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Abstract lized; and (i) the data deluge (expected 10-fold Growth in 5
Years [4]) will increase the relative contributions of storage
We consider large scale, distributed storage systems witbyatems to the overall power consumption. Thus reducing
redundancy mechanism; cloud storage being a prime exgower consumption has become a central goal when manag-
ple. We investigate how such systems can reduce their poumerdata centers. This is ever more crucial in the cloud envi-
consumption during low-utilization time intervals by operatonment due to the large scale and the critical importance of
ing in a low-power mode. In a low power mode, a subset lofv operational costs.
the disks or nodes are powered down, yet we ask that eacMethods for treating power reduction in storage systems
data item remains accessible in the system; this is chlled that are based on powering off storage devices have been
coverage The objective is to incorporate this option int@uggested. Some are centered around placing the data wisely
an existing system rather than redesign the system. Witenmigrating it dynamically) to allow powering off unused
doing so, it is crucial that the low power option should nalevices - most notable, MAID [8], Popular Data Concentra-
affect the performance or other important characteristicstiain (PDC [20]), Hibernator [29] and Diverted Access (DIV
the system during full-power (normal) operation. This woif21]). Others, (e.g. [19] and Pergamum [23]) employ tech-
is a comprehensive study of what can or cannot be achiewéglies to delay the access to some of the storage devices.
with respect to full coverage low power modes. A comprehensive summary of existing methods is given in
The paper addresses this question for generic distribusedtion 1.4).
storage systems (where the key component under investigdn this paper we focus on high scale and distributed stor-
tion is theplacement functiomf the system) as well as forage systems (e.g. [12, 26, 17, 10, 5, 6]). Such systems
specific popular system designs in the realm of storing dat& architected with built-in redundancy to address require-
in the cloud. Our observations and techniques are instrumerents like availability, performance and reliability We inves-
tal for a wide spectrum of systems, ranging from distributdigiate how such systems can reduce their power consump-
storage systems for the enterprise to cloud data servicestidn during low-utilization time intervals by operating in a
the cloud environment where low cost is imperative, the dbw-power modgsimilarly to the setting studied in [21] (see
fects of such savings are magnified by the large scale.  Section 1.4). We focus on power savings that can be attained
while not compromisingther system characteristics such as
high performance and reliability during full-power (normal)

1 Introduction operation. The question to address is whether periods of low
utilization (nights, weekends etc) can be used to significantly
1.1 Motivation and Background reduce power consumption, and if so - how.

Energy savings in storage systems has become a key as 8t The Model and Problem
in the design and use of future systems. IT systems today

consume about 1-2% of the total energy in the world [1] a®ur study is aimed at implementing a low power mode
this will double in the next 4 years (according to [2], in 200&ithin real world (existing) systems with minimal disrup-
US datacenters consumed 1.5% percent of total U.S. elideness to the system, utilizing existing mechanisms (i.e.
tricity consumption). It has been shown that storage systetis placement function or the redundancy scheme) whenever
are the second most important component in the IT after fhessible. The general approach powers down a subset of the
computing resources, and in some cases (e.g. in large digls or nodes in the system during low utilization, yet we re-
centers) may consume up to 40% of the total energy [3, 8lire that each data item remains accessible at all times. In
This ratio may grow due to two facts: (i) the power corew utilization periods, availability and performance may be
sumption of compute resources has been getting a lot of@mpromised, while reliability remains essentially the same
tention and as a result will become much more efficiently usince the redundant copy(ies) can be recovered.



In our model, the system is comprised of individgtdr- [5] or GFS [12] cluster running MapReduce jobs at night).
age nodega storage device like disk or controller, a rack duch analytics would typically require full access for reads
a even portion of a datacenter) that can be turned on andhbeif hardly any writes and hence fit the specification of a full
independently. Data is divided intedundancy unit¢block, coverage low power mode.
segment, object or file) and each unit's data and redundancginally, the bulk of the paper considers the redundancy
are distributed across a number of different storage nodesstheme to be that eéplication (each data item hasrepli-
cording to the systemlacement functionThe other main cas ond different nodes). However, our results generalize
characteristic is that the storage system has active and ntively to most instances of erasure codes, (see Section 3.4).
active utilization periods. The periods of low utilization thalhat being said, the potential power saving (and the actual
we consider are relatively long, for example nights or 5prsavings obtained) are typically much lower than the case of
9am, targeting scenarios whereby the spun-down disks mplication, simply because in order to have full coverage,
typically not turned on during this period. Although it issne can only power down redundant data, and the amount of
known that there are limitations on the number of disk spisdundancy in erasure codes is typically much lower than in
up/down cycles, in our model disks are unlikely to get closeplication (much of the appeal of codes is in their smaller
to this limit (e.g. 50,000). Same applies to the break-evigotprint). For example, a RAID 6 mechanism only adds a
interval - we assume intervals that far exceed it. 50% factor to the data’s length, while replication the addi-

This work focuses on studyingxisting systemswhile tive blowup is by at least a00% (for d = 2). Note that
minimizing changes to the system and specifically to thiee choice of redundancy is treated as a given property of the
placement functionof the data. Typical designs invest muchinderlying storage system, and by no mean do we advocate
effort in choosing a placement function that optimizes vausing replication rather than error correction mechanisms.
ious aspects of the system such as performance, load biither do we encourage using higher replication, since this
ancing, availability, efficient failure recovery and locatioonly increases power consumption. Replication has been
awareness. These properties are designed to be optimallyopular choice in designs for storage in the cloud (e.g.
utilized at peak workloads. During non-active periods we are Google's GFS [12], Amazon’s Dynamo [10], Hadoop’s
willing to trade off performance for power saving. HoweveHDFS [5], Facebook’s Cassandra [6] and others) mainly be-
it is imperative that the option of a low power mode does noause of the easier handling and managing overheads and
compromise the performance of any of the above mentiortestter accessibility of such schemes. Therefore, most of the
properties at full power mode. Hence we strive to keep thesitive results in the paper are more relevant for the setting
placement function unmodified whenever possible. We naticloud storage.
that if one is allowed to freely modify the placement func- Our analysis focuses mainly on the handling of READ op-
tion (while ignoring other properties) then there are simpégations. The handling of WRITE operations follows the
designs which can achieve optimal low power mode as dgime mechanisms suggested in previous solutions such as
scribed in [21]. DIV [21] and write offloading [19].

In addition, our goal is to obtain at all times, and in par-
ticular during low power mode, fll coverage of the data . L
so that access to each data item is always available. Thi® Main Contributions

is in contrast to other approaches which attempt to onI%is paper presents an in-depth study of a range of solutions

o ou o b moces a verage e exising eplctor
E 5 25’ 29 25p d.t di P t’ it it in distributed storage systems. We first consider methods
yI8, N ] arrange data according OIS access PAUSHIE-h 4o not modify the placement functiof the system
to maximize the coverage of popular data. This has several . .
; : ) and analyze the overhead this may introduce to the system.
drawbacks including the need for analysis of the access

. -~ ; e then address possibilities of modifications to the place-
terns to the data and the unpredictability of certain accens%Ct in order to achieve better power savings.

patterns (see further discussion in Section 1.4). In contras e introduce a method that obtains full coveragedo
the full coverage model can handiay type of data access ) . - geany.

. . gl cement function by using auxiliary nodes. We provide
pattern, and therefore can be applied to a generic storage Sys: L2
tem. Moreover, the full coverage approach can support ﬁ deoffs betweer) the replication factor, the amount of auwx
plications like business intelligence and search that reqd A r)i/nngldes I;e?lg)rg:nalr;d ghne tﬁgerrg" ;{?Vvée;ijzvxg ;2?;0'1
access to every data item. Consider for example, a sysf’é avle. o Pe, : 9 . :
that performs most of its writes during the day, while durin rate that for some systems this approach achieves very |it-

, power savings with replication of 2 (mirroring). As the

the nights it performs analytics over the data (e.g. an HD L .
9 P y (e.g replication factor grows, substantially better results can be
1The break even interval is the minimal time for which it is beneficié?bt"’.“ned; Sp_eC|f|Ca”y for thr?? copies savings of over 45% IS
(in terms of power consumption) to spin a disk down. attainable with only 5% additional storage. We analyze this




approach when applied to some commonly used systemsdata. Popular Data Concentration (PDC) [20] concentrates
Among our key conclusions are: popular data together. Hibernator [29] combines variable
) ) o disk speeds and data concentration according to popularity
o Foreveryplacement function with replicatiahand ev- 5 save power. Several drawbacks of theses approaches are:
ery fractionp there is a subset of sizethat when pow- (j) they are beneficial mainly for systems that contain some
ered down leaves a coverage of all pdtof the data yarely accessed data, such as archival systems; (i) they re-
items. There are placements for which this is the begfire some knowledge on the data access pattern; (jii) con-
possible. centrating the popular data, rather than evenly distributing
e For a generic placement, finding a subset of nodes t. apas c.riti.calleﬁect on the systems performance; and () if
yields the best possible data coverage is computati ¢ statistics in the §yste_m only ac_cumulate over a Iong.pe-
ally difficult. Heuristics such as greedy algorithms Ca;f(;juti?:?o?sogesrrfi?t\i/rggo:‘né%r;;c;?ﬁgl:llglf[r:g 2;2?:;%?;3 will
be employed; they typically achieve good enough ap The Write off-loading technique employed in [19] demon-

proximations for power saving purposes. strates that in some enterprise systems, where the 1/0 work-
e For random placement mechanisms we show that #pRd is WRITE intensive, handling writes without the need
ditional auxiliary-nodes are always required to achief@r spin-ups is achievable and does not degrade performance
meaningful savings. Analyzing the random behavigignificantly; this allows to increase the idle times for disks
is important since many systems employ placeme@dd MAID will work better. The Pergamum system [23]
that are either random or pseudo-random (in orderagds NVRAMs to each storage node to allow longer spin-
achieve full balancing and performance), We showd®wn periods for disks in archival systems.
tradeoff between the replication factor and the addExploiting redundancy: The Diverted Access (DIV)
tional amount of required auxiliary-nodes. methodology [21] considers replication and as such is the
closest in nature to our work. It advocates segregating all
3 primary copies of the data on a partial set of the disks to
fow powering down the rest of the disks and demonstrate

he potential power gains by such a modification. We note
na [[no t[ﬁo] ﬁnd C"’?frf andr'?h[ﬁ].t \./\1e slhov; that tr;e CI at this modification of the placement function can poten-
sistent hashing (with or without virtual nodes) hatura L?{ally hurt the performance of the system in full power mode
accommodates a low power mode and, specifically,

bett ted f h . than th q See more in Section 5). In contrast, our study focuses on
F er sul ef or such power savings than the ran ieving similar gains while minimizing the disruption and
placement function. ramification on existing system designs. We study solutions

e In a hierarchical system (e.g. a system consisting that either do not change the placement at all or make only

a cluster of nodes with multiple disks within them, &cceptable changes to the data placement.
cluster of virtualizers or a cluster of datacenters) it js Other works that exploit redundancy include EERAID

sufficient to modify only the lower level placement i8], RIMAC [28] and PARAID [25]; they study the pos-
order to achieveptimal power savings. §|b|llty of power saving within a RAID_sys_tenj. _The|r solu-
tions apply to settings where the coding is limited to small
The results in this paper can be used to suggest whettperups of disks rather than a wider distribution of the redun-
a real system can be augmented to accommodate low podaicy over a whole system. Greenan et al. [13] exploit the
modes in low utilization periods, and if so how and to whatdundancy in specific families of erasure codes, a solution
level. that they term power aware coding.

e We analyze one of the most widely used placem
functions, the consistent hashing, which has been
ployed in systems like CFS [9], Oceanstore [17], D)f

1.4 Related Work Notation and Parameters: Throughout the paper we use
the terms 'node’ or 'storage unit’ interchangeably to denote

This idea of a tradeoff between performance and power ol entity storing a subset of data items that can be shut down
sumption has been suggested and deployed in the past.j\Mgpendently of the other units. A data item refers to the
list works that have studied this: basic replication unit of data, and in practice can be a block,
Idle disks spin-down: This is a paradigm used in mostn object, a stripe or a file. Throughout the paper the term
power saving models. The idea is simply to spin down'data item’ is used regardless of the actual unit in question.
disk once it has been in idle mode for a long time. The replication factor of the system is the number of
There are several methods for helping disks stay idlepies stored for each data and is denotediby\/ is the
longer in order to allow their spin-down. Massive array afumber of nodes (or storage units) aNdis the number of
idle disks (MAID) [8] employ cache disks with recently readata items in the system.refers to the fraction of the nodes



that are turned off, and,,,, is the fraction of time that the Note thatq(p, M, d) < p? and tends to this number ag
low power mode accounts for. We say that a low power mogeows.

is optimalif one can spin-down all but/d of the nodes while
maintaining at least one live copy of each data unit. Proof: Fix the placement function and consider a randomly

paper organization: Section 2 describes the full coveragEh©Sen subset of the nodes. Der.mtohtepbyor' i € [N] the
objective as a graph cover problem; it provides upper appbability that alld copies of thei** data item reside in

lower bounds on the size of the cover and on the sizetBF 'chgse set. ﬂﬂge thﬁ/[set isﬁp(%?ffl{??ﬁgﬂ}:’l)the prob-
the corresponding auxiliary nodes needed for arbitrary plaé®ility is pi = (arp—a)/ (arp) = M(M-1)..(M—d+1)

ment functions. Section 3 provides the general framewarlp, M, d) (the subset must include theé copies and has
solution; it discusses how to choose a good designated sigedom to choose the remainiddp — d nodes). This is

set of nodes to spin-down and what are the potential poviete for eachi € [N] independently, though the probabili-
savings. Section 4.1 analyzes the special case of a randi& may be highly correlated. We ask whatfis, .., the
placement function and Section 4.2 analyzes the consis@ffiected number of data items covered by this random set.
hashing function. In Section 5 we discuss augmenting tB¥ the linearity of expectationdycover = N =3¢ (n Pi >
placement function while taking low power mode into conV — N¢(p, M, d). Since this is the expectancy over all pos-
sideration. In the Appendix we add notes regarding handlisifple subsets, then there exists at least one subsets that covers
heterogenous systems and regarding possible modificatidhs N¢(p, M, d) items (otherwise the expectancy would be

of the placement function. smaller). O

We note that the proof of Lemma 2.1 is non-constructive
2 The Coverage Problem in the sense that it gives no hint of which subset gives a
good cover, only that one such subset exists. The parame-

In principle, the idea is to find a maximal subset of nodesrs achieved in Lemma 2.1 are also tight. This is seen by
that is designated to be powered down. The criterion is th@gé following Claim:
the remainder of the nodes should “cover” as many of the
data items as possible (hold at least one copy of these dalgim 2.2 There exists placement functions for which every
items). The problem at hand can be described naturally s8ufset of sizé/p of the nodes yields at least@p, M, d)
the following graph problem. The input is a bi-partite grapifaction of uncovered data items.
with M vertices on the left hand side (representing the nodes . ) .
in the system) andV vertices on the right hand side (repreProof: The proof is by the following S'rﬂple example. Con-
senting the data items). Each data item on the rightcha8ider a system wittd/ nodes andV = (') data items (for
edges connected tbdistinct nodes on the left (representingmall M andd this is a reasonable parameterization). Define
the locations on which thé copies of the item reside). Ford One to one mapping between the data items and subsets
the nodes of sizé/p such that the remainder of the node!8 €ach of the nodes in the corresponding subset). Now for
cover a maximal number of data items. A vertex is cover€@ch such subset there is exactly one data item. Any desig-
by a subset if it has an edge connecting to a node in the siited subset of sizk/p Ieave;s exactly ;") uncovered data
set. Our ultimate goal is given a graph to find a subset thgims. Finally observe tha(t;f) _ M]\z;[((zx;[p:ll))..&fg)d) —
maximizesp (the fraction of nodes to be powered down) an

N ) . p,M,d) O
minimizes the fraction of uncovered data items.

A solution achievedull coveragef all data items are cov- CQnsequencesThe above statements can be viewed as both

ered. However, one can quite simply design a placemerg)sitive and negative results. On the one hand, it shows

function for which there is no full coverage, even for ver&at it is possible to achieve a coverage of all byedrac-

smallp. The random placement functhn Is one such Slan of the data items by shutting downpafraction of the
ample (See Section 4.1). That being said, we show that & :

: nodes, regardless of the placement function. For some prac-
placement functions have at least a decent coverage, wher:

. L : ieal parameters this achieves a decent saving in power as
d‘?ce”t Is a factor of the repl_lcatlon parametdfhe higher will be demonstrated in Section 3.1. On the other hand,
d is the better the coverage is).

this also forms the limit on possible savings for some place-
Lemma 2.1 For everyplacement function with replicatioh mentschemes. Therefore, in some settings, such as arandom
and everny < p < 1 such thatMp e Z there exists a subsetplacement function with replicatios = 2, the approach of

of sizeMp such that the remaining nodes achieve coveragét changing the placement function seems futile.

of atleast a1—q(p, M, d)) fraction of the data items, whereFinding the optimum is hard: We next argue that finding

q(p, M, d) = Mﬁ{‘i}’:f)):((]yf;ﬁ)”. the best coverage in a generic graph is a computationally




hard problem. This is seen by yet another graph represer- Find a good designated subsetThe first step is to

tation of the problem, this time as the problemvafrtex- find a designated subset that gives a good solution to
cover in a hypergraph Consider a hypergraph that has the cover problem. This step can be done using numer-
vertices (each representing a node in the system). There are ous heuristics (see Section 3.1). Choosing the appropri-
N hyperedges in the graph, each connectingrtices (the ate p depends on various parameters of the system as

edges represent data items and the hyperedges connect all thediscussed in Section 3.2.

nodes on which they reside). Solving the coverage problem . )

is equivalent to finding a small as possible subset of vertice€: Construct the auxiliary nodes: Once a designated
that touches as many as possible of the edges. In the spe- Subset has been chosen, we construct the auxiliary
cial case ofl = 2 this translates to the classical vertex cover N0des. This pool of extra nodes contains an additional
problem (one of Karp’s original 21 NP-hard problems [16]).  COPY of data items that are bound to be uncovered in
The general problem with constagtwas further shown to low power mode (thus the system holdst- 1 copies

be hard to approximate, (see [11] and references within). We ©f these data items). More precisely, a data item has a
conclude that finding the maximal cover is a computationally ~COPY in the auxiliary nodes iff all of itg copies reside
hard problem and therefore we shall resort to heuristics and N the designated subset.

approximations in order to find a good subset (see Sectiog Low power mode: To go into this mode one should

3.1). simply shut down all of the nodes in the designated sub-
The cover problem in a dynamic system:Note that the set.

ability (or inability) to find the optimum is not crucial in our . .

specific scenario. The reason is that the systems we deal ~® Read operations: On a read operation access a

with may be very dynamic, and the underlying graph for the live copy in the regular nodes, if it does not exist
cover problem varies as time goes (data items may come and then redirect to the auxiliary nodes.

go and new nodes are added and removed). These varia- e Write operations: Writes are performed regu-
tions change the optimal solution, so the best solution today larly to all live nodes (this includes writes to the
may not be as good tomorrow. On the other hand, since the auxiliary nodes). In addition, all write operations
changes are mostly local, they typically don’t change the sit- that involve the nodes in the designated set are
uation by much. That is, a good solution will likely remain recorded in a log, in order to be completed during
a good one for quite a while. Therefore, our objective is to power up. In case the log fills up, we can selec-
find a good solution to the cover problem (not necessarily the tively power-up nodes in the designated subset in
best one) and use it for a while. order to relieve the write log. See further discus-

sion on writes in Section 3.3.

3 A General Framework for Low 4. System wake up:Apply write log. At the end of this
process all of the data items should have theippies

Power Mode with Existing Place- in place (according to the placement function).

ment 5. Full power mode: The system runs in usual opera-

tion with the one exception that the auxiliary nodes are
maintained in an online fashion. That is, each write to a
data item all of whose copies are in the designated sub-
set is actually performed + 1 times. d times for the
regular copy and an extra write in the auxiliary nodes.

We have established that for some placement functions one
cannot find a meaningful subset with full coverage. Namely,
when powering down a subset of nodes, we are bound to
leave some data items uncovered. To avoid this, we intro-
duce the notion o&uxiliary nodego the system as a means

of achieving a meaningful low power mode yet having fulh addition to the above, a typical system would require a
coverage of the data at all times (thus avoiding undesirggriodical refresh to the designated subset. This may be in-
spin-up delays). The point in introducing auxiliary nodegked due to notable changes, such as a noticeable data dis-
is that by Lemma 2.1, we know that the number of auxifripution change or addition/substraction of nodes. One may
iary nodes can be significadntly smaller than the number Q&g want to change the subset due to power cycling con-
nodes to be powered dowA{ compared tg). Thus we can siderations. Since spin-ups/spin-downs of disks shorten the
substitute a large number of nodes with a small numberdigks life time, it may be beneficial to modify the set of disks
auxiliary nodes and still attain full coverage. being spun down and thus achieve a longer mean time to disk
We next give our general framework at a high level, leafailure (MTDF).
ing specific details to be filled in for specific implementa- Finally, in case of node failure during low power mode,
tions and placement functions being deployed. the system must wake up all the nodes that are required for



the recovery of the lost data. Depending on the severity®2 Choosing the fractionp

the failure and the placement mechanism, this may result in

powering-up anywhere between one node to the whole Sngentral question in choosing the designated subset is to
tem. decide what its size should be. We give an analysis of the

best choice for the general case, in which the uncovered set

is of size Np?. This approach can be modified accordingly
3.1 How to Choose the Subset for various placement functions. To obtain maximal saving

we need to model the power savings gained from the sug-

There are various methods one can use for choosing a géggted low power mode. In our basic simplified model we
designated subset. In some cases, the placement funciigstime that all nodes consume the same average power dur-
dictates a simple deterministic choice that achieves veg? operation mode, and do not consume power when turned
good coverage (See examp|e in Section 42)' while for o .2 The actual turn|ng on and off has some additional cost
ers we need to use various search mechanisms. In genétderms of power, but since we assume that the low power
any good approximation heuristic for the cover problem m&yede is for significantly long time period (at least several
be used here, where the effectiveness of the techniques Riiys), we can discard this factor in the calculation. Suppose
vary greatly depending on the underlying placement medhat the low power mode accounts forag,, fraction of the
anism. Other than the quality of the cover being achievdtine. Viable options for this parameter candag,, = 3 (for
one should take into consideration also the efficiency of th&ours of daily nighttime), o,., = 155 = 5% (accounting
technique, with an emphasis on the ability to run it in a difr all but 40 of weekly work hours 9 to 5 on weekdays).
tributed system. We consider two main approaches here. We ask what is the power saving as a function of the chosen
p. There are two factors to consider:

e Choosing random subsets.This method is the sim-
plest to implement and will typically provide a solution
that is close to the expected value (namely, approxi-
mately p? uncovered data items). A simple to imple-
ment improvement is to sample a number of random
subsets and to take the one which gives the best cover-
age. With very high probability this yields a result that
is better than the expected value.

1. The spun down disks — this accounts fqg,,p of the
overall power consumption. In actual computations we
should estimatey,;,,, as a little smaller than what we
actually expect it to be (e.g., take,,, = 0.3 rather
than3). This substraction comes to compensate for ad-
ditional costs, such as the power required for spinning-
up/down disks or unplanned power-ups due to overload
of writes or disk failures.

* Agreedy algorithm. Inanutshell the greedy technique > The additional auxiliary disks — these disks run at all

itera_ltes adding single nodes.to the subset, in each step times and should cover gt fraction of the data. This
adding the best current candidate to the subset. For ex- gmounts toM ¢ nodes, which consume a fraction of
ample, one approach is to choose nodes for the non-
designated (power-up) subset. At each step we choose
the single additional node that covers the most data o d
items that were not covered thus far. Greedy algorithms! e total power saving is thusav(p) = aiowp — 5. To
have proved quite a successful heuristic in coveriﬁ'@d the maximum value we derive this function and find its
problems such as ours. In factiBer [24] (Corollary Z€r0 value. That ise, — Pk = 0 and thereforg,,,., =

3.9) shows that in our setting (of vertex-cover on h)&l‘ff. Table 1 shows some selected values that come up
pergraphs) the greedy algorithm approximates the bérsim this choice.

solution to within a constant factor. As seen in Table 1, the maximal saving may require quite

Sa[Iarge number of auxiliary disks (e.g., fof,, = 15,d =3

d
- of the overall power.

While the greedy algorithm is quite feasible for almo 'd M — 1000, the best saving requires approximately

any setting, .'ts efficiency may vary dependmg on ﬂbem auxiliary nodes). Alternatively, one can set the num-
system architecture. If conducted in a centralized man-

ner, it requires enumerating all available nodes and fina‘?rM‘““” of available auxiliary nodes, and de;C/Ie thi best
. . . . . . H H i i auz | d

ing the best choice in each iteration. Alternatively, thftainablep given this M., according top = (“fze) .
nodes themselves can compute their current cover $t@f example, withM,,, = 10, M = 1000, d = 3 and

tus, and report this to a central component that is thémw = 35, the power down fraction can he~ 0.31. This

required to simply find the maximum. This requires—— _ o _
the central component to broadcast the list of currentl% This assgmptlon can be partly_ju;tlfled by the fact that the aptual spin-
nig of the disks accounts for majority of the power consumption of the

Ch_OSGI’l nodes to all of the remaining nodes, at each I86rage node (see, e.g. [8]). Thus the overall power consumption during
ation. various utilizations does not vary greatly.




0, [0)

Qow | d | Pmaz | Mes= | Saving % 18%%0 Movs | 00, | d | p | Saving % 18%%0
1/3 | 2| 0.3 | 0.045 5% 15 % 0.01 1/3 | 2| 0.75 3% 11 %
1/3 | 3| 0.547| 0.054 11% 37 % 0.01 1/3 | 3| 0.311 8% 28 %
1/3 | 4 | 0.669 | 0.050 15% 50 % 0.01 1/3 | 4 | 0.447 12% 41 %
1/3 | 5] 0.740| 0.044 18 % 59 % 0.01 | 16/21| 2 | 0.75 10 % 13 %
16/21| 2 | 0.750| 0.281 28 % 38 % 0.01 | 16/21| 3 | 0.311 22% 30%
16/21| 3 | 0.866 | 0.216 43 % 58 % 0.01 | 16/21| 4 | 0.447 33% 43 %
16/21| 4 | 0.908 | 0.169 51 % 68 % 0.05 1/3 | 3| 0.531 11% 36 %
16/21| 5| 0.930| 0.139 56 % 74 % 0.05 1/3 | 4| 0.669 15% 50 %
0.05 | 16/21| 2 | 0.316 19% 25 %
Table 1: For two possible workload scenarigs,, = 1/3 0.05 | 16/21| 3 | 0.531 35 9% 46 %

(8 hours nightly low power mode) ang,,, = 16/21 (low
power mode outside working hours), and various optionsTdble 2: We fix the fraction of auxiliary nodes in the system
the replication constant we computep,,, ... that maximizes % to two values .01 and 0.05) and study for various

the power saving. For this value we compute the ratio beplication constantd and workload scenariasg;,,, what is
tween the number of required auxiliary nodes,,,. and the the fractionp of the power down set and estimate the total
number of regular node®/ and estimated total power savpower saving percentage and saving percentage during low
ing percentage and power saving percentage for each hmawer mode. We see that some options yield only minor
of low power mode. We see that the saving is quite low feaving (such as witli = 2), but for instance fod = 3,

d = 2 and improves drastically asgrows. 0w = 16/21 and5% of additional auxiliary nodes, a sav-
ing of 46% during down time is achieved. This improves as
d grows.

amounts to a saving of approximatélys of the power con-

sumption during the low power mode (as opposed.t®

with pq = 0.547). While not the best possible, this mayot have thel factor gained by using auxiliary nodes (i.e., a
yield decent savings at a much lower price in terms of aug/d fraction of the nodes to covergfraction of the data).

iliary nodes. In Table 2 we list some possible parametglisnjing write operations: Unlike read operations, write
using this approach. operations need to acceat of the replicas of a data item.
This will not be possible in low power mode and the system
must adjust accordingly. Our solutions do not deviate from
those of [21] and [19]. All writes to live nodes are executed,

Auxiliary nodes vs. partial coverage: We make a case forincluding writes to the auxiliary nodes. However, unlike with

using auxiliary nodes to cover the remaining uncovered d&§g&d operations, most writes will have at least one replica in
(in a sense, creating@+ 1 copy for these data items). Thdhe powered doyvn set. These writes are placed in a log file
alternative could be to leave a fraction of data uncovered ##f! flushed during power up (the auxiliary nodes may serve
to risk unexpected spin-ups on reads from this fraction @ this purpose as well). Because of this, such a low power
the data. We have several justifications for our approadi©de is not designed to handle a high volume of write opera-
(i) In order to cover a fraction of the uncovered data, ondions in low power mode. Regarding da_ta rellablll_ty: because
only needs to use a fraction ¢f of the nodes. This fac- of the full coverage property, every write operation updates

tor of d maybe quite substantial. For instance, with- 3 2t Ieast one copy and an additional copy is placed in the log
andp = 0.53, the use of auxiliary nodes amounts t6% Mechanism. Thus at least two replicas are saved during the

increase in the capacity, whereas the alternative is to Ag¥ Power mode and this is complementeditat power up.
15% of the data being uncovered. (i) It is tempting to hop@SSuming the log mechanism is more reliable than average
that theg fraction of uncovered data can be made to contdfd- Use NVRAM for this purpose) this may suffice in terms
mostly unpopular data. However, in the cases we stud@deliability until full power mode is restored.

(i.e., random placement and consistent hashing) we see that

this fraction is randomly distributed across all data itemg,4 The Case of Erasure Codes and Varied
which effectively means that the uncovered data will contain Availability

an equal percent of popular data as the whole system.

Another alternative is to modify the placement schenide use of replication, while simpler to manage, is quite
just for the fraction of uncovered data. The complexity efasteful in terms of capacity. Similar or even greater reli-
such a solution can be small as long as this fractioe- ability against failures can be achieved by using erasure cor-
mains small. We note however that in this solution one doextion mechanisms. In a typical instantiation, the data ob-

3.3 Discussions



ject is translated intd segments, each stored on a diﬁ‘erentRedundanCy type % Qlow » Sawtng %
node or failure domain, and aiyof these segments suffices (4,6) 001 | 1/3 | 0.16 IO\ivg 'o%e
to reconstruct the original data. Such a system can therefore (4,6) 005 | 1/3 | 028 13 %
withstand failure tod — k£ nodes without losing any data 2.5) 0011 13 (032 31 %
Thus, in this case, full coverage would require that of dny (2’5) 0.05 | 1/3 | 0.52 37 %
segments of a single item, at le@stvould be powered up — (278) 00l 1/3 1056 530
we call this ak, d)-low power mode. This model is relevant (2,8) 005 | 13 | 073 58 %
to most coding schemes being deployedror example, a (3'8) 0'01 i3 0'51 8%
scheme based on the RAID 6 encoding has full coverage jn a (3:8) 0:05 1/3 0:66 51 %

(4,6)-low power mode. Note that the potential power saving

in such a system is limited t§. That is, an optimal solution Tapje 3: The table presents the power saving potential in
of a(4, 6)-low power mode can power down at masof the (k, d)-low power modes for various choices bofindd. We
nodes without losing coverage. see that for ratios typical of erasure codes such ast and

A different justification for this problem comes from sysg — 6 the power savings are quite low and hardly worth the
tems that do use replication but a single available copyeffort involved. Things improve as the ratio éfk grows.
not sufficient even in low power mode, due to availability re-
guirements. Rather, the system is willing to have a reduced
number of copies during low power mode. For exampledal The Random Placement Function

system that store$ copies and will make only available i
This scheme refers to a random (or pseudorandom) alloca-

copies during low utilization periods. i - f ¢
t!%] of locations for each of the replicas. More precisely,

The results discussed for the case of replication can . ) L X
generalized for thék, d) model as well Thepchange is ir]each data item is stored ihdistinct disks that are chosen ac-
the number of requiréd auxiliary nodes .as a functiod - cording to the random distribution. In practice, some modifi-

_ ) i cations are typically required to avoid too much of a disparity
call tha_t.pre/\nously this wag(p, M, d)/d = 7). The new ponyeen the number of data items allocated at a single disk.
probabilityq’(p, M, d, k) for uncovered data is as follows: E.g., if one disk is filled up, we should avoid allocating new

replicas to this disk. These modifications form very weak

) k-1 d ( MM_—der Z) correlations between the placements of different data items,
¢ (p. M, d,k) = (k-1 (Z> % typically only when disks become full. For our purposes, we
i=0 Mp can consider the choices as fully independent.

. The importance of random placement functions is that
Note that when)M is large, thenw tends to they have very good properties (such as load balancing,

o o f _ (Mp)ll. .quick recovery from failure, etc...) and are therefore ad-
ph ¢ . p)'. The nt;mbe_r N frer?uwed ?UX' "Zry nodes Wocated by several systems. For example GFS [12], FAR-
then aq'(p, M, d, k)/d fraction of the regular nodes. SITE [7] and RUSH/CRUSH [14, 27] try to achieve random

In Table 3 we show the numbers for some choice$ ofgr pseudorandom placement.

andd. As expected, the power saving potential when usingeq, 5 random placement function we show that dor
error correction codes is quite low, and specifically for RAII‘E}ry designated subsef size Mp, the expected number of
6 seems hardly worthwhile. The situation improves as tjacovered data items & ¢(p, M, d), where expectancy is
ratio betweenl and grows. over the random choice of the placeménRecall that this
amounts to approximately g fraction of the data items.
To see this, fix the designated subset and for each data item
4 Analysis of SDECiﬁC Placementcompute thg'prpb?{bility that aﬂ co.pies are inside this set.
. The probability is(*}?) /(%) which is exactlyg(p, M, d).
Functions The remaining question is how much does such a subset
deviate from the expectancy, or in other words, how good or
We turn to a more in depth analysis of the situation f@ad can the best coverage be for a single instantiation of the
specific placement functions. Following are studies of twfacement function. In Figure 1 we exhibit the situation for
prominent strategies, a random placement function and g instantiation of the random placement, which shows a
consistent hashing approach. nice normal looking distribution around the mean. That is,
taking a random subset is likely to result in a coverage that

3There exist schemes in which the number of segments required far
reconstruction varies according to which segments are obtained. SucKIn Lemma 2.1 we show that there exists at least one subset that achieves
schemes to not work well with a gene(&l, d)-low power mode design.  this coverage, while here we show that this is the case on the average.




is around the expected valyép, M, d). into M regions of consecutive values on the ring. Each re-
gion consist of consecutive values between two neighboring
nodes on the ring and is attributed to the node at the begin-
ning of the region (we say that a region is “owned” by the
corresponding node). In order to place a data item, its name
(or contents) are also hashed onto a point on the ring. The
data item is stored in the node owning the region which it hit.
Additional replicas are placed on the neixt- 1 consecutive
regions (or nodes owning the next regions).

The consistent hashing scheme defined above has nice and
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0 desired properties, but is suspect to problems regarding load
548 588 628 668 708 748 788 828 balancing (some nodes are bound to be very light) and failure
Uncovered data items from recovery (limited in its ability to parallelize). The stan-

dard technique [15] to overcome this is to employ a method
Figure 1: This is a system with random placement funcuovr\{here each node owns a collectionvar tugl nodes rather .
2 . than one node. Now the load of a node is averaged over its
M = 20 nodes, replicatiod = 3 and N = 6666 data items. . . .
. ) X various virtual nodes. When the number of virtual nodes per
The fraction of the power down setjis= 1/2. The figure

plots for each number of uncovered data items, what is @'%tual node is on the order big M, then the load balancing

fraction of subsets of siz&/p that yield this coverage. The ecomes acceptatite.

calculated expectancy for uncovered |temylﬂp’ M, d) ~ Initial observation: perfeCt solution with no virtual
702 which fits the peak nicely. nodes. The consistent hashing placement is ideal for a low

power mode whemno virtual nodes are used. This is simply

We ran experiments to evaluate the success of the varigg§ause one can power down- 1 out of everyd consec-
heuristics for choosing a good designated subset. ResHftée nodes on the ring and still guarantee that one copy is
(appear in full version) exhibit that the “best of 10 rando@ways active. If the number of nodes is a multipleidhen
subsets” method achieves results that are marginally betfé$ achieves the optimal energy saving with full coverage.
than the average, similar to what one would expect froml&atis, exactiyl /d of the nodes need to stay alive (one copy
random normal distribution. The greedy tests that we co¥-e€ach data block). The solution is close to optimalAfis
ducted achieved an improvement of a constant factor ot @ multiple ofd.
the expected. This factor was more significant for lopeer  Solutions with virtual nodes. We turn to the more challeng-

We conclude that the random placement function does irj yet more realistic case in which virtual nodes are used.
accommodate a low power mode readily, and requires thiee perfect solution described above no longer works, since
addition of auxiliary nodes in order to achieve full covelpowering down an actual node corresponds to removing a
age. When using auxiliary nodes, taking a random subsetignber of virtual nodes, whose locations on the ring are ran-
a good option as it does not deviate by much from the opdiem, and in particular, do not behave nicely when looking at
mal solution. Using a greedy algorithm is helpful in reducingie ordering moduld. Now it is unclear that for a high frac-
the number of necessary auxiliary nodes to be closer to tiu p, there exists a full coverage at all. Still, for a random

optimum. choice of subset of sizé/p, the probability that a single
data item is left uncovered is agaifip, M, d) ~ p?. Our
4.2 Consistent Hashing experiments show that as the number of virtual nodes grows,

the coverage behaves closer and closer to the coverage in a
This placement scheme, introduced in [15] has proved uggndom placement.
ful in Peer-to-Peer networks (the Chord system [22]) andwe now focus on systems where the number of virtual
is the underlying placement function for a number of digrodes is approximateljog M, the amount advocated by
tributed storage systems (e.g., CFS [9], Oceanstore [17E]. The question is at what value pfcan the system still
Dynamo[10]). achieve full coverage, and moreover, how does the coverage
The basic consistent hashing placementThe placement behave beyond thig In Figure 2, we learn that this fraction
algorithm operates on a fixed size range, e.g. the rangdso$urprisingly high and grows as the replication parameter
128 bit strings (that i2'2® values). This range is viewed as @ For instance, withl = 3 it is possible to shut dowB5%
cyclic ring (where the valug!2® — 1 is followed by the value of the nodes and still yield full coverage (with no auxiliary

0)' Each of thel/ nodes in the system Is mapped (pseuuu- 5The use of virtual node also comes in handy when considering nodes

)r.andomly onto thiS. ring, ty_pically l_JSing a hash fuln_CtiOBf different capacities. A strong node can own a larger number of virtual
(like SHAL). According to this mapping, the ring is dividechodes than a weak one.




nodes at all). function. This can be explained as a result of the strong cor-
relations in placement to nodes produced by this scheme. We
also learn that for this scheme, the greedy algorithm is signif-
icantly more successful than the choosing random subsets.

5 On Augmenting the Placement
Function for Low Power Mode

Uncovered data items

The results presented in Sections 2,3 and 4 illuminate the
limitations of working with a given placement function that
does not readily accommodate a low power mode. The al-
ternative is to modify the placement function so that it fits
the power saving model. This approach was pioneered in
Figure 2: We evaluate the success of the greedy algoritfm] with the Diverted-access (DIV) idea. They suggest to
in a consistent hashing system as a function of the fractigimply segregate the primary copies of the data items on a
of the power-down subset We test this on a system withspecific set of disks and so the rest of the disks may be pow-
M = 4096 nodeslog M = 12 virtual nodes. The experi-ered down without damaging the full coverage of the system.
ment shows that we can shutdown a high percentage of nogigs achieves an optimal full power mode in the sense that
and still obtain full coverage, with this percentage growinghe can power dow.;d%l of the nodes, leaving exactly one
substantially with. copy of each data item alive.

The challenging question is how to design a placement
function that has a multitude of desired properties, rather
than just a good power saving design. Note that if power
saving is the only goal then a simple system in which each
disk is mirroredd times (as a whole disk), accommodates an
optimal low power mode. The wider goal is to combine the
possibility of optimal low power mode with other capabili-
ties.

Table 4: For various values of the replication constant TN€ requirement for optimal low power mode is summa-

we provide the fraction of the powered down disks thatized by the need that?fraction of the nodes will be desig-
can be covered without, with% or with 5% of auxiliary nated for the first replicas of each data item. This may entalil

nodes in a consistent hashing system. We also provide $hg°Mpromise in some of the subtle properties of the sys-
power saving percentage during the low power mode intleM and raise new considerations that should be addressed.

val. The savings are estimated according to night time IG@" €xample, there may be considerations such as location
power mode 0., = 1/3). The data is according to test@Wareness that dictate the placement function. Another ex-
run with M = 1024 and M = 4096 nodes withlog M vir- ample is the ability for parallel recovery from failure. The

tual nodes. We learn that the savings with consistent hasHiiguired modification to the placement function limits the

are much more significant than in the general case. Thi®@fSSible degree of parallelism when recovering from a node

especially evident foii = 2 (see Table 2 for comparison). flailure; e.g. ford = 2 parallelizing the recovery is limited to
5 of that of a fully random system. There may also be con-

We next ask what is the effect of using auxiliary nodedderations such as location awareness that dictate the place-

in the system. In Table 4 we extract some key numbersignt function that should not be toyed with.

demonstrate this behavior. We see that the introduction ofn the following we discuss a setting (that of hierarchical

a small number of auxiliary nodes is beneficial in terms 8¥stems) in which minimal modification suffices for optimal

power savings. This effect is highest for the low replicatid@w power mode.

constants{ = 2 andd = 3). We observe that for every,

there e_xists a fraction beyo_nd _Which adding more aqxiliagl_l Low Power Mode in Hierarchical Systems

nodes is no longer beneficial in terms of power saving. It

is interesting to note that for the high replication values thidany common storage systems have a hierarchical structure,

break even point is quite low. typically of two levels (and sometimes more). We look at
We conclude that the consistent hashing placement is Iststems which have a top level that divides the lower level

ter suited for low power mode than the random placemearddes into correlated failure domains. For example, disks

0.00 0.19 0.38 0.57 0.76 0.95
Power-down set (p)

Al 0 0.01 0.05

p Save| p Save| p Save
0.17| 17% | 0.32| 29% | 0.52| 37 %
035/ 35% | 05 | 47% | 0.65| 50 %
046 46% | 0.6 | 57% | 0.73 | 58 %
054 54% | 0.66| 63% | 0.77 | 62 %
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connected to the same controller or nodes on the same raddely, can popularity based power saving methods benefit
cabinet, or even data center. As such, the placement sgemn the existing redundancy and also work with a given
ification requires that the copies of data item be placedlacement scheme.
on different failure domains (nodes of the top level). For thigcknowledgments: We thank Michael Factor for helpful
discussion we call nodes at the upper level simply as “nodegscussions.
and lower level nodes as “disks” (although these may actu-
ally consist of anywhere from a disk to a whole system).

The observation is that in such systems we can have a BﬁferenceS
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cated data. I'8C page 122, 2006. Treating primary replicas: In some systems, the primary
[28] X. Yao and J. Wang. Rimac: a novel redundancy-based hierarcdopy of a data segment is also the most frequently accessed
cal cache architecture for energy efficient, high performance storaggpy. If all of the primary copies are segregated together on
systems. IrEuroSyspages 249-262, 2006. the same partition of nodes, then this leads to congestion on
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there should be a random and independent choice of which
replica should remained powered-up. This allows the pri-

A On Heterogenous Systems mary replicas to remain distributed evenly across all nodes.
The access should be as follows: during full power mode the

Sections 3 and 4 focussed on systems of homogenous stRiE1ary copy is accessed; in low power mode the ‘live copy’

ture. Namely, systems that contain identical nodes, so tifs@ccessed, where the live need not be the primary copy.

powering down one node has the same effect as poweritayver cycling — When and How:A drawback in solutions
down another. This is quite a reasonable assumption flat spin disks up and down is that this action increases the
small to medium sized storage systems. However, it is nggar and tear on the disk and shortens its life time. In fact,
necessarily the case for large scale systems (e.g. [17, 28)me disks carry a limit on the number of spin-ups/spin-
Nodes may consist of various machines with various capdewns that they can handle in a life time (e.g., 50,000).
ities, capabilities and power consumption. This may havd®awer cycling refers to alternating between the disks being
real effect on the power savings that a low power mode cgpun-down in order to avoid extensive spin-downs and spin-
introduce. Specifically, the imbalance in node sizes neetfs of a limited set of disks. This, in turn, will provide a
to be taken into account when choosing a spin-down subdgtger mean time to failure of a disk in the system. In order
We describe a greedy algorithm that takes into account theaccommodate this option, one needs to further partition
properties of the various nodes, trying to optimize the soltlre nodes in the system todifferent sets, and to maintain a
tion in such a system. copy of each data block on each of the partitiohsdpies to
Each nodej € [M] is associated with the parametgy d sets)é In this manner, each set can be left as the lone live
which corresponds to the average power consumption of @ of disks and still provide a live copy of every data block.
node in a light workload setting (night time). The greedyote that ford = 2 this is automatically the case, but for
algorithm is as follows:

5This is as opposed to partitioning the disks into two uneven sets, one
o ) containingl/d of all disks for the primary copies, and the other for the rest
1. Initialize the live setl = () of the replicas.



d > 3 requires special care. Every time the system switches
to low power mode, a different set is left alive, keeping all
sets at the same rate of spin-downs. This method amounts
to a longer mean time to disk failure (MTDF), by a factor
of (1+ ﬁ) (when compared to always spinning-down the
same set). For example, power cycling with= 2 yield an
MTDF that is twice as high, and if = 3 then the MTDF
grows by a factor ofi..5. On the other hand, we note that
the partition intod sets has its price in performance of sev-
eral tasks, such as parallel recovery which becomes more and
more limited as! grows.

This power cycling approach should be employed only
when the number of spin-ups/spin-downs actually dominates
the disks lifetime, and only whed is small (because then
both the power cycling makes a noticeable difference and
the effect on performance is minor).



