
202 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Low Power Memory Storage and Transfer
Organization for the MPEG-4 Full Pel Motion

Estimation on a Multimedia Processor
Erik Brockmeyer, Lode Nachtergaele, Francky V. M. Catthoor,Member, IEEE,

Jan Bormans,Member, IEEE,and Hugo J. De Man,Fellow, IEEE

Abstract—Data transfers and storage are crucial cost factors
in multimedia systems. Systematic methodologies are needed
to obtain dramatic reductions in terms of power, area and
cycle count. Upcoming multimedia processing applications will
require high memory bandwidth. In this paper, we estimate
that a software reference implementation of an MPEG-4 video
encoder typically requires five Gtransfers/s to main memory for
a simple profile level L2. This shows a clear need for optimization
and the use of intermediate memory stages. By applying our
ACROPOLIS methodology, developed mainly to relieve this data
access bottleneck, we have arrived at an implementation which
needs a factor 65 less background accesses. In addition, we also
show that we can heavily improve on the memory transfers,
without sacrificing speed (even gaining about 10% on cache
misses and cycles for a DEC Alpha), by aggressive source code
transformations.

I. INTRODUCTION

NEXT generation multimedia systems impose heavy de-
mands on the data transfer and storage subsystem [27],

[35]. To communicate and hold the massive amounts of data
that represent media, fast busses and large memories with
high access rates from/to processors are needed. Efficient
implementation of the complex media algorithms requires a
global analysis of the critical sections and code transformations
to eliminate or at least alleviate the impact of these bottlenecks.

The recent MPEG-4 standard [33] is a key to multimedia
applications. It involves complex data-dominant algorithms. A
hardware or even an embedded software realization of such a
(de)coder has to be power efficient in order to reduce the size
of the chip packages (where it is embedded) or the battery (if
used in a mobile application). It is well-known by now that any
future complex chip realization has to take power reduction
into account [35]. Our previous research shows clearly the
dominant power contribution of data transfer and storage of
multidimensional (M-D) array signals and other complex data
types in data-dominated designs [6], [27] such as MPEG-4.

In this paper we have exploited this feature to achieve large
savings in the system power of a crucial part of MPEG-
4, without sacrificing on the performance or on the system
latency. The results support our claim that data transfer and

Manuscript received September 9, 1998; revised January 6, 1999. The
associate editor coordinating the review of this paper and approving it for
publication was Prof. Jan-Ming Ho.

The authors are with the Katholieke Universiteit Leuven, Leuven, 3001
Belgium (e-mail: brockmey@imec.be).

Publisher Item Identifier S 1520-9210(99)04097-3.

storage exploration (DTSE) and optimization for multimedia
algorithms have to be performed aggressively before the
algorithms are realized in hardware and/or embedded software.

The MPEG-4, multimedia (TriMedia) processor context and
the related work are explained in the following Sections II, III
and IV. In the next two section, the used memory power model
and the MPEG-4 profiling data will be discussed. Section VII
and VIII will explain two major steps of our methodology
being global loop transformations and the data reuse step. In
which the motion estimation kernel will be used as an example.
The main topic (in Section IX), will be the transformation of
the motion estimation code within a group of VOP’s to reduce
the memory power. This section also includes an estimation for
the number of accesses and a comparison to measured results.
All the work so far assumes a software controlled cache. In
Section XI, the gain of our methodology is analyzed for a
hardware controlled cache, in the case of an H.263 decoder.

II. MPEG-4 MOTION ESTIMATION CONTEXT

The purpose of the MPEG-4 Video Verification Model
(VM) is to describe completely defined encoding and decoding
“common core” algorithms and to allow the conduction of
experiments under controlled conditions in a common environ-
ment [33]. The exploration in this paper has been performed
on the MoMuSys Video VM Version 7.0 [30].

The MPEG-4 standard enables an efficient coded repre-
sentation of the audio and video data that can be “content
based,” with the aim to use and present the data in a highly
flexible way. Every object is coded on its own: the decoder can
scale, place and extract the objects from different sources. The
size, position and content of the object are variable during a
sequence. The video object planes (VOP’s), containing coded
video sequences and shape information, are divided in MB’s
(MacroBlock: a group of 16 16 pixels). To exploit the
temporal redundancy of a sequence, a H.263 like motion
estimation is used. The arrows in Fig. 1 represent all motion
estimation steps for one group of VOP’s.

The original source uses the baseline, well known, full
search motion estimation to generate the motion vectors (MV).
The motion vectors can code the information more efficient
by using the temporal redundancy and constructing the next
VOP out of the previous VOP. All VOP’s are divided in Mac-
roBlocks (MB 16 16 pixels), the MB’s are sequentially
executed in the motion estimation.

1520–9210/99$10.00 1999 IEEE

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 203

Fig. 1. MPEG-4 sequence, content-based object coding.

A full-pel full search motion estimation calculates, for all
MB’s of the next VOP and at every possible position of
the motion vector in the previous VOP, a sum of absolute
differences (SAD) to determine the best match. Depending on
an external parameter, the MV length can be limited to 16,
32, 64, 2048. However, the width and the height of the
search area is twice the MV limitation since the MV can point
in all directions.

To support objects, an alpha plane is added to every VOP.
The alpha plane is a bitmap which indicates which pixels are
inside the shape. Since the VOP is divided in MB’s, three
types of MB’s are possible: transparent MB (totally outside the
shape), opaque MB (totally inside the shape) and boundary MB
(some pixels inside the shape). Only the pixels inside the shape
are used during SAD calculation and motion estimation. To
avoid a shape mismatch, between previous and next VOP, the
previous VOP luminance pixels at the shape edge are repeated
outwards (padding and extended padding).

III. RELATED WORK

Up to now, the architecture realizations for state of the
art video en/decoders have been focussed on MPEG1-2 and
H.263 [21], [26], [27]. We are not aware of published results
on full MPEG-4 video encoding yet. The MPEG-4 motion
estimation algorithm is based on the H.263 functionality but
the embedding in a different context (VOP streams) and
other small differences make the current H.263 realizations
not directly reusable for efficient realizations. This will be
illustrated by the results below, which differ substantially
from our previous work on H.263 [27] with the same overall
methodology.

Many software-oriented memory management approaches
exist in literature but they do not focus on the combination of
performance and overall power, which is vital as motivated
above. Several papers have analyzed memory organization
issues in processors, like the processor and memory utilization
[17], [36]. This is however only seldomly resulting in a
formalizable method to guide the memory organization issues.
The few existing methodologies are usually addressing the
“foreground” memory organization issues, i.e., how scalar data
is organized in the local register files. An example of this is a
theoretical strategy to optimally assign scalars to register-file
slots [3]. Some approaches address the data organization in
processors for programs with loop nests. Examples include a

quantitative approach based on life-time window calculations
to determine register allocation and cache usage [5], and work
on vector register allocation [1].

In the parallelizing compiler community work has also
focussed on loop transformations to improve the locality in
individual (regular) loop nests [18], e.g., at Cornell [23], at
Illinois [32], and at Stanford [2]. These do not work globally
across the entire system, which is required to obtain the largest
impact for multimedia algorithms. Partitioning or blocking
strategies for loops to optimize the use of caches have been
studied in several flavors and contexts, in particular at Hewlett-
Packard (HP) [16] and at the University of Toronto [22], [25].
More recently, also multilevel caches have been investigated
(see, e.g., [20]). However, the main focus of these memory
related transformations has been on performance improvement
in individual loop nests though and not on overall power
savings or on global algorithms.

In terms of hardware-oriented memory management, most
approaches focus on scalar signals [34]. The main differences
with our approach are that we can handle large M-D signals
within irregular control and loop constructs as required by
the MPEG-4 context. The main exceptions are the Phideo
approach [24] which is oriented to area optimization in a
periodic stream context, and our earlier Atomium work which
are focused on full custom architectures [6], [9].

IV. PHILIPS TRIMEDIA MULTIMEDIA PROCESSOR

The used methodology adapts the source code of the ap-
plication to a predefined memory architecture. By applying
advanced global loop and data reuse transformations the data
traffic between the different memory layers can be optimized
[10]. To this end accurate knowledge is needed of the target
memory architecture.

The application discussed here is the MPEG-4 encoder and
the targeted multimedia processor we have used here is the
Philips TriMedia. Many of the principles discussed below
should remain valid also for other multimedia processors
however. Multimedia applications need huge amounts of data
and much arithmetic processing so multimedia processors
require specialized hardware to meet the high bandwidth and
throughput requirements. The TriMedia has several specialized
hardware units for multimedia applications, like a receive and
send unit for frame oriented data, in parallel and independent
from the VLIW-processor core.

204 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Fig. 2. TriMedia memory architecture.

Multimedia applications are (mostly) data dominant, so the
high bandwidth requirement can be reached only if the data
stays as much as possible on-chip. For the TriMedia, 128 reg-
isters, 16 kB on-chip data cache and 32 kB on-chip instruction
cache are available. The 32 kB available instruction cache will
not be taken into account because the power contribution of
this block can be heavily reduced by hardware solutions for
loop dominated multimedia applications [12]. Fig. 2 shows the
used memory architecture of the TriMedia [37].

At least half the data cache is hardware controlled, the other
half (maximum 8 kB), can be locked to a certain region of the
address space and can be “software controlled.” The locked
cache is modeled as on-chip memory.

To use the locked cache effectively, the programmer (or
compiler) has to control the on-chip memory in order to fetch
the necessary data only. At compile-time all the knowledge
of the algorithm can be used to optimize the (on-chip) RAM
usage. Since we mainly optimize for big signals, the smaller
signals and the scalars and fully data dependent large signals
which can only be resolved at run-time, are taken care of by
the hardware controlled cache.

V. MEMORY POWER MODEL

For data intensive applications, such as video encoding,
data transfers dominate the power consumption. Therefore the
primary design goal is to reduce memory transfers between
large frame memories and data paths. The cost of a data
transfer is a function of the memory size, memory type, and
the access frequency . is defined as the real
number of accesses per second andnot the clock frequency.
When there is a clock tick and the memory is not accessed,
it is assumed that the memory is in power-down mode. This
assumption holds for most modern low-power RAM’s [19].
The memory itself is characterized by the number of ports,
words, bits, and the aspect ratio of the layout. An accurate
model, derived from a VTI data sheet, is used for the power
exploration in this paper. See [10] for more details.

VI. MPEG-4 PROFILING

Here, we will focus only on the most critical part of the
MPEG-4 encoder. To get a clear view where the major signal
accesses take place, we have instrumented the source code

TABLE I
NUMBER OF READS FOR THE THREE PARTITIONS

and have run the first 28 VOP’s of the “hal” sequence at CIF
resolution (group size). Table I shows the number of
accesses to the VOP frames for different part of the algorithm.
The reference stream VOP average size is small, it contains
in total 452 MB’s inside the bounding box of which 163
MB’s are transparent (in total 39 486 pixels inside the shape).
A huge memory bandwidth of 260 M transfers per second
is needed for real-time encoding of this MPEG-4 stream
at a rate of 30 frames per second. Moreover, the needed
bandwidth will increase dramaticly when the VOP becomes
bigger. Currently, over 800 k main memory accesses are
needed per nontransparent MB. When using a simple profile
level L2 the encoder should be able to encode 5940 MB per
second [31], which leads to a main memory bandwidth of 5 G.
This clearly shows a need for optimization and the introduction
of intermediate memory stages.

Most accesses, 77%, take place for the (luminance) pixel
accesses in padding, motion estimation (full-pel and half-pel),
and motion compensation. The second largest contribution,
21%, is due to shape coding including the shape motion
estimation. The remaining 2% is needed for the MB coding.
Our methodology has been applied to the entire luminance
motion part, because it is a representative and independent
piece of code (functions and data). In this paper we will
only focus the detailed discussion on the luminance full-pel
motion estimation which takes 87% of the accesses within the
optimized part.

VII. GLOBAL LOOP TRANSFORMATIONS

The goal of loop transformations is to reduce power and
memory costs by optimizing the access structure. For multime-
dia applications it is important to apply those transformations
globally over the entire algorithm. In practice, the power
and memory costs cannot be accurately determined yet, in
which case estimates with user-defined weights should be used.
Optimizing criteria for the transformations are defined in terms
of regularity and dependency length [39]. Data dependency
crosses1 are not regular and need much intermediate storage.
Loop transformations like reversing a loop can solve data
dependency crosses but can put the non regularity somewhere
else. When there are many loops it is like a-dimensional
puzzle which has to be solved to find the optimum. A good
measure for the dependency length is data locality per signal.
Data locality is a measure for how close the accesses are
toward each other, per signal element. If the accesses are close

1E.g., the first calculated element in a function is last needed in the next
function and vice versa.

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 205

Fig. 3. Locality characteristics in access graph.

to each other, the element can be reused in foreground mem-
ory, or at least closer to the data-path (than main memory).
By applying global transformations, the access structure and
locality will heavily change. Shortening the global produc-
tion–consumption and consumption–consumption distance is
the main goal for locality improvement. Sometimes data-flow
bottlenecks have to be broken to allow this and this requires
also global data-flow transformations for which we also have
a systematic approach [8].

A data access graph shows which signal element is accessed
when in time (e.g., Fig. 3). To get a clear view on the access
structure we have used a motion estimation algorithm with
very small parameters. The next items judge the graph for
data locality and required memory size in the stages close to
the CPU datapaths.

• Consumption near to production, especially the avoidance
of high cost dependency crosses.This is recognizable as
thin graphs. The advantage is the short storage time.

• Consumption near to consumption.This is also recogniz-
able as thin graphs. This will lead to a good data reuse
[15].

• Clustered reads.This is a special case of the previous
item. Multiple small bands of consumption (read and fast
reread). This clustering will lead to good multiple level
reuse [15].

• Size of clusters.The size of the clusters is an estimate
of the size of an intermediate memory in the memory
hierarchy.

• Production and consumption in the same order.To make
loop merging possible.

During this entire step, signal size and (estimated) access
count have to be used to weigh the importance of every

Fig. 4. Loop interchange possibilities.

signal because the improvement of signal locality for one
signal usually has to be traded off with less locality for
other signals. A formalized methodology to deal with such
loop and data flow transformations in an embedded processor
context has been proposed in our group [14], [39]. To illustrate
this in the MPEG-4 context, the inner four loops of the
motion estimation routines will be explored in depth. For
clarity considerations, only the MB (not block) oriented motion
estimation is considered in this section. In addition, the graph
should look as regular as possible because then the complexity
of the resulting program will be simpler.

Loop interchange and loop folding do have a big impact on
the access structure [32] of the previous VOP. To interchange
the loops, possibilities exists. Due to symmetry
reasons, the 24 loop interchange methods are reduced to 6
(numbered 1 to 6). Each group of four related methods will
have an equal temporal data locality (not spatial locality). Only
the row-major solutions have been explored. These are shown
in Fig. 4.

The loop folding transformation possibilities of method 1
are illustrated in Fig. 5. The big outer square stands for the

206 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Fig. 5. Folding solutions of method 1.

search area. In the search area you will find the current MB
(smaller square). The dashed area are the pixels which are read
in every step in the search area. The 1a method is the original
loop folding (in fact no folding), the entire MB match is read
from the previous VOP.

Method 1c is expanded to the right, it shows the different
steps in the SAD calculation. In the first step, the column
of previous VOP pixels is used for the first column SAD
of the current MB. Next, the same column of the previous
VOP is used for the next column SAD of the current MB.
Obviously these two SAD’s do not relate to each other and
are only intermediate results. This will be repeated until the
last column of the current MB is reached. It is as if the MB
is shifted over one column of previous VOP pixels, resulting
in 16 intermediate values of a 1/16 SAD. In the next phase,
the next column of the previous VOP will be read and used
in the same way until all the columns in the search area are
processed.

The loop folding is performed in the other direction in 1d
and in both directions in 1b. In all cases the entire search area is
traversed but the number of previous VOP pixels per position
changes. For instance method 1b reads only one pixel from
the previous VOP and “moves” the current MB over it. Some
edge effects do exist (at the loop bounds), but ignoring these
the transformation can be performed by changing the index
calculation only, as shown in the following source codes:

Loop folding provides per interchange at least 4 possibilities
(numbered a to d). From now on we refer to loop transforma-
tion by using a number followed by a character, the number
for the interchange transformation (see Fig. 4), the character
for the loop folding (Fig. 5). Our experiment is limited to
these two most promising types of loop transformations for
the motion estimation example which already exhibit 96
combinations. By performing these transformations, the data
locality of the previous VOP will improve, but since the entire
SAD calculation is not completed at once, the intermediate

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 207

Fig. 6. Memory hierarchy.

SAD values need to be stored. By improving the data locality
of one signal, you will usually get a worse locality in another
signal for exchange; so a global exploration is needed to find
the optimum. The exploration space has been systematically
searched and reduced in size. The number of transformation
candidates is then reduced from 96 to 4 (1a, 1c, 1d and
3a). Among them the original loop order 1a is still present.
The selection has been done in two steps. First, by crudely
checking on the data locality and a high-level estimation of
the possible data reuse (see Section VIII). Second, by using
a data access graph representation which gives an accurate
overview of which element is accessed when.

VIII. D ATA REUSE DECISIONS

By adding intermediate memories, the data can be kept
closer to the data path. This is related to the traditional caching
policies, but the approach used here is much more application
oriented, aggressive and global [15]. Power savings can be
obtained by accessing heavily used data from small memories
instead of from the large main memory. The optimization will
introduce copies of the data from large to small memories.
The data will be copied from the main memory to the smaller
intermediate memory and accessed (read) multiple times from
the smaller memory. On the one hand, power consumption
is decreased because data is now read mostly from small
memories, while on the other hand, power consumption is
increased because extra memory transfers are introduced.
Moreover, adding another layer of hierarchy can also have a
negative effect on the total memory size and interconnect cost,
and as a consequence also on the power [15]. So, the power
per memory access will decrease and the number of accesses
will increase the closer it is to the data-path (see Fig. 6).

In our multistep data reuse methodology, several issues
can be decoupled, allowing the potential reuse to be ex-
plored (more extensively) per signal first. For this purpose,
a structural data reuse tree is built per signal. Afterwards,
merging of the final selections in the distinct data reuse trees
is necessary, by assigning different intermediate memories (of
different signals) to the same physical memory [15]. In this
way, the number of actually needed memories can be fitted to
meet external processor constraints (most processors support
only two or three levels of memory hierarchy).

The important signals in the motion estimation are: SAD,
alpha, curr,2 prev. The discussion below will explain how to
explore all the reuse possibilities in a structured way. The
prev signal is the most nonlocally accessed signal. By simply
looking at the motion estimation a MB level data reuse is

2We will use the worst case since there are no statistics available; all pixels
inside the shape! alpha and curr will be equal.

visible. As the SAD is calculated for one position in the search
area, the previous VOP pixels can be stored in a memory of
the size of one MB. At the next position, most pixels can be
read from the small memory for the SAD (see Fig. 7). In total
15 16 240 out of 256 pixels from the previous VOP can
be reused.

A second look reveals the opportunity to reuse data also
from the previous line. The MB is sliding over the search-
area from left to right and at the end of a line the sliding MB
will go over the next line one pixel lower. By exploring this
reuse 255 of the 256 pixels can be reused. The disadvantage
is the bigger intermediate memory needed for the reuse (1280
pixels for a band over the SA instead of only 256 pixels for
storage of one MB block). The number of reads to the band
is the same as to the MB cache but the reads for the bigger
memory are more power hungry. Another solution adds both
intermediate memories (MB band and MB block).

The same band and block reuse approach can be applied
on the search area level (i.e., when the search area moves
one MB).

When we look at the loop structure, we see a strong
correlation between the levels of potential data reuse and the
loops (see below). In the two most inner loops there is no
reuse available because every previous VOP pixel is accessed
only once within the scope of the two loops.

Different levels of reuse can be combined to obtain the
optimum signal hierarchy. It is obvious that the number of
solutions is huge when all possibilities are searched. Fig. 8
shows the data reuse trees for method 1a. This is a structured
way of showing all the reuse possibilities. The most upper
solution in the tree (root) is the original solution (dissipating
nearly 30 W for theprevious VOP signal), nothing is reused
and everything is read from main memory. It is clear that this
is not acceptable and a memory hierarchy is needed.

All the nodes in the tree of Fig. 8 offer a valid solution
for reuse. In the first level of hierarchy all the four types
of reuse are considered: MB block, MB band, SA block
or SA band. When we add a second level, then the first
level exploration remains valid and every solution is again
subdivided in multiple next level solutions. It only makes
sense if the intermediate memories become smaller as they
come closer to the data-path (so a limited number of solutions
remains).

The estimated size of the intermediate memories and a high
level estimation of the number of reads and writes are fed
into a memory power model [38], [10] to estimate the power
for every reuse strategy. The power numbers, in Table II, are
corresponding to the numbers in the figure and include the
power of all the levels of the memory hierarchy of the branch.
Our experiments have shown that by changing the power

208 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Fig. 7. Data reuse block and band.

Fig. 8. Reuse trees for code version 1a. Left: reuse tree for previous VOP. Middle: how do these intermediate memories match each other. Right:
reuse tree for next VOP.

TABLE II
NUMBER OF READS FOR THE THREE PARTITIONS

model these result can change significantly. So the memory
model and the memory hierarchy (if it is fixed) need to be
given to find the optimum. However, the same methodology
can be used for any other power model.

The data reuse trees for the four different transformed
methods are built in a similar way. The tree structure is equal
due to the fact that the number of loops hasn’t changed,
but they have different power figures. Moreover, they require
different branches in the data reuse tree for the power optimal
decision. A large total gain of a factor 46 in memory power

is reached (compared to the reference code) by choosing the
optimal transformation and branch in the reuse tree. Because of
implementation ease, the original loop ordering with a custom
data reuse solution is chosen for further exploration. The loss
due to this nonoptimal choice is 1.4% only (from 1856 mW
to 1882 mW).

Power can be traded off for memory size and hence chip
or board area. Fig. 9 shows the total memory size put against
the needed power. Implementation 15 is best for power, but
this will need a huge amount of intermediate memory which
is also three levels deep. Good alternatives for power and area
are: 3, 7 and 8. By choosing number 7, the memory hierarchy
size is reduced from 32 kB (optimum branch) to 6.4 kB by
only sacrificing 3.3% of the total memory power (from 1882
mW to 1945 mW). These two levels also do fit best onto the
TriMedia processor memory architecture so they have been
retained for the final solution.

IX. COMBINING MOTION ESTIMATIONS

All the experiments below have been performed using the
real code and the access counts are based on actual profiling
for real VOP streams.

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 209

Fig. 9. Memory size versus power for prev signal.

A. Merging Possibilities

Up to now, only a simplified motion estimation kernel
has been analyzed and discussed. Now, the entire motion
estimation of a group of VOP’s will be studied and globally
optimized. Source 5 reflects the original motion estimation
code of the MPEG-4 encoder [33] (see also Section II).
First the entire P-VOP is coded, followed by the successive
B-VOP’s. Because of this implementation, the search area
window will go (number of VOP’s in a group) times
through the previous VOP and times through the next
VOP. By combining the different motion estimations which
take place on the same VOP and position, a significant gain
can potentially be achieved (up to a factor in reads).

However, not all motion estimation steps can be merged
(infeasible due to data dependencies). To make the differences
clear, the following naming convention is used for the different
motion estimations in the studied alternatives. The “P” motion
estimation is from the next P-VOP to the previous P-VOP.
The abbreviation “Bn” (or “Bp”) is used for the all B-VOP
(of one group) motion estimations in one direction, the n for
Next, the p for Previous.

The original order is displayed in Fig. 10 as V1, with no
merging at all. Version V2 and V3 use the VOP’s which were
originally stored in the frame reordering hardware. When in-
corporating the hardware (memory) needed for the reordering
into the coder, these alternatives will not negatively affect the
total amount of memory to store VOP’s or delay/latency for
the rest of the system. The other two versions (V4 and V5)
need twice as many VOP’s to store and the latency will at
least double, which is not acceptable.

Version V2 executes the motion estimation for all MB’s of
the P-VOP first and when finished, the motion estimation of
the B-VOP’s in both directions are executed in parallel (see
also Source 6). The search area traverses the previous VOP
twice per group (for P and for Bp) and the next VOP once (for
Bn). During the B-VOP motion estimation, two search areas
are active concurrently.

In version V3, another merging is used (see also Source 7),
whereall the motion estimations on the previous VOP (P and
Bp) are combined and afterwardsall the motion estimations
on the next VOP (Bn) are combined. Hereby, version V3
has two traversing search areas only (less accesses to fill
two search areas instead of the three of V2) which are not
concurrently needed (smaller intermediate storage due to better
inter signal inplace [13]; the two search areas can use the same
memory after each other). Both characteristics (accesses and
size) advocate for version V3. But before coding the MB, both
best matches of the motion estimation (from previous and next
VOP) must be read for the interpolated mode. This means that
256 pixels must be read from the previous VOP and 256 pixels
must be read from the next VOP.3 For data locality reasons4,
the interpolated mode and MB coding is executed directly after
the motion estimation on the next VOP. Also in this way, the
best match from the next VOP must still be in the next VOP
search area memory since the search hasn’t moved and the best
match has just been found in this search area. But the previous
VOP search area is not available anymore (since the previous
VOP best match was determined in the other loop nest, see
Source 7), so these reads have to come from the VOP (main)
memory. This is unlike version V2, where the previous and
next VOP are available at the same time.

3The direct mode reads need to be taken into account as well, but for
complexity reasons we will not add these results here.

4The current MB does not have to be reread then.

210 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Fig. 10. Motion estimation merging possibilities with data dependencies between VOP’s.

Without going in too much detail, we show the increased
complexity of the MPEG-4 context. In the “static” case, for
MPEG-2 and H.263 coders or alike, the MB’s having an equal
position in the frame would be combined because they have
an equal search area. However, in MPEG-4 the VOP’s do
not (have to) coincide, so the MB’s and their search areas
will not necessarily overlap fully. Combining the MB’s on the
same position within the bounding box may cause a poor or
even no overlap between the corresponding search areas. This
results in a poor reuse and moreover, the combined search area
has no upper size limit (which is hard to optimize at compile
time). By defining a maximum distance between the MB’s,
both problems will be solved; there will be an overlap because
the MB’s are not too far from each other and the combined
search area will maximally grow the maximum distance. The
maximum distance for which the merging is performed is
a tradeoff. By making it small it will combine the motion

estimations poorly. On the other hand, a large distance will
need a big combined search area. Experiments, worst case
calculations and implementation complexity estimations have
pointed out a maximum distance of (MB_SIZE) as a
good compromise. This way, every VOP will contribute one
MB to every combined motion estimation (if one inside the
bounding box). It cannot contribute two MB’s because then
the maximum distance is exceeded and there will be at least
one inside the 16 16 area.

B. Main Memory Read Count Estimation

A similar reuse decision exploration is used as in
Section VIII, but the power figures have changed. To make a
fair tradeoff between V2 and V3, we estimate the number of
main memory reads. The absolute number of reads depends
on VOP size, shape, group size, etc. At compile time we don’t
know size, shape nor group size. However, we can make a
relative comparison for the number of accesses for a group of
VOP’s. Version V2 has three search areas and V3 has only two.
They will have an equal relation in the number of accesses.
The additional reads for the interpolated mode are needed for
a good estimation. The number of reads depends on VOP size
for which we will assume the CIF format here. Moreover, the
group size is important as all the members of the combined
motion estimation will read one MB from the previous VOP,
so the number of reads will grow linearly with the group size.

Table III and Fig. 11 give the estimated number of VOP
reads and the needed total search area memory size. One search
area can maximally grow to 64 64 which is 4 kB, so V2
needs 4 kB and V3 needs 8 kB. The number of main memory
reads for a search area to traverse a VOP equals:5

MB rows
5Assuming reuse when the search area traverses in horizontal direction.

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 211

TABLE III
MEMORY SIZE AND MAIN MEMORY ACCESSES FORV2 AND V3

Fig. 11. Number of accesses for V2 and V3.

For every row of MB’s in the next VOP
MB rows , it will have to read a band of

pixels which has the previous VOP width6 and
the search area height . For example the P motion
estimation (like in phase 1 of version V2) needs 332 k
reads (384 48 18). However, a Bp (and Bn) motion
estimation requires a bigger search area (due to the VOP
offset), so it needs 442 k reads (384 64 18). The
total number of reads for version V2 is 332442 442
(P Bp Bn).

For version V3, an access count is needed for the previous
VOP reads in the interpolated mode, direct mode and motion
compensation. Per B-VOP MB 580 reads are needed from the
previous VOP (assuming already an optimized implementation
for the different modes). Thus, the combined B-VOP MB
requires 580 22 18 (M-1) reads. The total number
of reads for version V3 is 442442 230 (M-1) (Bp
Bn modes).

The break-even point between V2 and V3 is at
. This means that you will always choose for V2.7 This

is because we assumed a worst case read count for the
interpolated mode reads. A clever implementation will take
advantage of the overlap for the interpolated mode reads.
Experiments have pointed out that the motion vectors of the
MB’s which are combined all point in the same direction and
the needed pixels do have a big overlap. This can easily be
explained due to the inertia of moving objects. The bigger the

6Including padded edge.
7
M = 1 is not a option because then there are no B-VOP’s. In that case

there is no difference between V2 and V3.

group becomes, the bigger the probability of a overlap and the
less extra reads are needed (see Fig. 11). Also, the number of
reads is limited by the search area size. The break-even point
will shift to a higher .

C. Selection of Optimal Implementation

Multiple implementations are possible to build one of the
two different versions. This section gives the opportunity to
select a good alternative for a given memory (or cache) size.
The end of Section IX.A explains some of the remaining
implementation freedom. Without going into more detail,
Fig. 12 shows the number of memory accesses versus the
required memory for different implementations (both several
version V2 and V3). Clearly, most implementations are
not useful since they perform worse in both (accesses and
memory size). The dotted lines connects the interesting
implementations. The most suitable implementation for a
given memory size (which is known for every MM-processor)
can be found by reading this curve. Here, in the case of
TriMedia which has 8 K internal memory, we’ve chosen
for version V2a. Version V2h is slightly better for power
but is much more complex to implement.

Moreover version V3a is build to verify the estimations of
Section IX-B. Fig. 13(a) shows the measured result for the
first 96 frames of the “hal” sequence. The break-even point
has moved to . In the original source, the number
of reads from the (current) B-VOP’s was negligibly small.
Now after optimizing, the analyzed number of accesses from
the current VOP has a larger share. An important observation
here is that the (current) B-VOP reads for V3 increases twice
as fast as V2 [see Fig. 13(b)]. This is caused by the separation
of the loops: for the motion estimation on the previous and
next VOP, all the B-VOP’s are read twice. Adding these reads
moves the breakpoint close to , in the middle of the
most common values of (4 and 8).

X. OVERALL RESULTS FORMPEG-4

We have applied our DTSE methodology on the MPEG-4
motion estimation and have analyzed the background memory
gain (the entire memory hierarchy without foreground reg-
isters). A measured gain of a factor 65 in luminance pixel
VOP memory accesses is obtained by simulation of the first
96 frames of the reference “hal” sequence in CIF resolution.
The search area memory power is reduced with a factor 5.3.
The MB oriented memory accesses is increased with 50%
but these involves small signals only. The total background
memory power gain is a factor 8.0 (see Fig. 14) which will
make other parts of the processor power dominant. In the
current optimization we have mainly focussed on the VOP
and search area memory. If necessary, we expect to be able to
undo the power increase in the MB oriented memory and to
have an overall memory power gain of a factor 10 to 15.

XI. CACHE BEHAVIOR OF A TRANSFORMED H.263

In this section, the cache hit rates of a software implemen-
tation of H.263 video decoder will be determined. Then it will
be shown that applying our custom hardware oriented data
transfer and storage optimization methodology, which mainly

212 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

(a) (b)

Fig. 12. Memory requirement versus memory reads.

(a) (b)

Fig. 13. Measured accesses for V2 and V3. (a) Access count from previous and next VOP; (b) also includes the reads from the B-VOP’s.

focuses on reducing the power consumption and memory size
reduction [9], also improves the cache hit rates and lowers
the number of cycles spent to access the primary cache of
processors like the DEC Alpha.

Starting from the public domain code for a H.263 video
conferencing decoder [11], the number of transfers to arrays
present in the code are counted while decoding a H.263 video
stream calledsuz14.263 . The stream decodes to 75 Quarter
CIF (QCIF) frames which corresponds to 2.5 seconds real-
time video for a frame rate of 30 frames/s. One QCIF frame is
176 pixels wide and 144 pixels high. Since the chrominance
values are subsampled, a total of 176144 2 76

88 38 016 bytes are needed to store 1 frame. The length
of the encoded stream depends on the modes enabled during
encoding. The main data flow of this video decoder in the
initial code description is depicted in Fig. 15.

The video decoder was simulated assuming the memory or-
ganization tabulated in the column “Original” of Table V. The
organization of the memory corresponds to what a traditional
C compiler typically does. It places arrays one after each other
in the same order as the declaration.

In our experiment, the cache system is configured like the
DEC AXP 3000/800S. This processor has a direct mapped,
write through primary cache of 8 kB, cache lines of 32 bytes

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 213

Fig. 14. Memory power gain per step.

Fig. 15. Data flow and main tasks in the reference H.263 video decoder.

[4] and a write allocate upon a cache write miss. Because
the total memory size is 170 774 bytes, we may assume that
all data is cached by the secondary cache that is at least 256
kB large. The number of compulsory misses8 is relatively low
compared to the total number of accesses from the L2 cache
and can be ignored.

The number of cache hits and misses are obtained by
an accurate simulation of the cache using C++ classes. The
result of such a simulation for the video decoder software
implementation of Telenor Research [11] is presented in the
second and third column of Table IV.

To estimate the number of cycles due to reading and writing
to the caches, we assume that one processor cycle is spent upon
a L1 cache hit and 8 cycles if the L1 cache is missed. Hence

8Cache misses which cannot be avoided because the data is read for the
first time.

the total number of cycles due to transfers to/from the L1 cache
is the total number of hits plus eight times the number of L1
cache misses. This is a best-case estimation and in practice
it will be even worse (since the compulsory L2 cache misses
are not taken into account and not every processor cycle will
contain a data access).

The hit rates of the cache can be improved by applying some
of our data storage and transfer optimizations on the software
implementation of Telenor Research. For an explanation of the
full methodology for custom memory organizations, we refer
to [9], [28], [29]. We briefly list the major optimizations that
were performed to obtain a power efficient implementation.

• Global data-flow transformation: removal of all accesses
related to the border.

• Global loop and control flow transformations: e.g., merg-
ing of the forward and backward predictions.

214 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

Fig. 16. Optimized H.263 decoder.

TABLE IV
PRIMARY CACHE PERFORMANCE OF THEDEC AXP 3000/800S

WHILE DECODING WITH THE ORIGINAL AND OPTIMIZED DECODER

• Memory hierarchy exploitation: introduction of small
local buffers and the corresponding data transfers, to
buffer the forward predicted MB, the bidirectional inter-
polated MB, several tables likeOM, MV(motion vectors)
and modemap, a MB to store the result of IDCT. For
the macro block related data, 3 extra levels of storage
hierarchy were introduced in the most optimized solution
to fully exploit all data reuse.

• In-place optimizations: reduction ofold frame and
new frame to 1 frame and an in-place buffer of 13
MacroBlocks.

These optimizations reduce the accesses to frame memories
drastically by making use of local distributed memory hi-
erarchy. The data flow between the distributed small local
memories and the frame memories of the improved video
decoder is depicted in Fig. 16. This new code and the custom
memory organization lead to an overall power saving in the
(dominant) memory network of a factor 9 in maximum power
for the worst-case OBMC mode [28], [29].

Although the optimizations mentioned above are carefully
selected with an application specific memory organization in
mind, the resulting description can also be used when targeting

TABLE V
MEMORY ORGANIZATION OF THE ORIGINAL. AND OPT. VIDEO DECODER

a software implementation on a general purpose processor. It’s
interesting to measure the impact on the cycle count when a
power optimized description is mapped onto general purpose
processors, because many designers would probably claim that
overhead to introduce power savings would have a negative
effect on the performance. We will show however that this is
not true due to the aggressively improved data access locality
in the code. So significant power reduction can be obtained
without sacrificing on overall speed.

The improved video decoder holds the data tabulated under
“Optimized” in Table V.

The total size of the memory is 83 670 bytes. This is 48%
of the number of bytes needed to store the data structures of
the reference code.

The cache behavior for this optimized decoder is also
simulated. The results are tabulated under “Optimized” in
Table IV.

We see that the cache miss rates decrease from 9% to 4%
and from 16% to 6% for the reads and writes respectively.
The cycle budget due to transfers to the L1 cache is 7% less
than for the reference case.

There are 5 637 339 reads and 3 753 088 writes to the extra
allocated MB’s to store the result of (P and B) forward

BROCKMEYER et al.: MPEG-4 FULL PEL MOTION ESTIMATION 215

prediction. The MB’s are relatively small. For example, the
luminance part of a MB is represented by four blocks of 8
8 bytes. One subblock of 8 8 pixels of 8 bit can be stored
in eight general purpose registers of 64 bit. In total 32 64-
bit registers are available in the DEC APX3000/800S. When
those small arrays are in registers, the number of transfers
to and from the primary cache will decrease even further,
affecting the cycle count positively. This will also lower the
power consumption of the caches.

The applied optimizations for the H.263 application were
for a custom memory architecture. However, just mapping
the code on a processor as is, still shows an improvement. It
shows a decrease of the number of cache misses. This can be
explained due to the improved data locality, and more data can
retain in the cache. Redoing the design and targeting a gen-
eral purpose memory structure (L1 cache—L2 cache—main
memory) from the beginning would of course be better.

Since the MPEG-4 encoder has been optimized for data
transfer and storage with a TriMedia memory architecture
in mind, a large gain in the number of cache misses is
accomplished even when we don’t lock the cache. The explicit
copies from the VOP to the search area memories will cause
extra overhead. Also many modulo operations are used to
achieve this goal. Moreover, the datatypes were not fully
refined yet and no subword parallelism is used. However, no
performance decrease is measured by running the code as is on
the actual TriMedia board. Especially by removing the created
addressing bottleneck and adding cache locking (to assure the
cache hits), large performance gains can be expected also.

XII. CONCLUSION

Upcoming multimedia processing tasks will require high
bandwidth. In this paper, we have estimated that a software im-
plementation of an MPEG-4 video encoder (VM7.0) typically
requires over 800 k main memory accesses per nontransparent
MB, which is equal to 5 Gtransfers/s to encode the simple
simple profile level L2.

The exploration space to optimize data storage and transfers
is very large, and our experiments clearly show the importance
of a formalized methodology to traverse it. We have applied
our data transfer and storage exploration methodology on the
MPEG-4 motion estimation and have analyzed the background
memory gain (the entire memory hierarchy without foreground
registers). Large gains in power, memory transfers and mem-
ory storage are achieved by building an optimized MPEG-4.

We have also shown that the cache miss rates of a heavily
memory optimized implementation of a H.263 decoder de-
creases on a DEC “Alpha” AXP 3000/800S. So the achieved
power savings can be obtained without a performance penalty,
actually even combined with a relevant cycle count reduction
compared to conventional reference code.

REFERENCES

[1] R. Allen and K. Kennedy, “Vector register allocation,”IEEE Trans.
Comput., vol. 41, pp. 1290–1316, Oct. 1992.

[2] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng, “The SUIF
compiler for scalable parallel machines,” inProc. 7th SIAM Conf.
Parallel Proc. Scientific Comp., 1995.

[3] O. Arregi, C. Rodriguez, and A. Ibarra, “Evaluation of the optimal
strategy for managing the register file,”Microprocess. Microprogramm.,
no. 30, pp. 143–150, 1990.

[4] P. Baglietto, M. Maresca, M. Migliardi, and N. Zingirian, “Image
processing on high-performance risc systems,Proc. IEEE, vol. 84, pp.
917–930, July 1996.

[5] F. Bodin, W. Jalby, D. Windheiser, and C. Eisenbeis, “A quantitative
algorithm for data locality optimization,” Tech. Rep., IRISA/INRIA,
Rennes, France, 1992.

[6] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. De Man,
“Global communication and memory optimizing transformations for
low power signal processing systems,”VLSI Signal Processing VII, J.
Rabaey, P. Chau, and J. Eldon, Eds. New York: IEEE Press, 1994,
pp. 178–187.

[7] F. Catthoor, M. Janssen, L. Nachtergaele, and H. De Man, “System-
level data-flow transformation exploration and power-area trade-offs
demonstrated on video codecs,”J. VLSI Signal Process., special issue
on System Level Trade-off Analysis in Signal Processing, vol. 18, no.
1, pp. 39–50, Jan. 1998.

[8] , “System-level data-flow transformation exploration and power-
area trade-offs demonstrated on video codecs,”J. VLSI Signal Process.,
special issue on Systematic Trade-Off Analysis in Signal Processing
Systems Design, vol. 18, no. 1, pp. 39–50, 1998,

[9] F. Catthoor, S. Wuytack, E. De Greef, F. Franssen, L. Nachtergaele, and
H. De Man, “System-level transformations for low power data transfer
and storage,” in paper collection onLow Power CMOS Design, A.
Chandrakasan and R. Brodersen, Eds. New York: IEEE Press, 1998,
pp. 609–618.

[10] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A.
Vandecapelle,Custom Memory Management Methodology—Exploration
of Memory Organization for Embedded Multimedia System Design.
Boston, MA: Kluwer, 1998.

[11] Digital Video Coding at Telenor R&D, Telenor’s h.263 software, ver-
sion 1.3, Feb. 1995,http://www.nta.no/brukere/DVC/h263
_software/ .

[12] F. Catthoor, “Energy-delay efficient data storage and transfer architec-
tures: Circuit technology versus design methodology solutions,” inProc.
DATE’98, Feb. 23–25, 1998.

[13] E. De Greef, F. Catthoor, and H. De Man, “Array placement for
storage size reduction in embedded multimedia systems,” inProc. IEEE
Int. Conf. Application Specific Systems, Architectures and Processors,
Zurich, Switzerland, July 1997, pp. 66–75.

[14] , “Program transformation strategies for reduced power and
memory size in pseudo-regular multimedia applications,”IEEE Trans.
Circuits Syst. Video Technol., vol. 8, pp. 719–733, Oct. 1998.

[15] J. P. Diguet, S. Wuytack, F. Catthoor, and H. De Man, “Formalized
methodology for data reuse exploration in hierarchical memory map-
pings,” in Proc. IEEE Int. Symp. Low Power Design, Monterey, CA, pp.
30–35, Aug. 1997.

[16] J. Z. Fang and M. Lu, “An iteration partition approach for cache or
local memory thrashing on parallel processing,”IEEE Trans. Comput.,
vol. C-42, pp. 529–546, May 1993.

[17] A. Faruque and D. Fong, “Performance analysis through memory of
a proposed parallel architecture for the efficient use of memory in
image processing applications,” inProc. SPIE’91, Vis. Commun. Image
Process., Boston, MA, Oct. 1991, pp. 865–877.

[18] P. Feautrier, “Compiling for massively parallel architectures: A perspec-
tive,” in Algorithms and Parallel VLSI Architectures III, M. Moonen
and F. Catthoor, Eds. Amsterdam, The Netherlands: Elsevier, 1995,
pp. 259–270.

[19] K. Itoh, K. Sasaki, and Y. Nakagome, “Trends in low-power RAM
circuit technologies,”Proc. IEEE, special issue on “Low power design,”
vol. 83, pp. 524–543, Apr. 1995.

[20] M. Jimenez, J. Llaberia, A. Fernandez, and E. Morancho, “A unified
transformation technique for multi-level blocking” inProc. EuroPar
Conf., Aug. 1996.

[21] R. Kleihorst, A. van der Werf, F. Bruls, W. Verhaegh, and E. Waterlan-
der, “MPEG2 video encoding in consumer electronics,”J. VLSI Signal
Process., vol. 17, nos. 2/3, pp. 241–252, Nov. 1997.

[22] D. Kulkarni, M. Stumm, and R. Unrau, “Implementing flexible compu-
tation rules with subexpression-level loop transformations,” Tech. Rep.,
Comp. Systems Res. Inst., Univ. Toronto, Toronto, Ont., Canada, 1995.

[23] W. Li and K. Pingali, “A singular loop transformation framework based
on nonsingular matrices,” inProc. 5th Annu. Workshop Lang. Comput.
Par., New Haven, CT, Aug. 1992.

[24] P. Lippens, J. van Meerbergen, W. Verhaegh, and A. van der Werf,
“Allocation of multiport memories for hierarchical data streams,” in
Proc. IEEE Int. Conf. Comp. Aided Design, Santa Clara, CA, Nov. 1993.

216 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 2, JUNE 1999

[25] N. Manjiakian and T. Abdelrahman, “Reduction of cache conflicts in
loop nests,” Tech. Rep. CSRI-318, Comput. Syst. Res. Inst., Univ.
Toronto, Toronto Ont., Canada, Mar. 1995.

[26] M. Mizuno et al., “A 1.5 W single-chip MPEG2 MP@ML encoder
with low-power motion-estimation and clocking,” inProc. IEEE Int.
Solid-State Circuits Conf., San Francisco, CA, Feb. 1997, pp. 256–257.

[27] L. Nachtergaele, F. Catthoor, B. Kapoor, D. Moolenaar, and S. Janssens,
“Low power storage exploration for H.263 video decoder,” presented at
IEEE Workshop VLSI Signal Processing, Monterey, CA, Oct. 1996.

[28] L. Nachtergaele, F. Catthoor, B. Kapoor, S. Janssens, and D. Moolenaar,
“Low power data transfer and storage exploration for h.263 video
decoder system,”IEEE J. Select. Areas Commun., vol. 16, pp. 120–129,
Jan. 1998.

[29] L. Nachtergaele, D. Moolenaar, B. Vanhoof, F. Catthoor, and H. De
Man, “System-level power optimization of video codecs on embedded
cores: A systematic approach,” special issue “Future directions in the
design and implementation of DSP systems,”J. VLSI Signal Process.,
vol. 18, no. 2, pp. 89–109, Feb. 1998.

[30] Video group, “Text of MPEG-4 Video VM-version 7.0,” N1642, Bristol,
U.K., Apr. 1997.

[31] MPEG Requirement Subgroup, “Overview of MPEG-4 profiles and
levels,” N2325, Dublin, Ireland, July 1998.

[32] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,”Commun. ACM, vol. 29, no. 12, pp. 1184–1201, 1986.

[33] T. Sikora, “The MPEG-4 video standard verification model,”IEEE
Trans. Circuits Syst. Video Technol., vol. 7, pp. 19–31, Feb. 1997.

[34] L. Stok and J. Jess, “Foreground memory management in data path
synthesis”Int. J. Circuit Theory Applicat., vol. 20, pp. 235–255, 1992.

[35] L. Terman and R.-H.Yan,Proc. IEEE, special issue on “Low power
electronics,” vol. 83, pp. 495–700, Apr. 1995.

[36] E. Torrie, M. Martonosi, C.-W. Tseng, and M. Hall, “Characterizing the
memory behavior of compiler-parallelized applications,”IEEE Trans.
Parallel Distrib. Syst., vol. 7, pp. 1224–1236, Dec. 1996.

[37] G. Slavenburt et al., “TriMedia, TM1000 preliminary data book,”Philips
electronics North America Corporation, TriMedia product group, 811 E.
Arques Avenue, Sunnyvale, CA, 1997.

[38] VLSI Technology, inc., “Datasheet book: 0.6-micron 5-V core mixed 5
V/3 V I/O cell-based libraries,” VLSI Technology, Inc., San Jose, CA,
Aug. 1994.

[39] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man, “Automating
high-level control flow transformations for DSP memory management,”
in Proc. IEEE Workshop on VLSI Signal Processing, Napa Valley, CA,
Oct. 1992.

Erik Brockmeyer received the degree in electrical
engineering in 1998 from the University of Eind-
hoven, The Netherlands. In the last year he did his
thesis on MPEG-4 in the System Exploration for
Memory and Power (SEMP) group, University of
Eindhoven.

He is now with the DESICS division of the In-
teruniversity Microelectronics Center (IMEC), Leu-
ven, Belgium. Currently, he is working in this group,
headed by F. Catthoor, in the field of data transfer
and storage exploration (DTSE), with emphasis on

storage cycle budget distribution.

Lode Nachtergaele received the degree of
Industrial Engineer in 1989 from the Katholieke
Hogeschool Oostende, Oostende, Belgium.

In the same year, he joined the Interuniversity
Microelectronics Center (IMEC), Leuven, Belgium,
starting his career in the group working on the
Cathedral-II silicon compiler. He was involved
in the development of the Silage simulator S2C.
In 1992, he joined the System Exploration for
Memory and Power (SEMP) group. Together with
his colleagues, he worked on the ATOMIUM

methodology, partially supported by prototype tools. In 1996, he joined
the Multimedia Image Compression Systems (MICS), Design Technology
for Integrated Information and Communication Systems (DESICS) division,
IMEC. In 1999, he became the Operating Officer of the MICS group.

Mr. Nachtergaele is the Belgium head of delegation for the ISO/IEC JPEG
standardization committee.

Francky V. M. Catthoor (M’87) received the en-
gineering degree and the Ph.D. in electrical engi-
neering from the Katholieke Universiteit Leuven,
Leuven, Belgium, in 1982 and 1987, respectively.

From September 1983 until June 1987, he was
a Researcher in the area of VLSI design method-
ologies for Digital Signal Processing, with Prof. H.
De Man and Prof. J. Vandewalle as Ph.D. thesis
advisors. Since 1987, he has headed several research
domains in the area of high-level and system syn-
thesis techniques and architectural methodologies,

all within the Design Technology for Integrated Information and Telecom
Systems (DESICS—formerly VSDM) division, Interuniversity Microelec-
tronics Center (IMEC), Leuven, Belgium. He has been Assistant Professor,
Electrical Engineering Department, Katholieke Universiteit Leuven, since
1989. His current research activities belong to the field of architecture
design methods and system-level exploration for power and area, mainly
oriented toward memory management and global data transfer optimiza-
tion. The major target application domains are real-time signal and data
processing algorithms in image, video and end-user telecom applications,
and data-structure-dominated modules in telecom networks. Both customized
architectures and programmable (parallel) multimedia processors are targeted.

Dr. Catthoor he received the Young Scientist Award from the Marconi
International Fellowship Council in 1986. Since 1995, he has been an
Associate Editor for the IEEE TRANSACTIONS ON VLSI SYSTEMS, and since
1996, for theJournal of VLSI Signal Processing. In 1997, he became a member
of the steering board for the VLSI Technical Committee of the IEEE Circuits
& Systems Society. He was the program chair of the 1997 International
Symposium on System Synthesis (ISSS) and is the general chair for the 1998
ISSS.

Jan Bormans (M’97) received the electrical en-
gineering degree and the Ph.D. degree in applied
sciences from the Vrije Universiteit Brussel (VUB),
Belgium in 1992 and 1998, respectively.

In 1992 and 1993, he has been a Researcher on
image compression at the ETRO laboratory of the
VUB. In 1994, he joined the VLSI System and
Design Methodologies (VSDM) division, Interuni-
versity Microelectronics Center (IMEC), Leuven,
Belgium. Since 1996, he has been heading the
Multimedia Image Compression Systems group in

DESICS (Design Technology for Integrated Information and Communication
Systems), focusing on the efficient design and implementation of systems-on-
a-chip for advanced multimedia applications.

Dr. Borman is the Belgium head of delegation for the ISO/IEC MPEG
standardization committee.

Hugo J. De Man (F’86) was born in Boom, Bel-
gium, on September 19, 1940. He received the
electrical engineering degree and the Ph.D. degree
in applied sciences from the Katholieke Universiteit
Leuven, Leuven, Belgium, in 1964 and 1968, re-
spectively.

From 1969 to 1971, he was at the Electronic Re-
search Laboratory, University of California, Berke-
ley, as an ESRO-NASA Postdoctoral Research Fel-
low, working on computer-aided device and circuit
design. In 1971, he returned to the University of

Leuven as a Research Associate of the NFWO (Belgian National Science
Foundation). In 1974, he became a Professor at the University of Leuven.
During the winter quarter of 1974–1975, he was a Visiting Associate Professor,
University of California, Berkeley. From 1984 to 1995, he was Vice-President
of the VLSI systems design group of the Interuniversity Microelectronics
Center (IMEC), Leuven, Belgium. Since 1995, he has been a Senior Research
Fellow of IMEC, responsible for research in system design technologies.

Prof. De Man is a corresponding member of the Royal Academy of
Sciences, Belgium, and a member of the Royal Flemish Engineering Society
(KVIV).

