
Low Power Mode in Cloud Storage Systems

Danny Harnik, Dalit Naor and Itai Segall
IBM Haifa Research Labs, Haifa, Israel

{dannyh, dalit, itais }@il.ibm.com .

Abstract

We consider large scale, distributed storage systems with a
redundancy mechanism; cloud storage being a prime exam-
ple. We investigate how such systems can reduce their power
consumption during low-utilization time intervals by operat-
ing in a low-power mode. In a low power mode, a subset of
the disks or nodes are powered down, yet we ask that each
data item remains accessible in the system; this is calledfull
coverage. The objective is to incorporate this option into
an existing system rather than redesign the system. When
doing so, it is crucial that the low power option should not
affect the performance or other important characteristics of
the system during full-power (normal) operation. This work
is a comprehensive study of what can or cannot be achieved
with respect to full coverage low power modes.

The paper addresses this question for generic distributed
storage systems (where the key component under investiga-
tion is theplacement functionof the system) as well as for
specific popular system designs in the realm of storing data
in the cloud. Our observations and techniques are instrumen-
tal for a wide spectrum of systems, ranging from distributed
storage systems for the enterprise to cloud data services. In
the cloud environment where low cost is imperative, the ef-
fects of such savings are magnified by the large scale.

1 Introduction

1.1 Motivation and Background

Energy savings in storage systems has become a key aspect
in the design and use of future systems. IT systems today
consume about 1-2% of the total energy in the world [1] and
this will double in the next 4 years (according to [2], in 2006
US datacenters consumed 1.5% percent of total U.S. elec-
tricity consumption). It has been shown that storage systems
are the second most important component in the IT after the
computing resources, and in some cases (e.g. in large data
centers) may consume up to 40% of the total energy [3, 2].
This ratio may grow due to two facts: (i) the power con-
sumption of compute resources has been getting a lot of at-
tention and as a result will become much more efficiently uti-

lized; and (ii) the data deluge (expected 10-fold Growth in 5
Years [4]) will increase the relative contributions of storage
systems to the overall power consumption. Thus reducing
power consumption has become a central goal when manag-
ing data centers. This is ever more crucial in the cloud envi-
ronment due to the large scale and the critical importance of
low operational costs.

Methods for treating power reduction in storage systems
that are based on powering off storage devices have been
suggested. Some are centered around placing the data wisely
(or migrating it dynamically) to allow powering off unused
devices - most notable, MAID [8], Popular Data Concentra-
tion (PDC [20]), Hibernator [29] and Diverted Access (DIV
[21]). Others, (e.g. [19] and Pergamum [23]) employ tech-
niques to delay the access to some of the storage devices.
A comprehensive summary of existing methods is given in
section 1.4).

In this paper we focus on high scale and distributed stor-
age systems (e.g. [12, 26, 17, 10, 5, 6]). Such systems
are architected with built-in redundancy to address require-
ments like availability, performance and reliability We inves-
tigate how such systems can reduce their power consump-
tion during low-utilization time intervals by operating in a
low-power mode, similarly to the setting studied in [21] (see
Section 1.4). We focus on power savings that can be attained
while not compromisingother system characteristics such as
high performance and reliability during full-power (normal)
operation. The question to address is whether periods of low
utilization (nights, weekends etc) can be used to significantly
reduce power consumption, and if so - how.

1.2 The Model and Problem

Our study is aimed at implementing a low power mode
within real world (existing) systems with minimal disrup-
tiveness to the system, utilizing existing mechanisms (i.e.
the placement function or the redundancy scheme) whenever
possible. The general approach powers down a subset of the
disks or nodes in the system during low utilization, yet we re-
quire that each data item remains accessible at all times. In
low utilization periods, availability and performance may be
compromised, while reliability remains essentially the same
since the redundant copy(ies) can be recovered.

In our model, the system is comprised of individualstor-
age nodes(a storage device like disk or controller, a rack or
a even portion of a datacenter) that can be turned on and off
independently. Data is divided intoredundancy units(block,
segment, object or file) and each unit’s data and redundancy
are distributed across a number of different storage nodes ac-
cording to the system’splacement function. The other main
characteristic is that the storage system has active and non-
active utilization periods. The periods of low utilization that
we consider are relatively long, for example nights or 5pm-
9am, targeting scenarios whereby the spun-down disks are
typically not turned on during this period. Although it is
known that there are limitations on the number of disk spin
up/down cycles, in our model disks are unlikely to get close
to this limit (e.g. 50,000). Same applies to the break-even
interval1 - we assume intervals that far exceed it.

This work focuses on studyingexisting systemswhile
minimizing changes to the system and specifically to the
placement functionof the data. Typical designs invest much
effort in choosing a placement function that optimizes var-
ious aspects of the system such as performance, load bal-
ancing, availability, efficient failure recovery and location
awareness. These properties are designed to be optimally
utilized at peak workloads. During non-active periods we are
willing to trade off performance for power saving. However,
it is imperative that the option of a low power mode does not
compromise the performance of any of the above mentioned
properties at full power mode. Hence we strive to keep the
placement function unmodified whenever possible. We note
that if one is allowed to freely modify the placement func-
tion (while ignoring other properties) then there are simple
designs which can achieve optimal low power mode as de-
scribed in [21].

In addition, our goal is to obtain at all times, and in par-
ticular during low power mode, afull coverageof the data
so that access to each data item is always available. This
is in contrast to other approaches which attempt to only
maximize coverage and are therefore susceptible to unex-
pected power-ups of disks. For example, models advocated
by [8, 20, 29, 25] arrange data according to its access patterns
to maximize the coverage of popular data. This has several
drawbacks including the need for analysis of the access pat-
terns to the data and the unpredictability of certain access
patterns (see further discussion in Section 1.4). In contrast,
the full coverage model can handleany type of data access
pattern, and therefore can be applied to a generic storage sys-
tem. Moreover, the full coverage approach can support ap-
plications like business intelligence and search that require
access to every data item. Consider for example, a system
that performs most of its writes during the day, while during
the nights it performs analytics over the data (e.g. an HDFS

1The break even interval is the minimal time for which it is beneficial
(in terms of power consumption) to spin a disk down.

[5] or GFS [12] cluster running MapReduce jobs at night).
Such analytics would typically require full access for reads
but hardly any writes and hence fit the specification of a full
coverage low power mode.

Finally, the bulk of the paper considers the redundancy
scheme to be that ofreplication (each data item hasd repli-
cas ond different nodes). However, our results generalize
nicely to most instances of erasure codes, (see Section 3.4).
That being said, the potential power saving (and the actual
savings obtained) are typically much lower than the case of
replication, simply because in order to have full coverage,
one can only power down redundant data, and the amount of
redundancy in erasure codes is typically much lower than in
replication (much of the appeal of codes is in their smaller
footprint). For example, a RAID 6 mechanism only adds a
50% factor to the data’s length, while replication the addi-
tive blowup is by at least a100% (for d = 2). Note that
the choice of redundancy is treated as a given property of the
underlying storage system, and by no mean do we advocate
using replication rather than error correction mechanisms.
Neither do we encourage using higher replication, since this
only increases power consumption. Replication has been
a popular choice in designs for storage in the cloud (e.g.
in Google’s GFS [12], Amazon’s Dynamo [10], Hadoop’s
HDFS [5], Facebook’s Cassandra [6] and others) mainly be-
cause of the easier handling and managing overheads and
better accessibility of such schemes. Therefore, most of the
positive results in the paper are more relevant for the setting
of cloud storage.

Our analysis focuses mainly on the handling of READ op-
erations. The handling of WRITE operations follows the
same mechanisms suggested in previous solutions such as
DIV [21] and write offloading [19].

1.3 Main Contributions

This paper presents an in-depth study of a range of solutions
for low power modes that leverage the existing replication
in distributed storage systems. We first consider methods
which do not modify the placement functionof the system
and analyze the overhead this may introduce to the system.
We then address possibilities of modifications to the place-
ment in order to achieve better power savings.

We introduce a method that obtains full coverage forany
placement function by using auxiliary nodes. We provide
tradeoffs between the replication factor, the amount of aux-
iliary nodes required and the overall power saving that is
attainable. For example, on the negative side we demon-
strate that for some systems this approach achieves very lit-
tle power savings with replication of 2 (mirroring). As the
replication factor grows, substantially better results can be
obtained; specifically for three copies savings of over 45% is
attainable with only 5% additional storage. We analyze this

approach when applied to some commonly used systems.
Among our key conclusions are:

• Foreveryplacement function with replicationd and ev-
ery fractionp there is a subset of sizep that when pow-
ered down leaves a coverage of all butpd of the data
items. There are placements for which this is the best
possible.

• For a generic placement, finding a subset of nodes that
yields the best possible data coverage is computation-
ally difficult. Heuristics such as greedy algorithms can
be employed; they typically achieve good enough ap-
proximations for power saving purposes.

• For random placement mechanisms we show that ad-
ditional auxiliary-nodes are always required to achieve
meaningful savings. Analyzing the random behavior
is important since many systems employ placements
that are either random or pseudo-random (in order to
achieve full balancing and performance), We show a
tradeoff between the replication factor and the addi-
tional amount of required auxiliary-nodes.

• We analyze one of the most widely used placement
functions, the consistent hashing, which has been de-
ployed in systems like CFS [9], Oceanstore [17], Dy-
namo [10] and Cassandra [6]. We show that the con-
sistent hashing (with or without virtual nodes) naturally
accommodates a low power mode and, specifically, is
better suited for such power savings than the random
placement function.

• In a hierarchical system (e.g. a system consisting of
a cluster of nodes with multiple disks within them, a
cluster of virtualizers or a cluster of datacenters) it is
sufficient to modify only the lower level placement in
order to achieveoptimalpower savings.

The results in this paper can be used to suggest whether
a real system can be augmented to accommodate low power
modes in low utilization periods, and if so how and to what
level.

1.4 Related Work

This idea of a tradeoff between performance and power con-
sumption has been suggested and deployed in the past. We
list works that have studied this:

Idle disks spin-down: This is a paradigm used in most
power saving models. The idea is simply to spin down a
disk once it has been in idle mode for a long time.

There are several methods for helping disks stay idle
longer in order to allow their spin-down. Massive array of
idle disks (MAID) [8] employ cache disks with recently read

data. Popular Data Concentration (PDC) [20] concentrates
popular data together. Hibernator [29] combines variable
disk speeds and data concentration according to popularity
to save power. Several drawbacks of theses approaches are:
(i) they are beneficial mainly for systems that contain some
rarely accessed data, such as archival systems; (ii) they re-
quire some knowledge on the data access pattern; (iii) con-
centrating the popular data, rather than evenly distributing
it, has critical effect on the systems performance; and (iv) if
the statistics in the system only accumulate over a long pe-
riod then power saving might only kick in gradually and will
require lots of shifting of data among the storage units.

The Write off-loading technique employed in [19] demon-
strates that in some enterprise systems, where the I/O work-
load is WRITE intensive, handling writes without the need
for spin-ups is achievable and does not degrade performance
significantly; this allows to increase the idle times for disks
and MAID will work better. The Pergamum system [23]
adds NVRAMs to each storage node to allow longer spin-
down periods for disks in archival systems.

Exploiting redundancy: The Diverted Access (DIV)
methodology [21] considers replication and as such is the
closest in nature to our work. It advocates segregating all
the primary copies of the data on a partial set of the disks to
allow powering down the rest of the disks and demonstrate
the potential power gains by such a modification. We note
that this modification of the placement function can poten-
tially hurt the performance of the system in full power mode
(see more in Section 5). In contrast, our study focuses on
achieving similar gains while minimizing the disruption and
ramification on existing system designs. We study solutions
that either do not change the placement at all or make only
acceptable changes to the data placement.

Other works that exploit redundancy include EERAID
[18], RIMAC [28] and PARAID [25]; they study the pos-
sibility of power saving within a RAID system. Their solu-
tions apply to settings where the coding is limited to small
groups of disks rather than a wider distribution of the redun-
dancy over a whole system. Greenan et al. [13] exploit the
redundancy in specific families of erasure codes, a solution
that they term power aware coding.

Notation and Parameters: Throughout the paper we use
the terms ’node’ or ’storage unit’ interchangeably to denote
an entity storing a subset of data items that can be shut down
independently of the other units. A data item refers to the
basic replication unit of data, and in practice can be a block,
an object, a stripe or a file. Throughout the paper the term
’data item’ is used regardless of the actual unit in question.

The replication factor of the system is the number of
copies stored for each data and is denoted byd. M is the
number of nodes (or storage units) andN is the number of
data items in the system.p refers to the fraction of the nodes

that are turned off, andαlow is the fraction of time that the
low power mode accounts for. We say that a low power mode
isoptimalif one can spin-down all but1/d of the nodes while
maintaining at least one live copy of each data unit.

paper organization: Section 2 describes the full coverage
objective as a graph cover problem; it provides upper and
lower bounds on the size of the cover and on the size of
the corresponding auxiliary nodes needed for arbitrary place-
ment functions. Section 3 provides the general framework
solution; it discusses how to choose a good designated sub-
set of nodes to spin-down and what are the potential power
savings. Section 4.1 analyzes the special case of a random
placement function and Section 4.2 analyzes the consistent
hashing function. In Section 5 we discuss augmenting the
placement function while taking low power mode into con-
sideration. In the Appendix we add notes regarding handling
heterogenous systems and regarding possible modifications
of the placement function.

2 The Coverage Problem

In principle, the idea is to find a maximal subset of nodes
that is designated to be powered down. The criterion is that
the remainder of the nodes should “cover” as many of the
data items as possible (hold at least one copy of these data
items). The problem at hand can be described naturally as a
the following graph problem. The input is a bi-partite graph
with M vertices on the left hand side (representing the nodes
in the system) andN vertices on the right hand side (repre-
senting the data items). Each data item on the right hasd
edges connected tod distinct nodes on the left (representing
the locations on which thed copies of the item reside). For
a given fraction0 < p < 1 the goal is to find a subset of
the nodes of sizeMp such that the remainder of the nodes
cover a maximal number of data items. A vertex is covered
by a subset if it has an edge connecting to a node in the sub-
set. Our ultimate goal is given a graph to find a subset that
maximizesp (the fraction of nodes to be powered down) and
minimizes the fraction of uncovered data items.

A solution achievesfull coverageif all data items are cov-
ered. However, one can quite simply design a placement
function for which there is no full coverage, even for very
small p. The random placement function is one such ex-
ample (See Section 4.1). That being said, we show that all
placement functions have at least a decent coverage, where
decent is a factor of the replication parameterd (The higher
d is the better the coverage is).

Lemma 2.1 For everyplacement function with replicationd
and every0 < p < 1 such thatMp ∈ Z there exists a subset
of sizeMp such that the remaining nodes achieve coverage
of at least a(1−q(p,M, d)) fraction of the data items, where
q(p,M, d) = Mp(Mp−1)...(Mp−d+1)

M(M−1)...(M−d+1) .

Note thatq(p,M, d) < pd and tends to this number asM
grows.

Proof: Fix the placement function and consider a randomly
chosen subset of the nodes. Denote bypi for i ∈ [N] the
probability that alld copies of theith data item reside in
the chose set. Since the set is chosen randomly, the prob-
ability is pi =

(
M−d
Mp−d

)
/
(

M
Mp

)
= Mp(Mp−1)...(Mp−d+1)

M(M−1)...(M−d+1) =
q(p,M, d) (the subset must include thed copies and has
freedom to choose the remainingMp − d nodes). This is
true for eachi ∈ [N] independently, though the probabili-
ties may be highly correlated. We ask what isEcover, the
expected number of data items covered by this random set.
By the linearity of expectations,Ecover = N −∑

i∈[N] pi >

N −Nq(p, M, d). Since this is the expectancy over all pos-
sible subsets, then there exists at least one subsets that covers
N −Nq(p,M, d) items (otherwise the expectancy would be
smaller). 2

We note that the proof of Lemma 2.1 is non-constructive
in the sense that it gives no hint of which subset gives a
good cover, only that one such subset exists. The parame-
ters achieved in Lemma 2.1 are also tight. This is seen by
the following Claim:

Claim 2.2 There exists placement functions for which every
subset of sizeMp of the nodes yields at least aq(p,M, d)
fraction of uncovered data items.

Proof: The proof is by the following simple example. Con-
sider a system withM nodes andN =

(
M
d

)
data items (for

smallM andd this is a reasonable parameterization). Define
a one to one mapping between the data items and subsets
of sized of the nodes (a replica of the data item is stored
in each of the nodes in the corresponding subset). Now for
each such subset there is exactly one data item. Any desig-
nated subset of sizeMp leaves exactly

(
Mp
d

)
uncovered data

items. Finally observe that
(Mp

d)
N = Mp(Mp−1)...(Mp−d)

M(M−1)...(M−d) =
q(p,M, d) 2

Consequences:The above statements can be viewed as both
positive and negative results. On the one hand, it shows
that it is possible to achieve a coverage of all but apd frac-
tion of the data items by shutting down ap fraction of the
nodes, regardless of the placement function. For some prac-
tical parameters this achieves a decent saving in power as
will be demonstrated in Section 3.1. On the other hand,
this also forms the limit on possible savings for some place-
ment schemes. Therefore, in some settings, such as a random
placement function with replicationd = 2, the approach of
not changing the placement function seems futile.

Finding the optimum is hard: We next argue that finding
the best coverage in a generic graph is a computationally

hard problem. This is seen by yet another graph represen-
tation of the problem, this time as the problem ofvertex-
cover in a hypergraph. Consider a hypergraph that hasM
vertices (each representing a node in the system). There are
N hyperedges in the graph, each connectingd vertices (the
edges represent data items and the hyperedges connect all the
nodes on which they reside). Solving the coverage problem
is equivalent to finding a small as possible subset of vertices
that touches as many as possible of the edges. In the spe-
cial case ofd = 2 this translates to the classical vertex cover
problem (one of Karp’s original 21 NP-hard problems [16]).
The general problem with constantd was further shown to
be hard to approximate, (see [11] and references within). We
conclude that finding the maximal cover is a computationally
hard problem and therefore we shall resort to heuristics and
approximations in order to find a good subset (see Section
3.1).

The cover problem in a dynamic system:Note that the
ability (or inability) to find the optimum is not crucial in our
specific scenario. The reason is that the systems we deal
with may be very dynamic, and the underlying graph for the
cover problem varies as time goes (data items may come and
go and new nodes are added and removed). These varia-
tions change the optimal solution, so the best solution today
may not be as good tomorrow. On the other hand, since the
changes are mostly local, they typically don’t change the sit-
uation by much. That is, a good solution will likely remain
a good one for quite a while. Therefore, our objective is to
find a good solution to the cover problem (not necessarily the
best one) and use it for a while.

3 A General Framework for Low
Power Mode with Existing Place-
ment

We have established that for some placement functions one
cannot find a meaningful subset with full coverage. Namely,
when powering down a subset of nodes, we are bound to
leave some data items uncovered. To avoid this, we intro-
duce the notion ofauxiliary nodesto the system as a means
of achieving a meaningful low power mode yet having full
coverage of the data at all times (thus avoiding undesired
spin-up delays). The point in introducing auxiliary nodes
is that by Lemma 2.1, we know that the number of auxil-
iary nodes can be significantly smaller than the number of

nodes to be powered down (pd

d compared top). Thus we can
substitute a large number of nodes with a small number of
auxiliary nodes and still attain full coverage.

We next give our general framework at a high level, leav-
ing specific details to be filled in for specific implementa-
tions and placement functions being deployed.

1. Find a good designated subset:The first step is to
find a designated subset that gives a good solution to
the cover problem. This step can be done using numer-
ous heuristics (see Section 3.1). Choosing the appropri-
atep depends on various parameters of the system as
discussed in Section 3.2.

2. Construct the auxiliary nodes: Once a designated
subset has been chosen, we construct the auxiliary
nodes. This pool of extra nodes contains an additional
copy of data items that are bound to be uncovered in
low power mode (thus the system holdsd + 1 copies
of these data items). More precisely, a data item has a
copy in the auxiliary nodes iff all of itsd copies reside
in the designated subset.

3. Low power mode: To go into this mode one should
simply shut down all of the nodes in the designated sub-
set.

• Read operations: On a read operation access a
live copy in the regular nodes, if it does not exist
then redirect to the auxiliary nodes.

• Write operations: Writes are performed regu-
larly to all live nodes (this includes writes to the
auxiliary nodes). In addition, all write operations
that involve the nodes in the designated set are
recorded in a log, in order to be completed during
power up. In case the log fills up, we can selec-
tively power-up nodes in the designated subset in
order to relieve the write log. See further discus-
sion on writes in Section 3.3.

4. System wake up:Apply write log. At the end of this
process all of the data items should have theird copies
in place (according to the placement function).

5. Full power mode: The system runs in usual opera-
tion with the one exception that the auxiliary nodes are
maintained in an online fashion. That is, each write to a
data item all of whose copies are in the designated sub-
set is actually performedd + 1 times. d times for the
regular copy and an extra write in the auxiliary nodes.

In addition to the above, a typical system would require a
periodical refresh to the designated subset. This may be in-
voked due to notable changes, such as a noticeable data dis-
tribution change or addition/substraction of nodes. One may
also want to change the subset due to power cycling con-
siderations. Since spin-ups/spin-downs of disks shorten the
disks life time, it may be beneficial to modify the set of disks
being spun down and thus achieve a longer mean time to disk
failure (MTDF).

Finally, in case of node failure during low power mode,
the system must wake up all the nodes that are required for

the recovery of the lost data. Depending on the severity of
the failure and the placement mechanism, this may result in
powering-up anywhere between one node to the whole sys-
tem.

3.1 How to Choose the Subset

There are various methods one can use for choosing a good
designated subset. In some cases, the placement function
dictates a simple deterministic choice that achieves very
good coverage (see example in Section 4.2), while for oth-
ers we need to use various search mechanisms. In general,
any good approximation heuristic for the cover problem may
be used here, where the effectiveness of the techniques may
vary greatly depending on the underlying placement mech-
anism. Other than the quality of the cover being achieved,
one should take into consideration also the efficiency of the
technique, with an emphasis on the ability to run it in a dis-
tributed system. We consider two main approaches here.

• Choosing random subsets.This method is the sim-
plest to implement and will typically provide a solution
that is close to the expected value (namely, approxi-
matelypd uncovered data items). A simple to imple-
ment improvement is to sample a number of random
subsets and to take the one which gives the best cover-
age. With very high probability this yields a result that
is better than the expected value.

• A greedy algorithm. In a nutshell the greedy technique
iterates adding single nodes to the subset, in each step
adding the best current candidate to the subset. For ex-
ample, one approach is to choose nodes for the non-
designated (power-up) subset. At each step we choose
the single additional node that covers the most data
items that were not covered thus far. Greedy algorithms
have proved quite a successful heuristic in covering
problems such as ours. In fact, Sümer [24] (Corollary
3.9) shows that in our setting (of vertex-cover on hy-
pergraphs) the greedy algorithm approximates the best
solution to within a constant factor.

While the greedy algorithm is quite feasible for almost
any setting, its efficiency may vary depending on the
system architecture. If conducted in a centralized man-
ner, it requires enumerating all available nodes and find-
ing the best choice in each iteration. Alternatively, the
nodes themselves can compute their current cover sta-
tus, and report this to a central component that is then
required to simply find the maximum. This requires
the central component to broadcast the list of currently
chosen nodes to all of the remaining nodes, at each iter-
ation.

3.2 Choosing the fractionp

A central question in choosing the designated subset is to
decide what its size should be. We give an analysis of the
best choice for the general case, in which the uncovered set
is of sizeNpd. This approach can be modified accordingly
for various placement functions. To obtain maximal saving
we need to model the power savings gained from the sug-
gested low power mode. In our basic simplified model we
assume that all nodes consume the same average power dur-
ing operation mode, and do not consume power when turned
off.2 The actual turning on and off has some additional cost
in terms of power, but since we assume that the low power
mode is for significantly long time period (at least several
hours), we can discard this factor in the calculation. Suppose
that the low power mode accounts for anαlow fraction of the
time. Viable options for this parameter can beαlow = 1

3 (for
8 hours of daily nighttime), orαlow = 128

168 = 16
21 (accounting

for all but 40 of weekly work hours –9 to 5 on weekdays).
We ask what is the power saving as a function of the chosen
p. There are two factors to consider:

1. The spun down disks – this accounts forαlowp of the
overall power consumption. In actual computations we
should estimateαlow as a little smaller than what we
actually expect it to be (e.g., takeαlow = 0.3 rather
than 1

3). This substraction comes to compensate for ad-
ditional costs, such as the power required for spinning-
up/down disks or unplanned power-ups due to overload
of writes or disk failures.

2. The additional auxiliary disks – these disks run at all
times and should cover apd fraction of the data. This
amounts toM

d pd nodes, which consume a fraction of
pd

d of the overall power.

The total power saving is thusSav(p) = αlowp− pd

d . To
find the maximum value we derive this function and find its
zero value. That isαlow − pd−1

max = 0 and thereforepmax =

α
1

d−1
low . Table 1 shows some selected values that come up

from this choice.
As seen in Table 1, the maximal saving may require quite

a large number of auxiliary disks (e.g., forαlow = 16
21 , d = 3

and M = 1000, the best saving requires approximately
216 auxiliary nodes). Alternatively, one can set the num-
ber Maux of available auxiliary nodes, and derive the best

attainablep given thisMaux according top =
(

dMaux

M

) 1
d .

For example, withMaux = 10, M = 1000, d = 3 and
αlow = 16

21 , the power down fraction can bep ≈ 0.31. This

2This assumption can be partly justified by the fact that the actual spin-
ning of the disks accounts for majority of the power consumption of the
storage node (see, e.g. [8]). Thus the overall power consumption during
various utilizations does not vary greatly.

αlow d pmax
Maux

M Saving % Saving %
low time

1/3 2 0.3 0.045 5 % 15 %
1/3 3 0.547 0.054 11 % 37 %
1/3 4 0.669 0.050 15 % 50 %
1/3 5 0.740 0.044 18 % 59 %

16/21 2 0.750 0.281 28 % 38 %
16/21 3 0.866 0.216 43 % 58 %
16/21 4 0.908 0.169 51 % 68 %
16/21 5 0.930 0.139 56 % 74 %

Table 1: For two possible workload scenariosαlow = 1/3
(8 hours nightly low power mode) andαlow = 16/21 (low
power mode outside working hours), and various options of
the replication constantd we computepmax that maximizes
the power saving. For this value we compute the ratio be-
tween the number of required auxiliary nodesMaux and the
number of regular nodesM and estimated total power sav-
ing percentage and power saving percentage for each hour
of low power mode. We see that the saving is quite low for
d = 2 and improves drastically asd grows.

amounts to a saving of approximately0.3 of the power con-
sumption during the low power mode (as opposed to0.58
with pmax = 0.547). While not the best possible, this may
yield decent savings at a much lower price in terms of aux-
iliary nodes. In Table 2 we list some possible parameters
using this approach.

3.3 Discussions

Auxiliary nodes vs. partial coverage:We make a case for
using auxiliary nodes to cover the remaining uncovered data
(in a sense, creating ad + 1 copy for these data items). The
alternative could be to leave a fraction of data uncovered and
to risk unexpected spin-ups on reads from this fraction of
the data. We have several justifications for our approach:
(i) In order to cover a fractionq of the uncovered data, one
only needs to use a fraction ofqd of the nodes. This fac-
tor of d maybe quite substantial. For instance, withd = 3
andp = 0.53, the use of auxiliary nodes amounts to a5%
increase in the capacity, whereas the alternative is to risk
15% of the data being uncovered. (ii) It is tempting to hope
that theq fraction of uncovered data can be made to contain
mostly unpopular data. However, in the cases we studied
(i.e., random placement and consistent hashing) we see that
this fraction is randomly distributed across all data items,
which effectively means that the uncovered data will contain
an equal percent of popular data as the whole system.

Another alternative is to modify the placement scheme
just for the fraction of uncovered data. The complexity of
such a solution can be small as long as this fractionq re-
mains small. We note however that in this solution one does

Maux

M αlow d p Saving % Saving %
low time

0.01 1/3 2 0.75 3 % 11 %
0.01 1/3 3 0.311 8 % 28 %
0.01 1/3 4 0.447 12 % 41 %
0.01 16/21 2 0.75 10 % 13 %
0.01 16/21 3 0.311 22 % 30 %
0.01 16/21 4 0.447 33 % 43 %
0.05 1/3 3 0.531 11 % 36 %
0.05 1/3 4 0.669 15 % 50 %
0.05 16/21 2 0.316 19 % 25 %
0.05 16/21 3 0.531 35 % 46 %

Table 2: We fix the fraction of auxiliary nodes in the system
Maux

M to two values (0.01 and0.05) and study for various
replication constantsd and workload scenariosαlow what is
the fractionp of the power down set and estimate the total
power saving percentage and saving percentage during low
power mode. We see that some options yield only minor
saving (such as withd = 2), but for instance ford = 3,
αlow = 16/21 and5% of additional auxiliary nodes, a sav-
ing of 46% during down time is achieved. This improves as
d grows.

not have thed factor gained by using auxiliary nodes (i.e., a
q/d fraction of the nodes to cover aq fraction of the data).

Handling write operations: Unlike read operations, write
operations need to accessall of the replicas of a data item.
This will not be possible in low power mode and the system
must adjust accordingly. Our solutions do not deviate from
those of [21] and [19]. All writes to live nodes are executed,
including writes to the auxiliary nodes. However, unlike with
read operations, most writes will have at least one replica in
the powered down set. These writes are placed in a log file
and flushed during power up (the auxiliary nodes may serve
for this purpose as well). Because of this, such a low power
mode is not designed to handle a high volume of write opera-
tions in low power mode. Regarding data reliability: because
of the full coverage property, every write operation updates
at least one copy and an additional copy is placed in the log
mechanism. Thus at least two replicas are saved during the
low power mode and this is complemented tod at power up.
Assuming the log mechanism is more reliable than average
(e.g. use NVRAM for this purpose) this may suffice in terms
of reliability until full power mode is restored.

3.4 The Case of Erasure Codes and Varied
Availability

The use of replication, while simpler to manage, is quite
wasteful in terms of capacity. Similar or even greater reli-
ability against failures can be achieved by using erasure cor-
rection mechanisms. In a typical instantiation, the data ob-

ject is translated intod segments, each stored on a different
node or failure domain, and anyk of these segments suffices
to reconstruct the original data. Such a system can therefore
withstand failure tod − k nodes without losing any data.
Thus, in this case, full coverage would require that of anyd
segments of a single item, at leastk would be powered up –
we call this a(k, d)-low power mode. This model is relevant
to most coding schemes being deployed.3 For example, a
scheme based on the RAID 6 encoding has full coverage in a
(4, 6)-low power mode. Note that the potential power saving
in such a system is limited tokd . That is, an optimal solution
of a(4, 6)-low power mode can power down at most1

3 of the
nodes without losing coverage.

A different justification for this problem comes from sys-
tems that do use replication but a single available copy is
not sufficient even in low power mode, due to availability re-
quirements. Rather, the system is willing to have a reduced
number of copies during low power mode. For example, a
system that stores8 copies and will make only3 available
copies during low utilization periods.

The results discussed for the case of replication can be
generalized for the(k, d) model as well. The change is in
the number of required auxiliary nodes as a function ofd (re-

call that previously this wasq(p, M, d)/d = pd

d). The new
probabilityq′(p,M, d, k) for uncovered data is as follows:

q′(p,M, d, k) =
k−1∑

i=0

(k − i)
(

d

i

)(
M−d

Mp−d+i

)
(

M
Mp

)

Note that whenM is large, then
(M−d

Mp−d+i)
(M

Mp)
tends to

pd−i(1 − p)i. The number of required auxiliary nodes is
then aq′(p,M, d, k)/d fraction of the regular nodes.

In Table 3 we show the numbers for some choices ofk
andd. As expected, the power saving potential when using
error correction codes is quite low, and specifically for RAID
6 seems hardly worthwhile. The situation improves as the
ratio betweend andk grows.

4 Analysis of Specific Placement
Functions

We turn to a more in depth analysis of the situation for
specific placement functions. Following are studies of two
prominent strategies, a random placement function and the
consistent hashing approach.

3There exist schemes in which the number of segments required for
reconstruction varies according to which segments are obtained. Such
schemes to not work well with a general(k, d)-low power mode design.

Redundancy type Maux

M αlow p
Saving %
low time

(4,6) 0.01 1/3 0.16 13 %
(4,6) 0.05 1/3 0.28 13 %
(2,5) 0.01 1/3 0.34 31 %
(2,5) 0.05 1/3 0.52 37 %
(2,8) 0.01 1/3 0.56 53 %
(2,8) 0.05 1/3 0.73 58 %
(3,8) 0.01 1/3 0.51 48 %
(3,8) 0.05 1/3 0.66 51 %

Table 3: The table presents the power saving potential in
(k, d)-low power modes for various choices ofk andd. We
see that for ratios typical of erasure codes such ask = 4 and
d = 6 the power savings are quite low and hardly worth the
effort involved. Things improve as the ratio ofd/k grows.

4.1 The Random Placement Function

This scheme refers to a random (or pseudorandom) alloca-
tion of locations for each of the replicas. More precisely,
each data item is stored ind distinct disks that are chosen ac-
cording to the random distribution. In practice, some modifi-
cations are typically required to avoid too much of a disparity
between the number of data items allocated at a single disk.
E.g., if one disk is filled up, we should avoid allocating new
replicas to this disk. These modifications form very weak
correlations between the placements of different data items,
typically only when disks become full. For our purposes, we
can consider the choices as fully independent.

The importance of random placement functions is that
they have very good properties (such as load balancing,
quick recovery from failure, etc...) and are therefore ad-
vocated by several systems. For example GFS [12], FAR-
SITE [7] and RUSH/CRUSH [14, 27] try to achieve random
or pseudorandom placement.

For a random placement function we show that forev-
ery designated subsetof sizeMp, the expected number of
uncovered data items isNq(p,M, d), where expectancy is
over the random choice of the placement.4 Recall that this
amounts to approximately apd fraction of the data items.
To see this, fix the designated subset and for each data item
compute the probability that alld copies are inside this set.
The probability is

(
Mp
d

)
/
(
M
d

)
which is exactlyq(p,M, d).

The remaining question is how much does such a subset
deviate from the expectancy, or in other words, how good or
bad can the best coverage be for a single instantiation of the
placement function. In Figure 1 we exhibit the situation for
one instantiation of the random placement, which shows a
nice normal looking distribution around the mean. That is,
taking a random subset is likely to result in a coverage that

4In Lemma 2.1 we show that there exists at least one subset that achieves
this coverage, while here we show that this is the case on the average.

is around the expected valueq(p, M, d).

Figure 1: This is a system with random placement function,
M = 20 nodes, replicationd = 3 andN = 6666 data items.
The fraction of the power down set isp = 1/2. The figure
plots for each number of uncovered data items, what is the
fraction of subsets of sizeMp that yield this coverage. The
calculated expectancy for uncovered items isNq(p,M, d) ≈
702 which fits the peak nicely.

We ran experiments to evaluate the success of the various
heuristics for choosing a good designated subset. Results
(appear in full version) exhibit that the “best of 10 random
subsets” method achieves results that are marginally better
than the average, similar to what one would expect from a
random normal distribution. The greedy tests that we con-
ducted achieved an improvement of a constant factor over
the expected. This factor was more significant for lowerp.

We conclude that the random placement function does not
accommodate a low power mode readily, and requires the
addition of auxiliary nodes in order to achieve full cover-
age. When using auxiliary nodes, taking a random subset is
a good option as it does not deviate by much from the opti-
mal solution. Using a greedy algorithm is helpful in reducing
the number of necessary auxiliary nodes to be closer to the
optimum.

4.2 Consistent Hashing

This placement scheme, introduced in [15] has proved use-
ful in Peer-to-Peer networks (the Chord system [22]) and
is the underlying placement function for a number of dis-
tributed storage systems (e.g., CFS [9], Oceanstore [17],
Dynamo[10]).

The basic consistent hashing placement:The placement
algorithm operates on a fixed size range, e.g. the range of
128 bit strings (that is2128 values). This range is viewed as a
cyclic ring (where the value2128−1 is followed by the value
0). Each of theM nodes in the system is mapped (pseudo-
)randomly onto this ring, typically using a hash function
(like SHA1). According to this mapping, the ring is divided

into M regions of consecutive values on the ring. Each re-
gion consist of consecutive values between two neighboring
nodes on the ring and is attributed to the node at the begin-
ning of the region (we say that a region is “owned” by the
corresponding node). In order to place a data item, its name
(or contents) are also hashed onto a point on the ring. The
data item is stored in the node owning the region which it hit.
Additional replicas are placed on the nextd− 1 consecutive
regions (or nodes owning the next regions).

The consistent hashing scheme defined above has nice and
desired properties, but is suspect to problems regarding load
balancing (some nodes are bound to be very light) and failure
from recovery (limited in its ability to parallelize). The stan-
dard technique [15] to overcome this is to employ a method
where each node owns a collection ofvirtual nodes rather
than one node. Now the load of a node is averaged over its
various virtual nodes. When the number of virtual nodes per
actual node is on the order oflog M , then the load balancing
becomes acceptable.5

Initial observation: perfect solution with no virtual
nodes. The consistent hashing placement is ideal for a low
power mode whenno virtual nodes are used. This is simply
because one can power downd − 1 out of everyd consec-
utive nodes on the ring and still guarantee that one copy is
always active. If the number of nodes is a multiple ofd then
this achieves the optimal energy saving with full coverage.
That is, exactly1/d of the nodes need to stay alive (one copy
of each data block). The solution is close to optimal ifM is
not a multiple ofd.

Solutions with virtual nodes. We turn to the more challeng-
ing yet more realistic case in which virtual nodes are used.
The perfect solution described above no longer works, since
powering down an actual node corresponds to removing a
number of virtual nodes, whose locations on the ring are ran-
dom, and in particular, do not behave nicely when looking at
the ordering modulod. Now it is unclear that for a high frac-
tion p, there exists a full coverage at all. Still, for a random
choice of subset of sizeMp, the probability that a single
data item is left uncovered is againq(p,M, d) ≈ pd. Our
experiments show that as the number of virtual nodes grows,
the coverage behaves closer and closer to the coverage in a
random placement.

We now focus on systems where the number of virtual
nodes is approximatelylog M , the amount advocated by
[15]. The question is at what value ofp can the system still
achieve full coverage, and moreover, how does the coverage
behave beyond thisp. In Figure 2, we learn that this fraction
is surprisingly high and grows as the replication parameter
d. For instance, withd = 3 it is possible to shut down35%
of the nodes and still yield full coverage (with no auxiliary

5The use of virtual node also comes in handy when considering nodes
of different capacities. A strong node can own a larger number of virtual
nodes than a weak one.

nodes at all).

Figure 2: We evaluate the success of the greedy algorithm
in a consistent hashing system as a function of the fraction
of the power-down subsetp. We test this on a system with
M = 4096 nodeslog M = 12 virtual nodes. The experi-
ment shows that we can shutdown a high percentage of nodes
and still obtain full coverage, with this percentage growing
substantially withd.

Maux

M 0 0.01 0.05
p Save p Save p Save

d = 2 0.17 17 % 0.32 29 % 0.52 37 %
d = 3 0.35 35 % 0.5 47 % 0.65 50 %
d = 4 0.46 46 % 0.6 57 % 0.73 58 %
d = 5 0.54 54 % 0.66 63 % 0.77 62 %

Table 4: For various values of the replication constantd
we provide the fractionp of the powered down disks that
can be covered without, with1% or with 5% of auxiliary
nodes in a consistent hashing system. We also provide the
power saving percentage during the low power mode inter-
val. The savings are estimated according to night time low
power mode (αlow = 1/3). The data is according to tests
run with M = 1024 andM = 4096 nodes withlog M vir-
tual nodes. We learn that the savings with consistent hashing
are much more significant than in the general case. This is
especially evident ford = 2 (see Table 2 for comparison).

We next ask what is the effect of using auxiliary nodes
in the system. In Table 4 we extract some key numbers to
demonstrate this behavior. We see that the introduction of
a small number of auxiliary nodes is beneficial in terms of
power savings. This effect is highest for the low replication
constants (d = 2 andd = 3). We observe that for everyd,
there exists a fraction beyond which adding more auxiliary
nodes is no longer beneficial in terms of power saving. It
is interesting to note that for the high replication values this
break even point is quite low.

We conclude that the consistent hashing placement is bet-
ter suited for low power mode than the random placement

function. This can be explained as a result of the strong cor-
relations in placement to nodes produced by this scheme. We
also learn that for this scheme, the greedy algorithm is signif-
icantly more successful than the choosing random subsets.

5 On Augmenting the Placement
Function for Low Power Mode

The results presented in Sections 2,3 and 4 illuminate the
limitations of working with a given placement function that
does not readily accommodate a low power mode. The al-
ternative is to modify the placement function so that it fits
the power saving model. This approach was pioneered in
[21] with the Diverted-access (DIV) idea. They suggest to
simply segregate the primary copies of the data items on a
specific set of disks and so the rest of the disks may be pow-
ered down without damaging the full coverage of the system.
This achieves an optimal full power mode in the sense that
one can power downd−1

d of the nodes, leaving exactly one
copy of each data item alive.

The challenging question is how to design a placement
function that has a multitude of desired properties, rather
than just a good power saving design. Note that if power
saving is the only goal then a simple system in which each
disk is mirroredd times (as a whole disk), accommodates an
optimal low power mode. The wider goal is to combine the
possibility of optimal low power mode with other capabili-
ties.

The requirement for optimal low power mode is summa-
rized by the need that a1d fraction of the nodes will be desig-
nated for the first replicas of each data item. This may entail
a compromise in some of the subtle properties of the sys-
tem and raise new considerations that should be addressed.
For example, there may be considerations such as location
awareness that dictate the placement function. Another ex-
ample is the ability for parallel recovery from failure. The
required modification to the placement function limits the
possible degree of parallelism when recovering from a node
failure; e.g. ford = 2 parallelizing the recovery is limited to
1
2 of that of a fully random system. There may also be con-
siderations such as location awareness that dictate the place-
ment function that should not be toyed with.

In the following we discuss a setting (that of hierarchical
systems) in which minimal modification suffices for optimal
low power mode.

5.1 Low Power Mode in Hierarchical Systems

Many common storage systems have a hierarchical structure,
typically of two levels (and sometimes more). We look at
systems which have a top level that divides the lower level
nodes into correlated failure domains. For example, disks

connected to the same controller or nodes on the same rack,
cabinet, or even data center. As such, the placement spec-
ification requires that thed copies of data item be placed
on different failure domains (nodes of the top level). For this
discussion we call nodes at the upper level simply as “nodes”
and lower level nodes as “disks” (although these may actu-
ally consist of anywhere from a disk to a whole system).

The observation is that in such systems we can have a low
power mode in which partial nodes are spun-down (i.e., part
of the disks in every node are spun down). In order to achieve
an optimal low power mode we need the number of disks per
node to be a multiple of the replication parameterd.

The basic idea is to form a correlation between the loca-
tions of the different replicas within their respective nodes.
In the most basic setting, for each data item we designate a
single replica to be the “always-up” replica. This choice is
made by a random coin flip where each replica is given equal
probability. Within each node, we divide the disks into two
groups, where1d of the disks are designate for the always-up
replicas and the rest are for the other replicas. Now within
each node the always-up replicas are all located on the desig-
nated disks. According to the random choice, this should ac-
count for1

d of the blocks stored on the node and should there-
fore fit in the designated disks. During low power mode, all
but the designated disks are spun-down. The main benefit
of this method is that the placement function across nodes
(which replica resides on what node) can be left unmodi-
fied, and only the placement within a node is touched. Even
more so, the distribution within each single node remains the
same, and the correlations are only observed when looking
at the placement within two nodes or more.

We view this as a real option for power saving with lim-
ited modification of the overall placement function. Note
that hierarchical systems are more common than not, and this
approach gives optimal saving and is effective also for low
replication such asd = 2. When taken to its extreme, one
can think a network of numerous data-centers. By correlat-
ing the placement within different data-centers (yet keeping
the placement of replicas across data-centers) we can power
down a d−1

d fraction of all data centers in the network and
still maintain full coverage.

6 Conclusions and Future Work

This paper studies what can be achieved by and the limita-
tions of a family of methods that attempt to reduce power
consumption during low power modes by shutting down
some of its storage units.

Several directions can be investigated further. One natural
direction is to extend this study to other prominent systems
and placement functions. It will also be interesting to un-
derstand the consequences of adding data popularity aspects
to the placement, an approach discussed in [21]. More pre-

cisely, can popularity based power saving methods benefit
from the existing redundancy and also work with a given
placement scheme.

Acknowledgments: We thank Michael Factor for helpful
discussions.

References
[1] Green IT: A New Industry Shock Wave, Gartner Symposium/ITxpo,

October 2007, .

[2] EPA Report on Server and Data Center Energy Efficiency, Public Law
109-431, U.S. Environmental Protection Agency, ENERGY STAR
Programhttp://www.energystar.gov .

[3] StorageIO, Greg Sculz,http://www.storageio.com .

[4] The Diverse and Exploding Digital Universe,
An IDC White Paper - sponsored by EMC,
www.emc.com/collateral/analyst-reports/ .

[5] The Hadoop Distributed File System: Architecture and Design,
http://hadoop.apache.org/ .

[6] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network, product presentation at SIGMOD
2008.

[7] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. Farsite: Feder-
ated, available, and reliable storage for an incompletely trusted envi-
ronment. InOSDI, 2002.

[8] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage
archives. InSC, pages 1–11, 2002.

[9] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. InSOSP, pages 202–215, 2001.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. InSOSP, pages 205–220,
2007.

[11] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered
pcp and the hardness of hypergraph vertex cover. In35th ACM STOC,
pages 595–601, 2003.

[12] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In
SOSP, pages 29–43, 2003.

[13] K. Greenan, D. Long, E. Miller, T. Schwarz, and J. Wylie. Spin-
up saved is energy earned: Achieving power-efficient, erasure-coded
storage. InHotDep08, 2008.

[14] R. Honicky and E. Miller. Replication under scalable hashing: A
family of algorithms for scalable decentralized data distribution. In
IPDPS, 2004.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. InSTOC,
pages 654–663, 1997.

[16] R. Karp. Reducibility among combinatorial problems.In Complexity
of Computer Computations, edited by R. Miller and J. Thatcher,
New York: Plenum Press, pages 85–103, 1972.

[17] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent stor-
age. InASPLOS, pages 190–201, 2000.

[18] D. Li and J. Wang. Eeraid: energy efficient redundant and inexpensive
disk array. InACM SIGOPS European Workshop, page 29, 2004.

[19] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. InFAST, pages
253–267, 2008.

[20] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk
array-based servers. InICS, pages 68–78, 2004.

[21] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting redundancy to
conserve energy in storage systems. InSIGMETRICS/Performance,
pages 15–26, 2006.

[22] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications.IEEE/ACM Trans. Netw., 11(1):17–
32, 2003.

[23] M. Storer, K. Greenan, E. Miller, and K. Voruganti. Pergamum: Re-
placing tape with energy efficient, reliable, disk-based archival stor-
age. InFAST, pages 1–16, 2008.

[24] Ö. S̈umer. Partial covering of hypergraphs. InSODA ’05: Proceed-
ings of the sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 572–581, 2005.

[25] C. Weddle, M.Oldham, J. Qian, A. Wang, P. Reiher, and G. Kuenning.
Paraid: A gear-shifting power-aware raid.TOS, 3(3), 2007.

[26] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A
scalable, high-performance distributed file system. InOSDI, pages
307–320, 2006.

[27] S. Weil, S. Brandt, E. Miller, and C. Maltzahn. Grid resource manage-
ment - crush: controlled, scalable, decentralized placement of repli-
cated data. InSC, page 122, 2006.

[28] X. Yao and J. Wang. Rimac: a novel redundancy-based hierarchi-
cal cache architecture for energy efficient, high performance storage
systems. InEuroSys, pages 249–262, 2006.

[29] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hiber-
nator: helping disk arrays sleep through the winter. InSOSP, pages
177–190, 2005.

A On Heterogenous Systems

Sections 3 and 4 focussed on systems of homogenous struc-
ture. Namely, systems that contain identical nodes, so that
powering down one node has the same effect as powering
down another. This is quite a reasonable assumption for
small to medium sized storage systems. However, it is not
necessarily the case for large scale systems (e.g. [17, 26]).
Nodes may consist of various machines with various capac-
ities, capabilities and power consumption. This may have a
real effect on the power savings that a low power mode can
introduce. Specifically, the imbalance in node sizes needs
to be taken into account when choosing a spin-down subset.
We describe a greedy algorithm that takes into account the
properties of the various nodes, trying to optimize the solu-
tion in such a system.

Each nodej ∈ [M] is associated with the parameterPj

which corresponds to the average power consumption of this
node in a light workload setting (night time). The greedy
algorithm is as follows:

1. Initialize the live setL = ∅

2. Enumerate for(M −Mp) rounds (the total number of
live nodes).

• For every nodej ∈ [M]\L calculateCL
j , the num-

ber of data items covered byj and not covered by
L.

• Add toL a nodej with minimal Pj

Cj
.

Note thatPj

Cj
is the power loss per data item that results from

keeping nodej alive.
As a stoping criteria, rather than settingp in advance, one

can choose the number of available auxiliary nodesMaux

and continue the process until the fraction of data items not
covered byL is at mostq = Maux

dM .

B Issues Related to Augmenting the
Placement Function for Low Power
Mode

In the following we mention some issues and design points
in modifying the placement function.

Treating primary replicas: In some systems, the primary
copy of a data segment is also the most frequently accessed
copy. If all of the primary copies are segregated together on
the same partition of nodes, then this leads to congestion on
these nodes. To overcome this, it is suggested to decouple
the replica-number and its placement. For each data item
there should be a random and independent choice of which
replica should remained powered-up. This allows the pri-
mary replicas to remain distributed evenly across all nodes.
The access should be as follows: during full power mode the
primary copy is accessed; in low power mode the ’live copy’
is accessed, where the live need not be the primary copy.

Power cycling – When and How:A drawback in solutions
that spin disks up and down is that this action increases the
wear and tear on the disk and shortens its life time. In fact,
some disks carry a limit on the number of spin-ups/spin-
downs that they can handle in a life time (e.g., 50,000).
Power cycling refers to alternating between the disks being
spun-down in order to avoid extensive spin-downs and spin-
ups of a limited set of disks. This, in turn, will provide a
longer mean time to failure of a disk in the system. In order
to accommodate this option, one needs to further partition
the nodes in the system tod different sets, and to maintain a
copy of each data block on each of the partitions (d copies to
d sets).6 In this manner, each set can be left as the lone live
set of disks and still provide a live copy of every data block.
Note that ford = 2 this is automatically the case, but for

6This is as opposed to partitioning the disks into two uneven sets, one
containing1/d of all disks for the primary copies, and the other for the rest
of the replicas.

d ≥ 3 requires special care. Every time the system switches
to low power mode, a different set is left alive, keeping all
sets at the same rate of spin-downs. This method amounts
to a longer mean time to disk failure (MTDF), by a factor
of (1 + 1

d−1) (when compared to always spinning-down the
same set). For example, power cycling withd = 2 yield an
MTDF that is twice as high, and ifd = 3 then the MTDF
grows by a factor of1.5. On the other hand, we note that
the partition intod sets has its price in performance of sev-
eral tasks, such as parallel recovery which becomes more and
more limited asd grows.

This power cycling approach should be employed only
when the number of spin-ups/spin-downs actually dominates
the disks lifetime, and only whend is small (because then
both the power cycling makes a noticeable difference and
the effect on performance is minor).

