-1, 0)

The number of bit switches of a sequence of num-
bers can be significantly different depending on the code
representations. Figure 3 shows an example. For the
sequence of numbers from 0 to 16, shown in Figure 3(a),
there are 31 bit switches when the number are encoded in
binary representation while only 16 bits switch when they
are encoded in Gray code representation. However, for the
following sequence <1,3,7,15,14,12,13,9,8,10,11,2,6,
4,5,0,16>, which is shown in Figure 3(b), there are only 17
bit switches for binary representation compared to 29 bit
switches for Gray code representation.

 For random access patterns, Gray code and binary
code have similar number of bit switches. Note that the
number sequence in Figure 3(b) is careful selected in favor
of the binary representation. In general, this special
sequence is rather unlikely to happen. For consecutive
access patterns, which occur often in a general processor
for executing consecutive instructions in basic blocks,
Gray code addressing has fewer bit switches.

3.5 How To Use Gray Code Addressing
In a general uni-processor, an instruction is fetched

from an address pointed to by the program counter. After
this instruction is fetched, the program counter is increased
by one for the next fetch. The program counter is also
modified by branch instructions based on branch condi-
tions. In the binary code addressing system, a binary
counter is needed for incrementing the program counter.
For branch instruction, the calculated target addresses are
written directly into the program counter if the branch is
taken. In Gray code addressing system, a Gray code
counter is needed for incrementing the program counter.
For branch instructions, the calculated target address is
directly written into the program counter if the branch is
taken. The only difference between binary code and Gray
code addressing systems is the instruction field for target
addresses. In a Gray code addressing system, the instruc-

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000

00000
00001
00011
00010
00110
00111
00101
00100
01100
01101
01111
01110
01010
01011
01001
01000
11000

bit
changed 31 16

binary Gray

1
3
7
15
14
12
13
9
8
10
11
2
6
4
5
0
16

00001
00011
00111
01111
01110
01100
01101
01001
01000
01010
01011
00010
00110
00100
00101
00000
10000

00001
00010
00100
01000
01001
01010
01011
01101
01100
01111
01110
00011
00101
00110
00111
00000
11000

bit
changed 17 29

binary Gray

Figure 3 The bit switches of binary codes vs. Gray codes

(a) (b)

tion field for the target address in a branch instruction is
modified such that the calculated target address is the cor-
rect target address in Gray code addressing system.

Figure 4 shows an example of branch instructions
in binary code and Gray code addressing systems. We
represent a binary code as <bn, bn-1,...,b0>2 and a Gray
code as <gn, gn-1,..., g0>g, where the bit length is n+1.
The correct execution sequence is (A,B,br,C,andD)
whereA, B, C, andD are instructions andbr is a taken
branch. The target address of the branch is the addition of
current program counter and the offset which is specified
in the branch instruction. In binary code addressing sys-
tem, the offset of the branch instruction is <00111>2 and
the value of the current program counter is <01110>2.
The target address of this branch instruction is the binary
addition of <01110>2 and <00111>2, which is <10101>2.
In the Gray code addressing system, we can implement
this branch operation by modifying the offset value speci-
fied in the branch instruction to <10110>g. Since the cur-
rent program counter is <01001>g, the target address of
this branch instruction is then <11111>g, which is the
binary addition of <01001>g and <10110>g.

3.6 Results
To validate the advantage of Gray code addressing,

we implement a Gray code addressing scheme on the
VLSI-BAM [Holmer 90]. Table 5 summarizes the switch-
ing activity at the address bits of the processor. For
instruction accesses, compared to the traditional binary
code addressing scheme, Gray code addressing signifi-
cantly reduces the address bits switching activities. For
data accesses, switching activity resulting from both
schemes are quite close. This is because instruction
accesses are more sequential than data addresses for nor-
mal program execution. Moreover, the more instruction
locality a program has, the more reduction will be.

We measure the performance of the address coding
scheme by the number of bit switches per executed
instruction, denoted as BPI. Figure 5 shows the BPI of
instruction addresses in binary code and Gray code for
different benchmark programs. The benchmark program
with the most significant reduction of bit switches is
fastqueens. The BPI of instruction addresses in binary

12 <01100>2

13 <01101>2

14 <01110>2

21 <10101>2
22 <10110>2

A

B

br, 00111

C

D

12 <01010>g
13 <01011>g

14 <01001>g

21 <11111>g

22 <11101>g

A

B

br, 10110

C

D

Binary code Gray code

Figure 4 Branch instructions in binary code and Gray code addressing System

code and Gray code are 2.46 and 1.03 respectively. The
reduction in bit switches is more than half (58.13%). For
the worst performance of Gray code addressing, which is
boyer, the reduction of bit switches is still significant
(24.28%). The average BPI for Gray code addressing is
1.60, while the average of BPI in binary code addressing is
2.53. The average reduction in bit switches is then equal to
36.89%.

Figure 6 shows the BPI of data addresses in binary
code and Gray code among benchmark programs. The BPI
of data addresses in binary code and Gray code are very
close. Among the set of benchmark programs, we find that
two out of nine benchmark programs (fastqueen and
browse) have lower BPI in binary code than in Gray code.
The other seven benchmark programs have slightly larger
BPI in binary code than in Gray code. The average BPI in
Gray code addressing is 1.28 while that in binary code
addressing is 1.39. The average reduction of bit switches is

Table 5 Switching Activities at the address bits

Bench-

boyer

browse

chat

circuit

semigroup

nand

fastqueens

qsort

reducer

Instruction
Address in
Binary Code

Instruction
Address in
Gray Code

Data
Address in
Binary Code

Data
Address in
Gray Code

2,804,797

12,057

2,731,471

10,477,307

12,028,773

848,899

76,019,503

47,335,397

8,019,831

1,177,861

6,047

1,817,517

6,638,057

8,933,613

551,512

57,440,477

30,897,487

5,099,811

973,151

6,011

1,566,384

6,005,394

6,174,504

438,553

48,250,617

24,885,247

4,370,555

1,038,509

5,701

1,484,893

5,308,314

6,010,871

406,609

47,333,577

26,393,123

3,952,065

mark

fastqueens

qsort

reducer

circuit

semigroup

nand

boyer

browse

chat

1.0 1.5 2.0 2.5

Figure 5 Bit switches of instruction addresses

3.0

2.461.03
2.64

1.33
2.571.71

2.331.47
2.681.99

2.42
1.57

2.76
2.09

2.51
1.64

2.43
1.54

Binary Coded
Gray Coded

BPI

then 7.91%.

4. Cold Scheduling
Traditional instruction scheduling algorithms

mainly focus on reordering instructions to reduce pipeline
stalls, avoid pipeline hazards, or improve resource usage.
More recent instruction scheduling algorithms such as
trace scheduling [Fisher 81], percolation scheduling
[Nicolau 84], and global scheduling [Bernstein 91] sched-
ule instructions across basic blocks in order to increase
instruction-level parallelism. The main goal of these
scheduling algorithms is to improve performance. To
reduce power consumption, these instruction scheduling
algorithms need to be modified to adjust to the new objec-
tive.

In this section, we present the details of our cold
scheduling algorithm. Basically cold scheduling uses tra-
ditional performance-driven scheduling techniques with
special heuristics for reducing switching activities.
Before we go into the details of cold scheduling, we first
review the traditional list scheduling algorithm.

4.1 Scheduling for Performance
Traditional instruction scheduling approaches con-

sist of three steps: 1) partition a program into regions or
basic blocks. 2) build a control dependency graph (CDG)
and/or data dependency graph (DDG) for each code
region or basic block. 3) schedule instructions in CDG
and/or DDG within resource constraints.

The main goal of the traditional instruction sched-
uler is to schedule the instruction sequence such that it
can be executed in a target machine as fast as possible
with minimal pipeline stalls. Therefore the quality of an
instruction scheduler is measured by the amount of pipe-
line stalls introduced by the output instruction sequence
when it is executed on the machine.

Let B = I1, I2,... be an output instruction sequence
of a basic block. The number of pipeline stall cycles

Binary Coded
Gray Coded

fastqueens

qsort

reducer

circuit

semigroup

nand

boyer

browse

chat

0.5 1.0 1.5 2.0

Figure 6 Bit switches of data addresses

2.5

0.85
0.91

1.32
1.25

1.47
1.40

1.33
1.18

1.38
1.34

1.25
1.16

1.76
1.72

1.32
1.40

1.32
1.20

BPI

between execution of instruction Ij and Ij+1 is denoted as
D(I j,Ij+1). For example, if there is no pipeline stall cycles
between execution of instruction I1 and I2, then D(I1,I2) =
0. Otherwise, if there are m pipeline stall cycles between
execution of instruction I1 and I2, then D(I1,I2) = m. The
total pipeline stall cycles in the execution of a basic block
is denoted as PS =Σ D(Ij,Ij+1), j = 0... n-1. The main
objective of an instruction scheduler is therefore to mini-
mize PS. In the case of scheduling a region, the objective
is thus to minimize the pipeline stalls of this region,
instead of in an individual basic block. For example, if a
region consists of basic blocks B1,B2,...Bk, and the num-
ber of pipeline stalls in these basic blocks are PS1,
PS2,...PSk, then the instruction scheduler tries to minimize
1/k(w1*PS1+ w2*PS2+... +wk*PSk), where wj is a weight
of estimated dynamic execution frequency of a basic block
Bj.

Figure 7 shows a data dependency graph and vari-
ous output instruction sequences from a typical instruction
scheduler. The target machine is assumed to have a one
cycle delay slot for load/store instructions after store
instructions due to bus conflicts. These instruction
sequences running on the VLSI-BAM introduce different
pipeline stalls. Instruction sequence II suffers three cycles
of pipeline stalls. Instruction sequences I and III have the
best scheduling with only one pipeline stall cycle.

4.2 Scheduling for Low Power
Switching activities depend on the sequence of

input signals. If the input sequence can be reordered in
such a way that switching activities are minimized, power
consumption can then be minimized. Therefore, the goal
of an instruction scheduler for cold scheduling is to reor-
der the code such that switching activities are minimized
without introducing significant performance degradation.
The quality of cold scheduling is measured by the reduc-
tion in switching activity in the processor when the output
instruction sequence is executed on a target machine M.
We denote S(Ij,Ij+1) as the number of bit switches that
occur in the processor when instruction Ij+1 is executed
just after Ij on M. The total switching activity is defined as
BS =Σ S(Ij,Ij+1), j = 0... n-1. The main goal of cold sched-
uling is to minimize BS. In the case of scheduling a region
which consists of basic block B1,B2,...Bk, having switch-
ing activities BS1, BS2,...BSk respectively, the cost func-
tion of the cold scheduler is therefore 1/
k(w1*BS1+w2*BS2+...+wk*BSk), where wj is a weight of
estimated dynamic execution frequency of a basic block
Bj.

We illustrate the significance of instruction schedul-
ing on switching activities using the example in Figure 7.
We measure the switching activities for each of the three
instruction sequences. The switching activities are nor-
malized with respect to that of the instruction sequence I.
The normalized switching activities of instruction
sequences II and III are 1.05 and 1.45 respectively.
Although instruction sequences I and III are good sched-
uled codes in terms of performance (only one pipeline stall

Begin

1 6

2

3

4

95

8

7

10

11

End

label(l(move/4,7)).
1 mov(e,t0). %D(1,2) = 0
2 umax(b,e,e). %D(2,6) = 0
6 ldi(-1,t1). %D(6,3) = 0
3 addi(e,4,e). %D(3,4) = 0
4 pushd(t0/cp,e,2). %D(4,5) = 1
5 st(r(3),e+ -5). %D(5,8) = 0
8 add28(r(0),t1,r(0)). %D(8,7) = 0
7 std(r(2)/r(1),e+ -4). %D(7,10) = 0
10 mov(r(3),r(2)). %D(10,11) = 0
11 ld(e-4, r3). %D(11,9) = 0

label(l(move/4,7)).
6 ldi(-1,t1). %D(6,1) = 0
1 mov(e,t0). %D(1,2) = 0
2 umax(b,e,e). %D(2,3) = 0
3 addi(e,4,e). %D(3,8) = 0
8 add28(r(0),t1,r(0)). %D(8,4) = 0
4 pushd(t0/cp,e,2). %D(4,7) = 1
7 std(r(2)/r(1),e+ -4). %D(7,9) = 1
9 st(r(0),e+ -6). %D(9,5) = 1
5 st(r(3),e+ -5). %D(5,10) = 0
10 mov(r(3),r(2)). %D(10,11) = 0

Figure 7 A DAG and its scheduled code

(a) data dependencies graph

(b) Instruction sequence I

(c) Instruction sequence II

(d) Instruction sequence III

Pipeline stalls = 3

Pipeline stalls = 1

label(l(move/4,7)).
1 mov(e,t0). %D(1,2) = 0
2 umax(b,e,e). %D(2,3) = 0
3 addi(e,4,e). %D(3,4) = 0
4 pushd(t0/cp,e,2). %D(4,6) = 0
6 ldi(-1,t1). %D(6,7) = 0
7 std(r(2)/r(1),e+ -4). %D(7,8) = 0
8 add28(r(0),t1,r(0)). %D(8,10) = 0
10 mov(r(3),r(2)). %D(10,9) = 0
9 st(r(0),e+ -6). %D(9,5) = 1

Pipeline stalls = 1

cycle), instruction sequence III has the worst switching
activity cost (45% more than that of instruction sequence
I). On the other hand, the switching activities of instruc-
tion sequence II is quite close to that of instruction
sequence I (only 5% more), though instruction sequence II
has the worst performance (three pipeline stall cycles).

The above example indicates that there is no clear
correlation between performance and switching activities.
The design for low power hence does not conflict with the
design for performance. In other words, we may be able to
achieve both goals at the same time.

4.3 Phase Problem of Instruction Scheduling and
Assembly

In order to implement cold scheduling, structure of
a traditional compiler backend needs to be modified. In a
traditional compiler backend, instruction scheduling and
register allocation are processed before assembling code.
Instructions and their registers are represented in a sym-
bolic form. Usually, data and control dependency graphs
can be easily derived from instructions in a symbolic form.
However, it may not be easy to derive the bit switching
information between instructions from their symbolic
forms due to the following reasons: (1) the target addresses
of branch/jump instructions may not be known before
instructions are scheduled and registers are allocated, (2)
during instruction scheduling and register allocation, the
sizes of basic blocks may be changed, (3) peephole optimi-
zation may change sequence of instructions in a basic
block, and (4) the binary representation of indexes to the
symbol table may not be available.

The above problem is called thephase problem of
instruction scheduling and assembly. Instruction schedul-
ing preceding assembly may degrade the impact of reduc-
ing bit switches between instructions. However, when
assembly precedes instruction scheduling, the flexibility of
instruction scheduling is limited. A similar problem is the
phase problem between instruction scheduling and register
allocation [Bradlee 91], where instruction scheduling pre-
ceding register allocation may increase register pressure
and instruction scheduling following register allocation
may introduce false dependencies.

A simple solution to deal with the phase problem of
instruction scheduling and assembly is to derive or
“guess” binary representations of instructions before
instruction scheduling. We introduce a novel compiler
structure, shown in Figure 8, which divides an assembler
into two parts, pre-assembler and post-assembler. The
major tasks of the pre-assembler are to calculate target
address of branch/jump instructions, indexes to symbol
table, and transform instructions to binary form. The major
task of the post-assembler is to do the rest of work in an
assembler. One advantage of partitioning an assembler is
that having binary representations of instructions available
before instruction scheduling allows us to proceed cold
scheduling. This scheme however will limit the ability of
the instruction scheduler to schedule instructions across

basic blocks since target addresses of branch/jump
instructions are decided before instruction scheduling.
For instruction scheduling like trace scheduling, percola-
tion scheduling, and global scheduling, this scheme is
hard to apply.

4.4 Inputs of Cold Scheduling Algorithm
Two inputs are needed for cold scheduling: (1)

data dependency graphs for benchmark programs and (2)
a power cost table for each pair of instruction.

The data dependency graph is constructed based
on the instruction-level dependencies. Given an instruc-
tion stream, a DAG is built by backward pass construc-
tion, in which the instruction stream is scanned
backwards. For each resource R, R.input and R.output
represent sets of instructions which use R as input and
output resources respectively. Typical resources are gen-
eral registers, special registers (the program counter, true/
fault bit,...,etc,), and memory. The details of the DAG
construction algorithm are shown in Figure 9.

Every entry, S(Ii,Ij), in the power cost table repre-
sents the switching activities invoked in the processor by
executing the pair of consecutive instructions Ii,Ij. Since
the instruction bus mainly drives modules inside the con-
trol path, we only include the switching activities of the
control path in the power cost entry. In Figure 2, we can
see that the pipelined control path contains the instruction
registers, PLAs and control signal output latches. For
every pair of instructions (Ii,Ij), S(Ii,Ij) is then obtained by
summing up all the gates in the instruction registers,
PLAs and control signal output latches that are going to
switch (0->1 or 1->0) when Ij is executed right after Ii. If
the capacitance loading of each gate is known, the actual
power cost can be obtained by summing up the capaci-
tance loading of all switching gates.

Compiler
Front-end

Compiler back-end

Register
Allocation

Pre-assembler

Instruction
Scheduling

Post-assembler

Figure 8 Pre-assembler, instruction scheduler, and post-assembler

4.5 Cold Scheduling Algorithm
One simple implementation of cold scheduling is

list scheduling with heuristics targeted for low bit switch-
ing. Given a DAG, cold scheduling firstselects instruc-
tions which are ready to be executed. An instruction is
defined as ready to be executed if all its operands and
resources are ready. All ready instructions are collected in
a ready list. Instructions with the highest priority in the list
will be selected to be executed in the next cycle. The pri-
ority of an instruction in the ready list is measured by the
power cost when this instruction is selected to be executed
in the next cycle. The less the power cost, the higher the
priority of this instruction. The priority of an instruction in
the ready list has to be recalculated for each cycle until the
instruction is selected.

After executing the selected instruction, some
instructions may become ready if they depend on the
selected instruction. These new ready instructions are then
added to the priority list. The instruction that has the high-
est priority in the list will be selected as the next instruc-
tion to be executed. If there are still instructions that
haven’t been scheduled and the ready list is empty, we
simply put a NOP (No OPeration) instruction for the next
execution cycle. If the target machine has the ability to
detect pipeline hazards, then we just ignore the next exe-
cution cycle. This process is continued until all instruc-
tions are scheduled. Figure 10 shows the algorithm for
cold scheduling.

4.6 Results
We have implemented the cold scheduling algo-

rithm in the Aquarius compiler system. The original
instruction scheduler in the Aquarius compiler system is
used for comparison. For the sake of simplicity, we only

Reverse the instruction sequence from an instruction stream.
For any resourceR,

setR.input to be{}
setR.output to be{}

Visit an instructionI, identify its input and output resources,

For each elementY in OUTs,
IF there is any instructionJ associated withY.input,

THEN create an arc(I,J).
IF there is any instruction K associated withY.output,

THEN create an arc(I,K).
setY.output to be{I}.
setY.input to be{}.

For each elementX in INs,
IF there is any instructionL associated withX.output,

THEN create an arc(I,L).
add I into X.input.

IF there is any instruction yet to be scheduled,
THEN go to step 2.
ELSE return.

0.
1.

2.

3.

4.

5.

DAG construction

INPUT: An instruction stream.
OUTPUT: DAG representation.

Figure 9 DAG construction algorithm

INs andOUTs.

include the switching activities at the input and output
latches in the power cost entry. Figure 11 shows the
reduction in switching activities for different benchmark
programs using cold scheduling over that uses the origi-
nal performance-driven instruction scheduler. The results
show an 20 ~ 30% reduction in switching activities.
Although the study in this paper is limited to circuits in
the control path, the amount of switching activities saved
by cold scheduling is still significant.

Figure 12 shows the impact of performance using
cold scheduling. Compared to a regular performance-
driven instruction scheduling, cold scheduling has a
2~4% performance degradation. This minor performance
degradation is mainly due to trading bit switches for per-
formance.

5. Conclusion
In this work, we demonstrated that significant

reduction in power consumption can be achieved by an
architectural decision and compiler techniques. In partic-
ular, we presented two novel techniques to minimize
switching activities for high-performance processors.

Set ready list RL to be {}
Set the last scheduled instruction LSI = NOP

0.

1.

Cold Scheduling

INPUT: DAG representation and bit switching table
OUTPUT: A scheduled instruction stream

Remove ready instructions from DAG and
add these ready instruction into RL.

ELSE return.
THEN go to step 1,

IF there is any instruction yet to be scheduled,4.

Write out LSI.
The removed instruction becomes the current LSI.
Remove an instruction I with the smallest S(LSI,I) from RL.3.

find S(LSI,I).
For each instruction I in RL,2.

Figure 10 Cold Scheduling Algorithm

Reduced
bit switching(%)

fastqueens

qsort

reducer

circuit

semigroup

nand

boyer

browse

chat

10 20 30 40

Figure 11 Bit switching reduction of cold scheduling

24.5

25.8

23.9

32.2

25.6

35.2

20.9

29.1

23.9

First Gray code is used for the memory addressing scheme
instead of the traditional binary coding. Because of the
characteristic of Gray code and the consecutive memory
referencing nature of processors due to program locality,
significant reduction in switching activities is obtained at
the address lines. Experimental results show an average
36.9% reduction. In addition, we described a simple
scheme which modifying the current optimizing compiler
backend to work with the Gray code addressing system.

Second, we developed a new instruction scheduling
algorithm, cold scheduling, which minimizes the switching
activity using a simple list scheduling algorithm. We
implemented it in the Aquarius compiler system. Experi-
mental results show that by using cold scheduling, about
20~30% of the switching activity in the control path are
reduced with only a 2~4% degradation in performance
comparing with the regular performance-driven instruction
scheduler.

In the future, we want to further explore the impact
of architectural decisions and compiler techniques on
power consumption. In particular, we are working on the
instruction set architecture design for a low power proces-
sor and hardware/software co-design for low power.

Acknowledgments
The authors would like to thank Chen-Chiu Teng for

the valuable discussion on using Gray codes for addressing
and John Barr and Steve Crago for reviewing early drafts
and valuable comments. The work was supported by
ARPA under grant No. J-FBI-91-194.

References
[Bradlee 91] D.G. Bradlee, S.J. Eggers, and R.R. Henry,
“Integrating Register Allocation and Instruction Scheduling for
RISCs,” the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating System, 1991.
[Bernstein 91] D. Bernstein, and M. Rodeh. “Global Instruc-
tion Scheduling for Superscalar Machines,” Proc. of the ACM

Performance
degradation (%)

fastqueens

qsort

reducer

circuit

semigroup

nand

boyer

browse

chat

2 4 6 8

Figure 12 Performance degradation due to cold scheduling

3.7

5.4

3.6

1.5

3.7

2.9

2.0

5.8

2.7

SIGPLAN ‘91 Conf. on Programming Language Design and
Implementation, June. 1991.
[Chandra 92] A.P. Chandrakasan, S. Sheng and R.W. Brod-
ersen, “Low-power CMOS digital design,” IEEE J. Solid-State
Circuits, Vol. 27, No4, 1992.
[Fisher 81] J.A. Fisher. “Trace Scheduling: A Technique
for Global Microcode Compaction,” IEEE Transactions on
Computers, Vol. 30, No. 7, 1981.
[Ghosh 92] A. Ghosh, S. Devadas, K. Keutzer, and J.
White, “Estimation of Average Switching Activity in Combina-
tional and Sequential Circuit,” the 29th DAC, 1992.
[Haygood 89] Haygood, “A Prolog Benchmark Suite for
Aquarius,” Technical Report, Computer Science Department,
University of California, UCB/CSD 89/509, 1989.
[Hayes 88] J.P. Hayes, “Computer Architecture And
Organization,” McGraw-Hill Int. Editions, 1988.
[Holmer 90] B. Holmer, B. Sano, M. Carlton, P. Van Roy,
R. Haygood, W. Bush, and A. Despain. “Fast Prolog with an
Extended General Purpose Architecture,” the 17th Annual
International Symposium on Computer Architecture, May
1990.
[Hwu 92] W.W. Hwu and P.P. Chang, “Efficient Instruc-
tion Sequencing with Inlining Target Insertion,” IEEE Transac-
tions on Computers, Vol. 41, No.12, Dec. 1992.
[Jouppi 89a] N.P. Jouppi, and D.W. Wall. “Available
Instruction-Level Parallelism for Superscalar and Superpipe-
lined Machines,” the 3rd International Conference on Architec-
tural Support for Programming Languages and Operating
System, 1989.
[Liu 93] D. Liu, and C. Svensson, “Trading Speed for
Low Power by Choice of Supply and Threshold Voltages,”
IEEE J. of Solid State Circuits, Vol. 28, No. 1, 1993.
[MIPS 86] “MIPS language programmer’s guide,” MIPS
Computer Systems, Inc., 1986
[Nicolau 84] A. Nicolau, J.A. Fisher, “Measuring the Paral-
lelism Available for Very Long Instruction Word Architec-
tures,” IEEE Transactions on Computers, Vol. 33, No. 11, 1984.
[Prasad 93] S. Prasad and K. Roy, “Circuit activity driven
multilevel logic optimization for low power reliable operation,”
EDAC, February, 1993.
[Roy 92] K. Roy and S. Parsad, “SYSLOP: Synthesis of
CMOS logic for low power application,” ICCD, October, 1992.
[Shen 92] A. Shen, A. Ghosh and S. Devadas,”On Aver-
age Power Dissipation and Random Pattern Testability of
CMOS Combinational Logic Networks”, IEEE ICCAD,Nov,
1993.
[Su 92] C.L. Su, “An instruction Scheduler and Regis-
ter Allocator for Prolog Parallel Microprocessors,” Interna-
tional Computer Symposium, 1992.
[Tsui 93] C.Y. Tsui, M. Pedram, and A.M. Despain,
“Technology Decomposition and Mapping Targeting Low
Power Dissipation, “the 30th DAC, 1993.
[Vaishnav 93] H. Vaishnav and M. Pedram, “Pcube: A Per-
formance driven placement algorithm for low power designs,”
EURO-DAC, September,1993.
[Van Roy 92] P. Van Roy and A. M. Despain, “High-Perfor-
mance Logic Programming with the Aquarius Prolog Com-
piler,” Computer, January 1992.
[Weste 93] Neil H.E.Weste and K. Esharaghian, “Princi-
ples of CMOS VLSI Design, A Systems Perspective,” Addison
Edition 1993.

