
Low Power Architecture of the Soft-Output Viterbi
Algorithm

David Garrett and Mircea Stan
University of Virginia - Department of Electrical Engineering

Charlottesville, VA 22903
garrett@virginia.edu mircea@virginia.edu

1 ABSTRACT
This paper investigates the low power imple-
mentation issues of the soft-output Viterbi algo-
rithm (SOVA), a building block for turbo codes.
By briefly explaining the theory of turbo codes,
and by reviewing several of the decoding algo-
rithms, we develop the computational require-
ments for a SOVA implementation, and
ultimately develop an architecture that com-
pletes those computations with reduced power
consumption. The architecture builds on previ-
ous work on the Viterbi and Soft-Output Vit-
erbi algorithms, and incorporates a novel
orthogonal access memory structure, which
provides parallel access across sequentially
received data.

1.1 Keywords
SOVA, turbo codes, VA, low power.

2 INTRODUCTION
Turbo codes were introduced by Berrou et. al. in 1993 [1],
and represent a significant advance in the communications
field by closely approaching Shannon’s channel capacity
limit. The algorithms have performed with bit error rates
(BER) of 10-5 at signal-to-noise ratios (Eb/N0) down to 0.7
dB in simulations [2]. By comparison, the Eb/N0 required for
a commonly used 64-state convolution code decoded with
the Viterbi algorithm is 4.5 dB for a 10-5 BER [3].

When looking at communication system design, turbo cod-
ing can have an immediate impact on the power budget,
because these codes can lower the transmit power require-
ments by several dB. For mobile communications, turbo cod-
ing will become important in maintaining battery life by
reducing the transmit power budget, at the expense of more
complex decoding algorithms.

While the turbo coding algorithm itself is ideal for low
power communication systems, there is the additional chal-
lenge of designing a coder/decoder (CODEC) that uses min-
imal power. While there have been several implementations
of turbo decoders [4][5], none of them has addressed low
power as a driving factor in the realization of the algorithms
(the implementation in [4] runs at 5V and consumes 1.7
watts at 40MHz). Yet in the near future, personal communi-
cations systems (PCS) will communicate directly with satel-
lites and the lowest Eb/N0 performance coupled with a Low-
Power design are of the utmost importance in maintaining
service life for these applications.

To build a low power system such as this requires a low
power design methodology at all levels of abstraction. From
the optimal selection of low-capacitance primitive cells, to
setting an ultra-low supply voltages, intelligent clock man-
agement, and all the way up to architectural issues like data
representation or parallelism. Considerable work has been
done in all these levels of low power design, and for this
paper we will focus on the architecture of the decoder for
reducing switching activity with the assumption that a final
implementation will have these and other low power tech-
niques incorporated.

This paper is partitioned into three sections:

• a brief introduction into Turbo coding theory,
• a review of “soft-output” decoding architectures,
• a proposed architecture for a low power SOVA decoder.

3 TURBO CODES

3.1 Turbo Encoding
The basic building block for turbo encoders, as for any con-
volutional code, is a recursive convolutional encoder as seen
in Fig. 1. At each instance of time, the particular symbol
information, uk, will generate an associated parity bit, xk

p,

+

+

uk

xk
1p

S1 S0

M : number of bits
2M : max number

Fig. 1. Recursive Convolutional Encoder

of states

according to the current state of the encoder, {s1s0}. Turbo
codes piece together two of these encoders operating in par-
allel on blocks of data, with the second encoder operating on
the data after it has been re-ordered with an interleaver. The
BER performance of turbo codes has been shown to be
related to the interleaver block size, N [6] which leads to rel-
atively large blocks sizes for Turbo code applications, on the
order of at least 1000 symbols. Fig. 2 shows a turbo encoder
with example symbol data fed into each encoder, the second
encoder operating on interleaved data from this first encoder
(block size of 6 for illustration purposes only). Turbo codes
are not simply redundant coding techniques like inner and
outer codes, but are actually a way of allowing the two paral-
lel encoders to work together.

3.2 Turbo Decoding
Because Turbo codes use two encoders on differently
ordered blocks of data, recovering the code directly from the
received codewords is difficult. Berrou’s breakthrough was
combining the parallel concatenated convolution codes
(PCCC) with a two-stage iterative decoder block (Fig. 3).
The first stage performs a sequence detection using the
received symbol and parity bit information from the first
encoder, and calculates the maximum likelihood (ML)
sequence of encoder states. From this sequence, the original
symbol stream could be recovered with a deterministic func-
tion based on the encoder structure, but the important part of
turbo codes is that the first stage also passes along “soft”
information, Le, that specifies the confidence in that deci-
sion. The second stage performs the same ML detection on
the interleaved data, but it now has the “extrinsic” data to
help skew the results toward the ML path from the first stage.
If a symbol has been detected with high confidence in the
first stage, the second stage is predisposed to make the same
decision.

Consider the case where the first stage has a low confidence
and an incorrect symbol decision, and the second stage has a
high confidence with the correct symbol. The second stage,
with its high confidence, will reverse the first symbol deci-
sion, and since its “soft” information is passed back to the
first stage, the iterative approach will converge to the ML
path and the correct bit decisions. Simulations have shown
that the Turbo code performance is not very high after the
first iteration, but after several stages it converges to the low
BER [7].

3.3 Sequence Detector Algorithms
The original Turbo code decoding algorithm was based on
the maximum a posteriori (MAP) detector which is the opti-
mal algorithm for minimizing bit error decisions [8]. The
MAP algorithm is very costly because during the traceback
steps to find the competing paths, it evaluates all possible
paths. The Max-Log-MAP modification takes the MAP
algorithm and converts the calculations into the logarithmic
domain, removing the need for multiplication operations.

As an alternative to the MAP algorithms, Hagenauer pro-
posed the Soft-Output Viterbi Algorithm (SOVA) [9], a mod-
ification of the Viterbi algorithm (VA) that also provides
confidence information with each decision bit. Although it is
less than optimal for bit error detection as compared with the
MAP algorithm, simulations with SOVA show only a 0.7 dB
increase in Eb/N0 to maintain the same BER as MAP (inter-
leaver size of 1024) [9]. SOVA reduces complexity of the
decoding problem by eliminating unlikely paths, and while it
does find the same hard decision on the symbols as the MAP
[10], it tends to overestimate the confidence of a symbol
detection.

For the sake of low-power and for circuit area, SOVA is the
algorithm of choice for implementation, and the remainder
of this paper will evaluate this algorithm.

4 SOVA

4.1 Measure of Maximum Likelihood
The original Viterbi algorithm is the optimal choice when
trying to match an incoming sequence of data and parity bits
to the original states of an encoder [11]. Once the highest
likelihood path of encoder states has been calculated, the
exact input data sequence can be reconstructed through tra-
ceback information.

The Viterbi decoder uses a “butterfly” state decomposition,
shown in Fig. 4 for the 2-bit encoder from Fig. 1. With
binary symbols, each currrent state can only be reached from
two previous states, and in the case of a recursive convolu-
tional encoder, each branch comes from a different symbol
decision, one is a binary ‘1’, and the other is a binary ‘0’.
The Viterbi algorithm determines maximum likelihood paths
by evaluating the two paths into a given state, and determin-
ing the one with the highest path metric (PM). The updated
path metric for each state is stored along the decision bit

Interleaver

P
un

ct
ur

in
g

u

u’

x1p

x2p

{u1u2u3u4u5u6}

{u4u6u2u5u1u3}

{x 1p,x2p}

u

encoder

encoder

Fig. 2. Turbo Encoder

{u’ 1u’2u’3u’4u’5u’6}

MAP
Decoder 1

N-bit
De-Intrlver

y1p

ys

y2p

Le
21

Le
12 N-bit

Intrlver

N-bit
Intrlver

MAP
Decoder 1

Fig. 3. Turbo Decoder

used to reach that state. Each of the path decisions are based
on matching the incoming codeword with the transition
probabilities, and each new state represents the receipt of one
more codeword (one symbol and one parity bit).

4.2 Traceback
The path metric calculations just assigned the measurement
functions to each state, but the actual Viterbi decisions on
encoder states is based on atraceback operation to find the
path of states. Fig. 5 shows an example of the possible trace-
back paths from time k, and each state follows backwards
through its paths based on the stored decision bit. The impor-
tant characteristic is that if every state from a current time is
followed backwards through its maximum likelihood path,
all of the paths converge at a point somewhere previous in
time. This is how traceback decisively determines the state
of the encoder at a given time, by showing that there is no
better choice for an encoder state given the global maximum
likelihood path. In Fig. 5, all of the paths have converged at
time j, and the algorithm can actually release that state, along
with its decision bit, as the decoded sequence.

4.3 Soft Information
SOVA extends the Viterbi algorithm with confidence infor-
mation by looking at the difference of incoming paths to a
state as a measure of “correctness” for that decision [9].
Whereas the Viterbi algorithm traces back over one path,
SOVA traces backwards over the maximum likelihood (ML)
path and its next competitor (if the ML approaches a state
with a ‘1’ input, the competitor traces back the ‘0’ path). The
traceback operation takes the measure of likelihood at the
starting state, and updates the bits along that path with the
minimum of the pathmetric difference at the start of the tra-
ceback or its current value, but only along the paths where
the ML and competitor paths differ in bit decisions. The idea
is that all the decisions bits along the traceback path are
based on correctly choosing the ML path, and if the compet-
itor path has a different decision, it can only be as confident
as the decision to choose the competitor over the ML path.
One problem with SOVA in its original form is that it had to
traceback from each of the 2m states because at that point the
global ML path was not known..

Another method to reduce the complexity of the traceback
operation was shown in [12]. The solution was to look for-
ward in time in order to find the ML path with the regular

VA. This reduces the number of SOVA tracebacks to just one
from the ML state instead of from all 2m states. In addition it
was found that the SOVA traceback length could be reduced
in half with a minimal degradation in performance. Fig. 6
shows an example trellis and how the VA and SOVA algo-
rithms work together. The decoding proceeds forward calcu-
lating the path metrics of each state, but at time k where the
SOVA would normally traceback for each of the 2M possible
states to determine the minimum reliability, the Viterbi algo-
rithm can be used to search further forward in time. With a
traceback algorithm, a single state, mk, can be selected for
the SOVA reliability traceback.

4.4 VA Systolic Array
The main bottleneck in implementing SOVA is that for every
new piece of symbol information, the algorithm traces back
over multiple states. A particularly clever solution to the tra-
ceback problem for the Viterbi algorithm was shown by
using a systolic array [13]. At the beginning of the array, the
butterfly matrix calculates the next states as a function of the
current path metrics of all states and the most recent symbol
and parity data. The paths to each state in the trellis imply
the decision bits that were used to reach those states, and that
information is also explicitly computed. The ML state is
selected from the maximum path metrics of all the current
states, and is passed along with the decision vector. The max
state represents the start point for the traceback through to
the encoder trellis. This structure is represented in Fig. 7.

The systolic array keeps the high throughput for the trace-
back operations by launching a new traceback into the pipe-
line on every cycle. The pipeline has two components,
propagating through the stages:

• the traceback states
• the decision vectors
While the decision vectors move one step ahead on every
cycle, the ML state stages actually jump ahead two steps at a
time. The beginning of the pipeline is analogous to time k in
Fig. 5, in that all the possible stages have a path to a previous

00

01

10

11

00

01

10

11

k k+1

00

01

10

11

00

01

10

11

k k+1

(b)(a)

Fig. 4. Next-state trellis of 2-bit encoder

k0.. j

00
01

10
11

Fig. 5. VA Traceback Paths

states

timeall paths
converged

k0 j

01

11

n

SOVA VA

10

00

mk

Fig. 6. SOVA combined with Viterbi

ML path

competitor

state as defined in the decision bit vector. The state register at
the beginning of the pipeline represents the state the trace-
back will occur from, much like state 00 in Fig. 5. On the
next clock cycle, the kth state decision vector moves one
stage, but the ML traceback state jumps forward to the deci-
sion vector for time (k-1). Again the previous state is calcu-
lated and as the state travels into the pipeline, it moves closer
to the final traceback time. The pipeline is sized such that the
traceback state will reach the final state where a symbol deci-
sion is made (analogous to the traceback of the ML path in
Fig. 5 from time k to time 0) at the end of the pipeline, and at
that point the decision vector bit can be released as the true
decoded symbol.

4.5 High-Throughput Reliability Traceback
The systolic array is a powerful way to implement a high-
speed Viterbi algorithm but the above description just han-
dles the traceback of states. To extend the systolic traceback
to SOVA presents some complicated design issues:

• SOVA requires path metrics differences for every state,
• traceback must occur on two paths (survivor and com-

petitor),
• each state must have access to all information about the

path metric differences and decision vectors) for that
particular time.

Inherently the systolic structure of the Viterbi algorithm
implementation is a “power hog” because every stage in the
pipeline requires data movement on every cycle. With the
addition of the path metrics for every state, the memory size
for SOVA grows significantly, as does the power consump-
tion. In order to handle the tracebacks, the structure requires
parallel access to all the states simultaneously, yet new infor-
mation only comes at the head of the pipeline. The following
sections will show a low power traceback structure for
SOVA that maintains a high throughput structure, but
reduces power consumption by intelligent management of
metric data.

5 DATA MANAGEMENT FOR LOW
POWER

5.1 Orthogonal Memory Access
A structure for realizing the SOVA algorithm in hardware
requires the storage of large amounts of data, and it also
requires access to blocks of data across multiple time win-
dows. The ideal structure is memory with orthogonal access
in which the data is written in sequential order, and in a sin-
gle step, information across all the stages can be read in par-
allel. Such a memory, where data can be written in by rows,
and read out by rows or columns ensures a high throughput
of the traceback, and also eliminates the wasteful data move-
ment in the processing of SOVA.

An implementation of an orthogonal random access memory
cell can be built with a slight modification to the traditional
six transistor SRAM cell. With the addition of a second set
of access transistors as shown in Fig. 8, intelligent control of
the word lines creates an orthogonal,write by rows read by
columns memory.

5.2 SOVA Traceback Pipeline
The structure of the low power SOVA (LP-SOVA) architec-
ture is similar to the systolic array for the Viterbi algorithm,
but it combines the orthogonal memory with two traceback
pipelines with path metric difference calculations.

As with the Viterbi systolic array, the add-compare-select
logic is used in LP-SOVA to generate next state path metrics
and the decision vectors, but instead of launching the values
into a pipeline, they are written directly into the memory
array. An auto-increment pointer is used so that successive
trellis states are stored sequentially. Fig. 9 shows the organi-
zation of the memory array, with the decision bits for each
state (d[state]) and the path metrics (PM[state]). Written in by
columns, the orthogonal memory allows the entire set of
decision bits for a particular state to be retrieved in one
cycle. With a traditional memory architecture each traceback
operation would require k memory reads for a single trace-
back step.

state-1()

mux

0
1
0
0

sk sk-1 sk-2

1
1
0
0

1
0
0
1

0
1
1
0

0
0
0
0

dk dk-1 d0

mk m0

Fig. 7. Traceback pipeline

1
1
0
0

1
0
0
1

0
1
1
0

0
0
0
0

s0

traceback
state

next state in the
traceback

pathbits

pathbit used to reach
the traceback state

pathbit
pipeline

ML state
traceback

WL1

m8

m7

BL1

BL2

Fig. 8. Orthogonal-access SRAM

m6m5
m2

m4

VSS

VDD

VSS

VDD

m3

m1
BL1

BL2

WL2

In the Viterbi systolic traceback pipeline, the traceback states
have a stride of 2 with respect to the decision vectors, but
with the new storage arrangement, the traceback states are
matched with the rows of the orthogonal memory. With the
memory, the decisions vectors are static, and the traceback
states only have to move one step each cycle.

The pipeline is arranged so that as the updated information is
written into the orthogonal memory, a new traceback is
spawned in lower pipeline. Similar to the systolic array, the
previous state calculation is based on the current state as well
as the decision vector in the memory. Instead of hardwiring
the connections, the decision vectors are retrieved with a col-
umn read.

5.3 LP-SOVA Solution
All of the components, the ACS logic, the orthogonal mem-
ory, and the two traceback pipelines can be pieced together
to create the LP-SOVA decoding solution. Fig. 10 shows the
block diagram of the decoder. The three main pipelines con-
tained are the maximum likelihood path, the competitor path,
and the reliability information pipeline.

In terms of Low Power this design offers many potentials
gains over a systolic array implementation.

• Of the utmost importance, the large block of path metric
decisions vectors are static, maintaining their position in
the memory for the duration of the decode operation.

• the data in memory does not need to move in a stride of
2 as with the systolic array.

• the decision vectors are recovered conditionally, elimi-
nating wasteful memory reads.

In order to effectively evaluate the LP-SOVA architecture, it
must be compared against the systolic architecture proposed
in [12]. As explained in [12], the traceback operation can be
partitioned into a VA traceback and a SOVA traceback. This
previous SOVA architecture uses hardware to calculate the
VA (which then discards the path metric calculations), and
then starts a dedicated SOVA traceback in a separate hard-
ware block, recalculating the path metric differences. In
terms of power consumption, this is wasteful for two rea-

sons:

• it performs the exact same calculation twice
• it requires that the incoming sample data be buffered in

a shift register chain.
The key to LP-SOVA is that it calculates the path metrics in
the beginning, stores them, and then does not move them
from that memory location. While this does increase storage,
some of that storage is recovered in eliminating the stride 2
systolic array. Fig. 11 shows the structure of data storage for
the LP-SOVA and the systolic array. The actual traceback
pipelines are very similar for both implementations as they
require the same information at the same rates so the main
difference is in the data storage. An estimate of the power
consumed in the data storage area can be measured by look-
ing at the actively moving data in any one clock cycle. For
the systolic array SOVA implementation, there are moving
samples for storing the data, propagating the pathbits for the
VA traceback, and propagating the pathbits along with path-
metric differences for the SOVA traceback. We can represent
the storage requirements for SOVA with the following vari-
ables:j is the depth of the Viterbi traceback,k is the depth of
the SOVA traceback,m is the number of encoder bits,d is the
A/D precision, ande is the precision of the pathmetric differ-
ences. Equation (1) shows the storage requirements for the
systolic array SOVA. In constrast, the LP-SOVA solution has
storage for the pathbits and pathmetric differences for the
both traceback stages (2). The key difference for power
comes from the fact that LP-SOVA maintains mosts of the
data statically while the systolic nature of the regular SOVA

d0
[00]

PM0
[00]

d0
[01]

PM0
[01]d0

[10]

PM0
[10]

d0
[11]

PM0
[11]

B
ra

nc
h

M
et

ric
s

d0
[s0] dn[sn]

A
C

S
 L

og
ic

Orthogonal Memory

column

Fig. 9. SOVA on-chip memory structure

PM0
[s0]

dn
[00] PMn

[00]

dn
[01] PMn

[01]

dn
[10] PMn

[10]

dn
[11] PMn

[11]

PMn
[sn]

row vector

vector
sk sksksk sksk

auto-increment
address pointer

ACS

Decision and PM Memory

LeLeLe

sk sksk

decision vectors

sk

decision vectors

sk

path metrics -ML

path metrics -competitor

Le

ML
Traceback
Pipeline

Competitor
Traceback
Pipeline

Reliability
Information

Pipeline

Fig. 10. LP-SOVA Architecture

row vector bus

forces every storage location to be updated on every cycle.
Equations (3) and (4) show the ratioes of active to unchanged
samples on a per cycle basis, Consider a typical SOVA appli-

cation for turbo codes with 4-bit data samples and 6-bit
pathmetric resolution, while the storage requirements are on
par, LP-SOVA has less then 16% active for a 4-state code as
seen in Table 1..

While we have demonstrated sharp decrease in transition
activity, the power is also dependent on other factors such as
loading on the particular circuits, and actual circuit imple-
mentations. While memories are generally penalized for
power with large bitlines, in this application the sizes are rel-
atively small, and the RAM should not have any disadvan-
tage over the systolic array in terms of loading. The other
advantage is that access to the data is through a common bit-
line, thus eliminating a large section of interconnect wiring
between the pathmetric and the traceback pipelines. In the
data storage area, which should account for around half of
the SOVA total power, we expect to see close to an 84%
reduction in power for data storage based on the activity rati-
oses.

6 CONCLUSIONS
Turbo codes have achieved excellent coding performance,
effectively receiving data when Gaussian noise contains
almost as much power as the actual signal. The opportunities
for turbo codes in future PCS is widespread, but due to the
complex algorithms required, low-power architecture are of
the utmost importance. In the turbo coding algorithm, one of
largest and most important blocks in the sequence detector
algorithm. This paper presents a low-power architecture for
the soft-output Viterbi algorithm. The key issue is to turn the
systolic array into a structure where the data is retrieved
from an orthogonal memory structure. There is an enormous
reduction in the transitional activity for data storage, which
translates directly into power savings.

7 ACKNOWLEDGMENTS
We would like to thank Dr. Stephen Wilson, Dr. Nicholas
Sidiropoulos, and Eric Hall for invaluable help in under-
standing the Turbo Code algorithms. This work was partially
supported by NSF Career Grant MIP-9703440.

8 REFERENCES
[1] Berrou, A. Glavieux, and P. Thitimajshima,Near Shannon

limit error-correcting coding and decoding, Proceedings 1993
International Conference on Communication, p. 1064-1070.

[2] L. Perez, J. Seghers, D. Costello,A Distance Spectrum
Intrepretation of Turbo Codes, IEEE Transactions on Informa-
tion Theory, Vol. 42., No. 6, Nov 1996, p. 1698.

[3] S. Wilson,Digital Modulation & Coding, Prentice-Hall, 1996,
p. 604.

[4] M. Jezequel, C. Berrou, C. Dillard, P Penard,Characteristics
of a Sixteen-State Turbo-Encoder/Decoder (TURBO), Interna-
tional Symposium on Turbo Codes, 1997, p. 280-283.

[5] CAS-5093 Turbo-Code Codec, Comatlas, Inc. product data
sheet, May 1995, rev 4.1.

[6] S. Benedetto, G. Montorsi,Unveiling Turbo Codes: Some
Results on Parallel Concatenated Coding Schemes, IEEE
Transactions on Information Theory, Vol. 42, No. 2, March
1996, p. 409-428.

[7] K. Koora, et. al.,From Algorithms testing to ASIC Input code
of SOVA algorithm for TURBO-Codes, Proceedings of Turbo-
Code Seminar, 1996.

[8] L. Bahl, J. Cocke, F. Jelinek, J. Raviv,Optimal decoding of lin-
ear codes for minimizing symbol error rates, IEEE Transac-
tions of Information Theory, Vol. IT-20, Mar ‘74, p. 284-287.

[9] J. Hagenauer, P. Hoeher,A Viterbi Algorithm with soft-deci-
sion outputs and its applications, Proceedings of IEEE 1989
Globecom Conference, p. 1680-1686.

[10] P. Robertson, E. Villebrun, P. Hoeher,Comparison of Optimal
and Sub-Optimal MAP Decoding Algorithms Operating in the
Log Domain, Proceedings of the ‘95 ICC, p. 1009-1013.

[11] A. Viterbi, Error Bounds foor Convolutional Codes and a
Asymptotically Optimum Decoding Algorithm, IEEE Transac-
tions on Information Theory, vol. IT-13, Apr ‘67, p. 260-269.

[12] C. Berrou, et. al.,A Low Complexity Soft-Output Viterbi
Decoder Architecture, Proceedings of 1993 ICC, p. 737.

[13] T. Trung, et. al,A VLSI Design for a Trace-Back Viterbi
Decoder, IEEE Trans. on Communications, Vol. 40, No. 3,
March 1992, p. 616-624.

[14] P. Gulak, T. Kailath,Locally Connected VLSI Architectures for
Viterbi Algorithm, IEEE Journal on Selected Areas in Commu-
nications, Vol. 6, No. 3, April 1988, p. 527-537.

[15] S. Kubota, S. Kato,Novel Viterbi Decoder VLSI Implementa-
tion and its Performance, IEEE Transactions on Communica-
tions, Vol. 41, No. 8, August 1993, p. 1170.

[16] J. Rabaey,Digital Integrated Circuits: A Design Perspective,
Prentice Hall: New Jersey, 1996. p. 585-587.

of states Systolic SOVA LP-SOVA

 4 storage 632 616

active ratio 1.0 0.16

 8 storage 1600 1680

active ratio 1.0 0.09

 16 storage 3688 4144

active 1.0 0.06

Table 1: SOVA Storage Comparisons

Symbol
Data

pathbits

ACS
pathbits,

VA pathbits, PM differences

ACS

ACS

Fig. 11. Data storage comparison

PM

PM

PM diff.

(a) systolic array

(b) LP-SOVA

2dj

2
m

e 1+() j k+()

j2
m 1+ k2

m 1+
e 1+()

αLP
2
m

k+

2
m

j k+()
------------------------ 1

2
m

e 1+()
------------------------+=(3)αSOVA 1= (4)

NSOVA 2dj j2
m 1+

k2
m 1+

e 1+()+ +=

NLPSOVA 2
m

e 1+() j k+()=

(1)

(2)

