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Abstract—This paper presents work on ultra-low-power circuits
for brain–machine interfaces with applications for paralysis pros-
thetics, stroke, Parkinson’s disease, epilepsy, prosthetics for the
blind, and experimental neuroscience systems. The circuits include
a micropower neural amplifier with adaptive power biasing for use
in multi-electrode arrays; an analog linear decoding and learning
architecture for data compression; low-power radio-frequency
(RF) impedance-modulation circuits for data telemetry that
minimize power consumption of implanted systems in the body;
a wireless link for efficient power transfer; mixed-signal system
integration for efficiency, robustness, and programmability; and
circuits for wireless stimulation of neurons with power-conserving
sleep modes and awake modes. Experimental results from chips
that have stimulated and recorded from neurons in the zebra
finch brain and results from RF power-link, RF data-link, elec-
trode-recording and electrode-stimulating systems are presented.
Simulations of analog learning circuits that have successfully
decoded prerecorded neural signals from a monkey brain are also
presented.

Index Terms—Brain–machine interfaces, low-power, pros-
thetics, wireless neuroscience.

I. INTRODUCTION

L
ARGE-SCALE chronic multi-electrode neural recording

and stimulating systems have emerged as an important ex-

perimental paradigm for investigating brain function. Experi-

ments using such brain–machine interfaces (BMIs) have shown

that it is possible to predict intended limb movements by ana-

lyzing simultaneous recordings from many neurons (see [1] for

a report of the first human trials of such devices, and see [2], [3]

for recent reviews of this field). These findings have suggested a
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potential approach for treating paralysis and other disorders and

disabilities in humans. Other BMIs, such as deep brain stim-

ulators for Parkinson’s disease and visual prostheses for the

blind, function primarily via neural-stimulation circuitry rather

than via neural-recording circuitry. BMIs for epilepsy will need

both recording and stimulating circuitry, and progress toward

systems with such dual capabilities has recently been demon-

strated in the context of general-purpose multi-electrode arrays

for experimental neuroscience [4], [5]. Chronic use of BMIs

with large numbers of electrodes requires ultra-low-power op-

eration so that the systems are miniature and implantable, heat

dissipated in the brain is minimized, and frequent battery re-

placement and repeat surgeries associated with implanted sys-

tems are unnecessary. In this paper we describe low-power cir-

cuits that can be applied to many BMIs, focusing first on those

for recording applications and then on those for stimulating

applications.

Low-power neural amplifiers are extremely important in

recording BMIs since one such amplifier is needed for each

electrode. In this work, we first describe and present data from

a micropower neural amplifier that is the most power-efficient

and lowest-power differential neural amplifier reported to date,

achieving an energy efficiency near the limits set by theory

[6]. Although single-ended amplifiers have been shown to be

capable of even better efficiency, they are significantly less ef-

fective at rejecting power-supply and common-mode noise and

are thus considerably less practically suited for neural recording

[7]. We then describe a novel scheme for adapting the noise

floor of a neural amplifier to the noise-floor requirements at

each recording site, which potentially enables multi-electrode

arrays to reduce recording power by an order of magnitude.

RF data telemetry is necessary to communicate information

wirelessly to and from neurons in the brain through the skull

and skin. Due to the relatively high power costs of transcu-

taneous data communication (for example, transmitting 12-bit

neural signals sampled at 20 kHz from 100 electrodes yields a

data rate of 24 Mbs and power consumption on the order of

10 mW), some form of data compression is needed to reduce the

bandwidth of information transmitted from the brain. Adaptive,

learnable, multi-input-multi-output neural decoding techniques

that project firing-rate neuronal data onto several motor output

parameters have successfully been used to decode movement

intentions from neural signals (a variety of approaches are re-

viewed in [2], [3]). Simple linear decoding filters have proven

useful for interpreting population codes of neurons in various

brain regions, and these decoders perform comparably to adap-

tive Kalman filters and other probabilistic decoding techniques;

the Appendix to [8] demonstrates that probabilistic decoders

1932-4545/$25.00 © 2008 IEEE
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with linear priors are equivalent to linear-filter-based decoders.

In this work, we discuss how we may use a novel analog de-

coding and learning architecture to compute such a filter in a

power-efficient analog fashion, thereby allowing high data com-

pression (an output rate of Hz bits kbs

is more than sufficient for achieving neural control over three

motor degrees of freedom). We present circuit simulations of

the architecture that successfully learn and decode a monkey’s

intention to move from its prerecorded neural spiking signals.

Then we describe and present experimental results from a

novel low-power impedance-modulation technique for BMIs

that can be used to transmit RF data from the brain flexibly

and efficiently so that the power costs of communication are

almost solely borne by external RF circuitry outside the skin

and skull, rather than by the implanted RF circuitry within

the cranial cavity as in prior designs [9]–[11]. Thus, heat and

power dissipation in implanted hardware within the brain can

be minimized. The link achieves 0.65 nJ bit communication

efficiency for forward and reverse telemetry at 2 cm distances,

among the most efficient reported [12]. The forward uplink

bandwidth from the brain enables 5.8 Mbs data rates and the

reverse downlink bandwidth to the brain enables 300 kbs

data rates. The external unit consumes at most 2.5 mW of

power, while the internal unit consumes only 140 W of power

in the worst case.

Efficient wireless links that transmit RF power through the

skin are necessary to power implanted chips in the interface di-

rectly via rectification and possibly also to recharge implanted

batteries capable of a finite number of recharges. In this work

we present data from an RF power link that achieves efficiencies

near that set by theory for links in the 1–10 mm range (74% and

54% efficiencies) and summarize the tradeoffs needed to opti-

mize such links [13].

In addition to being small and extremely power efficient,

practical brain–machine interfaces also need to be pro-

grammable and capable of reporting high-bandwidth analog

or lower-bandwidth spiking information from a few neurons

if needed, sorting spikes from multiple neurons, and operating

robustly in RF and mixed-signal environments. In this work we

propose a novel low-power mixed-signal architecture for such

interfaces that combines the power efficiency of an implanted

programmable analog system with the flexibility of an external

digital processor such that efficiency and flexibility are simul-

taneously achieved by combining the best of the analog and

digital worlds.

Certain BMIs, such as visual prostheses for the blind,

systems for treatment of epilepsy or Parkinson’s disease, or

experimental systems for neurophysiology, may require neural

stimulation rather than (or in addition to) neural recording. We

present experimental results from a chip used for wireless stim-

ulation of neurons in a zebra finch brain and discuss how simple

wake-up circuitry can be used to reduce power consumption in

such systems.

This paper is organized as follows: In Section II we discuss

the adaptive micropower neural amplifier and its use in multi-

electrode systems. In Section III we discuss the analog linear

decoding and learning architecture. In Sections IV and V we

discuss RF data and power links, respectively. In Section VI

we discuss a mixed-signal architecture for BMIs that can en-

able efficiency and flexibility. In Section VII we discuss wire-

less neural-stimulation circuits. In Section VIII we conclude by

summarizing our contributions.

Brief descriptions of preliminary results of this work were

presented at a conference from which some papers in this spe-

cial-issue journal (including the present article) were selected

[14]. Since that conference, details on the RF power link and the

micropower neural amplifier have appeared in more specialized

journal articles [13], [6]. Therefore, the description of these por-

tions of the work will be brief in this broader paper. However,

the brief descriptions will enable this paper to be self-contained

and will provide context for the other work in the paper.

II. MICROPOWER NEURAL AMPLIFIER AND ADAPTIVE POWER

BIASING SCHEME

A. Micropower Neural Amplifier

Fig. 1(a) shows the architecture of our adaptive micropower

amplifier. The first gain stage is similar to that reported in [15]

except that it is implemented with the use of an all-subthreshold

and folded-cascode architecture shown in Fig. 1(b), allowing

2.8-V operation rather than 5-V operation. In [15], a 5-V power

supply is necessary for maintaining large overdrive voltages in

some above-threshold transistors to minimize their noise contri-

butions. We add a bandwidth-limiting stage to keep the overall

bandwidth constant as we vary the bias current of the gain stage

to adapt its noise per unit bandwidth. The additional power of

the bandwidth-limiting stage is negligible because the 100-fold

gain provided by the gain stage alleviates its noise floor re-

quirements. Fig. 1(c) shows an input-referred signal recorded

in vivo from the RA region of the brain of an anesthetized zebra

finch bird using a Carbostar 800 k impedance electrode and

our amplifier. The trace exhibits no discernible difference when

compared with a recording made using a commercial neural

amplifier.

We measured an input-referred noise of 3.06 V rms over

a dB bandwidth of 45.0 Hz–5.32 kHz with a power con-

sumption of 7.56 W for 40.8 dB of mid-band gain. The noise

contributions of our amplifier are minimized to be almost those

of only its two input transistors, due to the use of cascoded re-

sistive loading rather than current-source loads. Thus, the mea-

sured Noise Efficiency Factor (NEF) is 2.67, very near the the-

oretical limit of 2.02 for a differential amplifier, representing

the most power efficient and lowest-power differential design

to date. Further details of the amplifier are described in [6] in-

cluding use of this amplifier for Local Field Potential (LFP)

recording.

B. Adaptive Power Biasing of Neural Amplifiers in

Multi-Electrode Arrays

The power required to build an amplifier with constant band-

width, constant power-supply voltage, and an input-referred

noise scales as if the amplifier’s minimum detectable

signal is limited by thermal noise. This relation clearly shows

the steep power cost of achieving low-noise performance in

thermal-noise-limited amplifiers. Most neural amplifiers are

carefully designed to be thermal-noise limited rather than
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Fig. 1. (a) Overall system diagram of the neural amplifier. (Note that � is
a 15-pF poly-poly integrated capacitor.) (b) Schematic of the low-power low-
noise OTA used in the neural amplifier. (c) Neural recording from the brain of
a zebra finch using the amplifier described.

-noise limited to achieve the best possible performance.

Neural amplifiers have been designed to handle the worst-case

range of signal strengths that may be expected in any recording

situation. In practice, there is considerable variance in the noise

and action potential strengths of typical recordings. The steep

cost of achieving low-noise performance in an amplifier sug-

gests that rather than designing amplifier arrays with the lowest

noise at all locations, significant power savings can be achieved

if each amplifier can adapt its input-referred noise to the local

noise floor. This adaptability enables the overall power in a

multi-electrode system to be determined by a typical electrode

rather than by the worst-case electrode. The control loop for

setting each amplifier’s bias current in a multi-electrode array

may easily be implemented with little power overhead per

recording site: One very-low-noise neural amplifier is used

infrequently to evaluate the noise floor at each recording site in

a sequential and multiplexed fashion, so that its power overhead

is shared amongst all recording sites and it is only active during

calibration. This scheme is shown in Fig. 2(a). Fig. 2(b) shows

Fig. 2. (a) Schematic illustrating our adaptive biasing strategy for amplifier ar-
rays. (b) Probability distribution of input-referred voltage noise measured from
electrodes in a 64-channel array implanted in the posterior parietal cortex of a
rhesus monkey for chronic neural recording.

a typical probability distribution that we obtained from neural

data recorded using a chronically-implanted 64-electrode array

in a rhesus monkey. For this probability distribution, adaptive

power biasing yields a 12-fold reduction in neural recording

power for an entire system of 100 electrodes. Note that the

technique of adaptive power biasing may be applied to any

neural amplifier, not just our amplifier. For maximum efficacy,

techniques must be used to keep the bandwidth of the amplifier

invariant as its bias current is changed. In our amplifier, since

the first stage determines the noise per unit bandwidth and the

second stage determines the bandwidth, the total output noise is

controlled simply by varying the bias current of the first stage

while that of the second stage is kept constant. In other ampli-

fiers, the output capacitance and bias current can be increased

in proportion with one another to reduce the total output noise

while keeping the bandwidth invariant, as shown in Fig. 2(a). In

our amplifier, the value of resistances in Fig. 1(b) can be scaled

with a scaling resistance such that is constant as is

changed. Consequently, the NEF is constant with bias current

level.

Fig. 3(a) illustrates the feedback loop of a circuit used to im-

plement one instantiation of adaptive power biasing in a neural

amplifier described in [14]. This neural amplifier’s noise perfor-

mance is slightly inferior to the one shown in Fig. 1(b). A ’com-

mand current’ that is proportional to the desired noise amplitude

is determined by a prior stored measurement with a low-noise

neural amplifier and a wide-dynamic-range -to- envelope de-

tector described in [16]. This current is input to the adaptive
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Fig. 3. (a) Block diagram of the noise calibration loop for our adaptive biasing
scheme. (b) Schematics for the noise-detection circuitry and bias-decision cir-
cuitry. (c) Step response of the amplifier’s bias current due to a step change in
the control input current.

power-biasing circuitry. When the circuitry settles to equilib-

rium, the bias current of the neural amplifier being calibrated

then automatically gets set to a value such that the output noise

is at the command value. The use of the element yields

a pole-zero compensation network that, together with another

pole in the feedback loop, yields good phase margin in the loop.

Fig. 3(b) illustrates the circuits used to implement the blocks of

Fig. 3(a). Fig. 3(c) illustrates the dynamic settling performance

of the adaptive-biasing loop. Fig. 4 shows that the bias current

of the amplifier varies with the command input in a reciprocal

fashion such that large envelopes reduce the bias current and

vice versa. In this instantiation, low-leakage sample-and-hold

techniques used to construct very-long-hold-time analog mem-

ories (8 bits for 9 hours) with ultra-low leakage of 5 electrons per

second [17], [18] could be used to store the bias current value

Fig. 4. Amplifier bias current of the noise calibration loop as a function of the
control input current.

on a capacitor between calibrations. In other instantiations, cur-

rent-DACs and digital bits could store the bias-current value as

in Fig. 2(a).

Analysis of the digitized output of a neural amplifier followed

by digitally controlled setting of the amplifier’s bias current can

implement more sophisticated adaptive biasing: For example,

such schemes could set the amplifier’s power at a low value if

there are large action potentials on a particular electrode even

though its noise floor is low. In such a case, needlessly low-noise

amplifiers are not required and we can exploit this knowledge

to save power. Thus, the key idea behind adaptive power bi-

asing is not the exact control algorithm or circuit that is used to

bias the amplifier but the fact that biasing can be determined by

knowledge of the statistics of the array rather than by worst-case

assumptions about its statistics. In arrays with large numbers

of electrodes, the savings in power with adaptive biasing ex-

ceed an order of magnitude because outlier or low-probability

points are prevented from scaling power quadratically according

to worst-case needs in all amplifiers.

III. ANALOG DECODING AND LEARNING CIRCUITS FOR

DATA COMPRESSION

In some of our prior work on a bionic-ear (cochlear im-

plant) processor, we experimentally demonstrated that analog

pre-processing and delayed digitization enable order-of-mag-

nitude power reductions over traditional A-to-D-then-DSP

implementations [19], [20]. Such implementations can also

preserve programmability, as well as robustness to offset,

power-supply-noise, and temperature variations. In this work,

we investigated whether it may be possible to achieve similar

power reductions in implementing digital linear decoding and

learning algorithms with analog architectures operating on

analog neuronal firing rates.

Our novel analog decoding architecture uses a continuous-

time, adaptive linear filtering algorithm to map neural signal in-

puts onto motor command outputs. The system is an to con-

volutional decoder that accepts preprocessed neural signals
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Fig. 5. (a) Block diagram illustrating the learning process used in real time
to optimize the parameters of the adaptive filters that decode neural signals. (b)
Block diagram of the circuit modules used to implement the neural decoding ar-
chitecture. (c) Example performance of the analog learning architecture in one
learning and two decoding trials. The neural input signals to the decoder, which
are not shown here, were previously recorded neural signals from the poste-
rior parietal cortex of a rhesus monkey trained to make reach movements in a
stimulus-response behavioral paradigm. Optimization of the decoding kernels
requires approximately twenty to thirty such learning trials, and decoding per-
formance is evaluated on the basis of many decoding trials of the kind shown
here.

as inputs and produces motor control signals (reach

directions), as outputs. Fig. 5(a) shows the architecture

for a single motor output signal. The array of adaptive

filters forms a set of convolution kernels between the in-

puts and outputs that is analogous to the matrices of ’synaptic

weights’ used in artificial neural networks ( is convolved

with the th neural input to form the th component of the sum

that yields the th motor output). The parameters of these

filters are set during a supervised learning phase by using a con-

tinuous-time analog gradient descent algorithm. Further math-

ematical detail lies beyond the scope of this paper, but we note

here that the algorithm results in a modified version of the ’delta’

learning rule well known in machine learning. Our algorithm

exhibited accuracy comparable to that of the Bayesian (proba-

bilistic) decoder described in [21] operating on the same sig-

nals (real neural recordings), but was far less computationally

intensive.

Using simple continuous-time transconductor-capacitor

( ) filters along with multiplier, adder, and subtractor

circuits in subthreshold technology as shown in Fig. 5(b), we

were able to show via SPICE circuit simulations in a 0.18 m

process that our decoding architecture is capable of learning

and then decoding a monkey’s intention to move its arm in

particular directions on the basis of data recorded from ten

neurons in its posterior parietal cortex. Spike-time data from

the monkey cortex recorded during short intervals just pre-

ceding reach movements were converted into analog firing

rates using fourth-order wavelet-like analog matched filters on

1-ms-wide spiking inputs, followed by thresholding, followed

by third-order analog interpolation filters. The architecture

is able first to learn how to decode the intended direction of

motion of a monkey’s arm from input spike-time data and re-

duce the mean-squared error between the intended output (the

executed reach) and the prediction made by the circuit. This is

accomplished by gradient-descent-based tuning of parameters

defining the convolution kernels of the adaptive decoding filter

in real time. After the end of the learning period, the parameters

of the decoding filter are fixed and the decoder is able to predict

the intended direction of motion of the monkey’s arm on the

basis of new neuronal control signals. This process is demon-

strated in Fig. 5(c). The analog filters were trained during the

interval labeled “Learning” using the neural data observed just

before the monkey reached in direction D1. Once training was

completed, all the learned filter parameters were stored. After

training, therefore, the filters were least-squares optimized and

configured for mapping the neural signal that the monkey used

for moving in the D1 direction to an output voltage of 0.5 V.

We demonstrate a test of the accuracy of the learned mapping

during the interval labeled “Decoding” in which the neural

signals for moving in directions D1 and D2 were applied to the

analog decoder. The plot shows that when the neural signal for

moving in the D1 direction is applied the output voltage settles

at 0.5 V, whereas it settles elsewhere when the neural signal

for D2 is applied. This result indicates that the analog decoder

has learned the appropriate mapping from neural signals to the

intended reach direction.

The power consumption of a single channel is near 54 nW

and a complete 100-channel system with 3 motor outputs is

implementable with 17 W using a 1-V power supply on a

modest-sized chip. Thus, our analog architecture is extremely

power efficient. It can enable a dramatic reduction in communi-

cation power due to its data-compression properties: 24 Mbs

of uncompressed data in (100 channels sampled at 20 kbs

with 12-bit resolution) to 2.4 kbs of compressed data out (3

motor parameters at 100 bs with 8-bit resolution). An ac-

tual chip implementation would need overhead for offset and

mismatch compensation via DAC calibration, and temperature-

and power-supply-immune biasing, as our prior work has shown

[19], [20]. Much of the power savings results from the fact that

the computational tasks can be mapped very efficiently to a

slow-and-parallel analog architecture. The use of analog circuits
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to perform compression saves power in data telemetry circuits

due to the reduced bandwidth needs for communication. It also

saves power in analog-to-digital conversion circuits that can be

operated at significantly reduced bandwidths.

Our architecture represents the ultimate form of compression

in the sense that the decoding computation is performed on site

and only the results are transmitted. It is only viable because

analog implementations of decoding computations needed in

motor prosthetics can be done so efficiently. Other forms of

data compression that have been proposed before, such as adap-

tive thresholding followed by transmission only of spike-time

information [9], [22], will need to be added to an architecture

like ours to preserve general-purpose flexibility in a brain–ma-

chine interface. Our architecture reveals that, for the special-pur-

pose needs of a paralysis prosthetic, for example, extremely

power-efficient analog implementations are possible. As we dis-

cuss in Section VI, the combination of general-purpose flexible

architectures that are relatively inefficient with special-purpose

architectures that are efficient can be used to create a system that

is both flexible and efficient.

IV. RF DATA LINK

Fig. 6 shows a low-power half-duplex RF data-telemetry link

implemented with inductively coupled external (primary) and

implanted (secondary) resonators for bidirectional communica-

tion through the body. Communication from inside the body to

outside the body is termed the uplink and communication from

outside the body to inside the body is termed the downlink. We

designed our RF link for the case of a recording BMI in which

the uplink reports information from the brain and can have a

bandwidth of several Mbs , while the downlink sends infor-

mation to the brain and can have a bandwidth of several hundred

kbs in the worst case. The downlink in a recording BMI typi-

cally transmits relatively low-bandwidth control, programming,

and supervisory learning information.

We shall first discuss the design of the high-bandwidth up-

link. The primary external unit broadcasts a 25 MHz contin-

uous-wave carrier using an LC oscillator with positive feedback.

For the high-bandwidth uplink, the secondary implanted unit

modulates its impedance by open-circuiting or short-circuiting a

parallel resonator, thus modulating the reflected impedance seen

at the primary. The impedance seen in the primary is modulated

by a factor that we call the modulation depth . This quantity

is given by [13], [23]

(1)

where is the coupling factor between the coils, set by their ge-

ometry and separation; and are the quality factors of the

coils; and the approximation is valid if , which is usually

the case. The strong dependence of on makes this configura-

tion unsuitable for long-range links since varies with the cube

of the distance between the coils. For short-range links (such

as those used in neural prosthetic devices, which rarely require

coil separations greater than 2 cm), however, impedance mod-

ulation has the great advantage of requiring almost no power

Fig. 6. (Top) Schematic of a low-power RF data-telemetry link implemented
with inductively coupled external and implanted resonators for bidirectional
communication through the skin. (Center) Data transmission waveforms
obtained in experiments demonstrate successful recovery of uplinked data at
5.8 Mbs with a two-bit delay between transmitter and receiver. (Bottom)
Data transmission waveforms at left show successful recovery of downlinked
data at 200 kbs with a one-bit delay between transmitter and receiver.

dissipation on the secondary (internal) side, since shorting or

opening a switch costs far less energy than operating a trans-

mitter. The load modulation results in amplitude modulation of

the oscillator voltage in the primary. This amplitude modulation

in the primary is detected by an envelope detector built with a

rectifier and lowpass filter as shown in Fig. 6. The output of the

lowpass filter is thresholded by a hysteretic comparator and fed

to a phase-locked loop for clock and data recovery.

For the lower-bandwidth downlink, on-off keying of the pri-

mary oscillator results in pulse-width amplitude modulation in

the secondary, which is then detected by rectification, thresh-

olding, and pulse-width demodulation circuits.
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Fig. 7. Primary (external, left) and secondary (implanted, right) RF data
telemetry test circuit boards.

TABLE I
PERFORMANCE SUMMARY FOR THE RF TELEMETRY DATA LINK

Fig. 7 shows primary and secondary test boards that were

used for making link measurements. Identical transmission and

receiving coils were printed on the boards. Each coil was square,

3.5 cm on a side, and had two turns. The designed inductance

was 500 nH with a simulated quality factor of 30 at 25 MHz.

Packaged chips were surface mounted on the boards and aligned

parallel to each other at various separations for testing. Uplink

and downlink data are shown in Fig. 6 for a link separation

of 2 cm. The bit error rate was for the uplink at data

rates 4 Mbs , and 10 for the downlink at all tested

data rates [23]. We also tested the link in the presence of a 2 cm

thick layer of 0.9% saline solution between the coils. As in prior

reports such as [10], the goal was to verify that the wireless link

would operate normally in the presence of body tissue. No sig-

nificant differences in performance were noted.

Table I summarizes the performance of the overall telemetry

link including bandwidth and power consumption obtained

from measurements on the link. We note that the implanted

power is minimal for both the uplink and downlink (100 W

and 140 W, respectively), while the external unit consumes

2.5 mW and 1.5 mW in the uplink and downlink modes, respec-

tively. The uplink data rates can be as high as 5.8 Mbs and

the downlink data rates can be as high as 300 kbs , yielding

energy efficiencies of 0.65 nJ bit . The good energy efficiency

of the link results from the use of simple and energy-efficient

Fig. 8. (a) Testing system for RF power telemetry system, consisting of primary
(external) and secondary (implanted) unit circuit boards, as well as mounts for
adjusting inter-coil separations and angles. (b) Schematic of our RF power link
circuits and rectifier. (c) Plot of the theoretical and measured efficiency of the RF
power link as a function of distance between the primary and secondary coils.

transmitter and receiver modulation and demodulation strate-

gies. Since the link was not found to be thermal-noise limited,

further improvements in energy efficiency with future designs

are possible.

V. RF POWER LINK

An RF power link test setup is shown in Fig. 8(a). The system

uses a custom Class-E 4.5 MHz driver built on a chip, a primary

resonator circuit, a secondary resonator circuit, and a Schottky

diode rectifier as shown in Fig. 8(b). The rectifier loads the sec-

ondary resonator with an effective AC resistance of if

there is little ripple on the load , a necessary condition for

a good power supply. Ignoring rectifier and driver losses, a the-

oretical analysis shows that the maximum possible power effi-

ciency in the link occurs when the load is chosen so that

(2)
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and is given by

(3)

where is a geometry-dependent coupling factor and

and are the quality factors of the primary and secondary

resonators, respectively [13]. Fig. 8(c) shows that theoretical

and experimental measurements are in good accord (the results

shown here were obtained for and ). RF

power links can thus be quite power efficient when operated

near their optima.

In our work and in the present discussion different RF coils

and RF frequencies have been used for experimental conve-

nience, to characterize the power and data links and to explore

the bounds on energy efficiency in power and data transmission

systems separately. However, it must be realized that in a prac-

tical system, space constraints may require that the same coils

be used for data and power telemetry, although the operating fre-

quencies may differ for these two modes of operation. Several

systems of this kind designed to transmit power and data over

the same link are described in [24]–[27]. Power transfer is more

efficient with high- coils and lower carrier frequencies where

switching losses are minimized. However, high-bandwidth data

transfer is easier with low- coils and higher carrier frequen-

cies. Thus, operation at different carrier frequencies for power

and data links is often advantageous. Hence, other work has

used separate coupled resonators for the power link and data

link [12], [28]. High- systems need periodic auto-calibration

and auto-tuning feedback loops to maintain resonance.

In the low-power BMIs that we envisage in the future, the

use of ultra-low-power electronics on the secondary side will in

some systems enable an implanted battery with a finite number

of wireless recharges, typically 1000 or fewer, to function for

at least a decade: A secondary with 1-mW power consump-

tion, for example, could function on an implanted 100-mAh

battery for 30 years with 1000 wireless recharges, performing

neural signal conditioning and analog decoding. In such sys-

tems data and power transmission requirements need not con-

flict even if only one coupled resonator is used for both the data

link and the power link as power transfer only occurs during

infrequent recharging. Large interfering RF voltages necessary

for transmitting power to the secondary then do not corrupt sen-

sitive low-power secondary circuits either. Implanted batteries

do, however, require careful hermetic sealing, short-circuit pro-

tection, and battery-management circuits.

VI. HYBRID ANALOG-DIGITAL SYSTEM DESIGN

Fig. 9 shows an overall architecture that consists of

low-power implanted DAC-programmable analog circuits

that are configured by a low-power external DSP or FPGA.

Depending on the user’s choice, the system can be configured to

report raw neural data from a selected set of electrodes, single

and multiunit spikes extracted via spike sorting, local field

potential (LFP) data, or decoded motor parameters via a data

telemetry uplink as we have previously described. Such flexi-

bility is possible because the parameter values for the analog

wavelet-like matched filters and other analog parameters are

Fig. 9. Block diagram illustrating the overall architecture of a hybrid analog-
digital brain–machine interface system.

determined by detailed digital analysis of raw uplinked analog

neural data, then downloaded into the implant via the low-band-

width telemetry downlink. Since the relatively power-hungry

digital analysis need only be done occasionally to keep the

system up-to-date as signal properties evolve (due to effects

such as relative movement between neurons and electrodes),

the overall power consumption of the system remains low but

the flexibility of a digital system can be leveraged. Low-power

implanted analog architectures for decoding that are highly

efficient could have their parameters determined by flexible

digital processors in an external unit and then downloaded into

the implanted unit. Thus, the combination of external digital

programmability combined with internal analog efficiency can

enable an overall system to incorporate the best of the analog

and digital worlds.

VII. WIRELESS NEURAL STIMULATION

Thus far we have focused on circuits and systems capable

only of recording from neurons in the brain. Fig. 10(a) shows

a system that we have used for wirelessly stimulating neurons

in the zebra finch brain to study the neural basis of birdsong

as shown in Fig. 10(c). For example, stimulation in the zebra

finch brain while the bird is singing can yield insight into

the mechanisms of song generation [29]. The system consists

of an external transmitter (not shown) controllable through

a computer interface, and a miniature, implantable wireless

receiver-and-stimulator. The miniature printed circuit board

contains a receiver coil and electrodes (reverse side), battery

(not shown), and a custom integrated circuit for data demodu-

lation and neural stimulation. The chip, fabricated in a standard

0.5 m CMOS process, occupies 2.25 mm and is capable of

delivering biphasic current pulses to 4 addressable electrode

sites at 32 selectable current levels ranging from 10 A to

1 mA, as shown in Fig. 10(b). The entire implant weighs 0.6 g

(including the battery) and occupies a footprint smaller than

1.5 cm . Fig. 10(c) shows simultaneous recording from one

area of the bird brain, HVC, while stimulation was applied to

another area, Area X. The observed action potentials in HVC

(after the stimulus artifacts due to stimulation of Area X have

subsided) prove that the wireless neural stimulation system is

working. Fig. 11(a) illustrates the Colpitts oscillator transmitter
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Fig. 10. (a) Photograph of the chip-on-board wireless neural stimulation
system. (b) Measured biphasic current pulses demonstrating 32 programmable
stimulation levels. (c) HVC response to neural stimulation in Area X of the
zebra finch brain.

Fig. 11. (a) Colpitts oscillator circuit used in our wireless neural stimulation
system. (b) Receiver circuit used in our wireless neural stimulation system.

circuit and Fig. 11(b) illustrates the receiver circuit that we used

in this neural stimulation system.

A wake-up system on the chip permits us to extend the life of

the battery over a full 30 days and thus facilitates extended neu-

roscience experiments. During periods of birdsong inactivity,

Fig. 12. Experimental waveforms illustrating the wake-up operation of the
neural stimulation system.

the receiver chip enters a sleep mode in which it consumes only

7 A of quiescent current. When an external microphone detects

song, a computer activates the wireless transmitter, which gen-

erates an RF signal. A detector on the chip receives the RF signal

and ’wakes up’ the data demodulation and output-driver cir-

cuitry: A rectifier on the chip converts the amplitude-modulated

RF signal to a full-scale digital signal, whose edge is detected

via XOR circuits and used to wake up other circuits. The recti-

fier’s time constant is determined by the system data rate, typi-

cally 25 kbs , such that the system is capable of waking up in

just a single bit period (about 40 s). Fig. 12 shows experimental

waveforms illustrating the wake-up operation of the system.

After the system is assumed to have awakened, a complete stim-

ulation command is issued. The entire time from when the bird

first begins to vocalize until the device can deliver stimulation

is only about 1 ms. This delay is insignificant compared to the

duration of a typical songbird vocalization [30]. When the bird

is not singing, the RF signal is turned off and an internal timer

puts the chip to sleep in about 1 second. When the chip is awake,

static power consumption in the core is about 16 A. However,

the power consumption in the output stage can be significantly

greater, reaching as much as 100 A for the reference current

when full-scale stimulation currents of 1 mA are required. The

use of the wake-up system thus significantly improves battery

lifetime. Such feed-forward signal-triggered stimulation could

be used to save power in other brain–machine interfaces; the

stimulation circuits of devices used to treat epilepsy, for ex-

ample, could be activated only when triggered by seizure-de-

tection signals. Of course, such power savings are only prac-

tical if detection is much cheaper than stimulation, as is often

the case. Algorithmic strategies [31], [32], switched-capacitor

strategies [33], and better electrode design can also lower stim-

ulation power. Techniques to create highly accurate charge-bal-

ancing circuits that obviate the need for large dc blocking capac-

itors and that consequently lower implanted-system size have

also been described [34].
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VIII. CONCLUSION

We have presented several circuits and architectures for

low-power recording, processing, stimulation, and wireless

transmission of neural signals in brain–machine interfaces.

These include a state-of-the-art micropower differential

neural amplifier; adaptive power biasing of amplifier arrays

in multi-electrode systems; analog architectures for neural

signal decoding, learning and data compression; 0.65 nJ bit

impedance-modulation-based bidirectional wireless links that

minimize implanted-unit power consumption; RF links that

achieve theoretically optimal power-transfer efficiencies; hy-

brid analog-digital architectures that combine flexibility and

efficiency; and wireless neural stimulation circuits that exploit

sleep modes to save power while allowing quick wake-up.

Together, such circuits and systems could enable highly

power-efficient brain–machine interfaces to be developed,

thus bringing them a step closer to universal accessibility in

experimental neuroscience and widespread clinical use.

REFERENCES

[1] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442, pp. 164–171, Jul. 2006.

[2] M. A. Lebedev and M. A. L. Nicolelis, “Brain–machine interfaces:
Past, present and future,” Trends Neurosci., vol. 29, no. 9, pp. 536–546,
2006.

[3] A. B. Schwartz, D. J. Weber, X. T. Cui, and D. W. Moran, “Brain–con-
trolled interfaces: Movement restoration with neural prosthetics,”
Neuron, vol. 52, pp. 205–220, 2006.

[4] E. A. Brown, J. D. Ross, R. A. Blum, Y. Nam, B. C. Wheeler, and S. P.
DeWeerth, “Stimulus-artifact elimination in a multi-electrode system,”
IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 10–21, Mar. 2008.

[5] R. A. Blum, J. D. Ross, E. A. Brown, and S. P. DeWeerth, “An inte-
grated system for simultaneous, multichannel neuronal stimulation and
recording,” IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.,
vol. 54, no. 12, pp. 2608–2618, Dec. 2007.

[6] W. Wattanapanitch, M. S. Fee, and R. Sarpeshkar, “An energy-efficient
micropower neural recording amplifier,” IEEE Trans. Biomed. Circuits

Syst., vol. 1, no. 2, pp. 136–147, Jun. 2007.
[7] J. Holleman and B. Otis, “A sub-microwatt low-noise amplifier for

neural recording,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol.

Soc., Aug. 2007, pp. 45–48.
[8] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black, “De-

coding of motor cortical activity using a Kalman filter,” Neural Com-

putation, vol. 18, pp. 80–118, 2006.
[9] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black,

B. Greger, and F. Solzbacher, “A low-power integrated circuit for a
wireless 100-electrode neural recording system,” IEEE J. Solid-State

Circuits, vol. 42, no. 1, pp. 123–133, Jan. 2007.
[10] P. Mohseni, K. Najafi, S. J. Eliades, and X. Wang, “Wireless mul-

tichannel biopotential recording using an integrated FM telemetry
circuit,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 13, no. 9, pp.
263–271, Sep. 2005.

[11] M. Ghovanloo and K. Najafi, “A wide-band frequency-shift keying
wireless link for inductively powered biomedical implants,” IEEE

Trans. Circuits Syst. I: Fundamental Theory Appl., vol. 51, no. 12, pp.
2374–2383, Dec. 2004.

[12] M. Ghovanloo and S. Atluri, “A wide-band power-efficient inductive
wireless link for implantable microelectronic devices using multiple
carriers,” IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., vol.
54, no. 10, pp. 2211–2221, Oct. 2007.

[13] M. W. Baker and R. Sarpeshkar, “Feedback analysis and design of RF
power links for low-power bionic systems,” IEEE Trans. Biomed. Cir-

cuits Syst., Inivted Paper, vol. 1, no. 1, pp. 28–38, Mar. 2007.
[14] R. Sarpeshkar, W. Wattanapanitch, B. I. Rapoport, S. K. Arfin, M. W.

Baker, S. Mandal, M. S. Fee, S. Musallam, and R. A. Andersen, “Low-
power circuits for brain–machine interfaces,” in Proc. IEEE Int. Symp.

Circuits Syst., May 2007, pp. 2068–2071.
[15] R. R. Harrison and C. Charles, “A low-power low-noise CMOS am-

plifier for neural recording applications,” IEEE J. Solid-State Circuits,
vol. 38, pp. 958–965, Jun. 2003.

[16] S. Zhak, M. W. Baker, and R. Sarpeshkar, “A low power wide dynamic
range envelope detector,” IEEE J. Solid-State Circuits, vol. 38, no. 10,
pp. 1750–1753, Oct. 2003.

[17] M. O’Halloran and R. Sarpeshkar, “A 10 nW 12-bit accurate analog
storage cell with 10 aA leakage,” IEEE J. Solid-State Circuits, vol. 39,
no. 11, pp. 1985–1996, Nov. 2004.

[18] M. O’Halloran and R. Sarpeshkar, “An analog storage cell with 5 elec-
tron/sec leakage,” in Proc. IEEE Int. Symp. Circuits Syst., May 2006,
pp. 557–560.

[19] R. Sarpeshkar, C. Salthouse, J.-J. Sit, M. W. Baker, S. M. Zhak, T. K.-T.
Lu, L. Turicchia, and S. Balster, “An ultra-low-power programmable
analog bionic ear processor,” IEEE Trans. Biomed. Eng., vol. 52, pp.
711–727, Apr. 2005.

[20] R. Sarpeshkar, M. Baker, C. Salthouse, J.-J. Sit, L. Turicchia, and S.
Zhak, “An analog bionic ear processor with zero-crossing detection,”
in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2005, pp. 78–79.

[21] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. An-
dersen, “Cognitive control signals for neural prosthetics,” Science, vol.
305, pp. 258–262, 2004.

[22] R. H. Olsson and K. D. Wise, “A three-dimensional neural recording
microsystem with implantable data compression circuitry,” IEEE J.

Solid-State Circuits, vol. 40, no. 12, pp. 2796–2804, Dec. 2005.
[23] S. Mandal and R. Sarpeshkar, “A bidirectional wireless link for neural

prostheses that minimizes implanted power consumption,” in Proc.

IEEE Biomed. Circuits Syst. Conf. (BioCAS), Montreal, QC, Canada,
2007, pp. 3930–3933.

[24] Y. Hu and M. Sawan, “A fully integrated low-power BPSK demodu-
lator for implantable medical devices,” IEEE Trans. Circuits Systems

I: Fund. Theory Appl., vol. 52, no. 12, pp. 2252–2562, Dec. 2005.
[25] P. R. Troyk and M. A. K. Schwan, “Closed-loop class-E transcutaneous

power and data link for microimplants,” IEEE Trans. Biomed. Eng., vol.
39, no. 6, pp. 589–599, Jun. 1992.

[26] O. Omeni and C. Toumazou, “A CMOS micro-power wideband data/
power transfer system for biomedical implants,” in Proc. IEEE 2003

Int. Symp. Circuits Syst., May 2003, vol. 5, pp. V61–V64.
[27] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and

analysis of an adaptive transcutaneous power telemetry for biomedical
implants,” IEEE Trans. Circuits Systems I: Fund. Theory Appl., vol. 52,
no. 10, pp. 2109–2117, Oct. 2005.

[28] L. Theogarajan, J. Wyatt, J. Rizzo, B. Drohan, M. Markova, S. Kelly, G.
Swider, M. Raj, D. Shire, M. Gingerich, J. Lowenstein, and B. Yomtov,
“Minimally invasive retinal prosthesis,” in Proc. IEEE Int. Solid-State

Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 99–108.
[29] E. T. Vu, M. E. Mazurek, and Y.-C. Kuo, “Identification of a forebrain

motor programming network for the learned song of zebra finches,” J.

Neurosci., vol. 14, no. 11, pp. 6924–2934, Nov. 1994.
[30] A. Leonardo and M. S. Fee, “Ensemble coding of vocal control in bird-

song,” J. Neurosci., vol. 25, no. 3, pp. 652–661, Jan. 2005.
[31] J.-J. Sit, A. M. Simonson, A. J. Oxenham, M. A. Faltys, and R.

Sarpeshkar, “A low-power asynchronous interleaved sampling al-
gorithm for cochlear implants that encodes envelope and phase
information,” IEEE Transactions on Biomedical Engineering, vol. 54,
pp. 138–149, Jan. 2007.

[32] J.-J. Sit and R. Sarpeshkar, “An asynchronous cochlear-implant pro-
cessor that can encode music and lower stimulation power,” IEEE Per-

vasive Comput., vol. 7, no. 1, pp. 40–48, Jan. 2008.
[33] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue

stimulator with energy recovery,” in Proc. IEEE Int. Solid-State Cir-

cuits Conf., Feb. 2004, pp. 228–524.
[34] J.-J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free

charge-balanced electrode-stimulator chip with less than 6 nA D.C.
error for 1 mA full-scale stimulation,” IEEE Trans. Biomed. Circuits

Syst., vol. 1, no. 3, pp. 172–183, Sep. 2007.



SARPESHKAR et al.: LOW-POWER CIRCUITS FOR BRAIN–MACHINE INTERFACES 183

Rahul Sarpeshkar (M’97) received the B.S. degrees
in electrical engineering and physics from the Mass-
achusetts Institute of Technology (MIT), Cambridge,
in 1990 and the Ph.D. degree from the California In-
stitute of Technology, Pasadena, in 1997.

He was with Bell Labs as a Member of the Tech-
nical Staff in 1997. Since 1999, he has been on the
faculty of the Electrical Engineering and Computer
Science Department, MIT, where he heads a research
group on Analog VLSI and Biological Systems and
is currently an Associate Professor. He holds over 20

patents and has authored more than 70 publications, including one that was fea-
tured on the cover of Nature. His research interests include analog and mixed-
signal VLSI, biomedical systems, ultra-low-power circuits and systems, biolog-
ically inspired circuits and systems, molecular biology, neuroscience, and con-
trol theory.

Dr. Sarpeshkar has received the Packard Fellow Award given to outstanding
young faculty, the Office of Naval Research Young Investigator Award, the Na-
tional Science Foundation Career Award, and the Indus Technovator Award. He
has also received the Junior Bose Award and the Ruth and Joel Spira Award,
both for excellence in teaching at MIT. He is currently an Associate Editor of
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS.

Woradorn Wattanapanitch (S’07) received the
B.S. degree (summa cum laude) in electrical and
computer engineering from Cornell University,
Ithaca, NY, in 2005, and the M.S. degree in electrical
engineering from the Massachusetts Institute of
Technology (MIT), Cambridge, in 2007. He is
currently working toward the Ph.D. degree at MIT
in the Analog VLSI and Biological Systems Group
at the MIT Research Laboratory of Electronics. His
research interests include low-power analog and
mixed-signal VLSI for biomedical applications, and

control theory.
Mr. Wattanapanitch was awarded a Royal Thai Government Fellowship in

2000.

Scott K. Arfin (S’00) received the B.S. degree
(summa cum laude) from Columbia University,
New York, in 2004 and the M.S. degree from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 2006, both in electrical engineering. He
is currently pursuing the Ph.D. degree in the Analog
VLSI and Biological Systems Group at the MIT
Research Laboratory of Electronics, in the field of
low-power electronics for biomedical applications.

Benjamin I. Rapoport (S’07) received the B.A. de-
gree in physics and mathematics and the M.A. degree
in physics from Harvard University, Cambridge, MA,
in 2003, the M.Sc. degree in mathematics from Ox-
ford University, Oxford, U.K., in 2004, and the M.S.
degree in physics from the Massachusetts Institute of
Technology (MIT), Cambridge, in 2007.

He is currently a student in the M.D.-Ph.D. Pro-
gram at Harvard Medical School and is jointly pur-
suing the M.D. at Harvard Medical School and the
Ph.D. in electrical engineering at MIT. His research

and professional interests include bioimplantable electronic interfaces with the
brain and nervous system, biological and computational neuroscience, and clin-
ical neurosurgery.

Soumyajit Mandal (S’01) received the B.Tech.
degree from the Indian Institute of Technology,
Kharagpur, India, in 2002, and the M.S. degree
in electrical engineering from the Massachusetts
Institute of Technology (MIT), Cambridge, in 2004,
where he is currently working toward the Ph.D.
degree. His research interests include nonlinear
dynamics, low-power analog and RF circuit design,
antennas and biochemical networks.

Mr. Mandal was awarded the President of India
Gold Medal in 2002.

Michael W. Baker (S’04) received the B.S., M.Eng.,
and Ph.D. degrees in electrical engineering and com-
puter science in 2000, 2002, and 2007, respectively,
all from the Massachusetts Institute of Technology
(MIT), Cambridge.

His research interests include neural and bionic im-
plants, low-power integrated analog design, and inte-
grated radio-frequency circuits.

Michale S. Fee received the B.S. degree in engi-
neering physics from the University of Michigan,
Ann Arbor, and the Ph.D. in applied physics from
Stanford University, Palo Alto, CA.

He joined Bell Laboratories as a Postdoctoral
Fellow in the Biological Computation Research
Department, and continued there as a Member
of Technical Staff until 2003, when he joined the
faculty at the Massachusetts Institute of Technology
(MIT), Cambridge. He is presently an Investigator
at the McGovern Institute for Brain Research as

well as an Associate Professor in the Department of Brain and Cognitive
Sciences, both at MIT. His laboratory focuses on the biophysical and neural
circuit mechanisms underlying the learning and generation of sequences in the
brain, with a particular interest in vocal sequences of the songbird. The Fee
Laboratory also develops new technologies for measuring and manipulating
neural activity in behaving animals.

Sam Musallam is an Assistant Professor in the
Department of Electrical and Computer Engineering
and an Associate Member of the Department of
Physiology, both at McGill University, Montreal,
QC, Canada.

He leads the Neural Prosthetics Laboratory
at McGill University, which investigates the
neuro-scientific aspects of developing optimal neural
prosthetic devices, and also develops implantable
devices for measurement of biological signals in the
brain and body.

Richard A. Andersen is the James G. Boswell Pro-
fessor of Neuroscience at the California Institute of
Technology (Caltech), Pasadena.

Since 1994, he has also been the Director of the
Sloan Center for Theoretical Neurobiology at Cal-
tech. He studies the neurobiological underpinnings
to such brain processes as sight, hearing, and action
planning. His laboratory is also studying neural
prosthetics, electronic interfaces with the brain that
may eventually enable disabled humans to achieve
thought-based control of external devices.

Professor Andersen is a Fellow of the American Association for the Advance-
ment of Science and a Member of the American Academy of Arts and Sciences.


