
 Open access Journal Article DOI:10.1049/IET-CDT.2010.0052

Low power field programmable gate array implementation of fast digital signal
processing algorithms: characterisation and manipulation of data locality
— Source link

S. McKeown, Roger Woods

Institutions: Queen's University Belfast

Published on: 10 Mar 2011 - Iet Computers and Digital Techniques (Institution of Engineering and Technology)

Topics: Field-programmable gate array, Fast Fourier transform, Discrete Hartley transform, Discrete cosine transform
and Dynamic demand

Related papers:

 Novel FPGA implementations of Walsh-Hadamard transforms for signal processing

 Efficient FFT implementation on an IEEE floating-point digital signal processor

 Power Modeling and Efficient FPGA Implementation of FHT for Signal Processing

 FPGA Implementation of Highly Modular Fast Universal Discrete Transforms

 An FPGA based accelerator for discrete Hartley and fast Hadamard transforms

Share this paper:

View more about this paper here: https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-
4t7lgf1hy5

https://typeset.io/
https://www.doi.org/10.1049/IET-CDT.2010.0052
https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5
https://typeset.io/authors/s-mckeown-2275a48ppc
https://typeset.io/authors/roger-woods-2bvx2m29fj
https://typeset.io/institutions/queen-s-university-belfast-2o41gejw
https://typeset.io/journals/iet-computers-and-digital-techniques-39nsbwz6
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/topics/fast-fourier-transform-l53vrvqo
https://typeset.io/topics/discrete-hartley-transform-1ecqgrb1
https://typeset.io/topics/discrete-cosine-transform-107yowly
https://typeset.io/topics/dynamic-demand-1dzcjrxu
https://typeset.io/papers/novel-fpga-implementations-of-walsh-hadamard-transforms-for-qflpc2zntl
https://typeset.io/papers/efficient-fft-implementation-on-an-ieee-floating-point-aievj0nu9g
https://typeset.io/papers/power-modeling-and-efficient-fpga-implementation-of-fht-for-46luzdagpg
https://typeset.io/papers/fpga-implementation-of-highly-modular-fast-universal-2y91dbjj0c
https://typeset.io/papers/an-fpga-based-accelerator-for-discrete-hartley-and-fast-m8npj8syj2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5
https://twitter.com/intent/tweet?text=Low%20power%20field%20programmable%20gate%20array%20implementation%20of%20fast%20digital%20signal%20processing%20algorithms:%20characterisation%20and%20manipulation%20of%20data%20locality&url=https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5
https://typeset.io/papers/low-power-field-programmable-gate-array-implementation-of-4t7lgf1hy5

Low power field programmable gate array implementation of fast
digital signal processing algorithms: characterisation and manipulation
of data locality
McKeown, S., & Woods, R. (2011). Low power field programmable gate array implementation of fast digital
signal processing algorithms: characterisation and manipulation of data locality. IET Computers And Digital
Techniques, 5(2), 136-144. [2]. https://doi.org/10.1049/iet-cdt.2010.0052

Published in:
IET Computers And Digital Techniques

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:30. May. 2022

https://doi.org/10.1049/iet-cdt.2010.0052
https://pure.qub.ac.uk/en/publications/2baa1a6b-4809-47b4-af1d-b233174d1253

Published in IET Computers & Digital Techniques

Received on 18th May 2010

Revised on 7th September 2010

doi: 10.1049/iet-cdt.2010.0052

ISSN 1751-8601

Low power field programmable gate array
implementation of fast digital signal processing
algorithms: characterisation and manipulation
of data locality
S. McKeown R. Woods

School of Electronics, Electrical Engineering and Computer Science, ECIT Institute, Queen’s University Belfast,

Queen’s Island, Queen’s Road, Belfast BT3 9DT, Northern Ireland

E-mail: r.woods@qub.ac.uk

Abstract: Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing
algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm
implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation.
This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the
index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced
power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of
36 and 37% over a Cooley–Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a
Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the
generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley
and the Walsh–Hadamard transforms.

1 Introduction

Digital signal processing (DSP) algorithms such as
transforms, convolution and filtering are characterised by
intensive computation and communication and contribute
greatly to the system power consumption which is critical
for their wider application. Power consumption comprises
both a ‘static’ component, made up from transistor
imperfections such as gate leakage and subthreshold
currents, and a ‘dynamic’ part, generated from charging
switched capacitance and short circuit currents which flow
when the circuit is operating. Low power techniques aim to
reduce one or more of these factors [1]. Static power is
mostly influenced by technology choice for example, triple
layer oxide and use of optimisations such as clock gating
[2], however, in field programmable gate array (FPGA)
implementations, designers have little control over these
aspects and can typically act only to reduce the dynamic
aspect by reducing the switched capacitance. In many
applications such as mobile communications, the aim is to
reduce energy; in applications such as radar and sonar
where FPGAs are more commonly used, the system is
always turned on so the focus has been to reduce dynamic
power consumption.
The data dependency of successive operations impacts the

distance over which data must be passed in order to complete
the computation, thereby influencing power consumption.

However, fast algorithms for example, Cooley–Tukey FFT
[3], sacrifice data ordering looking to leverage symmetry
and periodicity in the matrix to reduce the number of
computations; this needs to be re-examined from a power
perspective, as different mappings of the same algorithm
can result in architectures with widely varying
communications and performance characteristics [4]. It is
well known that increasing this data locality has a direct
relationship to the power consumed [5–7]. Indeed, previous
work has involved investigating locality properties for
FPGA-based systolic array implementations [8] and an
FFT-based digital receiver solution based on a Xilinx
Virtex-II FPGA implementation [9]; however, the real
challenge is how to influence data locality at the
algorithmic level in a systematic fashion, particularly for
fast transforms that may not necessarily exhibit this locality
in the first instance.
In this paper, a technique that allows the generation of

power efficient, parallelised FPGA implementations based
on manipulating and characterising data locality for a range
of fast transforms, is presented. We show that by using the
‘index space separation’ as a measure of locality,
realisations can be derived that are guaranteed to have a
lower dynamic power consumption. The FFT is considered
in detail but the approach is also applicable to other
common transforms namely, the discrete cosine transform
(DCT), the discrete Hartley transform (DHT) and the

136 IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cdt.2010.0052

www.ietdl.org

Walsh–Hadamard transform [10]. Measured power results
are given for a Xilinx Virtex-II device (taken from a
purposely built Xilinx XUP (Xilinx University Program)
board) and validated against a more recent FPGA realisation,
namely Virtex-5, by comparing capacitance values.
Section 2 describes data locality in DSP algorithms, with

Section 3 describing the fast algorithm domain and
outlining the Cooley–Tukey FFT. Section 4 gives a
definition of ‘index space separation’ and then goes on to
present the proposed data locality methodology using the
FFT as a design example with measured results. Section 5
indicates how it can be applied to other fast algorithms and
is followed by conclusions.

2 Data locality in DSP algorithms

In massively parallel architectures, mappings with strong data
locality result in ‘systolic array’ type architectures [4, 8] with
all the advantages they bring, but only certain algorithm
classes readily map to this type of structure. Kung [4]
classified DSP algorithms as ‘locally recursive’ for example,
matrix multiplication and ‘globally recursive’; in locally
recursive algorithms, data dependency is limited to adjacent
elements and so the index space separation within each
recursion has a predefined limit, resulting in an architecture
with only local communication; in globally recursive
algorithms however, inherently complex communication
networks are required as the relative index space separation
is larger.
This index space separation is given as a measure of total

distance values between indices. Index space is defined as a
lattice of points in an n-dimensional discrete space [11].
Defining the hierarchical space where each position in the
lattice vector space is a Cartesian coordinate allows
the index space to be defined in Euclidean geometry, and
the index space separation as the Euclidean distance
between indices. Index space separation, h, between
two indices A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) is
thus defined as

h =

��

(a1 + b1)
2
+ (a2 + b2)

2
+ · · · + (a2 + b2)

2

√

(1)

and summarised as

h =

����������������

∑

N

n=1

(an + bn)
2

√

√

√

√ (2)

In this work, the index space separation of each mapping is
defined as the Euclidean distance in a single dimension in
the spatial domain as the distance in the second dimension is
always unitary. Using index space separation as a measure of
‘data dependency’ between consecutive operations, the
relative distances over which data must be passed can be
determined thereby giving a direct indication of the dynamic
power requirements. In processor style implementations, this
is not particularly important as all computation data are
passed over a bus with a constant capacitance; however in
FPGA solutions, these relate to separate, individual
interconnections, created as a result of the place and route
process in FPGA design, thereby producing varying levels of
power consumption.
Fast algorithms exploit recursive patterns in computations by

involving a structured matrix to compress the algorithms

complexity, but require inherently globally interconnect to
implement them [4]. This is achieved by folding the
computation onto itself, thereby allowing common factors of
the coefficients to be applied to multiple portions
simultaneously. Data locality, however, is no longer
dependent on the locality characteristics of the original
structured matrix operation, but on the globally recursive
definition of the compressed algorithm and the coefficient
factorisation. The original fast algorithms were primarily
designed for sequential software implementation, resulting in
certain limitations on the range of feasible derivations. It is
contended here that this approach largely used for processor
implementation, is no longer valid for power efficient,
parallelised FPGA realisations; the novel contribution of
this work lies in re-examining fundamental assumptions
underlying the standard fast algorithm derivations, leading to
the exploration of the full range of mapping possibilities and
to the creation of parallelised, power efficient implementations
with strong data locality.

3 Fast algorithms

Many fundamental signal processing algorithms, such as the
Fourier transform, can be expressed in terms of linear algebra
on a dense structured matrix such as the matrix vector
operation

y = Ax (3)

Values in the structured matrix A, are defined with reference
to their relative positions in the form shown

y(0)

y(1)

.

.

.

y(N−1)

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

=

a(0,0) · · · a(N−1,0)

a(0,1) · · · a(N−1,1)

.

.

.
.
.
.

a(0,N−1) · · · a(N−1,N−1)

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

·

x(0)

x(1)

.

.

.

x(N−1)

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

(4)

The special structure of the matrix allows complexity to be
reduced from O(N 2) to O(N log N) by employing a fast
‘divide and conquer’ factorisation approach thereby avoiding
operating on the N 2 entries and instead, focusing on a
generator function encapsulating a compressed version of the
matrix. The structured matrix representation is essentially a
polynomial multiplication in the coefficient form of
complexity O(N2). Fast algorithms utilise an alternate point-
value representation in which a polynomial of degree N2 1
can be represented by N point-value pairs

{{x0: y0}{x1: y1}: · · · {xn−1: yn−1}} (5)

where yk = A(xk) and all xk are distinct. For two polynomials
of degree n which have a common xk expression, the
multiplication of the pair can now be represented as

{{x0: y0y
′

0}{x1: y1y
′

1}: · · · {xn−1: yn−1y
′

n−1}} (6)

This operation has a complexity of O(N) but 2N points are
required to represent both polynomials [12].
The reduction in complexity comes from the fact that in the

operation yk = A(xk), any set, xk , can be chosen so long as they
are distinct [12]. In the case of fast transform algorithms,
symmetry and periodicity in the transform kernel A, enables

IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144 137

doi: 10.1049/iet-cdt.2010.0052 & The Institution of Engineering and Technology 2011

www.ietdl.org

the operation to be applied using a limited set of transform
point-values [10]. This limited set represents common
factors within the coefficients of the original transform
matrix which arise because of the definition of the kernel.
In this way, problems are recursively decomposed logr N

times into smaller sub-problems of N/r (where r is the
decomposition radix) until a simple base scenario is
reached. The exact breakdown of each problem into r sub-
problems depends on the symmetry and periodicity of the
particular transform kernel being implemented. Solutions
to the sub-problems are then combined to give a solution
to the original problem with a complexity of only
O(N log N) [3].

3.1 FFT algorithm

Consider the discrete Fourier transform (DFT)

X k =

∑

N−1

n=0

x(n)W nk
N , k = 0, 1, . . . , N − 1 (7)

where WN is the twiddle factor, WN = e−j(2p/N). The
transformed samples, separated by angle u, are periodic and
mirrored to the left and right of the imaginary (Im), and
above and below the real (Re) axis (Fig. 1). This symmetry
and periodicity in the coefficients of the transform kernel
(WN) gives rise to a family of fast algorithms. The radix-2
form of the Cooley–Tukey FFT algorithm [3] recursively
decomposes the algorithm until only two-point DFTs are
required, with results then combined to compute the N-point
transform. It is computed using the butterfly unit and perfect
shuffle network shown in Fig. 2. In an application specific
integrated circuit (ASIC) or FPGA implementation with
separate processing elements, the globally recursive nature
translates to irregular routing in the layout stage. The radix-2

algorithmic expression of (7) is thus given as

X k =

∑

N/2−1

n=0

x(n)W nk
N +W

Nk/2
N

∑

N/2−1

n=0

x(n+ N/2)W nk
N (8)

However, this is only one of a number of ways to implement a
fast version and the methodology proposed here acts to gives
more flexibility in the ordering of sub-problems [13].

4 Index space separation as a means
of power efficiency

As described earlier, such matrix multiplications are directly
implementable with only local communications in systolic
array type architectures, generally described as

F(k) =
∑

N−1

n=0

f (n) · a(k, n), k = 0, 1, . . . , N − 1 (9)

The computational complexity can be reduced from O(N2) to
O(N log N) by repeatedly decomposing a series N into shorter
series N = N1, N2, . . . , NM and replacing indices k and n with
the equivalent composite k1, k2, . . . , kM and n1, n2, . . . , nM . In
the Cooley–Tukey mapping, by considering the block length
N as the composite N1N2 [3], the input and output indices n
and k can be represented as

n = n2N1 + n1,
0 ≤ n1 ≤ N1 − 1

0 ≤ n2 ≤ N2 − 1

{

(10)

k = k1N2 + k2,
0 ≤ k1 ≤ N1 − 1

0 ≤ k2 ≤ N2 − 1

{

(11)

Although complexity is reduced, communication is global.
The factorisation process involves partitioning the original
index space onto equivalent subspaces which can be
considered as multi-dimensional arrays with various
implementations corresponding to different methods of
unwrapping the multi-dimensional into one dimensional
(1D) arrays, through index mapping of k1, k2, . . . , kM and
n1, n2, . . . , nM [14]. For the Fourier transform, the mostly
widely known mappings are decimation in time (DIT) and
decimation in frequency (DIF) Cooley–Tukey [3] and
Gentleman–Sande [15] algorithms. The DIT algorithms is
represented by a top down recursive tree traversal of Fig. 3,
and the DIF algorithms, a bottom up traversal from the leaf
nodes.Fig. 1 Fourier transform kernel where N ¼ 16

Fig. 2 Eight-point radix-2 FFT structure

138 IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cdt.2010.0052

www.ietdl.org

The Cooley–Tukey (Fig. 2) and Gentleman–Sande
(Fig. 4a) algorithms represent a traditional in place
recursive traversal where in this radix-2 decomposition, all
even vectors move to the left and odd vectors to the

right. Each recursive call makes two more calls, until
vectors of length 1 are reached at 3rd level node. The
level of interconnection is identical in both these
implementations.
For a conventional realisation, a strict unwrapping of

the multi-dimension array indices k1, k2, . . . , kM and
n1, n2, . . . , nM for in-place computation is followed,
resulting in a long interconnections in the resulting signal
flow graph (SFG) such as that shown in Fig. 4a. Here the
1D unwrapped index varies as Xm(n1 · · · nM−m, km · · · k1) for
m = 0 · · ·M , where the right most index varies the fastest.
This is illustrated in the notation above each stage, showing
how the operation initially described only in terms of the
time domain index n, has each term systematically
substituted by frequency domain index k terms as the graph
is traversed from left to right until at the output, it is
described solely in the frequency domain [14]. The
restriction of in-place computation while critical to efficient

Fig. 4 Various FFT flow graphs

a Eight-point radix-2 in-place Gentleman–Sande
b Eight-point radix-2 modified flow graph

Fig. 3 Tree structure of FFT recursive calls

IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144 139

doi: 10.1049/iet-cdt.2010.0052 & The Institution of Engineering and Technology 2011

www.ietdl.org

storage of intermediate results in software, has little real
benefit in parallelised hardware implementation.
Revisiting this assumption, an alternative mapping scheme

is possible which removes the in-place restriction meaning
that index km is no longer required to take the position of
nM−m+1. By varying the placement and weighting of index
km as a function of m during unwrapping, it is possible to
limit the space separation between subsequent indices to
achieve increased data locality. In this case, the 1D
unwrapped index varies as Xm(n1 · · · nM−m, k1 · · · km) and
has both the input and output in reverse digit order [14], as
illustrated by a comparison of the in-place radix-2 SFG of
Fig. 4a with the mapping of the proposed modified SFG of
Fig. 4b. Index space separation distance is shown as
numbers at each node where it represents the vertical
distance in the graph.
The index schedule, where n1, n2, n3 = 0, 1

and k1, k2, k3 = 0, 1 for iterations I1, I2, I3 and I4, for
the in-place mapping schedule (equation (12)) and the
out-of-place mapping schedule (equation (13)) is shown in
Fig. 5.

x(n) = I1(n1 + 2n2 + 4n3)

X (k) = I4(4k3 + 2k2 + 1k1)
(12)

x(n) = I1(n1 + 2n2 + 4n3)

X (k) = I4(1k1 + 2k2 + 4k3)
(13)

For the in-place mapping schedule, the weighting of each
index remains constant as time domain components n are
substituted with frequency domain components k. In the
modified schedule however, by changing the sequence in
which frequency domain components are substituted and by
varying the weighting of the components between iterations
to compensate, the index space separation between each
stage is now reduced; this now means that we are
generating intermediate results in closer proximity to where
they are required at the next stage. In the schedule given in
(13) and Fig. 5, the most heavily weighted component
remains constant on the rightmost side of the equation as
the indices are substituted, meaning that the Hamming
distance between consecutive stages is reduced. It is this
proximity of intermediate results from increased data
locality that leads to shorter interconnect and consequently
lower power requirements.
Thus for the FFT design, the index space separation is

reduced by 28.6% from 56 to 40 for the eight-point version.
This can be generalised as a reduction from O(N(N2 1)) to
O(N (N + log2 N − 1)/2) in radix-2 design for all N,
converging to a 50% reduction for larger N as shown in

Table 1 for the in-place and modified versions given in
Figs. 4a and b.

4.1 FFT index mapping schedules

The 50% reduction in index space separation achieved by
the proposed mapping scheme is optimal in terms of data
locality of the range of mappings. There are eight
principle index-mapping schedules for the DIT and
also their DIF equivalents [14] as shown in Table 2.
The resulting eight-point radix-2 SFG are shown in Fig. 6.
The subscripts r and l of the schedules denote whether
the right most or left most index respectively varies the
fastest.
Transforms T1 and T2 are the commonly used standard

Cooley–Tukey types with in-place computation and input/
output in reverse digit order; transforms T3 and T5 are
those proposed here which were previously considered less
attractive for implementation; transforms T4 and T6 also
require out-of-place computation and have both natural
ordered inputs and outputs; this can be of some advantage
in software realisation but they have the widest index space
separation which has implications for power consumption in
hardware implementations; transforms T7 and T8, have a
constant geometry factorisation across the transform stages
making them suitable for a reduced area column based
processor. These have either input or output in reverse digit
order as with T1 and T2, and are also out-of-place, but the
index space separation is high even when compared to the
original Cooley–Tukey.
A 64-point radix-4 FFT version of T3 has been

implemented for a high throughput digital radar receiver
application. The details of the setup and measurements are

Fig. 5 Index schedule

Table 1 Radix 2 index space separation

N In-place (Fig. 4a) Modified (Fig. 4b) Reduction (%)

2 2 2 0.0

4 12 10 16.7

8 56 40 28.6

16 240 152 36.7

32 992 576 41.9

64 4032 2208 45.2

128 16 256 8576 47.2

256 65 280 33 664 48.4

512 261 632 133 120 49.1

1024 1 047 552 528 896 49.5

2048 4 192 256 2 107 392 49.7

4096 16 773 120 8 411 136 49.9

Table 2 FFT index mapping schedules for an eight-point radix-2

SFG

Transform Schedule Index space

T1 Xm(n1, . . . , nM2m, km, . . . , k1)r 56

T2 Xm(n1, . . . , nM2m, km, . . . , k1)l 56

T3 Xm(n1, . . . , nM2m, k1, . . . , km)r 40

T4 Xm(n1, . . . , nM2m, k1, . . . , km)l 76

T5 Xm(k1, . . . , km, n1, . . . , nM2m)r 40

T6 Xm(k1, . . . , km, n1, . . . , nM2m)l 76

T7 Xm(km, . . . , k1, n1, . . . , nM2m)r 60

T8 Xm(km, . . . , k1, n1, . . . , nM2m)l 60

140 IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cdt.2010.0052

www.ietdl.org

described in detail in [9] with the intention here to use the
results to demonstrate the usefulness of the technique. The
approach (QFFT) was coded in VHDL, synthesised using
the Xilinx-II FPGA technology and then implemented on
the Xilinx XUP Virtex-II Pro board which has been
specifically created to allow power measurements to be
taken. This hardware setup uses a custom test harness in a
controlled environment and can be used to obtain real
power results for this design and the two commercial,
Cooley–Tukey type FFT derivations from Xilinx and
Amphion. The power measurements for all three
implementations were taken using ‘real’ data captured
from a digital receiver. Shorter interconnect was achieved
with average net capacitance (and standard deviation)
reduced from 1.4 pF (3.3) and 1.9 pF (8.5) in the Xilinx
and Amphion designs respectively (both Cooley–Tukey
implementations), to 1.0 pF (2.6) in the QFFT (Fig. 7a).

Power savings of between 36 and 37% that is, from 1616
to 1029 mW, were achieved over the Xilinx and Amphion
designs with even higher savings against the other core
[9]. Area savings were also made with the design as it
used only 35% of the slices and 50% of the DSP48E
blocks when compared to the Xilinx design and 20% of
the slices when viewed against the Amphion design which
does not use any DSP48E blocks. These area gains should
be treated lightly as it is not clear what additional
functionality either of the two comparative designs had;
however, based on the post place and route analysis, there
is clear indication that the QFFT design results in much
smaller interconnect; more detail on this work is given
in [9].
The availability of the Virtex-II XUP board allowed actual

measurements to be made. However as this was an older
technology, we implemented the same designs using the

Fig. 6 Eight-point radix-2 FFT mappings

IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144 141

doi: 10.1049/iet-cdt.2010.0052 & The Institution of Engineering and Technology 2011

www.ietdl.org

newer Xilinx Virtex-5 technology and showed that the
similar improvements were achieved in terms of power
consumption and interconnect (actual power measurements
were not possible as a suitable FPGA board was not
available). Here interconnect capacitance (and standard
deviation) is reduced from an average of 1.6 pF (3.8) and
2.1 pF (5.4) in the Xilinx and Amphion designs,
respectively, to 1.4 pF (2.7) in the QFFT (Fig. 7b). This
equated to a 45% reduction in total driven interconnect
capacitance of the QFFT over the nearest Cooley–Tukey
implementation.

5 Application to other fast algorithms

The properties of symmetry and periodicity shared by fast
transform algorithms mean that it is possible to create
efficient derivations of a range of common algorithms in a
similar manner. Given the detailed analysis just outlined for
the FFT, the same power reductions should be possible by
achieving a reduction in index space separation. The
technique is now applied to the Walsh-Hadamard, DCT and
DST transforms.
The in-place fast Walsh algorithm (14) has a structure

similar to that of the FFT as shown in Fig. 8a but with
coefficients limited to values of +1 and 21 [16]. The Walsh

algorithm is defined as

Xm =

∑

M−1

n=0

x(n)wal(m, n), m, n = 0, 1, . . . , M − 1 (14)

for an M ¼ eight-length real array, where wal is recursively
defined as wal(m, n) ¼ wal([m/2], 2n).wal(m2 2[m/2], n);
for the initial value, wal0 = 1 with coefficient values of
+1 and 21 [16]. When remapped the eight-point radix-2
example (Fig. 8b) achieves a 28.6% reduction that is, from
56 to 40 in index space separation and approaches a 50%
reduction for larger transforms.
The DST and DCT algorithms differ in the application of

the cosine and sine functions in the transform kernel as
shown in (15) and (16), respectively. There are several
versions of these algorithms, with synonymous
implementations existing between the wide range of FFT
derivations and DCT and DST equivalents [17]. Common
derivations are given in Fig. 9a for the DCT and in Fig. 9b
for the DST [18].
For the remapped eight-point radix-2 decompositions, the

DCT (Fig. 10a) achieves a 25.4% reduction from a total
index space separation (63 to 47) and in the DST
(Fig. 10b), a 23.9% reduction from 67 to 51. Reductions
approach 50% for larger N for both transforms. Therefore

Fig. 7 Interconnect capacitance

a Virtex-II interconnect capacitance
b Virtex-5 interconnect capacitance

Fig. 8 Eight-point radix-2 fast Walsh transforms

a In-place
b Modified

142 IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cdt.2010.0052

www.ietdl.org

similar power benefits are expected as to those observed in the
FFT example

Xk =

∑

N−1

n=0

x(n) cos
p

N
n+

1

2

()

k

[]

, k = 0, 1, . . . , N − 1

(15)

Xk =

∑

N−1

n=0

x(n) sin
p

N
n+

1

2

()

k + 1

[]

, k = 0, 1, . . . , N − 1

(16)

6 Conclusions

A technique for improving the data locality of common DSP
transforms has been presented which gives the system

Fig. 9 Eight-point radix-2 in-place fast sine and cosine transforms

a Cosine transform
b Sine transform

Fig. 10 Eight-point radix-2 modified fast sine and cosine transforms

a Cosine transform
b Sine transform

IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144 143

doi: 10.1049/iet-cdt.2010.0052 & The Institution of Engineering and Technology 2011

www.ietdl.org

designer the ability to optimise for power consumption at the
earliest stages of the design flow. By adopting an algorithmic
mapping strategy that maximises data locality in fast
algorithms, more power efficient architectures for FPGA
implementation are obtained. The mapping process
produces designs with short local interconnect that are
particularly advantageous in FPGA implementations where
interconnect is a dominant factor in power consumption.
The technique is not, however, FPGA platform specific and
is therefore suitable for any massively parallel architecture,
for instance systolic arrays [4, 8].
Measured capacitance and power results demonstrate the

effectiveness of the approach. The technique, applicable
across a range of fast DSP applications, has demonstrated a
50% reduction in FFT index space separation resulting in a
measured power gain of 36–37% over a Cooley–Tukey
FFT-based solution. Similar reductions are achieved in the
DCT, DST and Walsh–Hadamard transforms. Fundamental
algorithmic similarities necessary to this approach that exist
across the extensive class of fast divide and conquer DSP
algorithms mean its application is wide ranging.

7 References

1 Tuan, T., Rahman, A., Das, S., Trimberger, S., Kao, S.: ‘A 90 nm low-
power fpga for battery-powered applications’, IEEE Trans. CAD, 2007,
26, (2), pp. 296–300

2 Woods, R., McAllister, J., Turner, R., Yi, Y., Lightbody, G.: ‘FPGA-based
implementation of signal processing systems’ (Wiley, New Jersey, 2008)

3 Cooley, J.W., Tukey, J.W.: ‘An algorithm for the machine calculation of
complex fourier series’, Math. Comput., 1965, 19, pp. 297–301

4 Kung, S.Y.: ‘VLSI array processors’ (Prentice-Hall, New Jersey, 1988)

5 Wilton, S.J.E., Luk, W., Ang, S.S.: ‘The impact of pipelining on energy
per operation in field-programmable gate arrays’. Proc. Int. Conf. on
Field Programmable Logic, August 2004, pp. 719–728

6 Lee, T., Cong, J.: ‘The new line in ic design’, IEEE Spectr., 1997, 34,
(3), pp. 52–58

7 Rabaey, J.M., Chandrakasan, A., Nikolic, B.: ‘Digital integrated circuits:
a design perspective’ (Prentice-Hall, New Jersey, 2003, 2nd edn.)

8 Choi, S., Prasanna, V.K.: ‘Time and energy efficient matrix factorization
using fpgas’. Int. Conf. on Field Programmable Logic and Applications,
Lisbon, Portugal, 1–3 September 2003, pp. 507–519

9 McKeown, S., Woods, R., McAllister, J.: ‘Algorithmic factorisation for
low power fpga implementation through increased data locality’. Proc.
IEEE Int. Symp. VLSIDAT, April 2008, pp. 271–274

10 Guoan, B., Zeng, Y.: ‘Transforms and fast algorithms for signal analysis
and representations’ (Birkhauser, Boston, 2004)

11 Parashar, M., Browne, J.C.: ‘Systems engineering for high performance
computing software: the hdda/dagh infrastructure for implementation of
parallel structured adaptive mesh refinement’, IMA Volume 117:
Structured Adaptive Mesh Refinement (SAMR) Grid Methods, 2000,
vol. 117, pp. 1–18

12 Morris, J.: ‘Data structures and algorithms’, March 2009, available at
http://oopweb.com/Algorithms/Documents/PLDS210/VolumeFrames.
html

13 Cormen, T.H., Leiserson, C.E., Rivest, R.L.: ‘Introduction to
algorithms’ (The MIT Press, Cambridge, MA, 2001, 2nd edn.)

14 Thong, T.: ‘Algebraic formulation of the fast fourier transform’, IEEE
Circuits Syst. Mag., 1981, 3, pp. 9–19

15 Gentleman, W.M., Sande, G.: ‘Fast fourier transforms-for fun and
profit’. Proc. AFIPS Fall Joint Computation Conf., 1966, vol. 29,
pp. 563–578

16 Shanks, J.L.: ‘Computation of the fast walsh-fourier transform’, IEEE
Trans. Comput., 1969, C-18, pp. 457–459

17 Olshevsky, V. (Ed.): ‘Fast algorithms for structured matrices: theory and
applications’ (American Mathematical Society, Providence, 2003)

18 Cvetkovic, Z., Popovic, M.V.: ‘New fast recursive algorithms for the
computation of discrete sine and cosine transforms’, IEEE Trans.
Signal Process., 1992, 40, pp. 2083–2086

144 IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 2, pp. 136–144

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cdt.2010.0052

www.ietdl.org

