

Low power architectures for streaming applications

Citation for published version (APA):
He, Y. (2013). Low power architectures for streaming applications. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR759534

DOI:
10.6100/IR759534

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.6100/IR759534
https://doi.org/10.6100/IR759534
https://research.tue.nl/en/publications/5b98aac9-2173-459d-8923-fd34d23b1fd3

LOW POWER ARCHITECTURES FOR

STREAMING APPLICATIONS

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op maandag 14 oktober 2013 om 16.00 uur

door

Yifan He

geboren te Hangzhou, China

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H. Corporaal

en

prof.dr.ir. P.P. Jonker

Copromotor:

dr.ir. B. Mesman

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

He, Yifan

Low Power Architectures for Streaming Applications

/ by Yifan He. – Eindhoven : Technische Universiteit Eindhoven, 2013.

A catalogue record is available from the Eindhoven University of Technology Library

ISBN 978-90-386-3461-6

NUR 959

Subject headings: low power / processor architecture / streaming applications /

embedded systems

LOW POWER ARCHITECTURES FOR

STREAMING APPLICATIONS

Committee:

prof.dr. H. Corporaal (promotor, TU Eindhoven)

prof.dr.ir. P.P. Jonker (promotor, TU Eindhoven, TU Delft)

dr.ir. B. Mesman (copromotor, TU Eindhoven)

prof.dr. K. Bertels (TU Delft)

prof.dr. B.H.H. Juurlink (TU Berlin)

prof.dr. J. Pineda de Gyvez (TU Eindhoven, NXP Semiconductors)

prof.dr.ir. A.C.P.M. Backx (chairman, TU Eindhoven)

This work has been carried out as part of the EVA project PID-07121. The project is

supported by the Ministry of Economic Affairs of the Netherlands.

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 290.

© Yifan He, 2013.

All rights are reserved. Reproduction in whole or in part is prohibited without the

written consent of the copyright owner.

Printing: Printservice Technische Universiteit Eindhoven

To my parents, my wife, and my daughter

1 ABSTRACT

2 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Streaming applications are an important class in emerging embedded systems

such as smart camera networks, unmanned vehicles, and industrial printing.

On the one hand, these applications are usually very computationally intensive

and have real-time constraints. On the other hand, embedded systems running

these applications often have limited power sources like batteries or solar pa-

nels. Therefore, energy-awareness becomes increasingly important in architec-

ture designs for these systems. To achieve high efficiency in such kind of sys-

tems, significant efforts at different hardware and software design levels are

required. This thesis deals with part of the challenges in the design of energy-

efficient architectures for streaming applications, and discusses the following

four main topics.

In embedded processors, a substantial part of the energy is consumed by

the register file (RF). As a first contribution of this thesis, MOVE-Pro, a new

transport triggered architecture (TTA) based processor architecture is proposed to

reduce energy consumption of the register file. With fine-grained control over

datapath and optimization in different software/hardware levels, we achieve

significant RF accesses reduction in MOVE-Pro: on average about 70% of RF

accesses are eliminated, resulting in a dramatic reduction of RF energy. More

importantly, with the proposed MOVE-Pro architecture, the RF energy saving

is fully transferred to the total core energy saving. Compared to its RISC coun-

terpart, a total core energy saving of up to 11.6% is achieved.

In application specific instruction set processor (ASIP) design, it is common

to synthesize instruction sets that support patterns of operations in targeted

applications to achieve better performance and energy efficiency. However, in

an embedded generic processor with compact ISA, such instructions can lead

to large overhead. As a second contribution of this thesis, an architecture that

supports flexible operation pairs in processors with compact ISAs is proposed.

It introduces a partially reconfigurable decoder and a software-controlled by-

pass network, allowing the processor to support operation pairs without in-

creasing the instruction width or number of register file ports. Comprehensive

and detailed experimental results demonstrate that the proposed architecture

achieves an average of 26.0% reduction in dynamic cycle count and an average

of 15.8% reduction in energy consumption compared to the reference proces-

sors.

In many embedded streaming applications, substantial amounts of data-

level parallelism can be exploited. To deal with energy-efficiency in combina-

tion with high performance requirements, Xetal-Pro, a massively-parallel SIMD

architecture, is proposed. The initial idea of combining massive parallelism and

aggressive Vdd scaling is presented and discussed in detail. A hybrid memory

system, which reduces the non-local memory traffic and enables further Vdd

scaling, is also introduced. This work shows that it is possible to achieve 1

pJ/op core energy consumption for typical kernels of embedded streaming ap-

plications.

To meet the increasing demand for performance and efficiency in streaming

applications, multi-processor system-on-chips (MPSoCs) are becoming a popu-

lar solution. As the fourth contribution of this thesis, an efficient and predicta-

ble communication assist (CA) for integrating generic IP cores into heterogene-

ous MPSoCs is proposed. The corresponding cycle-accurate synchronous data

flow (SDF) model for the proposed communication assist is also presented. By

integrating this SDF model into SDF analysis tools, worst-case system proper-

ties, such as throughput, latency, and buffer sizes can be conservatively ana-

lyzed at design time. As a case study, a vision processing pipeline of an indus-

trial application, Organic Light Emitting Diode (OLED) screen printing, is

mapped onto the proposed platform. This case study also demonstrates that

the proposed design flow enables efficient integration of accelerator IPs into a

heterogeneous MPSoC which targets streaming applications.

CONTENTS

1 INTRODUCTION .. 1

1.1 Trends in Embedded Streaming Applications 1

1.2 Challenges in Low-Power Architecture Designs 3

1.3 Design Flow of Streaming Application Systems 7

1.4 Problem Statement ... 11

1.5 Contributions .. 13

1.6 Thesis Overview ... 14

2 MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 15

2.1 Register File Access Reduction ... 16

2.2 Exposed Datapath Architecture.. 18

2.3 Energy-Aware Compilation For MOVE-Pro 24

2.4 Experimental Results ... 26

2.5 Related Work ... 34

2.6 Summary .. 35

3 AN ENERGY EFFICIENT METHOD OF SUPPORTING FLEXIBLE SPECIAL

INSTRUCTIONS .. 37

3.1 Operation Patterns and Special Function Unit 39

3.2 Integrating SFU into Processors with Compact ISA 43

3.3 Code Generation for Special Instructions ... 50

3.4 Evaluation and Analysis .. 52

3.5 Related Work ... 58

3.6 Summary .. 61

4 TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 63

4.1 The Xetal-II Processor .. 64

4.2 Challenge of Ultra-Wide-Range Vdd Scaling 69

4.3 Exploration of Vdd Scalable FM ... 74

4.4 Hybrid Memory System (HMS) ... 76

4.5 Related Work ... 84

4.6 Summary .. 86

5 EFFICIENT COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS .. 87

5.1 Inter-Core Communication Modeled with SDF 88

5.2 Communication Assist ... 90

5.3 Proposed Architecture Template & Tool Flow 98

5.4 Case Study: Vision Processing in OLED Printing 101

5.5 Related Work ... 105

5.6 Summary .. 107

6 CONCLUSIONS AND FUTURE WORK ... 109

6.1 Conclusions ... 109

6.2 Future Work .. 111

BIBLIOGRAPHY 113

SAMENVATTING 125

ACKNOWLEDGEMENTS 127

CURRICULUM VITAE 129

LIST OF PUBLICATIONS 131

1

CHAPTER 1

1 INTRODUCTION

There is an increasing demand for running applications with high performance

requirements on embedded systems that have relatively limited resources. For

example, a smart phone has to run high-definition video codecs, wireless signal

processing, and 3D graphics processing. A smart camera may combine high

resolution video sensing, low-level to high-level vision processing, and com-

munication within a single embedded device. All these applications require an

enormous amount of computation, and yet embedded system designers have

to meet these requirements with a very small power budget. Power efficiency is

thus becoming a dominant determinant in embedded system design, especially

for those ones that run on restricted power sources like batteries or solar cells.

To achieve a highly power-efficient embedded system, many challenges at

different design levels need to be overcome (Section 1.2). This thesis focuses on

dealing with part of these challenges and contributes by providing solutions to

the following four aspects, i.e., energy-efficient data movement in datapath

(Chapter 2), flexible special instruction support (Chapter 3), ultra low-energy

vector processing (Chapter 4), and efficient communication in heterogeneous

MPSoCs (Chapter 5).

The remainder of this chapter is organized as follows. In Section 1.1, we

take a closer look at the trends in embedded streaming applications. In Section

1.2, we look at the challenges in low-power architecture designs. Section 1.3

introduces design flows of streaming application systems. Section 1.4 clarifies

the problems that this thesis mainly focuses on. Section 1.5 states the key con-

tributions of the thesis. Finally, Section 1.6 gives a brief overview of the thesis.

1.1 Trends in Embedded Streaming Applications

An embedded system is an information processing system designed to perform

one or a few dedicated functions often with real-time constraints. Embedded

2 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

systems are widely used in our daily life, e.g., inside portable devices such as

digital cameras and smart phones, or systems like televisions, printers, and

electronic control unit (ECU) in automobiles. Figure 1.1 depicts the main appli-

cation domains of embedded systems [5]. Compared to general computing de-

vices, embedded systems perform a limited set of pre-defined functions and

have limited field configuration capability. They are typically enclosed into a

very compact packaging with limited power sources and cooling facilities.

These features/constraints together mode embedded systems into the characte-

ristics of domain specific, real time, low power, low cost, and small area.

Among these characteristics, low power is usually a distinguishable feature and

becoming one of the main challenges [6-8].

Many applications, such as image processing, computer vision, and multi-

media applications, can be categorized as streaming applications, which periodi-

cally execute similar operations on a stream of data items (often called samples)

[9]. Such applications are very common in embedded systems, e.g., 3G/4G [10,

11] wireless communication, H.263/H.264 [12, 13] video coding for mobile do-

main, MPEG-2/MPEG-4 [14, 15] for high resolution video streams, MP3/AAC

[16] for digital audio compression and encoding, DAB/DAB+ [17] for digital

radio coding, and various image processing applications such as image en-

hancement [18, 19], industrial inspection [20, 21], and 3D reconstruction [22, 23].

Consumer Electronics
music player, digital cameras,

DVD players, set-top boxes,

PDAs, videogames,

GPS receivers, home appliances

Embedded

Systems

Remote Automation
Building automation,

e.g., heating, ventilation,

air-conditioning,

home automation, utility meters

Automotive Electronics
electronic control units used

 in chassis, body electronics,

security, power train,

in-vehicle entertainment,

and infotainment systems

Telecom / Datacom
routers, switches, bridges,

smart devices,

networking gateways

Industrial Controls
smart sensors,

special purpose controllers,

networking,

process controls

Medical Electronics
patient monitoring,

surgical systems,

diagnostic equipments,

imaging, electronic stethoscopes

Automation
copier, fax machines,

printers, scanners,

multi-function peripherals,

point of sale terminals,

storage devices, smartcards

Military / Aerospace
satellite systems, radar

sonar, navigation,

Weather systems,

aircraft management systems

Figure 1.1 Application domains of embedded systems.

INTRODUCTION 3

And their number grows very fast. For example, in the area of portable con-

sumer systems, such as smart cameras and mobile phones, the number of ap-

plications doubles roughly every two years [24]. Many of these emerging ap-

plications fall into the category of streaming applications. The quick introduc-

tion of these new applications becomes an important driven for the develop-

ment of new technologies [25].

A second trend in embedded streaming applications is the rapidly increas-

ing computation intensity. This is caused by two factors: i) an increasing

amount of computation must be applied on the data sets due to growing appli-

cation complexity, e.g., more elaborate and complex coding schemes; ii) an in-

creasing amount of data must be processed due to growing data sets, e.g.,

higher image resolution [26, 27]. As a result, the required processing power is

expected to increase by an order of magnitude every five years [6]. Due to

technology limitations and power/energy limitations, single processor systems

can hardly keep up with the demand of emerging streaming applications [24].

A multi-processor system-on-chip (MPSoC) system seems to be the only solu-

tion to fulfill these requirements [6].

In most cases, embedded systems have very limited power sources, such as

batteries, the capacity of which grows slowly. For example, in mobile devices,

the energy density of Li-ion batteries only increased two to three times during

the past fifteen years [28], which can hardly meet the power consumption re-

quirement of modern embedded systems. And this gap is still enlarging. Ac-

cording to the recent research of Samsung’s battery development team, the re-

quired power for mobile devices is predicted to increase about 20% per year,

while the advancement in the energy density of batteries is expected to be only

10% per year [29]. This leads to the third trend: increasing emphasis on low

power.

1.2 Challenges in Low-Power Architecture Designs

Modern mobile devices, such as smart phones, perform nearly 100 giga opera-

tions per second (GOPS) within a power budget of only 1 W [6]. In other words,

no more than 10 pJ can be spent on the execution of one operation, which in-

cludes memory accesses, instruction decoding, data movements, and computa-

tion. As workload grows at a much faster rate than the improvement of battery

capacity, the requirement is becoming even more demanding. We will soon

enter into the 1 pJ/op era. Under such a critical constraint, many challenges

4 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

need to be overcome to achieve an energy-efficient architecture for streaming

applications.

Computation Overhead

In a typical reduced instruction set computing (RISC) processor, the energy

consumed for executing an add instruction is 10× more than the energy spent in

a 32-bit adder [30]. This basically means that most of the energy is not con-

sumed by the computation we actually need, but “wasted” by the other over-

head required to enable the computation. Among this overhead, the supplying

of instructions and data to functional units dominates. This is the main reason

why even low-power embedded processors consume significantly more energy

than dedicated fixed-function hardware, which allows the communication of

data between function units to be aggressively optimized [31]. The commonly

used hierarchical memory subsystem can improve energy efficiency by exploit-

ing locality. However, this is still not sufficient. Taking the register file (RF),

which is usually at the top of a memory subsystem (i.e., most energy efficient),

as an example, it alone can account for 16% of the energy consumed in an em-

bedded processor [32, 33]. Our estimation also shows a similar result. Figure

1.2 presents the energy breakdown of a classical 5-stage RISC processor when

executing a YUV to RGB color space conversion kernel 1. This situation does

1 The energy consumption is calculated as Pavg × Texe, where Pavg is the average power

consumption during kernel execution while Texe is the kernel execution time. These val-

ues are derived by post-synthesis simulation. TSMC 90nm low-power (LP) SVt library is

used here. The synthesis condition is set to typical case, 1.2V, and 25°C. Clock gating is

also enabled. To improve the accuracy of power estimation, physical library (6 metal

layers) is included. The interconnect information is estimated based on the physical

library.

Figure 1.2 Energy breakdown of a classical 5-stage RISC processor (YUV2RGB).

12.6%

12.6%

.3%
26

IF

26.9%

ID

16.1%
RF

40.3%

EX

4.1%

MEM & WB

INTRODUCTION 5

not improve with advances in technology nodes as communication benefits

less than computation from technology scaling. The interconnect-dominated

register files and buses that deliver instructions and data to the function units

will continuously increase the energy consumption portion [31].

Wide-Range Voltage Scaling

Voltage scaling is one of the most effective means to bring quadratic dynamic

energy savings to standard-cell based logic, i.e., Elogic ∝ CloadVdd2, where Cload is the

loading capacitances including both gate and interconnection wire capacitances.

However, the Vdd scaling range of commercial processors is normally limited to

about 2/3 of nominal supply due to two fundamental problems at a low Vdd: i)

severe throughput degradation (Figure 1.3); ii) high yield loss in the presence

of process variations [34]. Compared to pure standard-cell based logic, wide-

range Vdd scaling is even more difficult when applied to static random-access

memories (SRAMs). First, the rapidly deteriorating read/hold static noise mar-

gin (SNM) of bit-cells causes severe reliability issues. A very small amount of

injected noise can cause the bit-cell's state to flip [35]. Thus, commercial SRAMs

with high density (6-T cells) strictly prohibit operating below 0.7~0.8 V. Second,

SRAM's energy cannot scale quadratically with Vdd. This is because the bit-cells’
swing voltage, which must exceed a minimum magnitude required by sense-

amplifiers to perform correct decoding, cannot scale linearly with Vdd. Third,

the speed of SRAMs degrades even faster with Vdd scaling, compared to that of

Figure 1.3 Impact of Vdd scaling on throughput of 1 processing element (PE) when ex-

ecuting a 5×5 non-separable filter kernel (refer to Chapter 4 for details).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

10
3

10
4

10
5

10
6

10
7

10
8

VDD (V)

T
h

ro
u

g
h

p
u

t
(i

n
s

t.
/s

)

1 PE

6 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

pure logic [36, 37]. This implies that SRAMs are more prone to be the system

performance bottleneck when both SRAM and logic scale to the same low Vdd.

Variation

VLSI performance has increased by five orders of magnitude in the last three

decades, made possibly by continued technology scaling [38]. This trend will

continue, providing an integration capacity of billions of transistors. Advanced

process technologies also lead to significant power reduction [24, 39]. However,

a parallel trend is that process variation increases with each technology node,

which becomes one of the main barriers to future scaling [40, 41]. Variation has

many different causes, e.g., random dopant fluctuations [42], line-edge rough-

ness [43], oxide thickness variations [44]. Transistor threshold voltage (Vth) is

one of the parameters that are severely affected by variation, which causes both

inter- and intra-die heterogeneity in transistor delay and power consumption

[39]. A 30% variation in operating frequency and a five to ten times variation in

leakage power can be seen in current technology nodes. And the variation in

total power could be as much as 50% [38]. To compensate the impact of varia-

tion and to guarantee certain yield, more margins need to be reserved in circuit

designs. As a consequence, both design cost and energy consumption are

raised.

“Energy-Aware” Compiler

Improving energy efficiency is a joint effort of hardware and software. Howev-

er, while hardware optimization has been the focus of low power design for

many years, software approaches to optimize power are still relatively new.

Most of the compiler techniques consider only delay and code size as their

main performance metrics. With the growing demand for energy-aware soft-

ware, there is an acute need for investigating low-power compilation tech-

niques and their interaction and integration with performance-oriented compi-

ler optimizations [45]. There are already some useful compilation techniques

used in low-power embedded systems, such as giving priority to the lowest-

energy-consuming (instead of the fastest) instruction sequences [46], or moving

frequently used program codes or data blocks into more energy-efficient levels

of the memory hierarchy [47]. However, to meet the rigorous requirement for

low energy, a more “energy-aware” compiler, i.e., a compiler armed with more

advanced energy-oriented optimization techniques and a more accurate energy

model of the target machine, is needed for overall system energy optimization.

INTRODUCTION 7

Heterogeneity

Since single core based systems alone can no longer keep up with the demand

of emerging streaming applications, multi-processor system-on-chips (MPSoCs)

are becoming a popular solution to fulfill the requirements. In general, an

MPSoC can be categorized as one of the following two types. A homogeneous

MPSoC, whose processing components are of the same type of programmable

processor, can usually support a wide range of applications. Such a system

provides high flexibility and is relatively easy to use. However, the overhead of

supporting a wide range of applications in all cores may cause severe ineffi-

ciencies. Compared to a homogeneous MPSoC, a heterogeneous MPSoC, whose

processing components can be general purpose processors (GPPs), application-

specific instruction-set processors (ASIPs), dedicated application-specific inte-

grated circuits (ASICs), or reconfigurable logic, can achieve much higher effi-

ciency in both performance and power consumption by properly designing

and configuring the system for the applications mapped onto it [48, 49]. Figure

1.4 shows examples of homogeneous and heterogeneous MPSoCs. Streaming

applications are usually of high complexity and high diversity, so heterogene-

ous MPSoCs are commonly used when designing efficient systems for these

applications [6]. However, heterogeneity also introduces extra complexity.

Processing components of various types need to be designed and integrated.

Modeling, mapping, scheduling, and debugging applications on a heterogene-

ous platform are also challenging tasks.

1.3 Design Flow of Streaming Application Systems

With the increasing complexity of embedded systems for streaming applica-

tions, it is hardly possible to evaluate system level trade-offs using back-of-the

envelope calculations. Designers can neither handle all design aspects at the

same time nor handle them by the same person. Therefore, design flows, which

Interconnect

GPP

Memory

and/or IO

GPP GPP

GPP GPP

(a) (b)

Interconnect

GPP GPP

Memory

and/or IO
ASIP

Reconfig.

Logic

ASIC

Figure 1.4 (a) a homogeneous MPSoC example; (b) a heterogeneous MPSoC example.

8 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

can separate different design concerns, solve them efficiently with domain-

specific knowledge, and then systematically integrate each component together

with performance/cost evaluation, are required.

In this subsection, we first introduce the basic concepts of Y-chart and syn-

chronous data-flow graph. Then we introduce MAMPS, an in-house design

flow for mapping throughput constrained applications on an MPSoC.

Y-Chart

The Y-chart approach [50, 51] is a general paradigm used for designing em-

bedded systems. Figure 1.5 illustrates the concept of the Y-chart, which in-

volves the co-development of application(s), a platform, and the mapping of

the application(s) onto the platform. To implement a system using this metho-

dology, typically the designer studies the target applications with some initial

calculations, and proposes an architecture. The performance of this architecture

is then quantitatively evaluated and compared against alternative architectures.

For such performance analysis, each application is mapped onto the architec-

ture under investigation and the performance of each application-architecture

combination is evaluated [52]. Subsequently, the resulting performance num-

bers may inspire the designer to improve the architecture, restructure the ap-

plication(s) or modify the mapping of the application(s), which are shown as

dotted lines in Figure 1.5. These feedback paths make the Y-chart an iterative

design methodology that enables the co-evolution of hardware and software

[53].

PlatformApplication

Mapping

Performance

Numbers

Performance

Analysis

Figure 1.5 The Y-Chart.

INTRODUCTION 9

Synchronous Data-flow Graphs

In order to ensure that high performance or real-time requirement of an appli-

cation can be met by the target platform, designers have to be able to model the

application. In the absence of a good model, it is very difficult to know in ad-

vance whether the requirements can be met or not at all times, and extensive

simulation and testing are needed [54].

The Synchronous Data Flow (SDF) graph is a very powerful model of compu-

tation (MoC) for analyzing streaming applications [55]. Both pipelined stream-

ing and cyclic dependencies between tasks can be easily modeled with SDF

graphs. There are many analysis algorithms for SDF that can be used to ana-

lyze at design time the throughput, latency, and buffer size requirements of

applications modeled with an SDF graph [56-58].

An application modeled with an SDF graph consists of nodes called actors

and edges, called channels, between these actors. Actors transfer data items

called tokens to each other via channels. An example SDF graph containing a

producer actor A and a consumer actor B is depicted in Figure 1.6. Actor A

takes ta time units to finish one firing (i.e., perform a computation) and it produces

2 tokens at the end of this firing. Actor B consumes 3 tokens in each firing and

its execution time is equal to tb time units. The channel from actor A to actor B

models the communication channel. The channel from B to A is used to model

the buffer between these actors. The amount of initial tokens n on this channel

represents the buffer size of the channel from actor A to actor B. The number of

concurrent firings of an actor, defined as its auto-concurrency, is constrained by

the number of initial tokens on the actor's self-edge. In Figure 1.6, both actors

have an auto-concurrency of 1. Hence, subsequent firings of actor A (or B) need

to be serialized. This could for example be necessary when an actor firing pro-

duces state that is needed for a subsequent firing. Note that when an actor has

no self-edge, it is possible to have multiple firings of an actor running in paral-

A

 t=ta

B

 t=tb

n

2

2

3

3

Figure 1.6 An SDF graph with two actors. Unmarked rates and buffer sizes are 1.

10 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

lel. This makes it possible to model data-parallel executions in the SDF graph.

We use SDF graphs to model and map applications to MPSoCs in Chapter 5.

MAMPS Design Flow

MAMPS (Multi-Application and Multi-Processor Synthesis) [59] is an in-house

design flow for mapping throughput constrained applications on an MPSoC,

which is based on the Y-chart. It integrates several state-of-the-art analysis,

mapping, and synthesis tools into an automated tool flow. Figure 1.7 shows an

overview of this design flow.

The inputs of this tool flow are an application modeled as an SDF graph, a

C-based implementation for each actor in the graph, and a template based ar-

chitecture description. The application SDF graph and its corresponding im-

plementation of each actor are joined into the application model. The application

model specifies a set of metrics of the actor implementations. These metrics

include the worst-case execution time (WCET), required memory sizes, and the

size of communicated tokens. The template based architecture description, i.e.,

architecture model, describes the various components available in the hardware

platform and how these components are connected [60].

The output of the design flow is an MPSoC platform tailored for the target

applications, with C implementation of each actor mapped to general purpose

processors (e.g., MicroBlaze) [1]. The analysis framework that MAMPS uses is

called SDF3 [61]. It consists of several tools that allow automatic mapping of an

application described as a SDF graph to a given platform. SDF3 also verifies if

actor.c

Application Model

Architecture Model

NoC

PEPE

PEPE

Platform

Generation Xilinx

Platform

Studio

SDF3

(Mapping &

Analysis)

Hardware

Library

FPGA

Board

Figure 1.7 MAMPS design flow overview [1].

INTRODUCTION 11

such a mapping is deadlock free and analyzes worst-case system properties,

such as throughput, latency, and buffer sizes conservatively at design time.

Besides these SDF facilities, MAMPS also provides platform generation tools

and tightly integrated Xilinx EDA tools, which automate the processes of sys-

tem instantiation, synthesis, and download.

1.4 Problem Statement

As discussed in the first section of this chapter, streaming applications are an

important class in emerging embedded systems. On the one hand, these appli-

cations are usually computationally intensive and have real-time constraints.

On the other hand, embedded systems running these applications often have

limited power sources like batteries or solar panels. Therefore, energy-

awareness becomes extremely important in architecture designs for these sys-

tems. Achieving such kind of highly energy-efficient systems is not an easy

task. This thesis will deal with part of the challenges discussed in Section 1.2.

Energy-Efficient Data Movement

As a lot of energy is “wasted” in the supplying of data to functional units, the

first problem handled in this thesis is to improve the energy-efficiency of data

movement in embedded processors. Observing that a substantial part of the

energy is consumed by the register file (RF) [33, 62], we particularly focus on

reducing energy consumption of the RF, and converting this energy saving into

the total core energy saving. In typical embedded streaming application ker-

nels, most of the variables have very low use count (< 3), i.e., the value of a va-

riable is only used a very small number of times by the following instructions

[63], which can be interpreted as a huge potential to eliminate RF accesses. In a

pipelined processor, a lot of such variables can be accessed via the bypassing

network instead of the RF. However, in conventional processor architectures,

these RF accesses are usually performed regardless of the necessity, which re-

sult in a power hungry RF and a hotspot on the chip. A transport triggered archi-

tecture (TTA) can effectively reduce the RF pressure in both the number of ac-

cesses and the number of RF ports [64, 65]. However, conventional TTAs also

have some disadvantages, such as relatively low code density and dynamic-

power wasting. These disadvantages inhibit it being an energy-efficient archi-

tecture. In order to preserve the merit of conventional TTAs while solving

these issues, new improvements in both architecture and compiler are required.

12 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Flexible Special Instruction Support

Many streaming applications contain frequently executed operation patterns in

the data-flow graphs (DFGs), like the ones shown in Figure 1.8. In application

specific instruction set processor (ASIP) design, it is common to synthesize in-

struction sets that support such patterns in targeted applications to achieve

better performance and energy efficiency [66-68]. However, extending this idea

to a generic embedded processor and efficiently supporting flexible special in-

structions is challenging. In most mainstream processor architectures, only a

few of such patterns are supported, as supporting arbitrary operation patterns

in a generic processor incurs large overhead. From energy efficiency perspec-

tive, the overhead includes extra opcode space, extra RF ports and RF index

space, as well as increased complexity in both control path and datapath.

Therefore, efficient software and hardware solutions are in demand if we want

to use flexible special instructions to improve the energy efficiency of a generic

embedded processor.

Ultra Low-Energy Vector Processing

Massive parallelism in streaming applications typically shows up as data-level

parallelism (DLP). Therefore, achieving low-energy vector processing is of

great importance when designing an energy-efficient system for streaming ap-

plications. DLPs can be inherently exploited by a single instruction multiple data

(SIMD) processor, which is a low power architecture as it applies the same in-

structions to all processing elements (PEs) [69]. To further reduce energy con-

sumption, Vdd scaling can be applied to SIMDs. However, issues such as severe

throughput degradation, high yield loss in the presence of process variations,

and scaling-unfriendly SRAM limit the Vdd scaling range, create a big obstacle

to the energy efficiency improvement. So the third problem is how to mitigate

these issues and achieve an ultra low-energy SIMD processor.

ADD

MUL

ADDLDMODDIV

Figure 1.8 Operation patterns.

INTRODUCTION 13

Efficient Communication Support

To meet the increasing demand for performance and efficiency in streaming

applications, the use of energy-efficient programmable cores and accelerator

cores in heterogeneous MPSoCs becomes inevitable [6, 48]. The problems dis-

cussed above aim at providing energy-efficient cores. These cores can be used

as efficient computation components in a heterogeneous MPSoC. However,

heterogeneity requires more than this. When mapping a streaming application

onto a heterogeneous MPSoC that contains accelerators, several issues need to

be solved: i) how to generate accelerator IPs for the application; ii) how to inte-

grate these IPs into an MPSoC; and iii) how to predict performance/resource

usage at design time. The first issue can be handled through the use of IP libra-

ries or high level synthesis tools [70, 71]. Solving the other two issues requires

an efficient and analyzable communication support.

1.5 Contributions

The main contributions of this work include:

 MOVE-Pro, a new TTA based processor architecture is proposed to re-

duce energy consumption of the register file, and convert this energy

saving into the total core energy saving. With fine-grained control over

datapath and optimization in different software/hardware levels, about

70% of RF accesses are eliminated on average, resulting in a dramatic re-

duction of RF energy. More importantly, with the proposed MOVE-Pro

architecture, the RF energy saving is fully transferred to the total core

energy saving. Compared to its RISC counterpart, an energy saving of

up to 11.6% is achieved (Chapter 2).

 An architecture that supports flexible operation pairs in a processor with

a compact 24-bit RISC-like ISA is proposed. It introduces a partially re-

configurable decoder and a software-controlled bypass network, allow-

ing the processor to support operation pairs without increasing the in-

struction width or number of register file ports. Comprehensive and de-

tailed experimental results demonstrate that the proposed architecture

achieves an average of 26.0% reduction in dynamic cycle count and an

average of 15.8% reduction in energy consumption compared to the ref-

erence processors (Chapter 3).

14 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

 Xetal-Pro, a massively-parallel SIMD architecture is proposed in this

work. The idea of combining massive parallelism and aggressive Vdd

scaling is presented and discussed in detail. A hybrid memory system,

which reduces the non-local memory traffic and enables further Vdd scal-

ing, is also introduced. This work shows that it is possible to achieve less

than 1 pJ/op core energy consumption for typical kernels of embedded

streaming applications (Chapter 4).

 An efficient and predictable communication assist (CA) for integrating ge-

neric IP cores into heterogeneous MPSoCs is proposed. The correspond-

ing cycle-accurate synchronous data flow (SDF) model for the proposed

communication assist is also presented. By integrating this SDF model

onto SDF analysis tools, worst-case system properties, such as through-

put, latency, and buffer sizes can be conservatively analyzed at design

time. The existing design flow, MAMPS, is updated with the proposed

CA-based hardware template. As a case study, a vision processing pipe-

line of an industrial application, Organic Light Emitting Diode (OLED)

screen printing, is mapped onto the proposed platform. This case study

demonstrates that the proposed design flow enables efficient integration

of accelerator IPs into a heterogeneous MPSoC which targets streaming

applications (Chapter 5).

1.6 Thesis Overview

The thesis is organized as follows. Chapter 2 presents the first design proposal,

MOVE-Pro, which is a low-power and high code density processor framework

based on transport triggered architecture (TTA). In Chapter 3, a novel approach

for supporting flexible operation pair patterns in a generic processor with a

compact ISA is proposed. This work improves energy efficiency by reducing

the computation overhead in generic processors. Chapter 4 discusses the

progress in developing Xetal-Pro, an ultra low-energy vector processor. The

results show that with massively-parallel SIMD and aggressive Vdd scaling, it is

possible to achieve computation efficiency of less than 1 pJ/op. Chapter 5

presents a communication assist (CA) to efficiently integrate generic IPs into an

MPSoC with a predictable design flow. A case study is performed using an

updated design flow called MAMPS+. Finally, Chapter 6 concludes this thesis

and gives directions for future work.

CHAPTER 2

2 MOVE-PRO: A TTA-BASED PROCESSOR

FRAMEWORK

Energy efficiency is becoming the dominant determinant of embedded system

design: in most cases, embedded systems have limited power sources like bat-

teries, which largely constrain the use of high performance processors. Moreo-

ver, high power dissipation also makes the chip's thermal design more difficult.

A lot of work has been done to reduce the processor energy consumption in

different ways [72-77]. We observed that a substantial part of the energy is con-

sumed by the register file (RF), which mainly consists of data storage elements

and (de)mux logic [62, 78]. Therefore in this chapter, we particularly focus on

reducing energy consumption of the RF, and converting this energy saving into

the total core energy saving.

In typical embedded application kernels, most of the variables have very

low use count. Table 2.1 shows the local variable statistics of four representa-

tive kernels. In a pipelined processor, many of these variables can be accessed

via the bypassing network instead of the RF. However, in conventional proces-

sor architectures, these RF accesses are usually performed regardless of the

necessity, which results in a power hungry RF and a hotspot on the chip.

In this work, we propose MOVE-Pro, a new transport triggered architecture

(TTA) based processor architecture, to solve this issue. With fine-grained con-

trol over datapath and optimization in different software/hardware levels, we

achieve significant RF accesses reduction in MOVE-Pro: on average about 70%

of RF accesses are eliminated, resulting in a dramatic reduction of RF energy.

More importantly, with the proposed MOVE-Pro architecture, the RF energy

saving is fully transferred to the total core energy saving. Compared to its RISC

counterpart, a total core energy saving of up to 11.6% is achieved with no per-

formance penalty. The experiment is carried out at 1.2V, 25°C, typical case,

with TSMC 90nm low-power CMOS digital standard cell library.

16 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The remainder of this chapter proceeds as follows: Section 2.1 introduces

the basic idea behind register file access reduction. MOVE-Pro, the proposed

TTA-based architecture is presented in Section 2.2. The energy-aware compila-

tion flow for MOVE-Pro is briefly depicted in Section 2.3. In Section 2.4, the

proposed design is verified with a detailed comparison between MOVE-Pro

and its RISC/VLIW counterparts. Section 2.5 discusses the related work. Finally,

Section 2.6 concludes our findings and discuses future work.

2.1 Register File Access Reduction

In processors designed for multi-media and/or high performance signal

processing, the RF is one of the most power hungry components in the data-

path, which could account for over 40% of the datapath power consumption

[33]. For multi-issue architecture, the demand for RF with many ports is espe-

cially costly [32].

Figure 2.1 shows the datapath of a typical RISC processor with a 5-stage pipe-

line. To reduce pipeline stalls caused by data hazard, a bypass network (i.e.,

data wires which forward results to the previous pipeline stages) is usually

employed to allow an instruction to use the results which are available in the

pipeline but haven't yet been written back to the RF. With the bypass network,

there are three situations where RF accesses are not necessary:

Table 2.1 Kernel local variable statistics.

 FIR Histogram YUV2RGB IDCT

Average reads
per variable 1.71 1.59 1.77 1.55

Local variable
with < 3 uses 94.10% 98.25% 90.31% 98.72%

RF

Bypass Network

ALU

MUL

ID/EXE EXE/MEM MEM/WB

RF

EXE

MEM

WB

Reg ID CMP

Src Op
LSU

Figure 2.1 Operand bypassing in a typical processor datapath.

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 17

 Bypassing: the result of an operation can be read from the pipeline regis-

ter before it is written back to RF.

 Dead result elimination: if all uses of a variable are bypassed, writing it

back to RF is not necessary.

 Operand sharing: when an operand is used successively on the same

port of a function unit (FU), it only needs to be read from RF once.

Figure 2.2 shows an example in which all three types of RF access elimina-

tions are possible:

 Register r3 in the second addition (add) and r12 in the store instruction

(sw) can be bypassed, i.e., we can directly get the required data values

from the bypass network instead of reading them from RF.

 After bypassing, write-back of r3 and r12 in the first two instructions can

be discarded.

 Register r7 is shared by the two additions, therefore only the first addi-

tion needs to actually read r7 from RF.

In Table 2.2, four representative streaming kernels are depicted, which are

studied in this work. Table 2.1 shows the percentage of local variables with 3

uses in these kernels. Clearly, most variables have very small use counts, which

can be interpreted as a huge potential to eliminate RF accesses.

Table 2.2 Kernel description.

Kernels Description

FIR

Histogram

YUV2RGB

IDCT

5-tap 32-bit finite impulse response filter

256-bin histogram for 8-bit gray-scale image

YUV to RGB color space conversion for 24-bit image

Inverse cosine transformation in the JPEG decoder

add r3, r4, r7

add r12, r3, r7

sw 0(r1), r12

r4 r7

r1 0

SW

+
+

Figure 2.2 RF access elimination example.

18 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

2.2 Exposed Datapath Architecture

Architectures, such as RISC, Superscalar, and Very Long Instruction Word

(VLIW), can be categorized as operation-triggered architectures (OTA). In such

architectures, an instruction typically specifies what the operation is and what

the source operands are. Usually, they cannot eliminate unnecessary RF ac-

cesses identified in Section 2.1. In a transport triggered architecture (TTA), how-

ever, an instruction directly controls the datapath by specifying the data trans-

portation between different units, and operations are merely side-effect of the

transportation [64]. As shown in Figure 2.3, by programming the communica-

tion network, data are explicitly transported from one unit to another.

In this work, we would like to explore TTA's low-power potential inherited

from its explicit datapath nature, i.e., the capability of directly transferring an

operand from the output of one unit to the input of another. With proper sche-

duling of the data transport, RF accesses can be dramatically reduced com-

pared to its RISC/VLIW counterparts. As a result, the total processor energy

consumption is expected to be reduced accordingly. However, it is challenging

to achieve this goal due to some disadvantages of conventional TTAs.

2.2.1 Disadvantageous of Conventional TTAs

A TTA is well-known for its cost-effective trade-off between performance and

flexibility. It is able to generate optimized cores for various domains, e.g., mul-

timedia, telecommunication [64, 79, 80]. However, the conventional TTAs also

have some evident disadvantages:

 Code density is lower than RISC/VLIW. This is because to perform a 3-

address operation on a TTA in principle three moves are required. For

FU 2 FU NFU 1 RF…

Bus 1

Bus 2

Bus M

… …

Input

Socket
ConnectionTrigger Input

Output

Socket

Figure 2.3 TTA architecture, with exposed inter FU and RF datapath.

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 19

example, a direct translation of one 32-bit RISC add operation onto TTA

results in three 16-bit TTA move operations (Figure 2.4 (a)).

 The separate scheduling of source operands increases circuit switching

activity, causing more energy consumption. This will be explained in

more detail in Section 2.2.3.

 Operations can only be triggered by moving data to the trigger port

(shaded ports in Figure 2.3), so a trigger move has to be scheduled no

earlier than the operand moves of the same operation, which introduces

extra scheduling constraint. For example, in Figure 2.4 (b), if the operand

move (the first one) is pending due to the dependency on result of MUL,

the trigger move (the second one) cannot be scheduled earlier even

though it has no unresolved dependency.2

2 In [64], a special latching discipline for the pipeline stages of function units, called true

virtual-time latching (TVTL), is discussed. With TVTL, both operand moves and trigger

moves can “trigger” operations. Since operand moves do not have opcodes, the opcode

of the previous trigger move is used if an operand move triggers an operation. This

latching discipline is not a very good choice in terms of power consumption, as many

unnecessary operations may be triggered if an operand move is scheduled first. The

TVTL also greatly reduces the scheduling freedom of result moves as the available time

of useful results in FUs is reduced. Thus performance may also be degraded.

add r3, r4, r7

r4 -> ALU[add].o

1 × 32-bit RISC operation

r7 -> ALU[add].t

ALU.r -> r3

3 × 16-bit TTA operations

MUL.r -> ALU[add].o

r7 -> ALU[add].t

MUL result is not

ready yet, stall

Trigger move cannot

be scheduled earlier

 (a) (b)

Figure 2.4 (a) Translation of a RISC operation onto TTA operations, where o is operand

input port, t is trigger input port, and r is result output port. r4 -> ALU[add].o, for exam-

ple, means that the value of register r4 is moved to the operand input port of the function

unit ALU for addition; (b) Extra scheduling constraint introduced by trigger port.

20 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

 Inefficient support for large immediates, which deteriorates code density

and energy consumption. This is due to small immediate field in the

conventional TTA instruction format and limited support for large im-

mediate [64, 81].

Previous research on MOVE framework3 [82] shows that comparing to a

single-issue RISC processor (instr. width = 32 bit), the code density of a corres-

ponding two-issue MOVE processor (instr. width = 32 bit) is 20% worse [83].

When using the TCE framework4 [84], the overhead is about 30% based on our

measurements. Poor code density becomes an obstacle for TTAs from being an

energy efficient architecture.

In this work, in order to fully utilize TTA’s low-power potential, more spe-

cifically, to successfully convert the potential energy saving in RF to energy

saving of the complete processor core, we propose MOVE-Pro, a low-power

and high code density TTA framework. In Section 2.2.2, we will introduce the

instruction set architecture of the proposed MOVE-Pro processor. In Section

2.2.3, we will describe the details of the MOVE-Pro architecture.

2.2.2 Proposed MOVE-Pro Instruction Set Architecture

Code density not only affects processing performance, but also has a strong

influence on the total energy consumption. Fewer dynamic instructions counts

mean that fewer instructions need to be fetched from instruction memory and

fewer instructions need to be executed, resulting less energy consumption. In

order to improve the code density of conventional TTAs and to provide flexible

3 TTA implementation from Delft University of Technology
4 TTA implementation from Tampere University of Technology

Figure 2.5 The MOVE-Pro instruction formats.

15 14

src or 6-bit imm
7 6 05 4

31 30 29 28 026 25

31 30 29 16 15 023 22 2021

15 14 13 12 10 9 0

destination idx & op-code

16-bit immtype

(a) Normal Move

(c) I-Move: one imm move + one normal move (to the same FU)

type 26-bit imm offset

(d) Long Branch/Jump

(b) Short Branch/Jump

type 10-bit imm offsetSBF/SBNF/SJ/...type

src or 6-bit immdestination idx & op-code

BF/BNF/J/JAL/...

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 21

immediate support, we combine some helpful features of RISC instruction set

architecture (ISA) with conventional TTA ISA, and propose a new one for our

MOVE-Pro architecture.

The MOVE-Pro instruction formats are shown in Figure 2.5. The 16-bit

Normal Move (Figure 2.5 (a)) is similar to the conventional TTA instruction for-

mat. The main difference is that in MOVE-Pro we removed the constraint that

operations can only be triggered by moving data to a specific destination regis-

ter/buffer, i.e., the trigger port [64, 79]. Thus, the binding between trigger move

and a specific destination port is removed, resulting in unified function unit

(FU) input ports (Figure 2.6). This provides more scheduling flexibility for the

compiler. To implement this idea with minimum overhead, we did not intro-

duce an extra instruction bit to distinguish a trigger move operation and a non-

trigger move operation. Instead, all non-trigger moves are considered as a

same class of operation, i.e., Not-a-Trigger-Operation, which is encoded into the

op-code field of the instruction similar as other normal operations like add, mul.

A 32-bit I-Move (Figure 2.5 (c)) is added to support 16-bit immediate, which

is similar as the I-Type of RISC instructions. Two moves are encoded in this

format: one is a normal move and the other is a 16-bit immediate move. Since

there is no extra space to encode the destination address for the 16-bit imme-

diate move, these two moves must share a same FU as their destination. This

constraint is not an issue as an immediate is always ready for issue (no data

dependency). Compiler can directly pack it with a Normal Move to the same FU,

forming a 32-bit I-Move instruction. Compared to the conventional TTA, the

introduction of I-Move in MOVE-Pro efficiently encodes the 16-bit immediate.

Unified Input

Ports

FU 1 …

Bus 1

Bus 2

Bus M

… …

Trigger

Input Port

Normal

Input Port

FU 1 …

Bus 1

Bus 2

Bus M

… …

(a) Conventional TTAs (b) MOVE-Pro

Figure 2.6 Binding between trigger move and a specific destination port is removed in

MOVE-Pro, resulting in more scheduling flexibility for the compiler.

22 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Two kinds of branch/jump instructions are supported, which differ in the

range of branch offset. The purpose of introducing both short and long

branch/jump formats is to achieve a better code density as well. A Normal Move

with 6-bit immediate has an indexing range of only -32~31, which is often in-

adequate to handle local branches. However, the 16-bit Short Branch/Jump

(Figure 2.5 (b)) introduced in the proposed MOVE-Pro ISA has an indexing

rang of -512~511, which is usually sufficient to deal with most of branches

within a function. Compared to its RISC counterpart, the 16-bit Short

Branch/Jump is only half of the size. When even larger indexing range is re-

quired, the 32-bit Long Branch/Jump (Figure 2.5 (d)) can be used, which has a 26-

bit indexing range.

Since 32-bit instructions are introduced in the proposed MOVE-Pro ISA, the

minimum number of issue slots in our MOVE-Pro processors is two. Figure 2.7

depicts the MOVE-Pro assembly format. Note that, unlike the conventional

TTA, which has three types of ports (i.e., operand input port, trigger input port,

and result output port), we have only input and output ports in MOVE-Pro.

2.2.3 Proposed MOVE-Pro Organization

Section 2.2.2 described the main features of MOVE-Pro ISA. In this section the

proposed MOVE-Pro architecture will be presented in detail.

Unlike operation-triggered architectures (OTAs), TTAs can schedule the source

operands of the same operation in different cycles. On the one hand, it intro-

duces an extra level of scheduling freedom. On the other hand, it causes more

energy consumption. Take a multiplication, a × b = c, as an example. In OTA,

the multiplicand a and multiplicator b are scheduled together. They are latched

into the two input operand registers of a multiplier FU at the same clock cycle.

The multiplier circuit only toggles once before producing the product c. How-

ever, for a TTA-based processor, a and b can be scheduled separately, e.g., first

a, then b. Thus, before producing the useful product c, the multiplier circuit

src.outport -> dst [opcode].inport

Source FU or

register or imm.

Source

Port ID

Destination FU

or register

Opcode,

trigger implied

Destination

Port ID

Figure 2.7 MOVE-Pro assembly format.

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 23

undergoes extra toggles to produce a useless result, a × b’, where b’ is the pre-

vious value of b. This extra circuit switching causes dynamic power wasting,

i.e., two multiplications are executed instead of one.

In the proposed MOVE-Pro architecture, we solve this issue by introducing

shadow register(s) before the input buffers of FUs with multiple input operands

(Figure 2.8). Let’s look at the multiplication example above again. Suppose FU1

in Figure 2.8 is a multiplier, multiplicand a is scheduled in cycle t, and multipli-

cator b is scheduled in cycle t+n. In the proposed MOVE-Pro architecture, a will

be first buffered in the shadow register for n cycles until b is also issued. Both

of them will then be loaded into the two input operand buffers at the same

cycle, triggering the multiplier circuit only once. With this improvement, we

avoid the dynamic power wasting in the conventional TTA, while still keeping

TTA’s flexible scheduling feature. For FUs with only a single input, clearly no
such shadow buffer is needed.

Introducing shadow buffer(s) has another important advantage. Let's still

use the multiplication as an example. Since the early arrived operand a is first

buffered in the shadow register, the input buffers of the multiplier can still

latch the valid multiplicand and multiplicator of the previous multiplication. A

direct consequence is that the value of the previous multiplication is valid in

the output of the multiplier for longer time (i.e., more cycles), which would

otherwise have already been flushed by a garbage data. This results in three

beneficial outcomes:

 Increased availability of previous results in the bypass network, as they

can stay in FU outputs for longer time. This results in reduced RF read

accesses.

…

…

…

…

imm

Operand Dispatch Network

Move
Slots

FU N RFFU 1 FU 2

input buffer
output buffer(s)

Shadow
Register

Figure 2.8 MOVE-Pro architecture.

24 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

 Increased possibility for previous results to be dead results as their

available time in the bypass network is longer. This results in reduced

RF write accesses.

 FUs can more effectively act as virtual output buffers, as useful outputs

will not be flushed by garbage data. This results in reduced physical

output buffer and/or register file requirement.

As discussed above, TTAs have finer scheduling granularity than their OTA

counterparts. In OTAs such as a classical RISC datapath, the first and second

operands usually correspond with FUs’ different input buffers. For example,
the first operand bus is only connected with the first input buffer of FU1~FUn,

and the second operand bus is only connected with the second input buffer of

FU1~FUn. So each operand bus has relatively limited load capacitance. Howev-

er, in TTAs, the same operand move can be scheduled to different move slots

(also called move buses), resulting in an operand dispatch network with higher

load capacitance, i.e., higher power penalty to dispatch operand to the input

buffers of FUs. In the most flexible case, each move slot can potentially send its

operand to each destination location.

Reducing the operand dispatch network connectivity can mitigate this issue

but at the cost of reduced scheduling flexibility [64]. So we would like to miti-

gate this issue from a different perspective. Viewing the fact that only part of

the destination registers (input buffers of FUs) are enabled per cycle, we apply

a circuit-level optimization to “isolate” the inactive destination registers. Figure

2.9 describes the basic idea. A 2-1 AND gate is inserted before the move slot

selection MUX. Input A of the AND gate is the destination write enable signal,

which is decoded in such a way that it arrives always earlier than the other in-

put, B, which is the move data. When the destination register writing is not

enabled, i.e., A = 0, the frequently changed move data, B, is isolated from prop-

agating to the output, regardless of its value. With this method, the effective

load capacitance of the operand dispatch network is reduced, resulting in lower

data dispatch cost.

2.3 Energy-Aware Compilation For MOVE-Pro

For a TTA, a typical binary operation needs three moves: two for the source

operands and one for the result. It typically takes 16 bits to encode a move.

Therefore, a direct translation from operation code to move code would probably

result in a very bad code density. Figure 2.10 shows an example where move

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 25

code is 60% larger in a direct translation. The problem can be solved by the

compiler. In the example, after performing software bypassing and instruction

scheduling, the final move code has the same size as the operation code, with

half of the RF reads and all of the RF writes eliminated. Obviously the compiler

plays an important role in a TTA.

The compiler framework of MOVE-Pro is shown in Figure 2.11. The LLVM

compiler framework is used as the front-end, which produces intermediate

move slot 1

…

move slot 2

imm

move slot

selection

input

buffer
relative

long wire

effective load

capacitance of

move slot 1 & 2

(a) without isolation gates, move slots have high effective load capacitance

A: enable

Isolation gate

AND
B: data

out

relative

long wire

move

slot 1

move

slot 2

move

slot 1

move

slot 2

move slot

selection

input

buffer
input

buffer

(b) after introducing isolation gates, the effective load capacitance is reduced

when the input buffer is not a destination register.

Figure 2.9 Reduce the effective load capacitance by AND-gate isolation. enable is the

destination write enable signal (early arrival signal) and data is the move data.

add r3, r4, r7

add r12, r3, r7

sw 0(r1), r12

r4->add.i0 r7->add.i1

add.o->r3

r3->add.i0

r7->add.i1

add.o->r12

r1->sw.i0

0->sw.i1

r12->sw.i2

r4->add.i0 r7->add.i1

add.o->add.i0

add.o->sw.i2

r1->sw.i0

0->sw.i1Merge
&

Schedule

Figure 2.10 TTA code scheduling example.

26 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

representation (IR) for the backend. The instruction set of the IR is similar to a

RISC ISA, with support of extra meta-data. The core of the backend is the in-

struction scheduler. In this work, the scheduler performs basic block level

scheduling. It minimizes the energy consumption by eliminating unnecessary

RF accesses. The number of instructions is another optimization target. Other-

wise the scheduler may choose to serialize operation execution in order to in-

crease the bypassing opportunity. A post-pass register allocator is used. Due to

the nature of TTA, spilling rarely happens in MOVE-Pro. When there is any spill

code that fails to fit into the current schedule, the scheduler simply performs a

partial reschedule. Since the compiler work is reported in a different thesis and

papers, it will not be elaborated in this thesis. For more details, please refer to

[63, 78].

2.4 Experimental Results

To verify the low-power feature of the proposed MOVE-Pro architecture, two

head-to-head comparisons are carried out: i) MOVE-Pro vs. RISC; ii) MOVE-

Pro vs. VLIW.

2.4.1 MOVE-Pro vs. RISC

In this experiment, we implemented in RTL both a classical 5-stage RISC pro-

cessor which is compatible with OpenRISC ISA [85] and its TTA counterpart, a

two-issue MOVE-Pro processor (Figure 2.12). The instruction width of both

designs is 32 bits. The same FUs are used in these two implementations, as well

as the same low-power techniques, e.g., FU clustering and clock gating. To

reach a solid conclusion, we further optimized the reference RISC processor for

lower power consumption at different implementation levels. For example, to

reduce unnecessary switching activity in both RF and pipeline registers, we

only propagate write data/index through pipeline stages when the instruction

under execution indeed requires updating RF.

Clang/

LLVM
Dependency &

Liveness Analysis
Schedule

Local

Reg Alloc

Emit

Binary

IR

MOVE-Pro Scheduler

C code

Core

Configuration

Figure 2.11 MOVE-Pro compiler framework.

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 27

TSMC 90nm low-power library is used in the experiment. The synthesis

condition is set to typical case, 1.2V, and 25°C. To improve the accuracy of

power estimation, physical library (6 metal layers) is included. The intercon-

nect information is estimated based on the physical library. The maximum

clock frequency is 200 MHz with the critical path inside the multiplier. All four

kernels listed in Table 2.1 are tested. Power consumptions are estimated with

the post-synthesis simulation and toggle rate generated by running each kernel

with test data of 2000 samples.

Figure 2.13 shows the energy breakdown of the reference RISC processor

when executing a YUV to RGB color space conversion kernel. The energy con-

sumption is calculated as Pavg × Texe, where Pavg is the average power consump-

tion during kernel execution while Texe is the kernel execution time. Energy

consumption of the memory part is not shown in this graph as it highly de-

pends on the memory size. The register file consumes about 16% of the total

core energy in this application.

Figure 2.13 Energy breakdown of the reference RISC processor (YUV2RGB).

12.6%

12.6%

.3%
26

IF

26.9%

ID

16.1%
RF

40.3%

EX

4.1%

MEM & WB

imm

Operand Dispatch Network

Move Slot 1

LSU RFALU MUL

Move Slot 2

Figure 2.12 The block diagram of the two-issue MOVE-Pro Processor.

28 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Table 2.3 shows the dynamic RF access reduction statistics obtained by cycle

accurate simulation. In all tested kernels, both the RF read and write access

reduction are substantial. Clearly, RF energy consumption is reduced dramati-

cally. However, it would be more interesting to find out whether or not the

total core indeed benefits from this saving. Figure 2.14 shows the normalized

energy breakdown of both the reference RISC processor and the two-issue

MOVE-Pro processor when executing the four benchmark kernels. Both dy-

namic energy and leakage energy are taken into consideration. However, since

the processors are busy executing instructions in every cycle and the low pow-

er library we use has optimized for the leakage power, the leakage energy con-

sumption is negligible compared to the dynamic energy consumption in this

comparison. We can see that the reduction in RF energy is directly transferred

to the total core energy saving, which demonstrates the low-power feature of

the proposed MOVE-Pro architecture. In all kernels, the reduction of RF energy

is more or less proportional to the reduction of RF accesses. The saving of total

core energy is up to 11.6%. The detailed comparisons of power consumption

and cycle counts are shown in Table 2.4.

Table 2.3 RF access reduction in MOVE-Pro.

 FIR Histogram YUV2RGB IDCT

Read reduction 65.5% 63.6% 63.6% 68.6%

Write reduction 82.3% 71.4% 67.7% 66.7%

Figure 2.14 Energy consumption comparison (normalized to the total energy consump-

tion). For the comparison of energy per cycle, the diagram is similar as the cycle counts

are exactly the same for FIR, Histogram, and YUV2RGB. And for IDCT, MOVE-Pro

requires slightly less cycles according to Table 2.4.

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n RF

 Other

 RISC MOVE-Pro RISC MOVE-Pro RISC MOVE-Pro

IDCTYUV2RGBHistogramFIR

 RISC MOVE-Pro

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 29

According to Table 2.4 the dynamic instruction count of MOVE-Pro proces-

sor is similar as its RISC counterpart. Under the same clock frequency, our

MOVE-Pro has no performance loss. In fact, for the IDCT kernel, the proposed

MOVE-Pro processor even outperforms the reference RISC processor by 5%.

With further compiler improvements, such as inter block scheduling, software

pipelining, and if-conversion, we expect that the code density of MOVE-Pro

can be even higher, resulting in further energy improvement.

2.4.2 MOVE-Pro vs. VLIW

In the previous subsection, we compared a two-issue MOVE-Pro processor

with its RISC counterpart. The register file used here is small, 32b×32, and con-

tains very few ports, two read and one write. It takes up only about 16% of the

total RISC core energy consumption. However, even with such a less power-

hungry RF, we still demonstrated a substantial energy saving.

It is more interesting and popular to use TTAs as Very Long Instruction

Word (VLIW) architecture alternatives. In VLIW processors, register files are

usually much larger and contain much more read/write ports [32]. The detailed

analysis in [86] shows that the total power dissipation of the central register file

organization grows as N3, while the total power dissipation of the distributed

register file organization with two-port register files grows as N2. Here N is the

number of arithmetic units of a VLIW processor. In order to quickly validate

Table 2.4 Power comparison between MOVE-Pro and the RISC reference. Both using

TSMC 90nm low-power library and at typical case, 1.2V, and 25°C.

Reference

RISC
Two-issue
MOVE-Pro

FIR

Relative Cycle Count

RF Power

Total Power

1.00

0.84mW

5.43mW

1.00

0.24mW (-71.5%)

4.80mW (-11.6%)

Histogram

Relative Cycle Count

RF Power

Total Power

1.00

0.48mW

2.95mW

1.00

0.25mW (-47.6%)

2.85mW (-3.39%)

YUV2RGB

Relative Cycle Count

RF Power

Total Power

1.00

0.75mW

4.64mW

1.00

0.30mW (-59.1%)

4.19mW (-9.70%)

IDCT

Relative Cycle Count

RF Power

Total Power

1.00

0.90mW

5.24mW

0.95

0.41mW (-54.8%)

4.82mW (-8.58%)

30 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

and illustrate again the efficiency of our MOVE-Pro framework before imple-

menting a complete processor design, in this section we estimate the potential

energy saving by only focusing on the major components whose energy con-

sumption are affected. As already shown in Section 2.4.1, the datapath of con-

ventional VLIW and MOVE-Pro processors are similar when they use the same

amount/type of FUs and the same bypass network (e.g., fully connected). The

difference of energy consumption is mainly caused by the number of RF ac-

cesses and the instruction size.

Table 2.5 lists the average energy consumption of RFs with different num-

ber of ports and SRAMs (used as instruction memories) with different widths

and sizes. We did not take the energy consumption of the instruction memory

into consideration in the previous subsection, this is because the instruction

widths of the 2-issue MOVE-Pro and the reference RISC are the same, and the

dynamic instruction counts of these two processors are also very similar. How-

ever, the processors compared in this subsection have different instruction

widths, and the dynamic instruction counts are also different. Energy con-

sumption of the instruction memory has considerable difference in different

processors under comparison, thus cannot be ignored. The instruction memory

size is set to be the same for different processors. For processors of 48-bit in-

struction width, since 8kB memory does not fit, we choose the closest practical

size, i.e., 9kB. The library we used in the experiment is TSMC 90nm low-power

technology. The RF access energy is derived by synthesizing the RTL design,

extracting the physical information, and estimating the average toggle rate of

each read/write port by performing 1024 random access. The access energy of

the memory is estimated by CACTI [87].

The four kernels listed in Table 2.1 are again used in the evaluation. These

kernels are compiled and executed on a cycle-accurate simulator to collect

access statistics, from which the RF and memory access energies of each kernel

are calculated. In all the experiments, we conservatively set the RF to the same

size for all the processors, even though the RF pressure in the proposed

Table 2.5 Energy comparison of different data accesses.

32b×32 2R1W RF 32b×32 4R2W RF 8kB Memory 9kB Memory

Read Write Read Write 32-bit 64-bit 48-bit

Energy per
access (pJ)

1.81 5.46 1.95 6.67 16.38 19.67 17.03

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 31

MOVE-Pro is much smaller. The access counts based power estimation is less

accurate compared to the real implementation as what we did in Section 2.4.1.

However, it can quickly validate multiple designs with reasonable accuracy.

Figure 2.15 (a) shows the RF (32b×32 2R1W) energy consumption compari-

son among a RISC (R1, 32-bit instr.), a 2-issue MOVE-Pro (M2, 32-bit instr.),

and a 3-issue MOVE-Pro (M3, 48-bit instr.). The results are normalized to the

RF energy consumption of the RISC processor for each kernel. We can see that

the MOVE-Pro processors significantly reduce the RF access energy consump-

tion. Compared to its RISC counterpart, M2 saves an average of 72.6% write

access energy and 65.6% read access energy. Increasing the issue width of

MOVE-Pro can further decrease the traffic to RF. This is because variables’ life-

time is reduced as they can be used earlier. For example, M3 saves extra 26.0%

of RF energy compared to M2 for YUV2RGB.

Similar results are observed in Figure 2.15 (b) when comparing VLIW pro-

cessor and MOVE-Pro processors. Up to 80.3% of RF energy consumption is

reduced. It is worth mentioning that since the RF traffic is greatly reduced in

MOVE-Pro, the requirement on the number of RF's read/write ports alleviates

accordingly. With reduced RF read/write ports, M4' (4-issue MOVE-Pro, 64-bit

instr., 2R1W RF) shows an additional RF energy saving of 15.3% compared to

M4 (4-issue MOVE-Pro, 64-bit instr.), which has a 4R2W RF.

As discussed in the previous sections, the energy saving on RF access does

not guarantee the energy saving in the whole processor. Conventional TTAs

have a poorer code density compared to their RISC/VLIW counterparts, which

can easily eat up the energy saving on RF. The proposed MOVE-Pro frame-

work solves this issue. Table 2.6 shows the code sizes of our MOVE-Pro pro-

cessors and their RISC/VLIW counterparts. We can see that for the cores with

64-bit instruction format, M4 is only slightly worse in some kernels, while for

Table 2.6 Instruction counts of kernel loops on different processors (one iteration).

RISC

2R1W (R1)

MOVE-Pro-2

2R1W (M2)

VLIW-2

4R2W (V2)

MOVE-Pro-4

4R2W (M4)

MOVE-Pro-4

2R1W (M4’)
MOVE-Pro-3

2R1W (M3)

Instr. Size 32-bit 64-bit 48-bit

Histogram 10 10 8 8 8 8

FIR 20 20 12 12 12 14

YUV2RGB 42 42 27 29 30 32

IDCT 87 83 48 49 51 60

32 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

the cores with 32-bit instruction format, M2 even has better code size than RISC.

The comparison between M4 and M4' shows that the number of RF ports has

less impact on MOVE-Pro. It is interesting to mention that due to the finer

scheduling grain (16-bit move), we can design MOVE-Pro processors like M3,

which uses 48-bit instruction format. These kinds of intermediate solutions in-

troduce more flexibility to application-specific designs.

(a) RF energy consumption: RISC vs. MOVE-Pro.

(b) RF energy consumption: VLIW vs. MOVE-Pro.

Figure 2.15 RF energy consumption results: R1: RISC with 2R1W-RF; V2: 2-issue VLIW

with 4R2W-RF; M2: 2-issue MOVE-Pro with 2R1W-RF; M3: 3-issue MOVE-Pro with

2R1W-RF; M4: 4-issue MOVE-Pro with 4R2W-RF; M4’: 4-issue MOVE-Pro with 2R1W-

RF.

0.0

0.2

0.4

0.6

0.8

1.0

R1 M2 M3R1 M2 M3R1 M2 M3

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0.310.31

R1 M2 M3

 RF Write

 RF Read

0.24 0.24

0.34

0.25

0.33 0.32

FIR Histogram YUV2RGB IDCT

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

V2 M4 M4' M3V2 M4 M4' M3V2 M4 M4' M3

0.210.200.20
0.23

0.270.27
0.31

 RF Write

 RF Read

V2 M4 M4' M3

0.23
0.20

0.33

0.27 0.27

FIR Histogram YUV2RGB IDCT

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 33

We present the combined impact of the RF access energy and memory

access energy in Figure 2.16. The result shows that even when taking the code

size into consideration, the energy saving is still significant. Comparing to a

RISC, the combined RF and I-Mem energy consumption is reduced by an aver-

age of 22.0% in M2, while comparing to the VLIW, we see an average of 26.8%

energy saving in M4'.

(a) RF + I-Mem energy consumption: RISC vs. MOVE-Pro.

(b) RF + I-Mem energy consumption: VLIW vs. MOVE-Pro.

Figure 2.16 RF + I-Mem energy consumption results: R1: RISC with 2R1W-RF; V2: 2-

issue VLIW with 4R2W-RF; M2: 2-issue MOVE-Pro with 2R1W-RF; M3: 3-issue MOVE-

Pro with 2R1W-RF; M4: 4-issue MOVE-Pro with 4R2W-RF; M4’: 4-issue MOVE-Pro with

2R1W-RF.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0.64

0.78

0.59

0.76

0.58

0.77

0.70

0.82

 RF Write

 RF Read

 I-MEM

R1 M2 M3R1 M2 M3R1 M2 M3R1 M2 M3

FIR Histogram YUV2RGB IDCT

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0.76

0.72

0.77

0.720.710.71

0.670.670.68 0.69

0.78
0.79

 RF Write

 RF Read

 I-MEM

V2 M4 M4' M3V2 M4 M4' M3V2 M4 M4' M3V2 M4 M4' M3

FIR Histogram YUV2RGB IDCT

34 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

2.5 Related Work

In microprocessors, the register file is one of the central components, which

accounts for a considerable amount of energy consumption. A detailed analysis

of RF power consumption is given by Zyuban and Kogge in [88]. In [86], Rixn-

er et al. analyze the performance, area and power trade-offs in different register

file designs for media processors.

The idea of using variable liveness information to reduce register accesses

in conventional processor architectures has been exploited in a few previous

studies [31, 89, 90]. Balfour et al. introduce the ELM architecture that reduces

RF accesses by using a combination of software bypassing and hierarchical RFs

[31]. Compared to ELM, MOVE-Pro has finer grained scheduling and a more

explicit data path. In [74], Woh et al. address the similar problem in the SIMD

context, and RF partitioning is used as the solution. As an alternative, TTAs,

which is proposed by Corporaal [64, 65, 79], provide a more natural and effi-

cient solution to reduce RF accesses due to its transport-triggered feature.

MOVE32INT is the first TTA implementation [82], and the TTA-based co-

design environment (TCE) is the latest implementation [84]. The MaxQ micro-

controller designed by the Maxim is a commercial processor which exploits the

concept of a TTA [81]. Guzma et al. discuss the performance impact of software

bypassing in TTA [91], and the power consumption implication in [92]. How-

ever, the power aspects of TTAs are never studied in a detailed way. The Syn-

chronous Transfer Architecture (STA) [93, 94] is very similar to TTA. The main

differences between STA and TTA are: i) STA forces every function unit (FU) to

use output buffers so that input buffers are not required; ii) Operands of the

same FU are scheduled at the same cycle with explicit opcode field supplying

the control signals. Comparing to TTA, STA creates a new bottleneck: it re-

quires very large instruction memory and huge bandwidth for instruction fetch

due to the very wide instruction width, so instruction compression becomes a

must [93]. Like TTAs, the power aspects of STAs are never studied in a detailed

and systematic way either. In this work we proposed a novel TTA architecture,

evaluated the potential of building a TTA-based low power and high code den-

sity processor, and performed a detailed comparison between TTA and its

RISC/VLIW alternatives.

MOVE-PRO: A TTA-BASED PROCESSOR FRAMEWORK 35

2.6 Summary

Transport Triggered Architectures possess many advantages, such as modular-

ity, flexibility, and scalability. As an exposed datapath architecture, TTAs can

effectively reduce the number of RF accesses and the requirement for RF ports.

However, conventional TTAs also have some evident disadvantages, such as

relatively low code density, dynamic-power wasting due to separate schedul-

ing of source operands, unequivalent normal data port and trigger data port,

inefficient support for long immediate, etc. In order to preserve the merit of

conventional TTAs, while solving these aforementioned issues, we proposed,

MOVE-Pro, a novel low power and high code density TTA framework. With

optimizations at ISA, architecture, circuit, and compiler levels, we showed that

the low-power potential of TTAs is fully exploited. Moreover, with a much

denser code size, thus less dynamic instruction counts, TTAs’ performance is

also improved accordingly.

In the head-to-head comparison, we showed that up to 80% of RF accesses

can be reduced with the proposed MOVE-Pro framework. More importantly,

we successfully transferred the reduction in RF energy to the total core energy

saving. The comparison with RISC counterpart showed that up to 11.6% reduc-

tion of the total core energy is achieved. While compared to VLIWs, the advan-

tage of the proposed MOVE-Pro architecture is even better.

Further optimization is still possible. For example, extending the compiler

to support software pipelining and inter basic block scheduling would improve

the efficiency. Extending this work to SIMD and multi-core architectures is also

very interesting as more energy saving may be observed.

36 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

CHAPTER 3

3 AN ENERGY EFFICIENT METHOD OF SUP-

PORTING FLEXIBLE SPECIAL INSTRUCTIONS

Many applications contain frequently executed operation patterns in the data-

flow graphs (DFGs), like the ones shown in Figure 3.1. In application specific

instruction set processor (ASIP) design, it is common to synthesize instruction

sets that support such patterns in targeted applications to achieve better per-

formance and energy efficiency [66-68]. Due to its application specific characte-

ristics, only a few special instructions are needed in an ASIP to cover these oper-

ation patterns appeared in its targeted applications.

However, extending this idea to a generic embedded processor and effi-

ciently supporting flexible special instructions is challenging. In most main-

stream processor architectures, only a few of such patterns are supported, as

supporting arbitrary operation patterns in a generic processor incurs large

overhead. From energy efficiency perspective, the overhead includes:

 More bits in the instruction to encode opcodes for all possible patterns

and extra operands in the special instructions. In a compact instruction

set architecture (ISA) like the ARM Thumb [95], the problem is even

more serious as the number of bits in the instruction is very limited. If

ADD

MUL

ADDLDMODDIV

Figure 3.1 Special operation patterns.

38 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

the instruction is made wider, fetching an instruction consumes more

energy.

 More ports on the register file (RF) to provide sufficient data bandwidth

for the special function units. A RF with more ports is much less energy

efficient. Also, even the normal instructions need to pay the extra cost.

Methods like register file clustering [96] or FU internal registers [68] are

able to partially solve the problem. However, such methods usually lack

flexibility and often lead to very complex code generation.

 Increased complexity in many parts of the processor, including instruc-

tion decoder and bypassing network.

In this work, we tackle the problem of integrating flexible special instruc-

tion support in a generic embedded processor with a compact ISA. Apart from

performance improvement, the main focus of this research is on energy effi-

ciency of the processor for different types of streaming applications. To achieve

high energy efficiency, the support for special instructions needs to have low

overhead, while still being able to support applications from different domains.

We propose a scheme for integrating a special function unit (SFU) into a

RISC-like embedded processor with 24-bit instruction width. The reason that

we demonstrate this with a 24-bit architecture is to keep the baseline ISA or-

thogonal (i.e., we do not impose a limitation that requires a certain instruction

to use a specific register). The ideas in this work also apply to more compact

ISAs, e.g., a 16-bit Thumb-like ISA. The SFU supports flexible operation pair

patterns. To integrate the SFU into the RISC datapath with minimum overhead,

we introduce:

 A partially reconfigurable decoder that allows low overhead reconfigu-

ration for each kernel to use its specific patterns. As a result, arbitrary

pair patterns can be executed on the proposed architecture, while no ex-

tra bits are needed for the special instruction opcodes.

 A bypass network in the datapath that is exposed to software, thereby

reducing the requirement, both for operand encoding and register file

ports.

The use of a reconfigurable decoder and an explicit bypass network impos-

es some constraints on the special instructions the processor can execute, e.g.,

for a three-input special instruction, at least one of the operands has to come

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 39

from the bypass network. A compiler backend is designed to generate energy

efficient code for the proposed architecture. The compiler selects patterns and

performs energy-aware instruction scheduling to utilize the SFU and explicit

bypass network. Experimental results show that for a set of benchmarks from

different application domains, the proposed architecture achieves an average

of 26.0% reduction in dynamic cycle count, which is only 1.5% worse than the

architecture without constraints on the special instructions. As for energy con-

sumption, the proposed architecture achieves an average reduction of 15.8%,

while the unconstrained architecture only reduces energy by 2.2%. By intro-

ducing multi-cycle long-latency SFU operations, the proposed architecture is

able to achieve a speed-up of 12.6% with 13.1% energy reduction compared to

the baseline, which is useful when high performance is essential.

The remainder of this chapter proceeds as follows: Section 3.1 describes the

DFG patterns we consider in this research and the design of the SFU that ex-

ecutes such patterns. The proposed integration of SFU into the processor data-

path with explicit bypass is depicted in Section 3.2. Section 3.3 briefly introduc-

es the compiler backend design for the proposed architecture. Detailed and

comprehensive experimental results that demonstrate the effectiveness of the

proposed design are given in Section 3.4. Section 3.5 discusses related work.

Finally, Section 3.6 concludes our findings and discusses future work.

3.1 Operation Patterns and Special Function Unit

Each basic block of a program can be represented by a data-flow graph (DFG)

G (V, Ed, Ef), where:

 V is a set of nodes. Each node in V represents either an actual operation

or a live-in variable (register file or immediate). In this work, we assume

that the operations represented by nodes in V can be directly mapped to

a function unit (FU) in a typical RISC processor. Such operations are de-

fined as basic operations.

 Ed is a set of directed edges. If an edge e = (u, v) ∈ Ed, it represents that

node v consumes the output of u, i.e., there is true data dependency be-

tween u and v.

 Ef is a set of directed edges. If an edge e = (u, v) ∈ Ef, there is false/output

dependency between node v and u.

40 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

For a basic block, the DFG is a directed acyclic graph (DAG). A special opera-

tion pattern is defined as a subgraph of a DFG that contains more than one basic

operation. Figure 3.1 shows some examples of these patterns. Compared to a

sequence of basic operations that performs the same computation, executing a

special operation pattern using a special instruction has a few advantages:

 Fewer instructions are needed to execute the operations, resulting in less

control overhead.

 The communication between internal operations can be done within the

FU, which is usually much more efficient. It may also save RF accesses.

For a certain application, some special operation patterns appear frequently

[97]. In application specific instruction-set processor (ASIP) design, a common

approach for improving performance as well as energy efficiency is to synthes-

ize special function units that support these patterns [66-68, 98]. Different from

ASIP design, the goal of this work is to support special operation patterns in a

RISC-like generic processor, without introducing heavy modifications to exist-

ing architecture and code generation framework. Instead of trying to support

arbitrary operation patterns, we focus on a specific type of operation pattern,

namely, operation pairs. The definition of the operation pair pattern, as well as

motivation of choosing such patterns, is given in Section 3.1.1. The design of a

special function unit (SFU) that provides flexible support for these patterns is

depicted in Section 3.1.2. In Section 3.1.3, we analyze a set of kernels based on

the patterns supported by the proposed SFU.

3.1.1 Operation Pair Patterns

In this work, we want to integrate the support for special operation patterns

without major modification to the original RISC architecture. A single-issue

RISC processor typically has a register file (RF) with two read ports and one

write port (2R1W). Though there are some other possible sources for input

operands, like immediate field and bypass network, the number of source ope-

rands cannot grow dramatically without heavy modification to the instruction

format. The same holds for the destination operand. In addition, the number of

arbitrary operation patterns in different applications is huge. The FU that sup-

ports all these patterns becomes very complex and inefficient. So in this work,

we focus on operation pair patterns, i.e., patterns with two basic operations a

and b that meet the following criteria:

 There is true dependency between a and b, i.e., (a, b) ∈ Ed.

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 41

 There are at most three input operands. More formally, for a set of edges

P that contains all edges to a or b in Ed except (a, b), we have |P|≤ 3;

 At most only one of a and b has consumers outside the pattern, i.e., at

least one of the following holds:

o The result of a is only consumed by b: {(a, c)|(a, c) ∈ Ed, c ≠ b} = Ø. If

this constraint is met, only b may have consumers outside the pair

pattern.

o b has no consumer: {(b, c)|(b, c) ∈ Ed} = Ø. If this constraint is met, only

a may have consumers outside the pair pattern.

 There is no path from a to b in G other than (a, b), which means combin-

ing a and b does not create cycles in G.

Integrating such patterns in a RISC processor is relatively easy: we only

need to supply one more source operand than for a normal operation.

3.1.2 Special Function Unit Design

The design of our special function unit is shown in Figure 3.2. The SFU sup-

ports two levels of basic operations. To avoid introducing large area and tim-

ing overhead, only one multiplier is included in the SFU, which is put within

the first level. An operand switch network is included in the SFU to allow more

flexible operand encoding in a processor. The design of the SFU allows almost

AOpc_1 CSel_1

isolate

Arithmetic Logic Shift

sel

isolate

Arithmetic Logic Shift

BOpc_2Sel_2

sel

Control Signals

Possible Pipeline

Registers

Operand Switch Network

A B C

MUL

Figure 3.2 Special function unit.

42 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

arbitrary operation pairs that satisfy the constraints discussed in Section 3.1.1.

When fully decoded, a 17-bit control signal is needed for the SFU to execute

one special operation. To improve the energy efficiency of the SFU, operand iso-

lation is used to isolate each sub-function-unit. So a unit only toggles when it

actually needs to perform computation, thereby reducing unintended circuit

activity.

Due to the extra level of sub-function-units, the proposed SFU is likely to

increase the delay of the critical path of the processor. When a processor with

the proposed SFU needs to run at high frequency, there are two ways to miti-

gate this delay effect: i) add a pipeline register inside the SFU, either between

the first and the second level, or at the output (or in the middle) of long latency

units (e.g., the multiplier); ii) allow the long latency operations to run in mul-

tiple cycles, thereby allowing the SFU to run at a higher frequency. By using

either method, a processor with the proposed SFU is able to run at a frequency

close to one without the SFU.

3.1.3 Application Analysis

We analyzed seven kernels listed in Table 3.1, which come from various do-

mains. The DFGs of each kernel are scanned to find all possible pair patterns

that can be executed by the proposed SFU. In total, 35 distinct pair patterns are

needed. The number of patterns can grow much larger if more applications

from different domains are included. In addition, to generate a valid special

instruction from an operation pattern, more information needs to be encoded,

e.g., whether or not there is an immediate and whether the immediate is for the

first operation or for the second operation. Figure 3.3 shows an example of a

three input operation pair that requires different control coding. In general, the

number of operation pair patterns is N1 × N2 × V, where N1 is the number of op-

erations in layer 1, N2 is the number of operations in layer 2, and V is the num-

Table 3.1 Kernel description.

Kernel Description Domain

FIR

Histogram

YUV2RGB

IDCT

MatVec

CRC

DES

5-tap finite impulse response filter

256-bin histogramming

YUV to RGB color space conversion

2D 8×8 Inverse cosine transformation

Matrix vector multiplication

Cyclic redundancy check code calculation

Data Encryption Standard algorithm

Image Processing

Image Processing

Image Processing

Codec

Linear algebra

Network/Storage

Security

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 43

ber of variants introduced by operand formats described above. The total

number of different special instruction patterns is large when the SFU supports

flexible operation pair patterns.

However, if we look into each individual kernel, we can see that the num-

ber of patterns used in one kernel is much smaller than the total number of pat-

terns. Table 3.2 shows the statistics of pattern matches in the seven representa-

tive kernels from different domains. The statistics show that it is possible to

exploit the temporal locality of patterns to reduce the number of patterns a pro-

cessor needs to support during the execution of an application or a kernel.

Findings in [74, 98] also lead to a similar conclusion. This observation can be

used to guide the design of efficient special instruction support in processors,

which is discussed in Section 3.2.

3.2 Integrating SFU into Processors with Compact ISA

In general, it is possible to integrate the proposed SFU design into any generic

processor architecture. In this work, a 4-stage RISC processor with a 24-bit in-

struction set architecture (ISA) is used as the baseline architecture. The key fea-

tures of the baseline architecture are described in Table 3.3. Figure 3.4 depicts

the datapath of the baseline processor. The ISA of the baseline is similar to the

Table 3.2 Kernel pattern statistics.

Total FIR Histogram YUV2RGB IDCT MatVec CRC DES

35 3 2 9 9 11 9 12

B

A

R IR

B

A

R RI

B

A

R RR

If B is not commutative

B

A

RR I

B

A

RR R

R RF/bypass

I Immediate

Source operand types

Figure 3.3 Cases for the same pair pattern that needs different coding.

44 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

one used in OpenRISC [85]. Most instructions are three-address instructions:

two source operands and one destination are encoded. The baseline processor

is representative of typical RISC processors used in embedded systems.

For the baseline architecture, the major limiting factors of integrating the

SFU introduced in Section 3.1.2 are:

 After adding the basic integer and control operations, only less than 16

opcodes are left in the opcode space.

 At most 3 bits can be used for encoding the extra operand in three-input

instructions, which are not enough for a register index.

 The 2R1W RF cannot provide enough operand bandwidth for the SFU.

A straightforward solution to these problems is to increase instruction

width and the number of RF ports. To accommodate the extra opcodes and

register index, at least additional 7 bits are needed (5 bits for the third register

IMMRF
(2R1W)

Operand 2Operand 1

ALU MUL LSU

D
e

c
o

d
e

E
x
e

c
u

te
W

B

Operand Bypass

Figure 3.4 A typical RISC datapath.

Table 3.3 Key features of the baseline ISA.

Instruction width 24 bits

Pipeline stages 4

Register file 32×32, 2R1W

Opcode 6 bits

Immediate 8 bits

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 45

operand, 2 bits for extra opcodes). As a result, the width of the instruction

memory increases to 32 bits. In addition, the RF needs to have three read ports

(3R1W) in order to provide sufficient bandwidth for the SFU. The resulting

datapath is shown in Figure 3.5. To avoid high area overhead, the multiplier is

absorbed into the SFU. Based on the estimation of CACTI [87], the energy con-

sumption of each access to the instruction memory is increased by 10% to 30%,

depending on the size and configuration. Based on the implementation result,

the energy consumption of the RF is also increased by 12% due to the extra

read port. Since both the instruction memory and the register file are among

the most frequently used components in a processor, an architecture with such

large overhead is unlikely to be energy efficient.

To improve the energy efficiency, this overhead has to be mitigated. In this

work, we propose an energy efficient support for the SFU by using: i) a partial-

ly reconfigurable decoder that exploits the locality of the operation patterns to

reduce the opcode encoding requirement; ii) a software-controlled bypass net-

work that exploits the processor pipeline to reduce the operand encoding and

RF port requirements. Section 3.2.1 and Section 3.2.2 describe the details of the

partially reconfigurable decoder and the software-controlled bypass network,

respectively. Section 3.2.3 shows how the SFU is integrated into the baseline

processor.

IMM

Operand 2Operand 1

ALU SFU LSU

D
e

c
o

d
e

E
x
e

c
u

te
W

B

RF
(3R1W)

Operand 3

Figure 3.5 Datapath with unconstrained support for SFU.

46 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

3.2.1 Partially Reconfigurable Decoder for SFU

As discussed in Section 3.1.3, a key observation is that although a large number

of patterns are needed to cover the operation patterns in different applications,

only a small number of such patterns are active in one kernel, i.e., in most ker-

nels, the operation patterns have good locality. To utilize such locality, this

work introduces a partially reconfigurable decoder for the SFU.

Figure 3.6 depicts the structure of the reconfigurable decoder for the SFU.

Central to the decoder is a look-up-table with eight entries, called pattern table.

Each entry in the pattern table stores a 17-bit control signal required by a spe-

cial instruction. Since the table only has eight entries, the free opcodes in the

opcode space can be used to address it. When a special instruction is fetched,

the decoder reads a pattern table entry and uses it to control the SFU; when a

normal instruction is fetched, the decoder proceeds as a normal RISC decoder,

and the pattern table is clock gated to eliminate unnecessary accesses.

The pattern table is visible to the software. So when different operation pat-

terns are needed, the software can reconfigure the SFU decoder by writing ex-

tra control signal needed by these operations into the pattern table. By enabling

the reconfiguration of the pattern table, the processor is able to use all the op-

eration patterns supported by the SFU. And since in most cases the operation

patterns have good locality, the overhead of reconfiguration is low.

SFU

Opcode Operand Info

Operand Selection

Decoded

Control

Signals

8-Entry Reconfigurable

Pattern Table

[0]

[7]

0
17-bit Fully Decoded SFU Control Signals

16

Instr

Type

Imm

ZExt

L1 Data

Select

L2 Data

Select

L1 FU

Select

L1

Opcode

L2 FU

Select

L2

Opcode

Figure 3.6 Partially reconfigurable SFU decoder.

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 47

3.2.2 Explicit Bypass

In a typical pipelined datapath of a processor, like the one in Figure 3.4, there is

a bypass/forwarding network, whose primary function is to avoid pipeline

stalls caused by true data dependencies. A side effect of such a network is that

many operands can be read from the pipeline registers instead of the RF. There

are two types of possible RF access elimination introduced by the bypass net-

work:

 Bypassing: the result of an operation can be read from the pipeline regis-

ter before it is written back to RF.

 Dead writeback elimination: if all uses of a variable are bypassed, its write-

back to RF is no longer necessary.

However, in a conventional processor architecture, such a bypass network

is invisible to software, which makes it difficult to eliminate unnecessary RF

accesses: i) bypassing requires RF indexes to be checked before the decode

stage, which may increase the critical path of fetch stage, or results in an extra

pipeline stage; ii) dead writeback elimination is impossible unless the register

liveness information is explicitly encoded in instructions. In this work, we pro-

pose to use a bypass network that is controlled by software, i.e., the bypassing

information is statically encoded in the instructions. Figure 3.7 shows an ex-

ample of reducing RF accesses via explicit bypassing. Apart from reducing the

total number of register accesses, explicit bypassing helps integrating the SFU

without increasing instruction width and RF ports in two ways:

 Encoding a bypass source uses fewer bits than an RF index, since the

number of possible bypass sources is much smaller than the number of

sw r7, 0(r2)

add r7, r3, r4

mul r4, r6, r11

mul r3, r5, r10

Fetch
 Rd r6

 Rd r11
MUL Wr r4

Fetch
Rd r3

Rd r4
ADD Wr r7

Fetch
Rd r2

Rd r7
SW

Fetch
 Rd r5

 Rd r10
MUL Wr r3

sw EX, 0(r2)

add --, EX, WB

mul --, r6, r11

mul --, r5, r10

Explicit bypass code

Figure 3.7 Reduce register file accesses via explicit bypassing.

48 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

registers in a typical RF (4 vs. 32).

 Fewer RF ports are required when some operands are from the bypass

network.

By imposing the constraint that at least one of the source operands in a

three-input special instruction has to come from the bypass network, the spe-

cial instructions can be easily encoded in the 24-bit instruction format, and

there is no need to increase the number of register file ports. Figure 3.8 shows

an example of using special instructions under this constraint. In a processor

with an unconstrained SFU, the number of required instructions is reduced

from 6 to 4, at the cost of increasing the number of read ports of the RF from 2

to 3. In a processor with explicit bypassing, the same code size improvement

can be achieved even when there is a constraint that at least one of the ope-

rands comes from the bypass network. And with such a constraint, the re-

quirements for extra instruction bits and RF port are removed.

3.2.3 Integrating SFU into Processor Datapath

We propose an architecture that is able to support all the operation pair pat-

terns of the SFU described in Section 3.1.2, by employing the partially reconfi-

gurable decoder and explicit bypass network introduced in previous subsec-

tions. Figure 3.9 shows the datapath of the proposed processor architecture.

Note that because there are input registers for each FU, the result of an opera-

tion is stable at the output port of the FU until the next operation that uses the

same FU starts. So it is possible to use the output of each FU as a separate by-

pass source, which increases the bypassing possibility.

mul r3, r7, r12

add r15, r3, r4

mul r3, r5, r10

mul r4, r6, r11

add r15, r15, r3

sw r15, 0(r2)

RISC

2R1W RF

5 RF Writes

12 RF Reads

mul-add r15, r7, r12, r15

mul r3, r5, r10

mul-add r15, r6, r11, r3

sw r15, 0(r2)

SFU with unconstrained
RF accesses

3R1W RF

3 RF Writes

10 RF Reads

mul-add --, r7, r12, EX

mul --, r5, r10

mul-add --, r6, r11, EX

sw EX, 0(r2)

SFU with explicit
bypass

2R1W RF

0 RF Writes

7 RF Reads

Figure 3.8 Special instruction example.

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 49

Compared to the one with unconstrained SFU support (Figure 3.5), the pro-

posed architecture imposes extra constraints on the special instructions it can

execute:

 For a three-input special instruction, at least one of the source operands

has to come from the bypass network.

 At most eight special instruction patterns are active at the same time. To

support different patterns, the program needs to reconfigure the pattern

table.

With these constraints, the proposed architecture is much more energy effi-

cient: instruction width remains 24 bits instead of 32 bits and the RF is 2R1W

instead of 3R1W. To use explicit bypassing without changing the normal in-

struction format, part of the RF address space is used for the bypass source. As

a result, the number of registers in the RF reduces from 32 to 28. The effect of a

smaller RF is mitigated by explicit bypassing, as it eliminates the necessity of

allocating registers for short-lived variables in many cases.

The introduction of a pattern table and an explicit bypass results in extra

context when an exception happens. The pattern table can be handled in a simi-

lar fashion as general purpose registers. For the explicit bypass, it is required

that the processor saves the complete state for the execute and writeback stages

of the pipeline. This can be done using a scan-chain that automatically

IMM

Operand 2Operand 1

ALU SFU LSU

D
e

c
o

d
e

E
x
e

c
u

te
W

B

RF
(2R1W)

Operand 3

Bypass ID

Figure 3.9 Datapath with constrained support for SFU.

50 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

saves/restores the registers when an exception happens. Since the number of

registers is small, the overhead in area and response time is also small.

As mentioned in Section 3.1.2, a pipelined or multi-cycle SFU is required if

the processor needs to run at a higher frequency. In this work, when the target

architecture needs to run at similar frequency as the baseline RISC processor,

all special instructions that use the multiplier (e.g., multiply-add) are set to

finish in two cycles. With such a configuration, there are two types of resource

hazards need to be taken care of:

 SFU hazard: A special instruction that uses the multiplier occupies the

SFU for two cycles. So the next instruction in the pipeline cannot use

SFU.

 Writeback hazard: When a two-cycle instruction is followed by a single-

cycle instruction, there is resource hazard in the writeback stage, since

there is only one RF write port.

Both hazards can be resolved using hardware interlock. Only 2-bit extra in-

formation needs to be recorded when a special instruction is issued to the ex-

ecute stage: i) whether it is a two-cycle instruction; ii) whether it requires to

update the writeback stage. Based on these 2-bit data and the type of the fol-

lowing instruction, an interlock signal can be generated. Using hardware inter-

lock makes the hazards transparent to software.

3.3 Code Generation for Special Instructions

The compiler in this work is implemented based on the open-source LLVM

framework [99]. Figure 3.10 shows the flow of the compiler backend for the

proposed architecture. The input of the backend is a low-level intermediate

representation (IR), which is basically RISC assembly with virtual registers,

embedded with control-flow and data-flow information. Most part of the com-

piler can simply reuse the same passes as a compiler for RISC architecture.

However, the backend needs to be aware of the explicit bypass network and

has to utilize the special function unit (SFU).

To use the SFU, the compiler first needs to choose pairs of DFG nodes that

can be used to generate special instructions, i.e., the pair pattern selection. The

first step of pair pattern selection is to find all the node pairs whose patterns

are supported by the SFU in the data-flow graph (DFG) under the constraints

described in Section 3.1.1. The next step is to choose a subset of the node pairs

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 51

found in step 1 that will be used to generate special instructions. The objective

is to find as many pairs as possible. Minimum degree heuristic is used to solve

this issue. When a tie is met, pattern frequency is used to break the tie.

A list scheduler is used for basic block level scheduling. To increase energy

awareness, the scheduler uses the following heuristics: i) the scheduler first

tries to select a special operation node that constraints are guaranteed to be met;

ii) if it fails to select a unique candidate, or no such special operation node ex-

ists, the scheduler chooses the node that benefits most from bypassing; iii) if

there are still multiple candidates, the scheduler chooses the node with the

same opcode as the previous operation; iv) if all tie breaking does not work, the

scheduler chooses the first node it finds.

After scheduling, a scan through all instructions is preformed to check for

invalid special instructions. If a special instruction is found to be invalid, the

checker decomposes it into normal instructions. Due to the nature of explicit

bypassing, this transformation does not increase register usage. The register

allocation is done with a graph-coloring algorithm. It is similar as the one used

for a normal RISC processor. Finally the compiler collects pattern information

and decides where to insert the reconfiguration codes for the special instruc-

tions. Since the compiler work is carried out by another project member, it will

not be elaborated in this thesis. For more details, please refer to [100].

Low Level IR

Y

Backend

Clang/LLVM based

Front/Middle-end

Pair Pattern

Selection

Energy-Aware

Scheduling

Emit Target Code

Schedule

Affected

Register Allocation

Set Bypass and Break

Invalid Instructions

C source code

Figure 3.10 Compiler backend flow.

52 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

3.4 Evaluation and Analysis

Table 3.4 presents the architectures used in the experiments. The proposed ar-

chitecture, i.e., with partially reconfigurable decoder, explicit bypass network,

and constrained special instruction patterns (see Section 3.2.3), is called SFU-

I24. And the architecture that integrates SFU without the constraints intro-

duced in SFU-I24 is called SFU-I32. The SFU-I24-C2 is an architecture that is

almost identical to SFU-I24, except for the two-cycle SFU and interlock logic

that help to achieve higher frequency. The datapaths of the baseline, SFU-I32,

SFU-I24/SFU-I24-C2 are shown in Figure 3.4, Figure 3.5 and Figure 3.9, respec-

tively. All four cores are implemented in Verilog HDL and synthesized with

TSMC 90nm low power library at 1.2V, 25°C, and typical case. Clock gating is

used to minimize dynamic power consumption. The core energy consumption

is estimated with the physical library and toggle rate generated by post-

synthesis simulation. The area and energy consumptions of the memory are

estimated with CACTI [87], using 90nm low power technology.

3.4.1 Area and Frequency

The implementation results of the four architectures are shown in Table 3.5.

The increase in the core area is understandable and expected, as the SFU, as

well as its decoding part, is much more complex compared to simple FUs in

RISC. The core area of SFU-I32 is slightly larger than SFU-I24 as it needs to

support more patterns in the decoder. SFU-I24-C2 uses slightly more area than

SFU-I24 because of the interlock for multi-cycle operations. The difference in

total memory area between SFU-I32 and SFU-I24 is significant. This is caused

by the instruction memory since SFU-I32 uses 32-bit instructions, while SFU-

I24 uses 24-bit instructions. In all, the SFU-I32 pays a very high price in terms

Table 3.4 Configuration of different architectures.

Architecture
Baseline
(Base)

Unconstrained SFU
(SFU-I32)

Proposed
(SFU-I24)

Proposed w/2-cycle SFU
(SFU-I24-C2)

Instruction width 24-bit 32-bit 24-bit 24-bit

Instruction
memory

12kB 24-bit 16kB 32-bit 12kB 24-bit 12kB 24-bit

4k words

Data memory 16kB 32-bit

Register file
32b×32
2R1W

32b×32
3R1W

32b×28
2R1W

32b×28
2R1W

SFU patterns 0 128 8 8

Two-cycle
special operations

None
Special operations
with multiplication

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 53

of area. In contrast, the proposed SFU-I24 realizes the special instruction sup-

port with a relatively small overhead. In particular, it does not increase the

memory area, which is the dominant part in many modern processors.

The reduced maximum frequency of SFU-I32 and SFU-I24 is mainly caused

by the single-cycle SFU, which has two levels of sub-function-units. In SFU-I24-

C2, this is mitigated by making the special operations that use the multiplier

two-cycle operations. And as shown in Table 3.5, SFU-I24-C2 only pays a small

price for the high frequency. Compared to the baseline, there is still a 14.4%

loss in frequency, which is primarily caused by the operand switch network in

the SFU (see Figure 3.2).

3.4.2 Energy Consumption

Table 3.1 lists the benchmarks used in the experiments. These kernels are from

various application domains. The code for the proposed SFU-I24 and SFU-I24-

C2 is generated by the compiler described in Section 3.3. For SFU-I32, the code

generation process is almost the same as SFU-I24, except that all the constraints

on operand bypassing and opcode space are removed, and no reconfiguration

code is generated. All benchmark programs are compiled with maximum op-

timization enabled (-O3). Table 3.6 shows the absolute results of the baseline

processor. The memory energy in the table includes accesses to both instruc-

Table 3.5 Implementation result comparison.

Architecture Base SFU-I32 SFU-I24 SFU-I24-C2

Normalized core area 1.000 1.309 1.268 1.278

Normalized memory area 1.000 1.154 1.000 1.000

Maximum frequency 450MHz 325MHz 325MHz 385MHz

Table 3.6 Results of the baseline architecture.

Kernel Simulated Cycles
Average Core

Energy per Cycle

Average Memory

Energy per cycle

Histogram 21547 11.05 pJ 16.10 pJ

FIR 40973 18.41 pJ 16.24 pJ

IDCT 2303 17.93 pJ 14.56 pJ

YUV2RGB 43032 17.88 pJ 13.82 pJ

MatVec 3729 13.27 pJ 14.00 pJ

CRC 162017 12.73 pJ 11.82 pJ

DES 857130 14.89 pJ 14.64 pJ

54 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

tion memory and data memory. The energy consumption of each kernel is cal-

culated by multiplying the number of cycles with the average energy (i.e., core

+ memory) per cycle. In the remainder of this sub section, we normalize all re-

sults to the baseline.

Figure 3.11 shows the normalized cycle count of the four different cores. In-

cluding the overhead of reconfiguration, SFU-I24 achieves a reduction of 26.0%,

which is only 1.5% worse than SFU-I32. In some kernels that need to use spe-

cial operations with many multiplications, SFU-I24-C2 uses more cycles. But on

average it still reduces 25.2% in cycle count compared to the baseline. When

the instruction width is factored in, as shown in Figure 3.12, the total memory

energy consumption of SFU-I24 is much less than SFU-I32. Though the number

of fetches is reduced dramatically, SFU-I32 only achieves 4.0% average memo-

ry energy reduction due to increased instruction width. In 3 out of 7 bench-

marks the energy consumption actually goes up. In contrast, the proposed

SFU-I24 is able to directly convert the reduction in instruction count into mem-

ory energy saving. An average of 21.7% saving is observed. For SFU-I24-C2,

similar result is achieved: the average saving is 21.3%.

Figure 3.13 shows the normalized core energy consumption. Comparing to

the baseline processor, the proposed SFU-I24 reaches a maximal core energy

reduction by 21.4% in the FIR case, and by 10.7% on average. The main contri-

butions of energy reduction are from: 1) reduced RF access energy; 2) reduced

datapath and control path overhead due to merged operations.

Figure 3.11 Dynamic cycle count (overhead included).

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean
0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Base SFU-I32 SFU-I24 SFU-I24-C2

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 55

On the other hand, SFU-I32 only reduces the average core energy by 1.0%.

The explicit bypass network is an important contributing factor to this huge

difference. As shown in Figure 3.14, the number of accesses to the RF in SFU-

I24 is significantly reduced. In addition, the RF in SFU-I24 has fewer ports than

the one in SFU-I32. As a result, the core of SFU-I24 consumes much less energy

compared to SFU-I32.

In the case of SFU-I24-C2, the core energy consumption increases when a lot

of special instructions with multiplication are used. The main reason is that the

compiler is forced to use a less energy efficient schedule in order to fill the de-

lay caused by multi-cycle operations. When no special instructions with mul-

tiplication are used, the result is similar to SFU-I24. On average, the core ener-

gy is reduced by 5.9% compared to the baseline.

Figure 3.15 shows the normalized total energy consumption. The proposed

SFU-I24 reduces both the memory and core energy, and it achieves an average

saving of 15.8%. It reaches a maximal of 33.1% energy saving in CRC. In SFU-

I24-C2, the total energy is reduced by an average of 13.1%, and the maximal

saving occurs in CRC, which is 32.2%, while in the case of SFU-I32, the total

energy saving is only 2.2%. The breakdown for the energy in different kernels

is presented in Figure 3.16, which clearly shows that SFU-I24 and SFU-I24-C2

outperform SFU-I32 in both core and memory energy in most cases.

Figure 3.12 Normalized memory energy consumption.

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean
0.5

0.6

0.7

0.8

0.9

1.0

 Base SFU-I32 SFU-I24 SFU-I24-C2

56 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Figure 3.13 Normalized core energy consumption.

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10
 Base SFU-I32 SFU-I24 SFU-I24-C2

Figure 3.14 Normalized number of register file access.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G-MeanDESCRCMacVetYUV2RGBIDCTFIR

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

3
2

S
F

U
-I

3
2

S
F

U
-I

3
2

S
F

U
-I

3
2

S
F

U
-I

3
2

S
F

U
-I

3
2

B
a

s
e

B
a

s
e

B
a

s
e

B
a

s
e

B
a

s
e

B
a

s
e

B
a

s
e

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

 RF Write RF Read

B
a

s
e

Histogram

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 57

Figure 3.16 Energy gain breakdown.

-5%

0%

5%

10%

15%

20%

 Memory Core

DESCRCMacVetYUV2RGBIDCTFIR

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

Histogram

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

S
F

U
-I

2
4

-C
2

S
F

U
-I

2
4

S
F

U
-I

3
2

Figure 3.15 Normalized total energy consumption.

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05
 Base SFU-I32 SFU-I24 SFU-I24-C2

58 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

These results show that although the use of SFU is able to significantly re-

duce the dynamic cycle count, directly putting the SFU into a generic processor

without any constraint does not result in an energy efficient architecture.

3.4.3 Performance

The normalized execution time of the different cores used in the experiments is

shown in Figure 3.17. The result is calculated based on the dynamic cycle count

and the maximal frequency of each core. Due to the loss in frequency, both

SFU-I32 and SFU-I24 suffer minor performance degradation, though they are

able to reduce the cycle count by about 26%. However, in SFU-I24-C2, an aver-

age speed-up of 12.6% is observed. The SFU-I24-C2 is able to achieve a good

balance between performance and energy consumption, with relatively small

overhead compared to SFU-I24.

The proposed architecture with a partially reconfigurable decoder and an

explicit bypass network is able to reach a balance between the energy efficiency

and the flexibility of the SFU, and it results in an architecture with high energy

efficiency and good performance.

3.5 Related Work

The use of complex operation patterns, called instruction set extension (ISE), is

common in instruction set synthesis for ASIP design [66-68]. There are also

Figure 3.17 Normalized execution time (adjusted according to max. frequency).

Histogram FIR IDCT YUV2RGB MatVec CRC DES G-Mean
0.5

0.6

0.7

0.8

0.9

1.0

1.1

 Base SFU-I32 SFU-I24 SFU-I24-C2

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 59

studies trying to integrate such ISE in general purpose architectures [101-103],

most of which focus on improving the performance.

The data bandwidth from the register file to the FUs is an important con-

straint in ISE design [104]. Leupers et al. introduced special register file called

internal registers (IR) for the special instruction units [68]. The IR is an effective

way of implementing application specific special instruction, but it lacks flex-

ibility and complicates the code generation as the registers and FUs are no

longer orthogonal, i.e., an FU cannot accesses arbitrary registers. Karuri et al.

proposed RF clustering in single issue processor to mitigate the register file

port pressure in ISE in ASIP design [96]. While reducing port pressure, the RF

clustering, which is similar to what is used in clustered VLIW architectures,

also makes the code generation much more complex. Pozzi and Ienne exploited

the fact that pipelined SFUs do not need all operands in the same cycle to dis-

tribute register file accesses across multiple cycles [105]. This trick cannot be

applied to the SFUs that are similar to the one used in this work. Utilizing the

bypass network has been proven to be an efficient way to increase operand

bandwidth and reduce register file energy in different types of architectures [30,

31, 106, 107]. Jayaseelan et al. proposed explicit forwarding to reduce register

file port pressure and operand encoding cost for application specific ISE in a

RISC-like datapath, which resembles somewhat the idea of explicit bypass in

this work [103]. However the power model used in [103] only considers the

consumption of the register file. The overall energy efficiency of the proposed

architecture is not clear. Cong et al. proposed shadow registers to solve the

operand bandwidth issue for supporting special instructions in a configurable

processor [108]. The shadow registers are similar to explicit pipeline registers,

but have more flexibility. To avoid dramatical increase of control bits, the sha-

dow registers are hash-mapped, which may be less efficient in terms of energy.

In this work, we explored the trade-offs in utilizing bypass network for energy

efficient ISE in a generic processor with compact ISA and presented detailed

and realistic results. The proposed solution achieved high energy efficiency

while maintaining the generality of the baseline architecture.

In ASIP designs, dynamic instruction set configuration is often used to op-

timize the resource usage. The idea of using a dynamically reconfigurable de-

coder to support flexible ISA has been exploited in reconfigurable architectures

like Montium [109] and MOLEN [110], but they are not tightly integrated into a

general purpose processor. The ConCISe toolchain proposed by Kastrup et al.

introduces accelerator called reconfigurable function unit (RFU) based on pro-

60 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

grammable logic device (CPLD/FPGA). The RFU is integrated into a MIPS da-

tapath as a new FU [111]. In ConCISe, operation patterns are required to have

no more than 2 input operands and one output. Reconfiguration of RFU is re-

quired for different applications. The rotating instruction set processing plat-

form (RISPP) uses a runtime reconfigurable instruction set to enable the reuse

of resources for special instructions in ASIP [112]. The Conservation Cores

toolchain uses automatically synthesized accelerators called c-cores to improve

energy efficiency in many core architectures [113]. Huynh et al. proposed dy-

namic instruction set configuration for a flexible reconfigurable custom instruc-

tion unit, addressing the trade-offs between area, performance and reconfigu-

ration cost [114]. Some recent works proposed integration of special instruc-

tions for a relative wide range of applications. Clark et al. proposed integration

of a configurable compute accelerator (CCA) into a general-purpose processor

[101, 102]. The architecture of CCA is relatively complex and it requires up to 4

inputs and 2 outputs, as its main objective is to improve performance. The con-

trol part of CCA is designed to be transparent such that the code can be ex-

ecuted with or without CCA. Woh et al. proposed AnySP, a wide SIMD signal

processor targeting wireless and multimedia applications [74]. In AnySP the

idea of operation pairs is similar to the SFU design in this work, and the ope-

rand problem is partially solved by introducing an extra small RF. Venkatesh

et al. proposed QsCores, a framework that automatically synthesizes accelera-

tor for a wide range of applications from source code [115]. In PEPSC, an archi-

tecture designed for efficient scientific computing, Dasika et al. proposed a

FPU that is capable of executing up to five back-to-back operation [116]. In this

work we exploited the locality of the special operation patterns in designing a

partially reconfigurable decoder to achieve energy efficient integration of SFU

into a RISC processor with compact ISA, which allowed the proposed architec-

ture to improve energy efficiency substantially in different application domains.

Selection and scheduling for special instructions is one of the most impor-

tant parts in code generation for ASIP and many reconfigurable architectures.

Kastner et al. proposed an algorithm for generating special instructions in a

system with reconfigurable fabrics [117]. Guo et al. proposed a graph covering

algorithm for code generation of Montium reconfigurable processor [118]. Park

et al. presented a greedy algorithm for increasing the bypassing in a RISC pro-

cessor [107]. In [103], integer linear programming (ILP) is used to perform by-

pass aware scheduling in a processor with application specific ISE. The pro-

posed algorithm inserts register copying instructions in order to meet the con-

straints of the special instructions.

SUPPORTING FLEXIBLE SPECIAL INSTRUCTIONS 61

In this work, we proposed a novel architecture that uses special instructions

to improve the energy efficiency of a generic processor with a compact ISA.

Two major issues: i) opcode and operand encoding; ii) operand bandwidth to

SFU are solved by using a partially reconfigurable decoder and explicit bypass

network.

3.6 Summary

Integrating a special function unit (SFU) that executes complex operations into

a generic processor for energy efficiency is not easy, as special instructions may

incur large overhead, especially when the ISA is a compact one. This work in-

troduced an architecture for integrating SFU that supports flexible operation

pair patterns in a generic processor with a compact ISA. A partially reconfigur-

able decoder and a software-controlled explicit bypass network are used to: i)

encode extra opcodes and operands in the limited instruction coding space; ii)

supply sufficient data to the special instructions without increasing the number

of register file ports. Results including benchmarks from different domains

demonstrate that the proposed architecture is effective: average dynamic cycle

count is reduced by over 25%. The total processor energy consumption is re-

duced by 15.8%. When high performance is required, the proposed architecture

is able to achieve a speed-up of 12.6% with 13.1% energy reduction compared

to the baseline, by introducing multi-cycle SFU operations. Future work in-

cludes supporting more complex patterns in the SFU, and exploring the further

trade-offs between the complexity of the SFU and the energy efficiency of the

processor architecture.

62 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

CHAPTER 4

4 TOWARDS AN ULTRA LOW-ENERGY

SIMD PROCESSOR

The latest communication and multimedia standards, such as 4G wireless

communication, H.264, and high-definition video, require ultra-high computa-

tional performance and ultra-high energy efficiency of end-user devices. While

processors like Intel's Core i7 provide excellent computational performance,

their energy consumption exceeds far beyond the energy budget of mobile

terminals. Instead of these high-end processors, domain-specific streaming

processors, particularly massively-parallel Single Instruction Multiple Data

(SIMD) processors, are very popular candidates for SoCs within mobile devices.

This is because: i) massive parallelism in streaming applications typically

shows up as data-level parallelism (DLP) which can be inherently exploited by

SIMD architectures, thus making SIMD the most common core execution en-

gine on a stream platform; ii) SIMD is a low power architecture as it applies the

same instructions to all processing elements (PEs). However, practice today is

that power efficiency is still the main bottleneck in high performance embed-

ded system design, especially for those ones that run on limited power sources

like batteries. Moreover, the large power dissipation also worsens the SoCs'

thermal and reliability issue, thus requiring expensive cooling techniques.

In this chapter, our progress in developing Xetal-Pro, an ultra low-energy

SIMD processor, is presented. Xetal-Pro is a wide SIMD processor based on the

previous Xetal-II processor from Philips, which ranks as one of the most com-

putational-efficient (in terms of GOPS/Watt) processors available today [75].

Instead of power reduction, we focus on energy reduction, as energy/operation

is the real metric for battery life. Xetal-Pro inherits many low-power peculiari-

ties from the Xetal-II processor while removing serious shortcomings that may

result in sub-optimal energy efficiency.

64 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The remainder of this chapter is organized as follows: Section 4.1 gives an

overview of Xetal-II and analyzes its energy and performance by mapping dif-

ferent benchmark kernels. The energy breakdown of Xetal-II shows that the

frame memory (FM) dominates the total energy consumption. Section 4.2

presents the challenge of applying ultra low Vdd scaling to the FM implemented

with commercial SRAM. In Section 4.3, we explore alternative Vdd scalable FM.

Unfortunately, these alternatives are also not effective and not efficient enough

in lowering the energy of FM. To resolve this issue, the hybrid memory system

(HMS) is introduced in Section 4.4. Section 4.5 discusses related work. Finally,

Section 4.6 concludes our findings and discusses future work.

4.1 The Xetal-II Processor

The development of Xetal-Pro starts from exploring its predecessor Xetal-II [75,

119]. Xetal-II has been implemented in a 90nm CMOS process with 74 mm2 die

area. It consists of 320 PEs, and delivers a peak performance of 107 GOPS on

16-bit data at a running frequency of 84 MHz, with a power budget of 600 mW.

Although Xetal-II already ranks as one of the most computational-efficient pro-

cessors, it still cannot suffice the demanded computational efficiency for

emerging mobile computing applications [6].

4.1.1 Overview of Xetal-II Processor Architecture

The block diagram of the Xetal-II processor is depicted in Figure 4.1. The con-

trol processor (CP) is a 16-bit, MIPS-like processor. The main task of the CP is to

control the program flow, handle interrupts, communicate with the outside

world and configure other blocks. The linear processor array contains 320 PEs

and an integral 10M bit frame memory (FM). Layout and memory considerations

necessitate partitioning of the linear processor array into tiles because: i) group-

ing all PEs and FM into one tile would result in a poor global layout with a

Control

Processor

Tile 39

Tile 0

Frame Memory (128bit × 2k)

. . .

. . .

Tile 0

PE 0

Tile

Accu

PE 1

Accu

PE 2

Accu

PE 7

Accu

Level Shifter

Figure 4.1 Block diagram of Xetal-II architecture.

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 65

very strange aspect-ratio and correspondingly large area; ii) commercial mem-

ory generators have limited maximum word width, which also disables this

option. However, on the other extreme, using only one PE/FM per tile results

in too many memories with corresponding addressing overhead and glob-

al/semi-global wiring overhead, in spite of the fact that it may provide advan-

tages in programming flexibility for certain applications [120].

Apart from silicon area, our primary concern is energy consumption. The

metric we used to decide the optimal number of PEs per tile is the energy/area

efficiency of the shared FM. Different physical partitions affect both total area

and energy consumption per unit data. Figure 4.2 shows the normalized FM

energy per 16-bit data access and normalized total FM area under different par-

titions. We can see that including 8 PEs (power of two) per tile (thus, 40 tiles in

total) is a good choice considering FM access energy efficiency, FM total area

efficiency, and practical layout constraints.

Each PE has a two-stage pipeline and shares the instruction fetch and de-

code stage of the CP. Figure 4.3 shows the structure of the 16-bit PE, which is

equipped with a local register (ACCU) for immediate result feedback and a

flag register (FLAG) for guarded instruction execution. Each PE supports 16-bit

ADD/SUB, MUL, MAC, logical operations, which can further be compounded

with other operations (e.g., absolute, negative, etc.). All instructions are ex-

ecuted in a single cycle. The FM consists of 40 SRAM modules (each

Figure 4.2 Number of PEs per tile vs. normalized FM access energy per 16-bit data and

normalized total FM area.

0 5 10 15 20 25 30 35

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 Normalized Access Eneregy

 Normalized Total Area

Number of PEs per tile

N
o

rm
a

liz
e

d
 F

M
 a

c
c
e

s
s
 e

n
e

rg
y
 p

e
r

1
6

b
it
 d

a
ta

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
o

rm
a

liz
e

d
 t
o

ta
l
F

M
 a

re
a

66 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

128bit×2048 5) with a pseudo-dual port interface to provide single cycle read

and write accesses. This data memory can store both the frame data and the

intermediate results. The relatively large capacity of the FM allows on-chip sto-

rage of multiple VGA frames or images with higher resolution, reducing in this

way the off-chip traffic. The communication network between the FM and PEs

enables PEs to directly access the memory (FM) data of its left and right neigh-

bors. To provide better control of Vdd scaling, the tile is divided into logic and

memory voltage domains, coupled with level-shifters. For simplicity, in the

following sections of this chapter, PEs is used to refer to the logic part, includ-

ing processing elements and communication network of the tile; FM is used to

refer to the memory part of the tile.

4.1.2 Energy/Performance Analysis of Xetal-II

The proposed Xetal-Pro processor is designed in a 65nm CMOS process. As a

reference for Xetal-Pro, we first migrate the Xetal-II processor from 90nm to

65nm technology. The logic part was synthesized with TSMC 65nm low-power

(LP) SVt CMOS digital standard cell library. LP process is superior over gener-

al-purpose (GP) process for medium/low end SoCs, because the LP feature can

make leakage energy one to two orders of magnitude lower than with the GP

feature. The Vt of our process is about 0.41 to 0.42 V. The SRAM was synthe-

5 One SRAM module per tile. Since each tile consists of eight 16-bit PEs, the data width

of the SRAM modules is 128 bit.

Left Middle Right

16 bits

Flag

ACCU

16 bits 16 bits

+ x

& <

Coefficient

Control

16 bits

1 bit

data to FM

flag to CP

16 bits

18 bits

Figure 4.3 Structure of the 16-bit PE.

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 67

sized with a commercial low-power memory generator, which uses minimum

size and HVt devices of the same process technology for bit-cells to further con-

strain leakage energy without violating timing constraints. The impact of the

long global wires for decoded instruction plus intermediate repeaters have

been considered based on post-layout analog simulation results. The whole

Xetal-II system can run at 125 MHz with 1.2 V voltage supply at 25°C room

temperature at typical case, and offers 80 GOPS throughput (320 PEs in total,

two operations per cycle per PE, and counting multiply and add operations

only) with each PE processing one instr./cycle. The critical path is the FM read

access plus the MAC operation within the PE.

To analyze the system energy breakdown, we use three representative ap-

plication kernels which are typical benchmarks for SIMD processors. These

kernels are: i) N×N non-separable filter; ii) N×N separable filter; and iii) YCbCr

to RGB color-space conversion. Besides the popularity of these kernels, the oth-

er major reason for choosing them as our benchmark is that they have quite

different data locality characteristics. The data in an N×N non-separable filter

can be reused N2 times while the data in an N×N separable filter is only reused

2N times. YCbCr-RGB conversion is a pixel-to-pixel operation, so there is no

data sharing between pixels.

The mapping of three kernels on the reference Xetal-II processor is shown in

Figure 4.4. Figure 4.5 describes the pseudo code of the non-separable filer ker-

nel. The mapping of other two kernels can be described similarly. We take a

VGA (640×480 pixels) image with interleaving factor of two as an example 6. In

the case of color conversion, the Y, Cb, and Cr values of a pixel are assumed to

be stored in consecutive rows in the FM. Each PE can read the memory on its

left (mem.l) and right (mem.r). The image height is represented by H (H is

equal to 480 for VGA format).

Table 4.1 summarizes the energy breakdown of the reference Xetal-II pro-

cessor when running the three benchmark kernels. In Table 4.1, the global

wires do not include the intra-tile part, which is already included in the PEs.

The summation of energy consumption percentage of both intra and inter-tile

global wires takes around 5-7%.

6 With interleaving factor of two, one image line is stored in two rows of the frame

memory. Pixels at the odd (even) columns of the image line are stored in the odd (even)

rows of the frame memory.

68 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

For the three kernels, the total energy is dominated by the energy of the tiles

(i.e., PEs and FM). Compared with the 40 tiles, the CP and the global decoded

instruction wires consume much less energy. Therefore, to effectively reduce

the total energy, the tiles are the focus of our further exploration.

Algorithm 1: The mem.l and mem.r represent the memory of a

PE’s left neighbor and right neighbor respectively. The image

height, H, is equal to 480 for VGA format.

for i = 2 to (H - 3) do

accu C0,0 × mem.l [2i-4];

accu accu + C0,1 × mem.l [2i-3];

accu accu + C0,2 × mem [2i-4];

accu accu + C0,3 × mem [2i-3];

accu accu + C0,4 × mem.r [2i-4];

… // other accu for output at mem [2H+2i]

accu accu + C4,0 × mem.l [2i+4];

accu accu + C4,1 × mem.l [2i+5];

accu accu + C4,2 × mem [2i+4];

accu accu + C4,3 × mem [2i+5];

… // accu for output at mem [2H+2i+1]

mem [2H+2i] accu + C4,4 × mem.r [2i+4];

mem [2H+2i+1] accu + C4,4 × mem.r [2i+5];

end

Figure 4.5 A 5×5 non-separable filter kernel mapped on the baseline architecture.

PE 0 PE 1 PE 2

Frame memory

Coefficients are broadcast to

PEs by control processor
Constant coefficients

…
…

…
…
…
…
…
…
…

…

…

…

… … … … …

Ch0 Ch1 Ch2 Ch3 Ch4

Separable Filter

C0,0 C0,1 C0,2 C0,3 C0,4

Non-separable Filter

Cv0

Cv1

Cv2

Cv3

Cv4
C1,0 C1,1 C1,2 C1,3 C1,4

C2,0 C2,1 C2,2 C2,3 C2,4

C3,0 C3,1 C3,2 C3,3 C3,4

C4,0 C4,1 C4,2 C4,3 C4,4

YCbCr to RGB

CCb2gCCr2r CCr2g CCb2b

Image pixels

mem[0] I0,0 I0,2 I0,4

mem[1] I0,1 I0,3 I0,5

mem[2] I1,0 I1,2 I1,4

mem[3] I1,1 I1,3 I1,5

mem[4] I2,0 I2,2 I2,4

mem[6] I3,0 I3,2 I3,4

mem[5] I2,1 I2,3 I2,5

mem[7] I3,1 I3,3 I3,5

mem[8] I4,0 I4,2 I4,4

mem[9] I4,1 I4,3 I4,5

I0,0 I0,2 I0,4I0,1 I0,3 I0,5

I1,0 I1,2 I1,4I1,1 I1,3 I1,5

I2,0 I2,2 I2,4I2,1 I2,3 I2,5

I3,0 I3,2 I3,4I3,1 I3,3 I3,5

I4,0 I4,2 I4,4I4,1 I4,3 I4,5

… … … … … …

…

…
…
…
…

…
Image pixels are interleaved

to frame memory

Figure 4.4 Mapping of YCbCr-to-RGB, non-separable filter, and separable filter on the

baseline architecture.

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 69

4.2 Challenge of Ultra-Wide-Range Vdd Scaling

Vdd scaling is one of the most effective means to bring quadratic dynamic ener-

gy savings to standard-cell based logic, i.e., Elogic_dynamic ∝ CloadVdd2, where Cload is

the loading capacitances including both gate and interconnection wire capacit-

ances. The Vdd scaling range of commercial processors is normally limited to

about 2/3 of nominal supply due to two fundamental problems at an ultra-low

Vdd: i) severe throughput degradation; ii) high yield loss in the presence of

process variations. To solve the first problem, the nature of the massive paral-

lelism of the Xetal family can be used to compensate the throughput degrada-

tion, as will be discussed soon. To mitigate the second problem, techniques at

different design levels can be used, such as structural duplication [121], Razor

[122, 123], body biasing [124, 125], cell resizing [126].

Compared to pure logic, Vdd scaling is even more difficult when applied to

SRAM. First, the rapidly deteriorating read/hold static noise margin (SNM) of

bit-cells causes severe reliability issues. A very small amount of injected noise

can cause the bit-cell's state to flip [35]. Thus, all commercial SRAMs achieving

high density strictly prohibit operating below 0.7 V. Second, SRAM's energy

cannot scale quadratically with Vdd. SRAM bit-cells' energy, which usually do-

minates total SRAM's energy, can be approximated as Ebitcell ∝ CbitlineVddVswing in a

single cycle. Cbitline is the loading capacitance on a SRAM bitline. Vswing is the bit-

line swing, which must exceed a minimum magnitude required by sense-

amplifiers to make correct decoding. Vswing cannot scale linearly with Vdd. There-

fore, bit-cells’ energy and total SRAM's energy only scale sub-quadratically

with Vdd, while the energy of other SRAM components like sense-amplifiers,

wordline and bitline drivers, address decoders can scale equally well as logic.

Third, SRAM's speed degrades even faster with Vdd scaling, compared to that of

pure logic [36, 37]. This implies that SRAM becomes the system performance

bottleneck if both SRAM and logic scale to the same ultra-low Vdd.

Table 4.1 Energy breakdown of the reference Xetal-II processor for three kernels. Using

TSMC 65nm low-power library and at typical case, 1.2V, and 25°C.

Benchmark PEs(%) FM (%) CP (%) Global Wires (%) Total (pJ/pixel)

5×5 non-separable filter 26.0 68.9 3.7 1.4 240.8

5×5 separable filter 23.5 71.9 3.3 1.3 106.5

YCbCr to RGB 14.7 81.3 2.9 1.1 109.9

70 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

While Vdd scaling lowers the dynamic energy, the leakage energy increases

due to a prolonged cycle time. As a result, there is an energy-optimal Vdd point

where the total energy is minimal. Pursuing a lower Vdd than this optimal Vdd

point makes leakage energy dominate the total energy, hence rendering no ad-

ditional energy benefits. To find out the optimal Vdd point and the impact of

ultra-wide-range Vdd scaling on our design, three steps are carried out, which

are listed below:

Step 1 Standard-cell characterization: we first characterized the TSMC 65nm

low-power SVt CMOS digital standard cell library under different supply vol-

tage. By simulating an inverter in SPICE simulator with typical-typical case,

25°C room temperature, and different supply voltage (1.2V ~ 0.1V), the average

drive current (Idrive) and the sub-threshold leakage current (Isub_leak) at different

supply voltages are obtained. This information, i.e., a set of tuples (V(n), Idrive(n),

Isub_leak(n)), where 0.1V ≤ n ≤ 1.2V, is used to calculate the scaling factors in Step 3.

Step 2 Obtain latency (T), dynamic power (Pdyn), and leakage power (Pleak) of each

component at nominal voltage: We looked at three components, i.e., PEs (logic),

memory tiles (SRAM), and long wires. The latency and dynamic/leakage pow-

er of PEs are obtained by post-synthesis simulation at nominal voltage, typical

case and 25°C. For memory tiles, these data are obtained with a commercial

low-power SRAM generator, which uses minimum size and HVt devices of the

same process technology for bit-cells. The impact of the long global wires for

decoded instruction plus intermediate repeaters are considered based on post-

layout analog simulation results. This nominal voltage information is also used

in Step 3.

Step 3 Estimate latency, dynamic power/energy, and leakage power/energy at dif-

ferent supply voltages: With the data obtained from Step 1 and Step 2 as input, we

can estimate latency, power/energy consumption of each component at differ-

ent supply voltages with the following analytical models.

(1) Estimate the effective capacitor, Ceff, with the input of Step 2:

2

(1.2)

(1.2)* (1.2)

dyn

eff

dd

P V
C

F V V V
 , where F = 1/T is the frequency (eq. 1)

(2) Estimate the leakage current at nominal voltage, Ileak(1.2V), with the input

of Step 2:

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 71

 (1.2)
(1.2)

(1.2)

leak
leak

dd

P V
I V

V V
 (eq. 2)

(3) Estimate T(n), the latency under different supply voltage n, with the scal-

ing factors obtained in Step 1:

 () / ()
() (1.2)*

(1.2) / (1.2)

drive

drive

V n I n
T n T V

V V I V
 (eq. 3)

(4) Estimate Ileak(n), the leakage current under different supply voltage n,

with the scaling factors obtained in Step 1:

 _

_

()
() (1.2)*

(1.2)

sub leak

leak leak

sub leak

I n
I n I V

I V
 (eq. 4)

(5) Estimate Edyn(n), the dynamic energy under different supply voltage n:

 2() * ()dyn eff ddE n C V n (eq. 5)

As shown in Table 4.1, the tiles (PEs + FM) are the most energy-consuming

part of the design at the nominal voltage. Our further exploration then focuses

on the tiles. The energy consumption of processing one pixel when applying

the aforementioned 5×5 non-separable filter kernel (25 instr. in total) is used as

an example. Figure 4.6 (a) depicts the energy consumption curve under differ-

ent supply voltages. Note that here we unrealistically assume that the SRAM

can be scaled to sub-threshold as well as the standard cells (i.e., scale SRAM

together with PEs using the scaling factor obtained in Step 1), just to show the

lower bound on energy reduction by Vdd scaling. The optimal point in this case

occurs at Vdd = 0.31 V. At this point, the tile consumes 21.4 pJ/pixel, leading to a

ten times reduction of the energy consumption ideally achievable, compared to

operating at nominal 1.2 V.

72 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

(a)

(b)

Figure 4.6 Vdd versus tile (8 PEs + memory) energy consumption when processing one

pixel with a 5×5 non-separable filter kernel: (a) assuming ideal SRAM voltage scaling;

(b) SRAM only scales down to 0.7 V.

0 0.2 0.4 0.6 0.8 1 1.2

10
-1

10
0

10
1

10
2

VDD (V)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

p
J
/p

ix
e
l)

Dynamic Energy

Leakage Energy

Total Energy

Vopt = 0.31V

0 0.2 0.4 0.6 0.8 1 1.2

10
-1

10
0

10
1

10
2

10
3

VDD (V)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

p
J
/p

ix
e
l)

Dynamic Energy

Total Leakage Energy

Total Energy

Vopt = 0.42V

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 73

However, with Vdd scaling, the maximum frequency each PE can achieve al-

so decreases dramatically, hence causing severe performance degradation, as

shown by the lower curve of Figure 4.7. Fortunately, with 320 PEs processing

in parallel, this performance loss can be largely compensated. This shows the

unique advantage of massively-parallel SIMD architecture to outperform other

processor architectures in energy efficiency and throughput. The upper curve

of Figure 4.7 depicts the supported resolution and frame rate at different Vdd

when running the 5×5 non-separable filter kernel by 320 PEs. Above 0.6 V and

above 0.42 V, HD-1080p (1920×1080) 60 frames/s and VGA (640×480) 30

frames/s can be supported in real time respectively. Even when Vdd goes down

to about 0.33 V, we can still run many low-end applications, such as QVGA

(320×240) at 15 frames/s 7.

7 As indicated in Figure 4.5, it requires 25 instructions to implement the 5×5 non-

separable filter kernel on VGA resolution or higher (interleaving factor ≥ 2). However,

QVGA format requires 5 additional instructions, as not all of the 5×5 pixels are directly

accessible.

Figure 4.7 Impact of Vdd scaling (ideal) on system throughput of 1 PE (lower curve) and

320 PEs (upper curve). The squares on the upper curve indicate the supported resolu-

tion and frame rate with 320 PEs when executing a 5×5 non-separable filter kernel.

0 0.2 0.4 0.6 0.8 1 1.2
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

VDD (V)

T
h

ro
u

g
h

p
u

t
(i

n
s
t.

/s
)

320 PEs

1 PE

320 PEs

1 PE

HD-1080p, 60f/sHD-1080p, 30f/s

HD-720p, 30f/sVGA, 30f/s

QVGA, 30f/sQVGA, 15f/s

QVGA, 5f/sQVGA, 2f/s

QVGA, 1f/s

74 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Figure 4.6 (a) presents only the ideal lower energy consumption bound of

the reference processor. Because the Vdd of commercial 6T SRAM's cannot scale

well below 0.7 V, Figure 4.6 (b) shows a more practical Vdd scaling result when

SRAM is assumed to only scales to 0.7 V. In this scenario, the minimal energy

consumption (65.1 pJ/pixel) is obtained when the logic part is scaled to 0.42 V

(i.e., two voltage domains, SRAM at 0.7 V and standard logic at 0.42 V). Com-

pared to operating at the nominal voltage supply, the energy reduction is only

a factor of 3.5, far behind the ten times ideally achievable reduction. It should

be noted that in this case about 88% of the total energy is consumed by the FM.

The tile energy consumption at different Vdd is compared in Figure 4.8. We

can see that even when PEs' Vdd is aggressively scaled to sub/near threshold, it

only reduces an extra 15% of the energy compared to that when both PEs and

SRAM are supplied at 0.7 V. Thus, unless the FM can also scale further, it does

not make too much sense to aggressively scale the Vdd of the standard-cell (PEs)

part due to the low energy gain and high performance loss. This conclusion

holds true for other kernels.

4.3 Exploration of Vdd Scalable FM

As shown from the above analysis, commercial SRAM module creates a big

obstacle for Vdd scaling. To resolve this challenge and to further reduce the total

energy consumption of the Xetal-II SIMD processor, one potential solution is to

look for a Vdd scalable FM. Recent MIT low-power dual-port SRAM [127, 128]

Figure 4.8 Tile (Xetal-II reference processor) energy consumption for different Vdd.

0

40

80

120

160

200

240

scale together to 0.31V

10.7x (hypothetic)

SRAM=0.7V, logic=0.42V

3.5x (optimal)

SRAM=0.7V, logic=0.7V

3.0x

reference at 1.2V
1.0x

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

p
J
/p

ix
e
l) FM

 PEs

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 75

and the standard-cell synthesized memory are two possible choices. The MIT

work achieves ultra-low Vdd operation by adding extra devices within the bit-

cell. The standard-cell based memory can also approach ultra-low Vdd because: i)

they are not limited by density constraints and composition style, so transistor

up-sizing, buffer insertion and logic re-construction (which optimizes boolean

expressions) can be used freely during synthesis; ii) they can employ hierar-

chical topology, which prevents high fan-out and relieves shared architecture.

The Vdd of MIT 10-T low-power SRAM can be scaled to below 0.4 V. How-

ever, it has several drawbacks in our case. First, it occupies 66% more cell area

compared to the commercial differential 6-T SRAM [128]. When the FM is im-

plemented with 6-T commercial SRAM, the ratio between SRAM bit-cell array

area and SRAM total area is 7/10. If this FM is realized by the 10-T SRAM, more

than 30% additional area is needed for each tile. Second, it consumes more

access energy at nominal voltage. Besides, the high leakage power (about 100

μW at 1.2 V) also prevents it from scaling to very low Vdd, as the leakage energy

increase will quickly counteract the reduction of the dynamic energy. Table 4.2

presents the energy consumption when FM is realized by the MIT 10-T SRAM,

in comparison with commercial SRAM realization for FM. Third, the MIT

SRAM is much slower. The reported maximal speed at nominal voltage is 2.5

times slower than the commercial 6-T SRAM with the same word width and

depth that we are using. This severely degrades the performance at both no-

minal and scaled voltage. The maximum energy gain it can reach is rather

small in contrast to its high area, performance and reliability overhead. So we

conclude that, the MIT 10-T memory is not applicable in our case. These prob-

lems also exist for other sub-threshold SRAM works [127, 129].

Table 4.2 Tile energy consumption with MIT 10-T SRAM realization for FM.

Benchmark pJ/pixel @ 1.2V Compare a
pJ/pixel @

optimal Vdd b
Compare c

5×5 non-separable filter 265.0 16.0% ↑ 49.6 1.3× ↓

5×5 separable filter 118.3 16.0% ↑ 21.4 1.4× ↓

YCbCr to RGB 124.5 18.0% ↑ 21.1 1.5× ↓

a Compare to the energy consumption with commercial SRAM realization for FM (at 1.2 V).
b FM and PEs are scaled to different sub/near threshold voltages, to reach an optimal combination

for energy efficiency.
c Compare to the energy consumption with commercial SRAM realization for FM (after optimal

scaling).

76 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The standard-cell realization of large on-chip SRAM is also not applicable.

According to our synthesis result, although it can be faster than commercial

SRAM, it consumes even more energy and area than the MIT 10-T SRAM at

nominal voltage. This limits the standard-cell based memory designs to only

very small arrays. Therefore, to reach our goals of ultra-low-energy, ultra-

wide-voltage-range, and medium-to-high-throughput SIMD processor, archi-

tecture changes are required, in particular with respect to the memory hie-

rarchy.

4.4 Hybrid Memory System (HMS)

Since Vdd scalable FM is not applicable in our Xetal-Pro design, in this section

we propose a hybrid memory system (HMS) to exploit the often available data

locality and reduce the non-local memory traffic and to enable further Vdd scal-

ing. The “hybrid” implies two things: i) a hybrid memory architecture consist-

ing of an ACCU register, a scratchpad memory (SM), and the FM; ii) a hybrid

realization consisting of sub-threshold SM and super-threshold FM.

4.4.1 HMS Scheme

The HMS is shown in Figure 4.9. Within the proposed HMS, we have three

types of characterized memories to preserve the data: i) ACCU register for

short-term data storage; ii) SM for intermediate-term data storage; and iii) FM

for long-term data storage. Both the FM and the SM are directly accessible by

the PE as the source/destination operands, which means that they are at the

same level of the memory hierarchy. This design choice not only increases the

flexibility of memory access, but also reduces the penalty when little data local-

ity can be exploited by the SM. Compared to FM, SM consumes much less

energy per access due to its much smaller size. The SM supports all the ad-

dressing modes of FM, which makes it very friendly to access. For the low-level

image/video processing (target domain of SIMD), most applications contain

spatial data locality. When no data locality is exploitable, the SM can be by-

passed and clock-gated with only a few μW leakage overhead. It should be

noted that the critical path of the system is hardly changed, i.e., FM read access

plus PE operation. In addition, when coupled with index addressing, the SM

can also be used as a look-up table for index based algorithms.

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 77

PE 0 PE 1 PE 2

Frame memory

Coefficients are broadcast to

PEs by control processor
Constant coefficients

…
…

…
…
…
…
…
…
…

…

…

…

… … … … …

Ch0 Ch1 Ch2 Ch3 Ch4

Separable Filter

C0,0 C0,1 C0,2 C0,3 C0,4

Non-separable Filter

Cv0

Cv1

Cv2

Cv3

Cv4
C1,0 C1,1 C1,2 C1,3 C1,4

C2,0 C2,1 C2,2 C2,3 C2,4

C3,0 C3,1 C3,2 C3,3 C3,4

C4,0 C4,1 C4,2 C4,3 C4,4

YCbCr to RGB

CCb2gCCr2r CCr2g CCb2b

Image pixels

mem[0] I0,0 I0,2 I0,4

mem[1] I0,1 I0,3 I0,5

mem[2] I1,0 I1,2 I1,4

mem[3] I1,1 I1,3 I1,5

mem[4] I2,0 I2,2 I2,4

mem[6] I3,0 I3,2 I3,4

mem[5] I2,1 I2,3 I2,5

mem[7] I3,1 I3,3 I3,5

mem[8] I4,0 I4,2 I4,4

mem[9] I4,1 I4,3 I4,5

I0,0 I0,2 I0,4I0,1 I0,3 I0,5

I1,0 I1,2 I1,4I1,1 I1,3 I1,5

I2,0 I2,2 I2,4I2,1 I2,3 I2,5

I3,0 I3,2 I3,4I3,1 I3,3 I3,5

I4,0 I4,2 I4,4I4,1 I4,3 I4,5

… … … … … …

…

…
…
…
…

…

Image pixels are

interleaved to

frame memory

Scratchpad memory

…
…

…
…
…

… … … … …

sm[0]

sm[1]

sm[2]

sm[3]

sm[4]

Figure 4.10 Mapping of YCbCr-to-RGB, non-separable filter, and separable filter on the

proposed architecture.

PE

Frame Memory

(SRAM)
2K

Level Shifter

Level Shifter

Accu

rightleft

SM

Figure 4.9 Proposed hybrid memory system.

78 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The SM in Xetal-Pro is decided to be dual-ported with 128-bit word width

and 32 entries. The reasons that we choose this relatively large number of en-

tries are: i) to enable more applications with large working windows (e.g., mo-

tion estimation, etc.) or higher resolutions (> VGA) to fully exploit their data

locality; ii) to demonstrate that even with such a (relatively) large size, we can

still reach more than ten times energy gain. In Section 4.4.4, we will further jus-

tify this choice in details. The 32-entry SM (commercial SRAM realization) adds

about 15% area to the tile. Fewer entries can slightly reduce the area overhead

and energy consumption, but fewer applications can benefit from this HMA.

The programming model of the proposed architecture is also slightly different

since there is an extra memory (SM) to utilize. The mappings of the three ker-

nels on Xetal-Pro are shown in Figure 4.10. The mapping of the non-separable

filter kernel on the architecture with HMS is shown in Figure 4.11. The map-

ping of the other two kernels can be described similarly.

Algorithm 2: The sm.l and sm.r represent the scratchpad memory

of a PE’s left neighbor and right neighbor.

for i = 4 to (H - 1) do

accu C0,0 × sm.l [0];

accu accu + C0,1 × sm.l [1];

accu accu + C0,2 × sm [0];

accu accu + C0,3 × sm [1];

accu accu + C0,4 × sm.r [0];

… // other accu for output at mem [2H+2i]

accu accu + C4,0 × sm.l [8];

accu accu + C4,1 × sm.l [9];

accu accu + C4,2 × sm [8];

accu accu + C4,3 × sm [9];

… // accu for output at mem [2H+2i+1]

mem [2H+2i] accu + C4,4 × sm.r [8];

mem [2H+2i+1] accu + C4,4 × sm.r [9];

end

// load one image row into scratchpad memory

sm [8] mem [2i];

sm [9] mem [2i+1];

// apply 5 × 5 convolution

… // remaining 4 image rows in the unrolled code

Figure 4.11 A 5×5 non-separable filter kernel mapped on the proposed architecture (un-

rolling factor is 5).

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 79

4.4.2 Instruction Set Extension

Compared to Xetal-II, the instruction format of Xetal-Pro is almost the same

because the SM has the same addressing modes as the FM and they are

mapped to a continuous memory space. However, since the source operand

can be read from and the result can be sent to one extra location (SM), the total

number of instruction types increases from user's point of view. By categoriz-

ing the instructions based on: i) what the data source (src) and destination (dest)

are; ii) if data is operated (OP) or only moved (MV) to a different location, the

main differences of PE instructions between the two architectures are described

in Table 4.3.

4.4.3 Exploration of HMS Implementation

ACCU, SM, and FM are the three components of the proposed HMS. Since the

large on-chip FM cannot be implemented with Vdd scalable memory, it is there-

fore implemented with commercial low-power and high-density SRAM. Ob-

viously, the ACCU register is most proper to be implemented by standard cells.

The remaining question is how to implement the SM. In this section, we ex-

plore the implementation choices for the SM.

Taking the 5×5 non-separable filter as an example, Figure 4.12 (a) shows the

energy breakdown of the proposed architecture at 1.2 V when the SM is rea-

lized by the commercial SRAM. Although the Xetal-Pro architecture requires

Table 4.3 Comparison of PE instructions of Xetal-II and Xetal-Pro (instruction format: op

dest, src 1, src 2).

No.
Xetal-II Xetal-Pro

op dest src 1 src 2 op dest src 1 src 2

1 OP ACCU FM COEF/ACCU OP ACCU SM COEF/ACCU

2 OP FM and ACCU FM COEF/ACCU OP SM and ACCU SM COEF/ACCU

3 MV ACCU FM - OP FM and ACCU SM COEF/ACCU

4 MV FM and ACCU FM - OP ACCU FM COEF/ACCU

5 OP SM and ACCU FM COEF/ACCU

6 OP FM and ACCU FM COEF/ACCU

7 MV ACCU SM -

8 MV SM and ACCU SM -

9 MV FM and ACCU SM -

10 MV ACCU FM -

11 MV SM and ACCU FM -

12 MV FM and ACCU FM -

80 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

one extra instruction to implement this kernel compared to Xetal-II, the energy

consumption per pixel (tile part) at nominal voltage is still 1.6 times less than

that of the Xetal-II. Let us assume that commercial SRAM is used as the SM.

Figure 4.13 (a) shows that, after Vdd scaling, a total of 6.8 times reduction can be

reached at the optimal point where FM = 0.7 V, SM = 0.7 V, and PE = 0.42 V. At

this point Xetal-Pro delivers a throughput of 0.88 GOPS. However, it should be

noted that more than half of the energy is consumed by the SM at this point.

Thus, further energy reduction needs an SM with better Vdd scalability.

Similar to the analysis we did for FM in Section 4.3, two other possible

choices for the SM, i.e., the MIT low-power SRAM and the standard cells, are

investigated, both of which have better Vdd scalability than commercial SRAM

realization. According to our synthesis results, the standard-cell realization of

the 128bit×32 dual-port memory is the best in terms of energy efficiency and

speed. Thus, we propose a hybrid realization of our HMS, i.e., a sub-threshold

standard-cell based SM in combination with super-threshold commercial

SRAM based FM. Figure 4.13 (b) shows the energy consumption of this pro-

posed architecture. After scaling, a total of 12.5 times energy saving (tile part)

can be reached.

Figure 4.12 (b) shows the system energy breakdown when the minimal

energy consumption is achieved. Note that we only conservatively scale CP

and global wires (together they consume 5% of the total system energy at no-

minal) to 0.7 V. Compared to Xetal-II operating at nominal voltage, Xetal-Pro

 (a) (b)

Figure 4.12 System energy breakdown of the proposed architecture: (a) at 1.2 V, and SM

is realized by the commercial SRAM (151.9 pJ/pixel); (b) sub-threshold SM in combina-

tion with super-threshold FM (22.6 pJ/pixel), CP and global wires are only scaled to 0.7 V.

33.31%

2.36%6.04%
2.4%

Global Wires

49.8%

PEs
Memory

Scratchpad

33.3%

8.5%

Frame
Memory

Control
Processor

6.0%

9.81%

5.38%

13.79%

28.82%

5.4%
Global Wires

42.2%

PEsMemory
Scratchpad

9.8%

28.8%

Frame
Memory

Control
Processor

13.8%

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 81

gains more than 10 times energy reduction (240.8 pJ/pixel vs. 22.6 pJ/pixel), i.e.,

< 0.5 pJ/16-bit op, while still delivering a throughput of 0.69 GOPS with 1.08

MHz frequency, sufficient to execute a 5×5 convolution kernel on VGA at 43

frames/s. Table 4.4 compares the tile part energy consumption between the ref-

erence Xetal-II processor and the Xetal-Pro processor. Even for the YCbCr to

RGB conversion kernel which has little locality to be exploited, 1 pJ/16-bit op is

achieved. In Figure 4.14, the Intrinsic Computational Efficiency (ICE) graph high-

lights the energy efficiency advantage of Xetal-Pro over that of earlier well-

known works 8.

It is worth introducing the implementation of level-shifter (LS) in the HMS.

Different from conventional LS which converts from 2/3 nominal supply to full

nominal supply, the LS in Xetal-Pro should be capable of converting between

signals from a sub-threshold VDDL supply domain (e.g., 0.4 V) to a super-

threshold VDDH supply domain (e.g., 0.7 V). A two-stage LS, as shown in Fig-

ure 4.15 is proposed in this work to deliver robust, fast, and energy-efficient

operation. Each stage uses a normal cross-coupled differential inverter. For low

voltage inputs, the first stage handles the majority of the up-conversion, and

the second stage is mainly to restore and re-shape the final output signal. To

8 In the ICE curve, only programmable multiply and add operations are counted. Other

operations, e.g., shift, dedicated adder tree, etc. are not counted. The energy of 8-bit and

16-bit operations are linearly scaled to 32-bit operations.

Figure 4.13 Tile (proposed architecture) energy consumption for different Vdd: (a) com-

mercial SRAM realization for SM; (b) standard cell realization for SM.

0

30

60

90

120

150

180

210

240

(b)(a)

FM
=0.7V, PE=0.42V, SM

=0.38V

12.5 x (optim
al)

all to 0.7V
6.4 x

proposed arch. at 1.2V

2.1 x

FM
=0.7V, PE=0.42V, SM

=0.7V

6.8 x (optim
al)

all to 0.7V
4.9 x

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

p
J
/p

ix
e
l)

 SM

 FM

 PEs

proposed arch. at 1.2V

1.6 x

reference at 1.2V

1.0 x

82 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

Table 4.4 Tile Energy Comparison between the Reference Xetal-II Processor and the

Xetal-Pro Processor.

Benchmarks
Xetal-II (65nm, 125MHz@1.2V) Xetal-Pro (65nm, 125MHz@1.2V)

instr./pixel
pJ/pixel @

1.2V
pJ/pixel @

optimal Vdd a
instr./pixel

pJ/pixel @
1.2V

pJ/pixel @
optimal Vdd b

5×5 non-
separable filter

25 228.6 (1.0×) 65.1 (3.5×↓) 26 106.6 (1.0×) 18.3 (12.5×↓)

5×5 separable
filter

10 101.6 (1.0×) 29.5 (3.4×↓) 11 51.7 (1.0×) 10.1 (10.1×↓)

YCbCr to RGB 9 105.4 (1.0×) 32.6 (3.2×↓) 9 63.9 (1.0×) 16.8 (6.3×↓)

 a FM is scaled to 0.7 V, PEs are scaled to the sub-threshold region.
 b FM is scaled to 0.7 V, PEs and SMs are scaled to the sub-threshold region.

Figure 4.14 ICE graph annotates the energy efficiency of Xetal-Pro and other well-

known works.

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 83

ensure the correct functioning of the LS, the NMOS and PMOS devices are

carefully sized so that the cross-coupled NMOS pull-down devices can over-

power the PMOS pull-up devices in the presence of process variability. In addi-

tion, LVt devices are used in the LS to enhance operation speed and reliability.

LSs are small circuits in the overall system, so the impact of increased leakage

by using LVt devices is negligible in such a big system (the leakage power in-

crease of each LS is in pW range, whereas the total system power is in mW

range). The transient response to pull-up an input signal from 0.4 V to 0.7 V is 2

ns. When VDDL is in the super-threshold region, the transition delay can be

less than 100 ps. Since the LS is designed by another project member, it will not

be further elaborated in this thesis.

4.4.4 Data Locality Analysis for HMS

To achieve ultra low energy, domain specific processors often exploit the locali-

ty of typical kernels in their application domains. In the case of Xetal-Pro, the

size of scratchpad memory is a crucial factor for energy consumption. Scrat-

chpad memory of small size may not accommodate the potential locality of the

kernels, which causes spilling to the energy consuming frame memory. On the

other hand, oversized scratchpad memory, which is more than enough for the

potential locality of the kernels, consumes more energy but cannot further re-

duce the access to frame memory. In order to choose the optimal size of scrat-

chpad memory for energy consumption, experiments are performed to analyze

the locality of the kernels.

In Figure 4.16, three kernels are mapped onto architectures with different

sizes of scratchpad memory. The energy is obtained at nominal voltage (1.2 V).

Dout

GND GND

Din

VDDH VDDL

VDDL

Stage I Stage II

Figure 4.15 Two-stage level shifter.

84 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The energy per pixel of each benchmark is normalized to the energy per pixel

of that benchmark on the baseline architecture, which has no scratchpad mem-

ory. For each size of scratchpad memory, the kernels are heavily optimized for

energy consumption.

According to Figure 4.16, the optimal size of scratchpad memory for energy

consumption of each benchmark matches the potential locality of the bench-

mark. The optimal sizes of scratchpad memory for the benchmarks are not the

same. Scratchpad memory of 16 entries seems to be the optimal size on average

for the three kernels. However, image processing applications often contain

multi-pass filters, which has larger potential locality than a single filter. And

applications with larger working windows or higher resolutions require a

scratchpad memory of more entries too. To accommodate these cases, a scrat-

chpad memory of 32 entries is used in Xetal-Pro. Based on our experiments, the

energy consumption of using 32 entries scratchpad memory consumes less

than 5% extra energy compared to that of using 16 entries. Therefore, this deci-

sion is justified.

4.5 Related Work

The related work is categorized into three subsections: i) sub-threshold designs;

ii) scratchpad memory; and iii) SIMD processors.

Figure 4.16 Normalized energy per pixel for different sizes of SM.

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1.0
At Nominal Voltage

Depth of the scratchpad memory

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 p

e
r

p
ix

e
l

 5x5 Non-separable

 5x5 Separable

 YCbCr2RGB

TOWARDS AN ULTRA LOW-ENERGY SIMD PROCESSOR 85

4.5.1 Sub-threshold Designs

An emerging trend for lowering energy of digital processors is to scale Vdd to

the sub/near threshold region, which brings not only quadratic dynamic power

savings, but also super-linearly reduced leakage current. Many prototype chips,

which can function in the sub-threshold region, have been presented in recent

years. These chips include a 180 mV FFT processor in 180nm CMOS process

[130], a 256 Kbit 10-T dual-port SRAM in 65nm CMOS process [128], which was

later improved to 8-T dual-port SRAM [127]. In [129] a single-end sub-

threshold SRAM has been developed for extremely low speed applications. A

130nm and a 180nm CMOS sensor node processors are presented in [131] and

[132], respectively. A TI-MSP430 based DSP processor with integrated DC-DC

converter in 65nm CMOS is presented in [133]. In the prototype chip called

SubJPEG [134], a 65nm CMOS 8-bit JPEG co-processor is presented. SubJPEG is

equipped with four parallel DCT-Quantization engines and delivers 15 fps

VGA processing at about 0.4 V. Intel also announced its 45nm CMOS sub-

300mV 4-Way sub-word parallel processors [135].

4.5.2 Scratchpad Memory

Using scratchpad memories can help reduce the traffic to higher memory levels

significantly when applications show substantial locality [136]. For example, a

stream register file (or memory) as used in the Imagine architecture [137] can

provide high performance with low energy consumption for streaming appli-

cations.

4.5.3 SIMD Processors

Other than Xetal-II, IMAPCAR [138] from NEC is another very successful

SIMD processor. It includes 128 PEs and each PE is a 4-way 16-bit VLIW with

its own 2 KB on-chip memory. It achieves 100 GOPS within a power budget of

2 W. The IMAPCAR differs from Xetal-II in the VLIW PEs, the per-PE register

files, and the index addressing to on-chip memory. Compared to Xetal-II, the

indirect addressing capability of IMAPCAR [138] enables access to different

frame memory locations by PEs within the same instruction. While this feature

facilitates parallelization of some image tasks containing irregular memory

access, it leads to increased energy consumption for most applications with

predominantly regular memory accesses. Its successor, IMAPCAR-II [139],

added the support of switching between SIMD and MIMD mode, which how-

ever is out of the scope of this work. The AnySP [74] architecture also proposes

86 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

a configurable SIMD datapath as the core execution engine in the stream plat-

form. In the annotated ICE graph (Figure 4.14), GPUs like NVIDIA GTX8800

have different application domains. The sub-word parallel processors [135]

also benefit from exploiting SIMD parallelism. However, they are not massive-

ly-parallel processors for very low-energy applications.

To the best of our knowledge, no previous work has analyzed the impact of

aggressive Vdd scaling on the memory hierarchy in the context of an ultra-low

energy massively-parallel SIMD.

4.6 Summary

In this chapter, we presented our progress in developing the Xetal-Pro proces-

sor. Xetal-Pro is the first work to combine wide-range Vdd scaling with highly

parallel SIMD architectures. While aggressive Vdd scaling leads to ultra low

energy/op, it also causes severe throughput degradation. Xetal-Pro compen-

sates this degradation by its massively-parallel nature. The predecessors in the

Xetal family, such as the Xetal-II, include a large on-chip frame memory (FM),

which cannot scale well to an ultra low Vdd hence creating a big obstacle to in-

crease energy efficiency. Therefore, we proposed a hybrid memory system

which not only exploits the often available data locality, but also enables fur-

ther Vdd scaling. Compared to the reference design, i.e., Xetal-II migrated to

65nm CMOS technology, the new architecture provides up to two times energy

efficiency improvement even at the nominal operating voltage when delivering

the same amount of throughput. At the ultra low-energy mode, more than 10

times energy reduction is achievable, while still delivering a throughput of 0.69

GOPS. The preliminary result makes Xetal-Pro a very promising building block

in Multi-Processor System-on-Chips (MPSoCs) for future low-energy embed-

ded streaming computing.

Currently, we are busy with exploring the proper micro-architecture of the

processing engines (PEs) and the communication network among PEs, aiming

at improving both performance and energy-efficiency. As another important

component of our low-energy SIMD framework, the corresponding compiler is

also under construction. In the future work, we would like to pay more atten-

tion to the impact of process variation. Fault-tolerance techniques at different

design levels will be introduced into our framework.

CHAPTER 5

5 EFFICIENT COMMUNICATION SUPPORT

FOR STREAMING APPLICATIONS

The use of hardwired or weakly programmable accelerator IPs in heterogene-

ous Multi-Processor System-on-Chips (MPSoCs) can greatly improve the perfor-

mance and energy efficiency of implementations of streaming applications [6].

However, implementing applications on such a system is much more difficult

compared to implementing applications on a system that contains only pro-

grammable cores. When mapping an application onto an MPSoC that contains

accelerators, several problems have to be solved: i) how to generate accelerator

IPs for the application; ii) how to integrate these IPs into an MPSoC; and iii)

how to predict performance/resource usage at design time. The first problem

can be handled through the use of IP libraries or high level synthesis tools [70,

71]. In this chapter, we focus on solving the other two issues, i.e., efficiently

integrating IPs into an MPSoC and mapping applications on these MPSoCs

using a predictable design flow. Here, predictable means that system properties,

such as throughput and latency, can be conservatively analyzed at design time,

and guaranteed at run time.

We propose a predictable hardware module called communication assist

(CA), which serves as an abstract and unified communication interface be-

tween a generic IP and the interconnect in an MPSoC. Communication is sepa-

rated from computation through the proposed CA. The benefits of introducing

such a hardware module are: i) Improved system performance because the

proposed CA enables overlapped communication and computation; ii) Capable

of providing IP cores high data-access bandwidth, which is usually a bottle-

neck in the implementation of streaming applications; iii) Supports design-time

resource and timing analysis using Synchronous Data Flow (SDF) analysis tech-

niques. This is essential when designing systems that require predictable tim-

ing behavior; iv) Simplified interface design of accelerator IPs, as complex

communication functionality is offloaded to the CA, which requires only a one

88 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

time design effort; and v) Improved IP reusability, as the proposed CA inter-

face acts as a uniform interface between many different types of IP blocks and

interconnects.

Based on the proposed CA design, we present a heterogeneous multi-

processor platform template for streaming applications. The template is used in

a predictable design flow, MAMPS+, which uses SDF graphs for design time

analysis. As a case study, we map the complete high-speed vision processing

pipeline of an industrial application, Organic Light Emitting Diode (OLED)

screen printing, onto one instance of the proposed platform. The result demon-

strates that system design and analysis effort is greatly reduced with the pro-

posed CA-based design flow.

The remainder of this paper is organized as follows. Section 5.1 explains

how inter-core communication can be modeled using SDF. Section 5.2 dis-

cusses design requirements for a CA. In this section, we also introduce our

communication assist along with its SDF model. Based on the CA design, we

introduce a heterogeneous MPSoC template in Section 5.3, as well as a com-

plete design flow for designing heterogeneous MPSoCs with both programma-

ble cores and accelerator IPs. In Section 5.4, an industrial application is mapped

to the proposed platform to demonstrate its effectiveness. Section 5.5 discusses

related work. Finally, Section 5.6 concludes our findings and discusses future

work.

5.1 Inter-Core Communication Modeled with SDF

Synchronous Data Flow (SDF) is a model of computation commonly used to

model streaming applications [55]. There are many analysis algorithms for SDF

that can be used to analyze at design time the throughput, latency, and buffer

size requirements of applications modeled with an SDF graph [56-58]. When an

SDF graph is mapped onto an MPSoC, it seems natural to implement an inter-

core channel using a hardware FIFO. However, in many kernels, it is easier and

more efficient to allow the IPs to have flexible accesses, such as non-destructive

reads and out-of-order access patterns, to the acquired data. For example, Fig-

ure 5.1 shows a 5-tap FIR filter, with coefficients {c1, c2, 0, c4, c5}, which oper-

ates on a sliding window of input data samples. To compute one output sam-

ple (i.e., one iteration), this filter needs five input samples: i) one new data

sample from the current iteration; ii) four old data samples from previous itera-

tions, one of which can be skipped as its corresponding coefficient is 0. This

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 89

filter can be implemented in a very cost-effective way using only one multip-

lier-accumulator, and processes one input sample each cycle (i.e., 4 cycles

/iteration). When communication channels are implemented using hardware

FIFOs, explicitly copying data to the IP's internal buffer (i.e., double buffering)

is inevitable because data samples need to be reused or skipped. This results in

extra buffer management logic, extra memory space, and extra latency. How-

ever, if communication channels can be implemented in such a way that non-

destructive reads and out-of-order access are supported, this overhead can be

removed. Because the same data in the communication channel can be accessed

multiple times by different iterations, and unused data as illustrated in Figure

5.1 can be directly skipped.

In order to support these flexible data accesses in communication channels,

we provide a high level FIFO interface with low level random access at the

communication protocol level. We implement the data buffer in our proposed

communication assist (described in Section 5.2.2) with a parameterized dual-

ported circular buffer (CB). The size of this buffer can be tailored according to

the buffer requirement of different applications. As illustrated in Figure 5.2,

two sets of pointers are maintained for each circular buffer, namely Read

Start/Read End and Write Start/Write End. Memory locations between Read Start

and Read End are granted to the consumer as read space. Memory locations

between Write Start and Write End are granted to the producer as write space.

IP cores can claim input data or output space in tokens, as long as it does not

cause the claimed read and write space to overlap. Within the granted memory

space, random access is allowed. Multiple claims before a release are also sup-

ported, which is useful in scenarios such as the initial phase of a window oper-

ation. In our design, four primitives are used to move the pointers:

j j+1 j+4j+3j+2 j+5 j+6

Data Item

i

i+1

i+2It
e

ra
ti
o

n Data items used

in one iteration

Each new data item can be

reused in 3 subsequent iterations

...

Reused data item, released

after current iteration

Reused data item

New data item, claimed in

current iteration

Skipped data item

i+3

Figure 5.1 Data reuse in a 5-tap FIR filter with coefficients {c1, c2, 0, c4, c5}.

90 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

1) Claim Space: producer claims output space (for writing data) by trying to

move the write end pointer;

2) Release Data: producer releases output data by moving the write start

pointer;

3) Claim Data: consumer claims input data by trying to move the read end

pointer;

4) Release Space: consumer releases the input space by moving the read start

pointer.

The aforementioned protocol provides an abstract interface for communica-

tion between actors. It can handle data access patterns such as non-destructive

reads and out-of-order accesses, which are very suitable for implementing

channels in SDF graphs. The producer and consumer of a channel can be syn-

chronized using the same set of primitives, independent of their mapping to IP

cores. In other words, from the perspective of the interface and actors it is irre-

levant whether the actors are mapped to the same or a different IP core. This

simplifies the software design of applications since application designers need

to consider only a single FIFO-based interface. Compared to a FIFO implemen-

tation, the only drawback of the proposed circular buffer is that extra pointers

are used. However, this overhead is very small as shown in our synthesis re-

sults, which are presented in Section 5.2.3.

5.2 Communication Assist

A communicate assist (CA) is a module that handles the communication between

an IP core and other components in the system connected through the commu-

nication network. It enables overlapped communication and computation, the-

Write End

Write Start

Read Start

Read End

Claimed

read data
Free space

Claimed

write space

Ready data

Token

Figure 5.2 Circular buffer management.

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 91

reby improving the system performance. Apart from performing data transfers

like a Direct Memory Access (DMA) controller, a CA supports the communica-

tion protocol used by the programming model, which decouples an IP's com-

munication from its computation. For a heterogeneous MPSoC, where accelera-

tor IP cores are used as processing components, this decoupling through a CA

simplifies the design of accelerator IP cores. This is not only because the inter-

face design of accelerator IP cores is now independent of the data-transfer in-

frastructure (e.g., P2P, bus, NoC, etc.), but also because the support for various

data-access patterns is now offloaded from IP cores to the common CA, which

only requires a one-time design effort. The reusability of IP cores is improved

as well due to the unified interface between IPs and CAs. Furthermore, with

the decoupled communication/computation feature and the predictability fea-

ture (described in Section5.2.2 and 5.2.4), a CA-based realization makes it much

easier to analyze the complete system and to provide tight timing guarantees at

design time, e.g., through SDF analysis tools such as SDF3 [61].

5.2.1 Design Considerations

In order to deliver the required high performance, different tasks of a computa-

tionally intensive application may be executed on different types of processing

components which are optimized for execution of particular types of tasks.

Therefore, it is crucial that the proposed CA design can handle generic hetero-

geneous MPSoCs containing accelerator IP cores.

Streaming applications are very common in existing and emerging embed-

ded systems such as smart camera network, unmanned vehicles, and industrial

printing. These applications are usually not only computationally intensive,

but also very bandwidth demanding. Fortunately, these applications contain a

lot of parallelism which makes them very suitable for acceleration using IP

cores. These accelerator IPs can greatly increase the performance as long as the

bandwidth requirement is fulfilled [6]. Therefore, it is very important that our

CA can provide a high bandwidth to a communication channel.

Today's system design is so complex that it is too costly to obtain design in-

formation only at the moment a design has been implemented at the Register

Transfer Level (RTL). Model based approaches, such as SDF, become more and

more popular because they can provide design information at a much earlier

stage of the design process. In order to facilitate the use of SDF analysis tools,

our third design consideration is to provide a predictable CA with an accurate

92 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

SDF model. This makes it possible to analyze the timing impact of our CA in

our design framework.

The proposed CA should also have a low latency and high throughput such

that it does not become the performance bottleneck. Moreover, to make it prac-

tically adoptable, our CA must have high resource efficiency such that it does

not add too much hardware overhead to the system.

In the remainder of this section, we will elaborate the design of our pro-

posed communication assist that meets the aforementioned requirements.

5.2.2 Proposed Communication Assist

As shown in Section 5.1, to support a unified FIFO interface with random

access at the communication protocol level, we implement the data buffer of

the proposed communication assist using a parameterized dual-port circular

buffer. Both the computation side and the communication side can access this

buffer at the same time. Figure 5.3 shows an instance of the proposed CA based

platform, which contains a producer IP, with a CA in output mode, and a con-

sumer IP, with a CA in input mode. The Write Control Unit and the Read Control

Unit handle the communication protocol interface between the CA and the IP

Producer

IP

Consumer

IP

Interconnect

Interconnect

Protocol

claim_space

space_ready offset data
release_data

wr_addr

data

rd_addr

CB Mem
(1R1W)

writefull

P
a

ra
m

e
te

rs

P
o

in
te

rs

Write Control

Send

Control

CA CA

claim_data
data_ready offset data

release_space

rd_addr

data

wr_addr

CB Mem
(1R1W)

readexists

P
a

ra
m

e
te

rs

P
o

in
te

rs

Read Control

Receive

Control

Communication

Protocol

Figure 5.3 Instance of the proposed CA-based platform.

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 93

cores. The Send Control Unit and Receive Control Unit are responsible for copy-

ing data from/to the circular buffer and to/from the interconnect. The Pointers

Unit maintains the read/write pointers of the circular buffer. The Parameters

Unit contains parameters such as claim-space-size and claim-data-size. These pa-

rameters can be reconfigured at run time through a configuration bus con-

nected to a control processor.

The data communication in Figure 5.3 works as follows:

1) The producer task asks the CA for write space through the claim_space

signal;

2) The producer task starts to write output to the CA memory when the re-

quired write space is granted (the space_ready signal is high). Within the

granted memory space, the producer task can randomly access the memory

locations, i.e., data access patterns such as non-destructive reads and out-of-

order read/write access are supported;

3) When writing the last data item, the producer task releases the granted

memory space through the release_data signal, which allows the CA to start

pumping data into the interconnect. After the CA has finished sending the

data, the memory space of the sent data can be used for output again;

4) The CA at the consumer side automatically copies data into its buffer

from the interconnect when there is enough free space;

5) The consumer task tries to claim valid input data by setting the claim_data

signal. When there are sufficient tokens in the CA buffer for one firing, the

CA grants the IP memory space that contains valid data by setting the da-

ta_ready signal;

6) The consumer task processes the data in the granted read space. As long

as the granted input data is not released, it can be accessed randomly and

can be accessed multiple times. When the last read access is executed, the

consumer task releases the granted space by setting the release_space signal.

The released space can be used again to buffer the input data from the in-

terconnect. The consumer task can also claim multiple input data spaces be-

fore releasing them.

As we can see in Figure 5.3, the signal interface between the proposed CA

and the accelerator IP is relatively simple, which eases the effort of the IP inter-

94 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

face design. When the CA is used with a processor, a bus wrapper is used,

which maps the control signals as memory mapped registers on the processor's

local bus (see Figure 5.6).

It is worth mentioning that we designed our CA in such a way that the

claim_space/claim_data commands can be handled during the same cycle when

the first data is processed. This is done by generating the grant signal

(space_ready/data_ready) in the early phase of each clock cycle, so that corres-

ponding data accesses can be carried out immediately. Likewise, re-

lease_data/release_space commands can be handled during the same cycle when

the last data is processed. As a result, protocol overhead is completely removed.

This feature is of extreme importance to avoid performance degradation, espe-

cially in applications in which small bundles of data are frequently communi-

cated between different IP cores. Figure 5.4 depicts this overlapped processing.

We can see that without this feature the protocol overhead per iteration is two

cycles. With the proposed overlapped processing, this overhead is removed. In

the extreme case (i.e., only one data item sent/received per iteration), the claim

command, the release command, and the data access are handled in only one

cycle.

As discussed in the previous sections, our CA behaves like a FIFO at the

communication protocol level, but provides random access to the claimed

read/write space. This latter feature avoids the need for explicit data copying

by the IP core. As a result, IP cores become faster (no copying overhead) and

smaller (no internal memory and data reordering logic needed). The proposed

Claim space/data command,

takes 1 cycle

Processing, takes 1~N cycles

Release data/space command,

takes 1 cycle

Without overlapped processing,

protocol overhead per iteration = 2 cycles

With overlapped processing,

protocol overhead = 0 cycle

Claim and release in

the same cycle

Special case

iteration 1

(N+2 cycles)

1 1N 1 1N

iteration 2

(N+2 cycles)

1 1

1 1

1 1

1 1

1 1

N N

iteration 1

(N cycles)

iteration 2

(N cycles)

Figure 5.4 Remove protocol overhead with overlapped processing.

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 95

CA needs to adapt to the underlying communication topology. However, the

advantage of using a CA is that this adaption is only a one-time effort, and the

computation IPs are decoupled and not affected when targeting a different to-

pology (e.g., switch from bus to NoC).

In the instance shown in Figure 5.3, both the producer IP and the consumer

IP have one communication channel. Therefore, their corresponding CAs have

one channel. When there are multiple communication channels connected to an

IP, each communication channel can be assigned a dedicated CA channel, i.e., a

dedicated circular buffer and control logic. The design choice of assigning each

communication channel a dedicated CA channel is based on the observation

that accelerator IPs designed for streaming applications tend to exploit more

parallelism than programmable cores, which usually results in much higher

bandwidth requirement. A shared CA channel degrades both the throughput

and the latency of a high performance accelerator IP. Another reason, which

leads to this design choice, is that the resource usage of the proposed CA is

very small (see Section 5.2.3). When each communication channel is assigned a

dedicated CA channel, the total resource usage of CAs is proportional to the

number of communication channels in a design (see Section 5.4).

The detailed hardware implementation of the proposed CA is presented in

the next sub section, including information on resource usage, latency, maxi-

mum frequency, and memory bandwidth.

5.2.3 Hardware Implementation of the Proposed Communication Assist

The proposed predictable communication assist is realized in Verilog HDL. For

the implementation on an FPGA, we use Xilinx XPS 10.1 and ISE 10.1 [140] tool

flow and Xilinx xc2vp30 board. Table 5.1 shows the experimental results of the

proposed CA. In this table, we also show the comparison with the most related

work, which is a CA targeting only programmable cores [3]. We can see that

our CA outperforms the CA in [3] in all aspects. Our predictable CA supports

both programmable cores and accelerator IPs. As discussed in Section 5.2.2, we

designed our CA in such a way that the communication protocol overhead is

completely removed, while the reference CA has a considerable overhead (36

cycles). Protocol overhead deteriorates both the throughput and latency espe-

cially when the amount of data transferred per iteration is small. For example,

in the worst case where only one token needs to be transferred in each iteration,

the CA from [3] takes 37 cycles to complete one transaction. Our CA needs only

1 cycle to transfer this data item. The proposed CA can provide a peak BRAM

96 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

bandwidth (BWBRAM) per communication channel (Section 5.2.2), while the

bandwidth of the other CA decreases proportionally to the number of commu-

nication channels. Note that bandwidth is usually one of the key bottlenecks in

the implementation of streaming applications. Our CA also runs twice as fast

as the reference CA. To compare the resource usage on the same FPGA, we

configure both CAs for two typical cases: i) one input channel and one output

channel, with a 512-word buffer for each channel; ii) two input channels and

one output channel, with a 512-word buffer for each channel. We can see that

the proposed CA is much smaller compared to the reference CA. This feature

of limited resource usage is essential to make the CA practically usable. Ac-

cording to our previous experience, the resource usage of many image

processing kernels is less than 1000 slices, so the resource usage of a CA should

be far less than this number. If the resource overhead of a CA is too big, intro-

ducing CAs into a system becomes less attractive.

It is worth mentioning that when the required buffer size of the proposed

CA is relatively small in some applications, or when BRAMs of a target FPGA

are the bottleneck resources, the circular buffers inside the proposed CA can be

implemented using Look-Up-Tables (LUTs). For example, when configured to

use LUTs, the proposed CA with a buffer size of 32bit*16 occupies only 49 slic-

es and 0 BRAMs.

Table 5.1 Comparison between this work and [3] on Xilinx xc2vp30 FPGA.

 CA in [3] Proposed CA

Supported System
Homogeneous,

with μBlaze cores

Heterogeneous,

with generic IPs

Protocol Overhead (in terms of latency) 36 cycles 0 cycles

Maximal Bandwidth per Channel BWBRAM/Nchannel BWBRAM

Maximal Frequency 108 MHz 230 MHz

Resource usage

(1 input and 1 output channels,

512-word buffer per channel)

Slices

LUTs

Registers

BRAMs

855

1626

430

2

57

59

72

2

Resource usage

(2 input and 1 output channels,

512-word buffer per channel)

Slices

LUTs

Registers

BRAMs

1043

1994

562

3

75

85

91

3

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 97

When comparing to other related work such as classical DMA controllers

and other CA architectures with reported resource usage, our CA again outper-

forms the design in terms of its hardware resource usage. Table 5.2 shows the

ASIC gate counts (NAND2 equivalent) comparison between our CA and sever-

al other architectures. The buffer size of each channel is configured to be either

4 words or 8 words.

5.2.4 Cycle-Accurate SDF Model of the Proposed Communication Assist

In order to facilitate the use of SDF analysis tools to derive design information

at an early stage of the design process, an accurate model of the proposed CA

is required. In this section, we present a cycle-accurate SDF model that cap-

tures the timing behavior of the proposed CA.

Our CA can be modeled as a combination of a write actor and a read actor,

as shown in Figure 5.5. Here, x is the output rate of a producer, y is the input

rate of a consumer, n1 is the buffer size of the CA, and n2 is the buffer size of

the interconnect link. Unmarked rates or buffer sizes are 1. In output mode, the

RdCB actor produces in each firing one token to the producer via the channel

from RdCB to producer, which corresponds to reading a token from the circu-

lar buffer and releasing the space. The firing of the WrIC actor models the be-

havior of writing a token to the interconnect. In the input mode, the RdIC actor

Table 5.2 ASIC gate count comparison (8 channels).

PrimeCell [2]

(4 words/channel)
MSAP [4]

(8 words/channel)
Proposed CA

(4/8 words/channel)

Gate count
(NAND2 equivalent)

82k 68k 13.9k/24k

(b) Input Mode

RdIC

t=1

WrCB

t=1
Consumer

y

CA
2n2 n1

y

(a) Output Mode

RdCB

t=1

WrIC

t=1

x

x

Producer

CA
2n1 n2

Figure 5.5 Cycle-accurate SDF model of the proposed CA. RdCB: read circular buffer;

WrIC: write interconnect; RdIC: read interconnect; WrCB: write circular buffer. Un-

marked rates and buffer sizes are 1.

98 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

receives a token from the interconnect. Subsequently, the WrCB actor writes the

received data (i.e., token) into the circular buffer.

All the CA actors have an execution time of one cycle (t = 1), which is re-

quired to read/write one token. The self-edge of each actor models the behavior

that the next firing cannot start before the previous one has finished. The feed-

back channel from the write actor to the read actor has two initial tokens. This

is to model the independent behavior between write and read ports, and the

pipelined behavior of the data transfer. The throughput of each channel in the

proposed CA is equal to the maximum throughput of the interconnect. So our

proposed CA does not introduce any throughput overhead. Considering laten-

cy, when a CA is on the critical path of a design, it introduces two more cycles

(one cycle for the RdCB/RdIC actor and one cycle for the WrIC/WrCB actor) to

the end-to-end latency. This latency overhead is usually negligible compared to

the execution time of an application (see Section 5.4).

5.3 Proposed Architecture Template & Tool Flow

Compared to traditional design trajectories, today's system design has become

so complex that it is too time-consuming and error-prone to start the design

process from the Register Transfer Level (RTL). Moreover, the analysis and veri-

fication of such designs becomes extremely difficult due to increasing complex-

ity and design requirements. Moving up to a more abstract system level seems

to be the only option to address this challenge. The drawback is that this ab-

straction also opens an implementation gap between the new abstraction level

and the RTL level [141]. We believe that the use of an efficient platform-based

design methodology is a promising approach to close this gap. To realize such

a methodology, a platform template and a hardware-software co-design tool

flow are required.

5.3.1 Proposed CA-based Heterogeneous MPSoC Template

A tile-based MPSoC design approach that utilizes the proposed CA brings the

opportunity to nicely bridge the aforementioned implementation gap. By de-

coupling computation from communication and providing unified design in-

terfaces through the proposed CA, complex applications can be partitioned

into smaller kernels, which are much easier to design and analyze. The band-

width requirements of the inter-core communication infrastructure can also be

relieved. This is because without a CA, if a computation IP wants to send data

to the communication network and the communication network happens to be

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 99

busy, the computation IP is usually stalled, which impacts computation effi-

ciency. However, with a CA or other buffers in between, these kinds of stalls

are much less frequent, as the CA can first buffer some data and send them as

soon as the communication network is available to access. In other words, with

a CA, we can use the bandwidth, which a communication network can provide,

more efficiently [142].

Figure 5.6 presents our CA-based heterogeneous MPSoC template for em-

bedded streaming applications. The proposed CA described in Section 5.2 sits

between the processing components and the communication infrastructure.

When the communication infrastructure cannot accept data, it will initially on-

ly stall the CA, and the processing components can continue their execution.

New IPs that implement the unified communication protocol/interface de-

scribed in Section 5.1 can plug-and-play conveniently into this template system.

Besides the fully parameterized CA component, we also provide a Finite-

State-Machine (FSM) based control module for accelerator IP core design. This

FSM-based control module is part of the accelerator IP. It connects the pro-

posed CA through the unified interface at one side, and it connects the IP's

computation kernel (in most cases, equivalent to a loop-body at C code level) at

the other side. Introducing this module further reduces the design effort of ac-

celerator IPs, as designers now only need to focus on the design and optimiza-

tion of the computation part. This module is optional to users.

5.3.2 MAMPS+ Design Flow

MAMPS (Multi-Application and Multi-Processor Synthesis) [60] is a design

flow for mapping throughput constrained applications on an MPSoC. It inte-

grates several state-of-the-art analysis, mapping, and synthesis tools into an

automated tool flow. The inputs of this tool flow are an application modeled as

an SDF graph, a C-based implementation for each actor in the graph, and a

template based architecture description. The output of the tool is an MPSoC

...

...

Interconnect

uP 1

CA

Bus wrapper

uP n

CA

Bus wrapper

CA

Accelerator 1

CA

Accelerator m

Memory

and/or IO

Figure 5.6 Block diagram of the proposed CA-based heterogeneous MPSoC template.

100 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

platform tailored for the target applications, with C implementation of each

actor mapped to general purpose processors (e.g., MicroBlaze) [1]. In the cur-

rent MAMPS design flow, the application SDF graph is derived manually from

its C implementation. The analysis tool that MAMPS uses is called SDF3 [61]. It

can analyze worst-case system properties, such as throughput, latency, and

buffer sizes conservatively at design time. Besides these SDF facilities, MAMPS

also provides platform generation tools and tightly integrated Xilinx EDA tools,

which automate the processes of system instantiation, synthesis, and download.

MAMPS is a very useful design flow for our CA work. However, it only

implements support for ISA (Instruction Set Architecture) processors. This

work extends the MAMPS design flow to support a more generic architecture

template, i.e., the proposed CA-based heterogeneous MPSoC template. The

new tool flow, MAMPS+, is illustrated in Figure 5.7. On the top left, applica-

tions are partitioned and modeled with an SDF graph. This model, together

with the CA-based architecture template, serves as the input to the SDF3 tool

kit, which analyzes worst-case system properties and generates the mapping to

the given platform. It also verifies that such a mapping is deadlock free. It cal-

culates buffer assignments, and predicts the throughput of this mapping [61].

The Platform Generation tool instantiates and connects the template components,

SDF3

(Mapping & Analysis)

Application
Model

Hardware
Model

Generated Mapping

IP Lib

IPs

XPS project
and source files

Architecture Template

SDF Graph

Partitioning

input output
Application

Xilinx EDK

(Implementation)

FPGA Configuration

...

...

Interconnect

uP 1

CA

Bus wrapper

uP n

CA

Bus wrapper

CA

Accelerator 1

CA

Accelerator m

Platform Generation

Hardware ModelApplication Model

FPGA Board

Figure 5.7 MAMPS+ design flow.

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 101

generating an MPSoC platform tailored for the target application. Finally, an

FPGA implementation of the whole system is automatically generated by evok-

ing the Xilinx EDA tools.

To use the proposed tool flow for real-time applications, it is crucial that the

formal analysis of the complete system with CAs can be performed. In the

MAMPS+ tool flow, the SDF model of the proposed CA, which is discussed in

Section 5.2.4, is inserted between each pair of producer-consumer actors, result-

ing in an architecture-aware SDF graph of the complete system. Figure 5.8

shows how this transformation is performed for a producer-consumer pair that

communicates via a FIFO link.

5.4 Case Study: Vision Processing in OLED Printing

To demonstrate that the proposed MAMPS+ design flow enables efficient inte-

gration of accelerator IP cores into a heterogeneous MPSoC, we use an indus-

trial high-speed camera application, Organic-Light-Emitting-Diode (OLED) print-

ing, as a case study. In OLED manufacturing, organic materials need to be ac-

curately injected into the tiny OLED substrates on the wafer, the size of which

are typically in the range of 10 μm to 1000 μm. This fine process has to be done

at an extremely high speed due to high yield requirement (1000 frames/s

throughput and 1 ms latency for the complete system, including sensing,

processing, and control). The time budget for the vision processing part is only

350 μs [143]. The top left of Figure 5.9 shows one captured wafer segment from

a statically-mounted high-speed camera, on which nine OLED structures are

located. The bottom left of Figure 5.9 shows the same image in which detected

OLED centers have been marked.

Producer Consumer
YX

WrCB

t=1

Y

Y

CA2
2

n2

RdCB

t=1

WrIC

t=1

X

X

Producer

CA1
2n1 buf_sz

RdIC

t=1
Consumer

buf_sz

Figure 5.8 SDF graph of two CA-based tiles connected by a FIFO link.

102 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

The complete vision pipeline of OLED center detection consists of four im-

age processing kernels (Figure 5.9) [144]. The input image of the pipeline is typ-

ically of 120×45 pixels. The front end of the pipeline applies OTSU optimal

threshold [145] to segment the OLED structures from the background. The bi-

nary image is then eroded to remove the noise in the image. By utilizing the

characteristics of the repetitive structures, the segmented OLED structures are

reduced into horizontal and vertical vectors. The centers of the OLED structure

are found by searching these two vectors.

For each image processing kernel in Figure 5.9 we provide both a Micro-

Blaze implementation (software) and a dedicated accelerator implementation

(hardware) [21]. The execution time of each kernel for a 120×45 pixel image is

shown in Table 5.3. This performance and implementation information are

used by the MAMPS+ tool flow: the performance information of each kernel is

used by SDF3 to generate a valid mapping, and the implementation informa-

tion is used by the Platform Generation tool to generate the MPSoC platform.

Figure 5.10 presents the SDF graph of the aforementioned OLED center de-

tection application. Self edges are omitted for the sake of simplicity. The

throughput of the Image Source actor is one pixel/cycle. According to Table 5.3,

OTSU Binarization

ErosionDetect Center

Segment of
OLED wafer

Coordinates
of centers

Figure 5.9 Vision pipeline of the OLED center detection.

Table 5.3 Kernel execution time of both μBlaze (software) and accelerator (hardware)

implementations for a 120×45 pixel image.

 OTSU Binarization Erosion Detect Center

μBlaze Implementation
(cycles)

97552 70201 284819 83080

Accelerator Implementation
(cycles)

6227 5401 97 170

Speedup 15.7× 13.0× 2936.3× 488.7×

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 103

the MicroBlaze implementation cannot meet the targeted performance, as the

processing time of each kernel already exceeds the 350 μs timing budget. A

hardware accelerator implementation is then selected for each actor in the

mapping stage. To obtain the accurate design information such as throughput,

latency, and buffer size using the SDF3 tool kit, the application SDF graph is

first transformed into the architecture-aware SDF graph in two steps:

1) Refine each kernel actor with hardware implementation information;

2) Inserting the proposed CA model between two kernel actors.

Figure 5.11 shows the refined SDF models of each image processing kernel

shown in Figure 5.10. For example, the first actor in the OTSU SDF graph

(Figure 5.11 (a)) models the behavior of receiving and processing one token (i.e.,

one pixel) per cycle. The second actor models the behavior that the output

Image

Src

OTSU

Bin.
Erosion

+
Center

Output
W*HW*H

W*H

W*H 1

1

C CH H

W: image width

 H: image height

 C: number of centers

Figure 5.10 SDF graph of the OLED printing application.

t = 1 t = n1

W*H
W*H

W*H t = 1 t = n2

W+1
W

W

Dummy

t = 0

W*H

W*H

W*H

t = n3 t = 1 t = n4

H
H

H

(a) OTSU (b) Binarization

(c) Erosion (d) Detect Center

t = 2

Figure 5.11 Refined SDF models with hardware implementation information for each

kernel actor. Unmarked rates are 1.

104 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

token (i.e., threshold value for binarization stage) is produced when the com-

plete frame (i.e., W × H pixels) is processed. Here n1 = 1 according to the hard-

ware implementation. The Dummy actor in the refined Binarization SDF graph

(Figure 5.11 (b)) models the behavior that the binarization kernel only receives

the threshold value from the OTSU kernel once every frame. This threshold is

then applied onto each pixel of the current frame. Since our CA supports non-

destructive reads, explicit copying of the threshold value from the communica-

tion channel by the binarization IP is avoided.

The way to insert the proposed CA model between two kernel actors is sim-

ilar to what Figure 5.8 shows. The only difference is that the channels, which

model physical buffers, are removed for the sake of buffer size analysis. For

visibility reason, we do not show the complete architecture-aware SDF graph

here. The SDF3 tool kit takes this graph as input, and provides timing analysis

and buffer size analysis of the complete system. The estimated end-to-end la-

tency of this application is 11780 cycles and the estimated throughput is 1.6×10-

4 frames/cycle when channels are configured to the optimum buffer sizes sug-

gested by the SDF3 tool. The measured results from our final FPGA implemen-

tation (shown in Table 5.4) confirm the accuracy of the prediction at design

time.

When a valid mapping is found, the Platform Generation tool instantiates the

parameters of each CA according to the mapping and analysis information.

With the kernel IP implementations stored in the IP library, an FPGA imple-

mentation of the whole system is generated, which can be directly downloaded

to and executed on the target FPGA board. As discussed in Section 5.1 and 5.2,

the kernel IPs that are stored in the IP library only consist of the computational

Table 5.4 Results of both a non-CA based and CA-based hardware implementations on

a Xilinx xc2vp30 FPGA.

 Non-CA Based CA-Based Difference

End-to-end latency
(cycles)

11764 11780 0.1%

Throughput
(frames/cycle)

1.6×10-4 1.6×10-4 0.0%

Frequency (MHz) 160 160 0.0%

No. of slices 4236 4689 10.7%

No. of BRAMs 11 11 0.0%

No. of MULT18×18 9 9 0.0%

Design & analysis effort 4 Weeks 1 Day > 20×

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 105

part and a simple unified interface connecting with the CAs. When coding with

the time-consuming and error-prone hardware description languages (HDLs),

it is more convenient to design this kind of IPs compared to the design of IPs

which have to take complex communication and different interconnects into

consideration.

As a design reference, a non-CA based implementation of the complete vi-

sion pipeline is manually designed and optimized [21]. In this manual design,

we spent about four weeks to integrate the pre-designed IPs into a working

system which meets both the throughput and latency requirements. Most of

the time is spent on the performance analysis and debugging the communica-

tion between pairs of IPs. In contrast, it took us only one day to accomplish an

implementation with the CA-based design flow, which fulfills the same re-

quirements. Table 5.4 shows the comparison between the non-CA based ma-

nual implementation and the proposed CA-based implementation. Both im-

plementations start from the same design point, i.e., a pre-designed IP library

(only the computational parts). We show that by using the proposed architec-

ture template and tool flow, the design and analysis effort is dramatically re-

duced. The cost is mainly some resource overhead. However, comparing to the

high efficiency and the introduced design-time predictability feature, such a

small price is well worthy.

In practice, vision pipelines (i.e., algorithms) often need to adapt to different

working environment or scenarios. New kernels could be added into the vision

pipeline, or part of the kernels could be replaced with alternatives. For a non-

CA based design, this usually means a complete re-design of the system as

computation and communication of different kernels are tightly coupled.

However, for the CA based approach, the required re-design effort is much less.

For example, when the Detect Center kernel in the OLED printing vision pipe-

line is replaced by a Center-of-Gravity kernel which provides higher accuracy,

we only need to update the SDF graph to re-analyze the performance and re-

calculate the required CA buffer sizes with the SDF3 tool. After reconfiguring

the parameters of CAs based on the analysis and plugging in the Center-of-

Gravity IP, the new system implementation can be quickly achieved.

5.5 Related Work

There are several works addressing the issue of the inter-component communi-

cation in MPSoCs. Gangwal et al. presented a synchronization scheme for em-

106 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

bedded systems with shared memory, in which channel controllers are used

for synchronization between tasks [146]. Compared to our communication as-

sist, it is much slower and consumes more hardware resources. The work in

[142, 147] presents a CA-based platform for ISA processors, on which the C-

HEAP protocol [26] is used. One disadvantage of this design is the duplication

of data in the communication and data memories, which results in large mem-

ory space and extra data transfer time. Compared to their design, our CA uses

a similar communication protocol but supports both ISA processors and accele-

rator IP cores. Moreover, our CA uses a unified memory for both communica-

tion and data, which saves up to 50% buffer memory space. The communica-

tion latency is also decreased accordingly. Shabbir et al. present a CA design

which has similar functionality as ours but also only supports tiles with ISA

processors in [148]. The detailed comparison in Section 5.2.3 shows that our CA

outperforms the CA from Shabbir in all aspects. Our CA has a smaller perfor-

mance overhead, far less resource costs, and it supports generic IP cores, which

make our CA more attractive. CELL B.E. [149] implements communication be-

tween processing elements (SPEs) and the external memory through DMA con-

trollers called Memory Flow Controller (MFC). The key difference between MFC

and our CA is that in MFC the synchronization between the memories has to

be performed explicitly by the SPEs, while in our case, it is taken care of by the

CA itself and the processor is freed from the synchronization overhead. The

MSAP presented in [4] uses a control network for the hand-shake between pro-

cessors before actual data transfers. Our CA does not require such a control

network because it uses backpressure as the flow control mechanism. ROCCC is

a high level synthesis framework that generates accelerator IPs using C as in-

put [150]. In ROCCC, the smart buffer, which is the interface module between

the datapath and the memory interface, enables input data reuse for window

operations. However, there is no unified protocol for IPs and processors im-

plemented in the smart buffer, which makes the integration in complex

MPSoCs difficult.

The design of an MPSoC platform has been a challenging task. Several

works tackle this problem by model-based MPSoC design. ESPAM is an

MPSoC design framework based on the KPN model [141]. In ESPAM, a com-

munication controller is introduced for a homogeneous multiprocessor plat-

form. An IP wrapper [151], which has similar functionality as our CA, extends

ESPAM to a heterogeneous platform with hardware IPs. Different from the CA

in this work, the IP wrapper uses hardware FIFO interfaces for input and out-

put. Thus, access patterns such as non-destructive reads and out-of-order

COMMUNICATION SUPPORT FOR STREAMING APPLICATIONS 107

access are only possible after copying the data to the local storage of the con-

suming task, resulting in extra memory requirements and design effort. More-

over, the IP wrapper consumes about 50% more resources than the CA of this

work. In addition, compared to the SDF model used in this work, it is more

difficult, or even impossible to analyze properties like throughput and buffer

requirement in the KPN model used in ESPAM, which affects the predictability

[152]. The work in [153] also uses the KPN model, in which random access to

the data is enabled by introducing a read/write window. However, extra data

copies are required from a FIFO to read/write windows. Optimus is a frame-

work for mapping applications modeled in SDF onto FPGAs [154]. In Optimus,

the interface module of each channel is orchestrated based on the detailed

analysis of the actor behavior, which makes it efficient and fast. However, it

requires exact analysis of the details of all IPs and the interconnect to generate

such modules, which is not always possible in complex MPSoC designs.

5.6 Summary

In this chapter, we presented a communication assist (CA) to efficiently integrate

generic IPs into an MPSoC with a predictable design flow. The CA separates

inter-core communication from the IP's computation, and provides a unified

abstract interface for accelerator IPs and processors. We also presented an ac-

curate SDF model for the proposed CA, which makes it possible to provide

timing guarantees for systems using the CA. The experimental results show

Table 5.5 Summary of our contributions.

Contributions Features

CA Design

 High resource efficiency & high performance

 No protocol overhead

 Unified interface

 Flexible data accesses

 Predictability

CA SDF Model
 Cycle accurate

 Easy to be integrated into application models

Architecture Template

& Tool Flow

 Ease IP integration effort

 Provide design time analysis

Case Study

 Industrial high-speed camera application

 FPGA implementation

 Demonstrated the efficiency of the proposed

CA and tool flow

108 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

that the proposed CA design provides very high performance and resource

efficiency compared to the existing works.

Based on the proposed CA design, we introduced a heterogeneous MPSoC

template which can be used by the proposed MAMPS+ tool flow. We used an

industrial application, the complete vision processing pipeline in OLED print-

ing, as a case study. We showed that with the proposed CA-based MPSoC

template, analysis and mapping of real-time streaming applications onto a he-

terogeneous MPSoC with dedicated accelerators are easy and efficient. Table

5.5 summarizes the contributions of this work.

To complete the proposed MAMPS+ design flow, there is still some work to

be done. An efficient design space exploration (DSE) algorithm is missing, which

is required to quickly locate the proper hardware instantiations. Integrating

shared memory into the SDF3 tool flow is another interesting but challenging

task. We would also like to add more programmable cores, especially the low-

power cores we designed in chapter 2, 3, and 4, into our IP library. This re-

quires some engineering work to interfacing the programmable cores with the

CA.

CHAPTER 6

6 CONCLUSIONS AND FUTURE WORK

In Section 6.1, the most important conclusions which are made in the previous

chapters are recapped. Section 6.2 discusses future research directions that we

are interested in.

6.1 Conclusions

Streaming applications are an important class of applications which are usually

very computationally intensive and have very tight power budget. Therefore,

embedded systems designed for these applications not only need to have a

large amount of processing power, but also need to provide the high

processing power in an energy-efficient way. To achieve such kind of highly

efficient systems, significant efforts at different hardware and software design

levels are required. Chapter 1 briefly discussed some important challenges we

are facing, including i) high overhead in supplying of instructions and data to

functional units; ii) issues of wide-range Vdd scaling in both standard-cell based

logics and SRAMs; iii) increasing variation issue along with the technology

scaling; iv) energy-aware compilers other than performance-only compilers;

and v) design issues introduced by heterogeneity. In this thesis, we presented

our efforts to overcome part of these design challenges.

In Chapter 2, MOVE-Pro, a new TTA based processor architecture is proposed

to reduce energy consumption of the register file, and convert this energy sav-

ing into the total core energy saving. With optimizations at ISA, architecture,

circuit, and compiler levels, the low-power potential of TTAs is fully exploited.

Moreover, with a much denser code size, TTAs’ performance is also improved.

In the head-to-head comparison, we showed that up to 80% of RF accesses can

be reduced with the proposed MOVE-Pro framework. The reduction in RF

energy is successfully transferred to the total core energy saving. The compari-

son with RISC counterpart showed that up to 11.6% reduction of the total core

110 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

energy is achieved. When compared to VLIWs, the advantage of the proposed

MOVE-Pro architecture is even better.

Chapter 3 describes the integration of flexible special instruction support in a

generic embedded processor with a compact ISA. Apart from performance im-

provement, the main focus of this work is on energy efficiency of the processor

for different streaming application domains. A partially reconfigurable decoder

and a software-controlled explicit bypass network are introduced, allowing the

processor to support operation pairs without increasing the instruction width

or number of register file ports. The experimental results demonstrated that the

proposed architecture is effective: average dynamic cycle count is reduced by

over 25%. The total processor energy consumption is reduced by 15.8%. When

high performance is required, the proposed architecture is able to achieve a

speed-up of 12.6% with 13.1% energy reduction compared to the baseline by

introducing multi-cycle SFU operations.

In Chapter 4, Xetal-Pro, a massively parallel SIMD architecture is proposed.

We combined massive parallelism and aggressive Vdd scaling in the context of a

wide SIMD processor. A hybrid memory system was also introduced to reduce

the non-local memory traffic and enables further Vdd scaling. Preliminary re-

sults showed that it is possible to achieve less than 1 pJ/op energy consumption

at the ultra low-energy mode, while still delivering a throughput of about 0.7

GOPS. This makes Xetal-Pro a very promising building block in MPSoCs for

future low-energy embedded streaming computing.

Finally, we proposed an efficient and predictable communication assist (CA) for

integrating generic IP cores into heterogeneous MPSoCs in Chapter 5. The CA

separates inter-core communication from the IP's computation, and provides a

unified abstract interface for accelerator IPs and processors. We also presented

an accurate SDF model for the proposed CA, which makes it possible to pro-

vide timing guarantees for systems using the CA. The experimental results

showed that the proposed CA design provided very high performance and

resource efficiency compared to the existing works. Based on the proposed CA

design, the existing design flow, MAMPS, is updated with a CA-based hard-

ware template. As a case study, vision processing pipeline of a typical industri-

al application, Organic Light Emitting Diode (OLED) screen printing, is mapped

onto the proposed platform. This case study demonstrated that the proposed

design flow enables efficient integration of accelerator IPs into a heterogeneous

MPSoC which targets streaming applications.

CONCLUSIONS AND FUTURE WORK 111

6.2 Future Work

This thesis presented solutions to various problems in designing low-power

architectures for streaming applications. As future work, several remaining

tasks and interesting issues can be studied further:

 In the MOVE-Pro work (Chapter 2), a two-issue MOVE-Pro instantiation

is fully implemented in HDL as the RISC counterpart. However, when

comparing to the VLIW architecture, we did not provide the MOVE-Pro

instantiations at RTL level. As future work, it would be very interesting

if the RTL generation could be automated based on the user configura-

tion. This can be achieved by providing an architecture configuration file

and a set of pre-designed IP modules (e.g., ALU, RF, dispatch network).

Extending the current compiler to support software pipelining and cross

basic block scheduling would also be a promising direction to improve

the efficiency.

 In the design of special function unit (Chapter 3), we mainly focused on

the support of flexible pair patterns. Though these operation patterns are

the most common ones, it would be interesting if more complex patterns

in the SFU could also be supported. This should be done after careful

exploring the trade-offs between the complexity of the SFU and the

energy efficiency of the processor architecture. Another potential issue in

the proposed SFU design is frequency loss (14.4% loss even though mul-

tiple-cycle execution is applied) compared to the design without SFU.

Further optimization should be considered to solve this issue.

 In the ultra low-energy SIMD design (Chapter 4), we analyzed the possi-

bility of achieving 1 pJ/op for typical steaming applications. The result is

promising. In this work, we mainly focused on the memory subsystem.

A further step could be exploring the proper micro-architecture of the

processing engines (PEs) and the communication network among PEs.

As another important component, the corresponding compiler also

needs to be constructed.

 In the communication assist work (Chapter 5), the MAMPS design flow

is updated with the proposed CA-based hardware template. To fully au-

tomate the proposed design flow, there is still some work that can be

done: i) an efficient DSE algorithm which can quickly locates the proper

hardware instantiations; ii) adding more CA-enabled programmable

112 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

cores into our IP library, especially the low-power cores designed in

chapter 2, 3, and 4; iii) integrating shared memory into the SDF3 tool

flow.

 Variation and fault tolerance are not covered in this work. However,

these aspects are becoming increasingly important in the design of mod-

ern embedded systems. In the future work, we would like to pay more

attention on these directions at different design levels. Interesting tech-

niques in this field, such as Razor latch/flip-flop [122, 123], structural

duplication [121], body biasing [124, 125], and cell resizing [126], could

be introduced into our designs.

BIBLIOGRAPHY

1. MAMPS. A design flow to map throughput constrained applications on

MPSoC, http://www.es.ele.tue.nl/mamps/.

2. ARM. PrimeCellTM DMA controller, http://www.arm.com.

3. A. Shabbir, et al., A predictable communication assist, in Proceedings of

the 7th ACM International Conference on Computing Frontiers, 2010,

pp. 97-98.

4. S.I. Han, et al., An efficient scalable and flexible data transfer architecture for

multiprocessor SoC with massive distributed memory, in Proceedings of the

41st annual Design Automation Conference, 2004, pp. 250-255.

5. S. Jalali, Trends and Implications in Embedded Systems Development, in

White Paper of Tata Consultancy Services, 2009.

6. K. van Berkel, Multi-core for mobile phones, in Proceedings of the

Conference on Design, Automation and Test in Europe, 2009, pp. 1260-

1265.

7. J. Rabaey, Low Power Design Essentials, 2009, Springer.

8. G. Mathur, et al., Ultra-low power data storage for sensor networks, ACM

Transactions on Sensor Networks, 2009, 5(4): pp. 1-33.

9. W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for

streaming applications, in Proceedings of 11th International Symposium

on Compiler Construction, 2002, pp. 179-196.

10. E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile

Broadband, 2011, Elsiver.

11. E. Dahlman, et al., 3G Evolution: HSPA and LTE for Mobile Broadband,

2008, Elsevier.

12. ITU-T, Advanced video coding for generic audiovisual services, in Technical

Report, ITU-T Recommendation H.264, 2005.

13. ITU-T, Video coding for low bit rate communication, in Technical Report,

ITU-T Recommendation H.263, 1996.

14. MPEG-2, Generic Coding of Moving Pictures and Associated Audio Systems,

in Technical Report, ISO/IEC 13818-2, 1994.

15. MPEG-4, Information Technology Coding of Audio-Visual Objects, in

Technical Report, ISO/IEC 14496-2, 2007.

16. K. Brandenburg, MP3 and AAC Explained, in Proceedings of 17th

International Conference on High Quality Audio Coding, 1999, pp. 1-

12

114 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

17. DAB/DAB+/DMB Receivers, www.worlddab.org.

18. R. Maini, and H. Aggarwal, A Comprehensive Review of Image

Enhancement Techniques, Journal of Computing, 2010, 2(3): pp. 8-13.

19. Y. HaCohen, et al., Non-rigid dense correspondence with applications for

image enhancement, ACM Transactions on Graphics, 2011, 30(4): pp. 1-

70.

20. M. Gavelli, et al. Terafly: A THz image-processing-based architecture for

semi-automatic industrial inspection and measurement, in Proceedings of

37th International Conference on Infrared, Millimeter, and Terahertz

Waves, 2012, pp. 1-2.

21. Y. He, et al., Feasibility Analysis of Ultra High Frame Rate Visual Servoing

on FPGA and SIMD Processor, in Proceedings of the 13th International

Conference on Advanced Concepts for Intelligent Vision Systems, 2011,

pp. 623-634.

22. S. Izadi, et al. KinectFusion: real-time 3D reconstruction and interaction

using a moving depth camera, in Proceedings of the 24th ACM

symposium on user interface software and technology, 2011, pp. 559-

568.

23. A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d reconstruction in

real-time, in Proceedings of Intelligent Vehicles Symposium, 2011, pp.

963-968.

24. ITRS, International technology roadmap for semiconductors, System Drivers,

2007.

25. J. Henkel, Closing the SoC Design Gap, Computer, 2003, 36(9): pp. 119-

121.

26. A.E. Nieuwland, et al., C-HEAP: A Heterogeneous Multi-Processor

Architecture Template and Scalable and Flexible Protocol for the Design of

Embedded Signal Processing Systems, Design Automation for Embedded

Systems, 2002, 7(3): pp. 233-270.

27. H. Andreas, A composable and predictable on-chip interconnect, PhD thesis,

2009.

28. J.M. Tarascon, Key challenges in future Li-battery research, Philosophical

Transactions of the Royal Society A, 2010, 368(1923): pp. 3227-3241.

29. G. Jeong, et al., Prospective materials and applications for Li secondary

batteries, Energy & Environmental Science, 2011, 4(6): pp. 1968-2002.

30. J. Balfour, et al., An energy-efficient processor architecture for embedded

systems, Computer Architecture Letters, 2007, 7(1): pp. 29-32.

BIBLIOGRAPHY 115

31. J. Balfour, R.C. Halting, and W.J. Dally, Operand Registers and Explicit

Operand Forwarding, Computer Architecture Letters, 2009, 8(2): pp. 60-

63.

32. J.W. van de Waerdt, et al., The TM3270 media-processor, in Proceedings

of the 38th IEEE/ACM International Symposium on Microarchitecture,

2005, pp. 331-342.

33. D.R. Gonzales, Micro-RISC architecture for the wireless market. IEEE

Micro, 1999, 19(4): pp. 30-37.

34. Y. Pu, On the road towards robust and ultra low energy CMOS digital

circuits using sub/near threshold power supply, PhD thesis, 2009.

35. K. Takeda, et al., A read-static-noise-margin-free SRAM cell for low-VDD

and high-speed applications, Journal of Solid-State Circuits, 2006, 41(1):

pp. 113-121.

36. A. Pavlov and M. Sachdev, CMOS SRAM Circuit Design and Parametric

Test in Nano-Scaled Technologies: Process-Aware SRAM Design and Test,

2008, Springer.

37. B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk,

2008, Morgan Kaufmann.

38. S. Borkar, Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation, IEEE Micro, 2005, 25(6):

pp. 10-16.

39. T. Miller, R. Thomas, and R. Teodorescu, Mitigating the Effects of Process

Variation in Ultra-low Voltage Chip Multiprocessors using Dual Supply

Voltages and Half-Speed Units, IEEE Computer Architecture Letters, 2012,

11(2): pp. 45-48.

40. S.K. Springer, et al., Modeling of variation in submicrometer CMOS ULSI

technologies, IEEE Transactions on Electron Devices, 2006, 53(9): pp.

2168-2178.

41. M. Onabajo and J. Silva-Martinez, Process Variation Challenges and

Solutions Approaches, in Analog Circuit Design for Process Variation-

Resilient Systems-on-a-Chip, 2012, pp. 9-30.

42. X. Tang, V.K. De, and J.D. Meindl, Intrinsic MOSFET parameter

fluctuations due to random dopant placement, IEEE Transactions on Very

Large Scale Integration Systems, 1997, 5(4): pp. 369-376.

43. H. Fukutome, et al., Direct evaluation of gate line edge roughness impact on

extension profiles in sub-50-nm n-MOSFETs, IEEE Transactions on

Electron Devices, 2006, 53(11): pp. 2755-2763.

116 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

44. A. Asenov, S. Kaya, and J.H. Davies, Intrinsic threshold voltage

fluctuations in decanano MOSFETs due to local oxide thickness variations,

IEEE Transactions on Electron Devices, 2002, 49(1): pp. 112-119.

45. M. Kandemir, N. Vijaykrishnan, and M.J. Irwin, Compiler optimizations

for low power systems, in Power Aware Computing textbook, 2002, pp.

191-210.

46. M. Lee, et al., Power analysis and minimization techniques for embedded

DSP software, IEEE Transactions on Very Large Scale Integration

Systems, 1997, 5(1): pp. 123-135.

47. S. Steinke, et al. Assigning program and data objects to scratchpad for

energy reduction, in Proceedings of Design, Automation and Test in

Europe Conference and Exhibition, 2002, pp. 409-415.

48. R. Kumar, et al. Single-ISA Heterogeneous Multi-Core Architectures for

Multithreaded Workload Performance, in Proceedings of the 31st Annual

International Symposium on Computer Architecture, 2004, pp. 64-75.

49. R. Kumar, et al., Processor power reduction via single-ISA heterogeneous

multi-core architectures, Computer Architecture Letters, 2003, 2(1): pp. 1-

4.

50. B. Kienhuis, et al., An approach for quantitative analysis of application-

specific dataflow architectures, in Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures and

Processors, 1997, pp. 338-349.

51. F. Balarin, Hardware-software co-design of embedded systems: the POLIS

approach, 1997, Kluwer Academic Publishers.

52. A. Pimentel, et al. Towards efficient design space exploration of

heterogeneous embedded media systems, in Proceedings of the

International Workshop on Embedded Computer Systems:

Architectures, Modeling, and Simulation, 2001, pp. 57-73.

53. A. Mihal, et al., Developing architectural platforms: A disciplined approach,

IEEE Design & Test of Computers, 2002, 19(6): pp. 6-16.

54. A. Kumar, Analysis, Design and Management of Multimedia Multiprocessor

Systems, PhD theis, 2009.

55. E.A. Lee and D.G. Messerschmitt, Synchronous data flow, Proceedings of

the IEEE, 1987, 75(9): pp. 1235-1245.

56. A.H. Ghamarian, et al., Throughput Analysis of Synchronous Data Flow

Graphs, in Proceedings of the 6th International Conference on

Application of Concurrency to System Design, 2006, pp. 25-36.

BIBLIOGRAPHY 117

57. S. Stuijk, M. Geilen, and T. Basten, Throughput-Buffering Trade-Off

Exploration for Cyclo-Static and Synchronous Dataflow Graphs, IEEE

Transactions on Computers, 2008, 57(10): pp. 1331-1345.

58. Y. Yang, et al., Automated bottleneck-driven design-space exploration of

media processing systems, in Proceedings of the Conference on Design,

Automation and Test in Europe, 2010, pp. 1041-1046.

59. A. Kumar, et al., Multiprocessor systems synthesis for multiple use-cases of

multiple applications on FPGA, ACM Transactions on Design

Automation of Electronic Systems, 2008, 13(3): pp. 1-27.

60. R. Jordans, et al., An Automated Flow to Map Throughput Constrained

Applications to a MPSoC, in Bringing Theory to Practice: Predictability

and Performance in Embedded Systems, 2011, pp. 47-58.

61. S. Stuijk, M. Geilen, and T. Basten, SDF3: SDF For Free, in Proceedings

of the 6th International Conference on Application of Concurrency to

System Design, 2006, pp. 276-278.

62. Y. He, et al., MOVE-Pro: a Low Power and High Code Density TTA

Architecture, in Proceedings of the 11th Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation, 2011, pp.

294-301.

63. D. She, et al., Energy Efficient Code Generation for Processors with Exposed

Datapath, in Proceedings of the 9th Workshop on Optimizations for

DSP and Embedded Systemsm, 2011, pp. 55-61.

64. H. Corporaal, Microprocessor Architectures: From VLIW to TTA, PhD

thesis, 1998.

65. H. Corporaal, TTAs: Missing the ILP complexity wall, Journal of Systems

Architecture, 1999, 45(12): pp. 949-973.

66. K. Karuri, et al., A Generic Design Flow for Application Specific Processor

Customization through Instruction-Set Extensions (ISEs), in Proceedings of

the 9th International Workshop on Embedded Computer Systems:

Architectures, Modeling, and Simulation, 2009, pp. 204-214.

67. N. Clark, H. Zhong, and S. Mahlke, Processor Acceleration Through

Automated Instruction Set Customization, in Proceedings of the 36th

IEEE/ACM International Symposium on Microarchitecture, 2003, pp.

129-140.

68. R. Leupers, et al., A design flow for configurable embedded processors based

on optimized instruction set extension synthesis, in Proceedings of Design,

Automation and Test in Europe, 2006, pp. 581-586.

118 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

69. Y. He, et al., Xetal-Pro: An Ultra-Low Energy and High Throughput SIMD

Processor, in Proceedings of the 47th Annual Design Automation

Conference, 2010, pp. 543-548.

70. J. Villarreal and W.A. Najjar, Compiled hardware acceleration of molecular

dynamics code, in Proceedings of the 18th International Conference on

Field Programmable Logic and Applications, 2008, pp. 667-670.

71. AutoESL, http://www.xilinx.com/tools/autoesl.htm.

72. J. Kin, M. Gupta, and W.H. Mangione-Smith. The filter cache: an energy

efficient memory structure, in Proceedings of the 30th ACM/IEEE

international symposium on Microarchitecture, 1997, pp. 184-193.

73. G. Semeraro, et al. Energy-efficient processor design using multiple clock

domains with dynamic voltage and frequency scaling, in Proceedings of 8th

Symposium on High-Performance Computer Architecture, 2002, pp.

29-40.

74. M. Woh, et al. AnySP: anytime anywhere anyway signal processing, in

Proceedings of the 36th International Symposium on Computer

Architecture, 2009, pp. 128-139.

75. A.A. Abbo, et al., Xetal-II: a 107 GOPS, 600 mW massively parallel

processor for video scene analysis, IEEE Journal of Solid-State Circuits,

2008, 43(1): pp. 192-201.

76. L.H. Lee, B. Moyer, and J. Arends. Instruction fetch energy reduction

using loop caches for embedded applications with small tight loops, in

Proceedings of Symposium on Low Power Electronics and Design,

1999, pp. 267-269.

77. M. Sjalander, H. Eriksson, and P. Larsson-Edefors. An efficient twin-

precision multiplier, in Proceedings of IEEE International Conference on

Computer Design, 2004, pp. 30-33.

78. D. She, et al., Scheduling for Register File Energy Minimization in Explicit

Datapath Architectures, in Proceedings of the Design, Automation and

Test in Europe, 2012, pp. 388-393.

79. H. Corporaal and H. Mulder, MOVE: a framework for high-performance

processor design, in Proceedings of the ACM/IEEE conference on

Supercomputing, 1991, pp. 692-701.

80. T. Pitkänen, et al., Low-power, high-performance TTA processor for 1024-

point fast fourier transform, in Proceedings of the Embedded Computer

Systems: Architectures, Modeling, and Simulation, 2006, pp. 227-236.

81. MAXIM-IC. MaxQ Microcontroller, http://www.maximic.com/.

82. Delft University of Technology, MOVE project, http://ce.et.tudelft.nl/MOVE/.

http://www.xilinx.com/tools/autoesl.htm

BIBLIOGRAPHY 119

83. J. Hoogerbrugge and H. Corporaal. Transport-triggering vs. operation-

triggering, in Proceedings of Compiler Construction, 1994, pp. 435-449.

84. Tampere University of Technology. TTA-based Codesign Environment

(TCE), http://tce.cs.tut.fi/.

85. OpenCores. OpenRISC 1200, http://opencores.org/openrisc.

86. S. Rixner, et al., Register organization for media processing, in Proceedings

of the 6th International Symposium on High-Performance Computer

Architecture, 2000, pp. 375-386.

87. CACTI. cacti 5.3, rev 174, http://quid.hpl.hp.com:9081/cacti/.

88. V. Zyuban and P. Kogge, The energy complexity of register files, in

Proceedings of the international symposium on low power electronics

and design, 1998, pp. 305-310.

89. H. Kubosawa, et al., A 2.5-GFLOPS, 6.5 million polygons per second, four-

way VLIW geometry processor with SIMD instructions and a software bypass

mechanism, IEEE Journal of Solid-State Circuits, 1999, 34(11): pp. 1619-

1626.

90. L.A. Lozano and G.R. Gao, Exploiting short-lived variables in superscalar

processors, in Proceedings of the 28th international symposium on

Microarchitecture, 1995, pp. 292-302.

91. V. Guzma, et al., Impact of Software Bypassing on Instruction Level

Parallelism and Register File Traffic, in Proceedings of the Embedded

Computer Systems: Architectures, Modeling, and Simulation, 2008, pp.

23-32.

92. V. Guzma, et al., Reducing processor energy consumption by compiler

optimization, in Proceedings of the IEEE Workshop on Signal

Processing Systems, 2009, pp. 63-68.

93. G. Cichon, et al. Synchronous Transfer Architecture (STA), in Proceedings

of Computer Systems: Architectures, Modeling, and Simulation, 2004,

pp. 343-352.

94. J. Guo, et al., A phase-coupled compiler backend for a new VLIW processor

architecture using two-step register allocation, in Proceedings fo

International Conference on Application-Specific Systems, Architectures,

and Processors, 2007, pp. 346-352.

95. ARM. ARM Thumb Instruction Set, http://www.arm.com.

96. K. Karuri, et al., Increasing data-bandwidth to instruction-set extensions

through register clustering, in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, 2007, pp. 166-171.

120 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

97. M. Arnold and H. Corporaal, Automatic detection of recurring operation

patterns, in Proceedings of the 7th International Workshop on

Hardware/Software Codesign, 1999, pp. 22-26.

98. P. Yu and T. Mitra, Characterizing embedded applications for instruction-set

extensible processors, in Proceedings of the 41st Annual Design

Automation Conference, 2004, pp. 723-728.

99. C. Lattner and V. Adve, LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation, in Proceedings of the International

Symposium on Code Generation and Optimization, 2004, pp. 75-86.

100. D. She, Y. He, and H. Corporaal, Energy Efficient Special Instruction

Support in an Embedded Processor with Compact ISA, in Proceedings of

the International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, 2012, pp. 131-140.

101. N. Clark, et al., Application-Specific Processing on a General-Purpose Core

via Transparent Instruction Set Customization, in Proceedings of the 37th

IEEE/ACM International Symposium on Microarchitecture, 2004, pp.

30-40.

102. N. Clark, et al., An Architecture Framework for Transparent Instruction Set

Customization in Embedded Processors, in Proceedings of the 32nd

International Symposium on Computer Architecture, 2005, pp. 272-283.

103. R. Jayaseelan, H. Liu, and T. Mitra, Exploiting forwarding to improve data

bandwidth of instruction-set extensions, in Proceedings of the 43rd Design

Automation Conference, 2006, pp. 43-48.

104. K. Atasu, L. Pozzi, and P. Ienne, Automatic application-specific

instruction-set extensions under microarchitectural constraints, in

Proceedings of the 40th Design Automation Conference, 2003, pp. 256-

261.

105. L. Pozzi and P. Ienne, Exploiting pipelining to relax register-file port

constraints of instruction-set extensions, in Proceedings of the

International Conference on Compilers, Architectures and Synthesis

for Embedded Systems, 2005, pp. 2-10.

106. D. She, et al., Scheduling for Register File Energy Minimization in Explicit

Datapath Architectures, in Proceedings of Design, Automation Test in

Europe Conference Exhibition, 2012, pp. 388-393.

107. S. Park, et al., Bypass aware instruction scheduling for register file power

reduction, in Proceedings of the Conference on Language, Compilers,

and Tool Support for Embedded Systems, 2006, pp. 173-181.

BIBLIOGRAPHY 121

108. J. Cong, G. Han, and Z. Zhang, Architecture and compilation for data

bandwidth improvement in configurable embedded processors, in

Proceedings of the International Conference on Computer-Aided

Design, 2005, pp. 263-270.

109. P.M. Heysters, G.J.M. Smit, and E. Molenkamp, Montium - Balancing

between Energy-Efficiency, Flexibility and Performance, in Proceedings of

the International Conference on Engineering of Reconfigurable

Systems and Algorithms, 2003, pp. 235-241.

110. S. Vassiliadis, et al., The MOLEN polymorphic processor, IEEE

Transactions on Computers, 2004, 53(11): pp. 1363-1375.

111. B. Kastrup, A. Bink, and J. Hoogerbrugge, ConCISe: A Compiler-Driven

CPLD-Based Instruction Set Accelerator, in Proceedings of the 7th

Symposium on Field Programmable Custom Computing Machines,

1999, pp. 92-101.

112. L. Bauer, et al., RISPP: Rotating Instruction Set Processing Platform, in

Proceedings of the 44th Design Automation Conference, 2007, pp. 791-

796.

113. G. Venkatesh, et al., Conservation cores: reducing the energy of mature

computations, in Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating

Systems, 2010, pp. 205-218.

114. H.P. Huynh, J.E. Sim, and T. Mitra, An efficient framework for dynamic

reconfiguration of instruction-set customization, in Proceedings of the

International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, 2007, pp. 135-144.

115. G. Venkatesh, et al., QsCores: trading dark silicon for scalable energy

efficiency with quasi-specific cores, in Proceedings of the 44th

International Symposium on Microarchitecture, 2011, pp. 163-174.

116. G. Dasika, et al., PEPSC: A Power-Efficient Processor for Scientific

Computing, in Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, 2011, pp. 101-110.

117. R. Kastner, et al., Instruction generation for hybrid reconfigurable systems,

ACM Transaction on Design Automation of Electronic Systems, 2002,

7(4): pp. 605-627.

118. Y. Guo, et al., A graph covering algorithm for a coarse grain reconfigurable

system, in Proceedings of the Conference on Language, Compiler, and

Tool for Embedded Systems, 2003, pp. 199-208.

122 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

119. A.A. Abbo, R.P. Kleihorst, and B. Schueler, Xetal-II: A Low-Power

Massively-Parallel Processor for Video Scene Analysis, Journal of Signal

Processing Systems, 2009, 62(1): pp. 17-27.

120. Y. He, et al. Real-time implementations of Hough Transform on SIMD

architecture, in Proceedings of the Second ACM/IEEE International

Conference on Distributed Smart Cameras, 2008, pp. 1-8.

121. S. Seo, et al. Process variation in near-threshold wide SIMD architectures, in

Proceedings of the 49th Annual Design Automation Conference, 2012,

pp.980-987.

122. S. Das, et al., RazorII: In situ error detection and correction for PVT and

SER tolerance, IEEE Journal of Solid-State Circuits, 2009, 44(1): pp. 32-48.

123. M. Fojtik, et al. Bubble Razor: An architecture-independent approach to

timing-error detection and correction, in Proceedings fo IEEE Internatinal

Solid-State Circuits Conference, 2012, pp. 488-490.

124. A. Sathanur, et al. Physically clustered forward body biasing for variability

compensation in nanometer CMOS design, in Proceedings of Design,

Automation, and Test in Europe Conference, 2009, pp. 154-159.

125. R. Dreslinski, et al., Near-threshold computing: Reclaiming moore's law

through energy efficient integrated circuits, Proceedings of the IEEE, 2010,

98(2): pp. 253-266.

126. B. Liu, et al. Standard cell sizing for subthreshold operation, in Proceedings

of the 49th Design Automation Conference, 2012, pp. 962-967.

127. N. Verma and A.P. Chandrakasan, A 256 kb 65 nm 8T subthreshold

SRAM employing Sense-amplifier Redundancy, IEEE Journal of Solid State

Circuits, 2008, 43(1): pp. 141-149.

128. B. Calhoun and A. Chandrakasan. A 256kb sub-threshold SRAM in 65nm

CMOS, in Proceedings of IEEE International Solid-State Circuits

Conference, 2006, 2592-2601.

129. B. Zhai, et al., A variation-tolerant sub-200 mV 6-T subthreshold SRAM,

IEEE Journal of Solid-State Circuits, 2008, 43(10): pp. 2338-2348.

130. A. Wang and A. Chandrakasan, A 180-mV subthreshold FFT processor

using a minimum energy design methodology, IEEE Journal of Solid-State

Circuits, 2005, 40(1): pp. 310-319.

131. B. Zhai, et al. A 2.60 pJ/Inst subthreshold sensor processor for optimal energy

efficiency, in Proceedings of the IEEE Symposium on VLSI Circuits,

2006, pp. 154-155.

BIBLIOGRAPHY 123

132. M. Seok, et al., The Phoenix Processor: A 30pW platform for sensor

applications, in Proceedings of IEEE Symposium on VLSI Circuits, 2008,

pp. 188-189.

133. J. Kwong, et al., A 65 nm Sub-Vt Microcontroller With Integrated SRAM

and Switched Capacitor DC-DC Converter, IEEE Journal of Solid-State

Circuits, 2009, 44(1): pp. 115-126.

134. Y. Pu, et al. An Ultra-Low-Energy/Frame Multi-Standard JPEG CO-

Processor in 65nm CMOS with Sub/Near-Threshold Power Supply, in

Proceedings of IEEE International Solid-State Circuits Conference, 2009,

pp. 146-147.

135. H. Kaul, et al. A 300mV 494GOPS/W Reconfigurable Dual-Supply 4-Way

SIMD Vector Processing Accelerator in 45nm CMOS, in Proceedings of

the Solid-State Circuits Conference, 2009, 260-263.

136. P. Francesco, et al. An integrated hardware/software approach for run-time

scratchpad management, in Proceedings of the 41st annual conference on

Design automation, 2004, pp. 238-243.

137. N. Jayasena, et al. Stream register files with indexed access, in Proceedings

of 10th International Symposium on High Performance Computer

Architecture, 2004, pp. 60-72.

138. S. Kyo and S. Okazaki, IMAPCAR: A 100 GOPS In-Vehicle Vision

Processor Based on 128 Ring Connected Four-Way VLIW Processing

Elements, Journal of Signal Processing Systems, 2008, 62(1): pp. 5-16.

139. A. Prengler and K. Adi. A Reconfigurable SIMD-MIMD Processor

Architecture for Embedded Vision Processing Applications, in Proceedings

of SAE World Congress and Exhibition, 2009, pp. 1-9.

140. Xilinx. http://www.xilinx.com.

141. H. Nikolov, T. Stefanov, and E. Deprettere, Multi-processor system

design with ESPAM, in Proceedings of the 4th international conference

on Hardware/software codesign and system synthesis, 2006, pp. 211-

216.

142. A. Moonen, et al., Decoupling of computation and communication with a

communication assist, in Proceedings of the 10th Euromicro Conference

on Digital System Design Architectures, Methods and Tools, 2007, pp.

63-68.

143. R. Pieters, P. Jonker, and H. Nijmeijer, Real-Time Center Detection of an

OLED Structure, in Proceedings of the 11th International Conference on

Advanced Concepts for Intelligent Vision Systems, 2009, pp. 400-409.

http://www.xilinx.com/

124 LOW POWER ARCHITECTURES FOR STREAMING APPLICATIONS

144. Z. Ye, et al., Feasibility Analysis of Ultra High Frame Rate Visual Servoing

on FPGA and SIMD Processor, in Proceedings of the 12th IAPR

Conference on Machine Vision Applications, 2011, pp. 55-58.

145. N. Otsu, A threshold selection method from gray-level histograms,

Automatica, 1975, 11: pp. 285-296.

146. O.P. Gangwal, A. Nieuwland, and P. Lippens, A scalable and flexible data

synchronization scheme for embedded HW-SW shared-memory systems, in

Proceedings of the 14th International Symposium on Systems

Synthesis, 2001, pp. 1-6.

147. A. Moonen, et al., A multi-core architecture for in-car digital entertainment,

in Proceedings of GSPx Conference, 2005.

148. A. Shabbir, et al., CA-MPSoC: An automated design flow for predictable

multi-processor architectures for multiple applications, Journal of Systems

Architecture, 2010, 56(7): pp. 265-277.

149. M. Gschwind, The CELL broadband engine: exploiting multiple levels of

parallelism in a chip multiprocessor, International Journal of Parallel

Programming, 2007, 35(3): pp. 233-262.

150. Z. Guo, W. Najjar, and B. Buyukkurt, Efficient hardware code generation

for FPGAs, ACM Transaction on Architecture and Code Optimization,

2008, 5(1): pp. 6:1-6:26.

151. H. Nikolov, T. Stefanov, and E. Deprettere, Automated Integration of

Dedicated Hardwired IP Cores in Heterogeneous MPSoCs Designed with

ESPAM, EURASIP Journal on Embedded Systems, 2008, 2008(1).

152. M. Geilen and T. Basten, Requirements on the execution of Kahn process

networks, in Proceedings of the 12th European Symposium on

Programming, 2003, pp. 319-334.

153. K. Huang, D. Grunert, and L. Thiele, Windowed FIFOs for FPGA-based

multiprocessor systems, in Proceedings of IEEE International Conference

on Application-specific Systems, Architectures and Processors, 2007,

pp. 36-41.

154. A. Hormati, et al., Optimus: efficient realization of streaming applications

on FPGAs, in Proceedings of the International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, 2008,

pp. 41-50.

125

1 SAMENVATTING

Streaming applicaties vormen een belangrijke klasse binnen opkomende inge-

bedde systemen zoals slimme camera netwerken, onbemande voertuigen en

industrieel printen. Enerzijds zijn deze applicaties meestal erg reken-intensief

en aan real-time voorwaarden onderhevig. Anderzijds hebben de ingebedde

systemen die deze applicaties uitvoeren vaak een beperkte energiebron, zoals

batterijen of zonnepanelen. Daarom wordt energie-bewustheid een steeds be-

langrijker aspect in het architectuur ontwerp van deze systemen. Om een hoge

energie-efficiëntie in dergelijke systemen te bereiken, zijn significante inspan-

ningen op verschillende hardware- en softwareniveau’s nodig. Dit proefschrift

behandelt een deel van de uitdagingen in het ontwerpen van energie-efficiënte

architecturen voor streaming applicaties, en beslaat de volgende vier onder-

werpen:

Bij ingebedde processoren wordt een substantieel deel van de energie ver-

bruikt door de register file (RF). Een eerste bijdrage van deze thesis is het voor-

stellen van MOVE-Pro, een nieuwe op Transport Triggered Architecture (TTA)

gebaseerde processor architectuur waarmee het energieverbruik van de regis-

ter file verminderd wordt. Met fijnkorrelige aansturing van het datapad en het

optimaliseren op verschillende hardware/software niveaus, wordt een signifi-

cante vermindering van het aantal toegangen tot de registerfile bereikt in MO-

VE-Pro. Gemiddeld wordt ongeveer 70% van de RF-toegangen geëlimineerd,

hetgeen een drastische vermindering van het RF energieverbruik tot gevolg

heeft. Met de voorgestelde MOVE-Pro architectuur wordt de RF energiebespa-

ring volledig overgedragen aan de totale energiebesparing van de rekenkern.

Vergeleken met zijn RISC tegenhanger wordt een totale energiebesparing van

de rekenkern tot 11.6% bereikt.

Bij het ontwerpen van Applicatie-Specifieke Instructie-set Processoren

(ASIPs) is het gebruikelijk om instructiesets te synthetiseren die ondersteuning

bieden voor het uitvoeren van bewerkingspatronen die voorkomen in de ap-

plicaties die met deze processoren uitgevoerd dienen te worden. Hiermee

worden betere prestaties en energie-efficiëntie bereikt. Echter, in een generieke

ingebedde processor met een compacte ISA kunnen dergelijke instructies lei-

126

den tot een grote overhead. Een tweede bijdrage van dit proefschrift is het

voorstellen van een architectuur die flexibele bewerkingsparen in processoren

met compacte ISAs ondersteunt. Het ontwerp introduceert een gedeeltelijk

herconfigureerbare decoder en een software-aangestuurd omleidingsnetwerk.

Dit stelt de processor in staat om bewerkingsparen te ondersteunen zonder de

instructiebreedte of het aantal register file poorten te vergroten. Rijkelijke en

gedetailleerde experimentele resultaten tonen aan dat de voorgestelde architec-

tuur gemiddeld een 26.0% lagere dynamische cycle count heeft en gemiddeld

15.8% minder energie verbruikt dan vergelijkbare processoren.

Bij veel ingebedde streaming applicaties kan een substantiele hoeveelheid

data-level parallellisme uitgebuit worden. De Xetal-Pro, een grootschalig paral-

lelle SIMD architectuur, wordt voorgesteld om met energie-efficiëntie gecom-

bineerd met hoge rekenprestatie-eisen te kunnen omgaan. Het initiële idee om

grootschalig parallellisme te combineren met agressieve Vdd schaling wordt

gepresenteerd en in detail behandeld. Ook wordt een hybride geheugensys-

teem voorgesteld dat het niet-lokale geheugen verkeer verminderd en verdere

Vdd schaling mogelijk maakt. Dit werk toont aan dat het mogelijk is om een

energieverbruik 1 pJ per bewerking voor de rekenkern te realiseren voor typi-

sche ingebedde streaming applicatie kernels.

Multi-processor system-on-chips (MPSoCs) zijn een populaire aanpak aan het

worden om aan de toenemende vraag naar rekenkracht en efficiëntie in strea-

ming applicaties te voldoen. Als vierde bijdrage van dit proefschrift wordt een

efficiënte en voorspelbare communication assist (CA) om generieke IP-kernen

in MPSoCs te integreren voorgesteld. Ook wordt het bijbehorende cycle-

nauwkeurige synchronous dataflow (SDF) model voor de voorgestelde com-

munication assist gepresenteerd. Door dit SDF model in SDF analyse pro-

gramma’s te integreren kunnen worst-case systeemeigenschappen zoals door-

voer, vertraging en buffer groottes conservatief geanaliseerd worden tijdens

het ontwerpen. In een case study wordt een beeldverwerkingspijplijn van een

industriële applicatie, het printen van Organic Light Emitting Diodes (OLEDs),

afgebeeld op het voorgestelde platform. Deze case study toont ook aan dat de

voorgestelde ontwerpmethodologie een efficiënte integratie van versneller-IPs

in heterogene MPSoCs voor streaming applicaties mogelijk maakt.

127

1 ACKNOWLEDGEMENTS

PhD study is a very special journey in one’s life. I wouldn’t have enjoyed it so
much without the support from so many people. By this opportunity, I would

like to express my thanks to all those who either helped me in expertise or

shared their life with me during my PhD study.

The foremost thanks go to my supervisor, prof.dr. Henk Corporaal, for his

guidance, support, and encouragement over these years. I am very grateful for

many inspiring and in-depth discussions with Henk, which is a key to the suc-

cessful outcome of this research.

I would like to thank prof.dr.ir Pieter Jonker and dr. Bart Mesman for being my

second promoter and co-promoter. I really appreciate that. I would also like to

thank prof.dr. Koen Bertels, prof.dr. Ben Juurlink, and prof.dr. Jose Pineda de

Gyvez for reading the thesis, giving in-depth comments, and participating in

my PhD defense.

I want to express my thanks to Dongrui She, Zhenyu Ye, Yu Pu, Sander Stuijk,

Sebastian Moreno Londono, Ahsan Shabbir, and Shakith Fernando. It is really

great to cooperate with all of you, which also leads to very fruitful outcomes. I

also want to thank Richard Kleihorst, Anteneh Abbo, Zoran Zivkovic, Xinting

Gao, and all the friends in NXP for their kind support during my stay in the

Xetal group.

I am grateful to my officemates Raymond Frijns and Majid Nabi Najafabadi.

Whenever I need some help, you are always there. I really enjoyed the time

spent with you guys. I also want to thank my students, Corne Kraaij, Tim

Vriends, Luc Waeijen, and Rendong He, for giving me the opportunity to su-

pervise them. It was a great time working together with them. I would like to

thank all the other members of the Electronic Systems group at Eindhoven

University of Technology, especially Marja de Mol-Regels, Rian van Gaalen,

and Jan van Dalfsen for your very kind help and support.

My PhD time in the Netherlands would not have been so amazing without the

presence of my other friends: Bo Liu, Yang Yang, Hao Hu, Yongjian Tang, Yu-

128

anjia Du, Ning Xie, Yu Lin, Hao Gao, Feijun Zheng, Lei Xie, Tian Gang, Xin

Wan, Weihua Tang, Ying Zhang, Wei Tong, and many many others. And, of

course, my dear brothers and sisters in the Xianfeng cell group. I wish you all

the best.

Finally, I would like to thank my parents Qingxiang He and Yinfen Ni, my

wife Songyue Chen, and my daughter Ruthia Shuxin He, for their everlasting

love and support. I am deeply indebted to them.

Thank you all!

Yifan, September 2013

一凡 写于 2013年 9月

129

1 CURRICULUM VITAE

Yifan He was born in Hangzhou, Zhejiang Province, China, on Sep. 26th, 1981.

He received his B.S. and M.S. degrees (cum laude) in electrical engineering

from Zhejiang University, Hangzhou, China, in 2004 and 2006, respectively. In

2008, he received his second M.S. degree (cum laude) in electrical engineering

from the Eindhoven University of Technology (TU/e), Eindhoven, The Nether-

lands.

In August 2008, he started working towards a Ph.D. degree within the Elec-

tronic Systems group at the department of electrical engineering of the Eind-

hoven University of Technology. His research was funded by the Ministry of

Economic Affairs of The Netherlands within the EVA project. It has led among

others to several publications, IPs, and this thesis.

Yifan is currently a researcher at Recore Systems, Enschede, The Netherlands.

He is also a part-time researcher at the department of electrical engineering of

the Eindhoven University of Technology.

130

131

1 LIST OF PUBLICATIONS

Journal Papers

 Y. He, D. She, S. Stuijk, and H. Corporaal, “Efficient Communication Support

in Predictable Heterogeneous MPSoC Designs for Streaming Applications”, in

Journal of Systems Architecture (JSA), DOI: 10.1016/ j.sysarc.2013.04.005,

2013

 D. She, Y. He, and H. Corporaal, "An Energy Efficient Method of Supporting

Flexible Special Instructions in an Embedded Processor with Compact ISA", to be

appeared in ACM Transactions on Architecture and Code Optimization

(TACO), Vol. 10, No. 3, 2013

 Y. Pu, Y. He, Z. Ye, S. M. Londono, R. Kleihorst, A. Abbo, and H. Corporaal.

“From Xetal-II to Xetal-Pro: On the Road Towards an Ultra Low-Energy and High

Throughput SIMD Processor”, in IEEE Transactions on Circuit and Systems

for Video Technology (TCAS-VT), Vol. 21, No. 4, pp. 472-484, 2011

International Conference Papers

 S. Fernando, F. Siyoum, Y. He, A. Kumar, and H. Corporaal, "MAMPSx: A

Design Framework for Rapid Synthesis of Predictable Heterogeneous MPSoCs",

accepted by IEEE International Symposium on Rapid System Prototyping

(RSP’13), Montreal, Canada, 2013

 L. Waeijen, D. She, H. Corporaal, and Y. He, "SIMD Made Explicit", accepted

by International Conference on Embedded Computer Systems: Architec-

tures, Modeling and Simulation (SAMOS’13), Samos, Greece, 2013

 D. She, Y. He, L. Waeijen, and H. Corporaal, "OpenCL Code Generation for

Low Energy Wide SIMD Architectures with Explicit Datapath", accepted by In-

ternational Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (SAMOS’13), Samos, Greece, 2013

132

 D. She, Y. He, and H. Corporaal. “Energy Efficient Special Instruction Support

in an Embedded Processor with Compact ISA”, in Proceedings of the Interna-

tional Conference on Compilers Architecture and Synthesis for Embedded

Systems (CASES’12), pp. 131-140, Tampere, Finland, 2012 (Best paper no-

minee)

 D. She, Y. He, B. Mesman, and H. Corporaal. “Scheduling for Register File

Energy Minimization in Explicit Datapath Architectures”, in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE’12), pp. 388-

393, Dresden, Germany, 2012

 Y. He, Z. Ye, D. She, B. Mesman, and H. Corporaal. “Feasibility Analysis of

Ultra High Frame Rate Visual Servoing on FPGA and SIMD Processor”, in Pro-

ceedings of the 13th International Conference on Advanced Concepts for In-

telligent Vision Systems (ACIVS’11), pp.623-634, Ghent, Belgium, 2011

 Y. He, D. She, B. Mesman, and H. Corporaal. “MOVE-Pro: a Low Power and

High Code Density TTA Architecture”, in Proceedings of the 11th International
Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation (SAMOS’11), pp. 294-301, Samos, Greece, 2011

 Z. Ye, Y. He, R. Pieters, B. Mesman, H. Corporaal, and P. Jonker. “Demo: An

embedded vision system for high frame rate visual servoing”, in Proceedings of
the 5th ACM/IEEE International Conference on Distributed Smart Cameras

(ICDSC’11), pp. 1-2, Ghent, Belgium, 2011

 D. She, Y. He, B. Mesman, and H. Corporaal. “Energy Efficient Code Genera-

tion for Processors with Exposed Datapath”, in Proceedings of the 9th work-

shop on Optimizations for DSP and Embedded Systems (ODES’11), pp. 55-

61, Chamonix, France, 2011

 Z. Ye, Y. He, R. Pieters, B. Mesman, H. Corporaal, and P. Jonker. “Bottlenecks

and Tradeoffs in Ultra High Frame Rate Visual Servoing: A Case Study”, in Pro-

ceedings of the 12th IAPR Conference on Machine Vision Applications

(MVA’11), pp. 55-58, Nara, Japan, 2011

 Y. He, Y. Pu, Z. Ye, S. M. Londono, R. Kleihorst, A. Abbo, and H. Corporaal.

“Xetal-Pro: An Ultra-Low Energy and High Throughput SIMD Processor”, in
Proceedings of the 47th ACM/IEEE International Conference on Design Au-

133

tomation (DAC’10), pp. 543-548, Anaheim, USA, 2010 (Best paper nominee

& HiPEAC paper award)

 Y. He, Z. Zivkovic, R. Kleihorst, A. Danilin, and H. Corporaal. “Real-Time

Implementations of Hough Transform on SIMD Architecture”, in Proceedings of
the 2nd ACM/IEEE International Conference on Distributed Smart Cameras

(ICDSC’08), pp. 1-8, Palo Alto, USA, 2008

 Y. He, Z. Zivkovic, R. Kleihorst, A. Danilin, H. Corporaal, and Bart Mesman.

“Real-Time Hough Transform on 1-D SIMD Processors: Implementation and Ar-

chitecture Exploration”, in Proceedings of the 10th International Conference
on Advanced Concepts for Intelligent Vision Systems (ACIVS’08), LNCS,
Vol. 5259, pp. 254-265, Juan-les-Pins, France, 2008

Local Conference Papers

 Y. He, Dongrui She, and Henk Corporaal. “A Comparative Study of Energy-

Efficient Multiplier Design Using Data-Width-Aware Methodology”, in Proceed-

ings of the 3rd STW.ICT conference on Program for Research in Embedded

Systems and Software (PROGRESS’12), Veldhoven, the Netherlands, 2012

(Poster)

 Y. He, Z. Ye, D. She, R. Pieters, B. Mesman, and H. Corporaal. “1000 fps Vis-

ual Servoing on the Reconfigurable Wide SIMD Processor”, in Proceedings of the
16th Annual Conference of the Advanced School for Computing and Imag-

ing (ASCI’10), pp. 302-309, the Netherlands, 2010

134

	1.Titelpagina_voorbeeld.pdf
	2.title_page.pdf
	3.to_songyue.pdf
	4.abstract.pdf
	5.merged_thesis.pdf
	6.abstract_dutch.pdf
	7.acknowledgements.pdf
	8.curriculum vitae.pdf
	9.list_of_publications.pdf

