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We present the results based on electro-optical properties of zinc oxide nanoparticles �ZnO-NPs�

doped ferroelectric liquid crystal �FLC�. It is observed that ZnO-NPs-FLC system has low operating

voltage and improved optical contrast. The lowering in operating voltage and improvement in

optical contrast has been attributed to larger dipole moment of ZnO-NPs that enhances the

anchoring of FLC molecules around ZnO-NPs. The effect of ZnO-NPs on the material parameters

of FLC has also been observed. These studies will certainly provide a tool to understand the

interaction of ZnO-NPs with FLC molecules that can be utilized to fabricate low threshold

electro-optic devices. © 2010 American Institute of Physics. �doi:10.1063/1.3455325�

The doping of nanostructure materials has resulted in the

form of improved properties of various systems based on

electronics, optics, and catalysis to biomedical sciences.
1,2

It

is found that the doping of nanoparticles �NPs� has improved

the electro-optical characteristics of various display

devices.
3–5

Among all kinds of display devices, liquid crystal

displays �LCDs� have attracted a great deal of interest of

researchers around the world due to their promising and

unique electro-optical features.
6,7

The addition of gold NPs

in ferroelectric liquid crystals �FLCs� has been reported ear-

lier in order to observe low threshold and nonvolatile

memory effect.
8,9

Zhang et al.
10

observed the lowering

of threshold voltage of CdS NPs doped 4-pentyl-4’-

cyanobiphenyl �5CB� twisted nematic cells by 25%. The low

power operation of vertically aligned LC by doping a minute

amount of anatase TiO2-NPs have been observed by Lee

et al.
11

Zinc oxide �ZnO� has been employed in a variety of

devices such as gas sensors, solar cells, luminescent materi-

als, and transparent conducting coatings due to its wide

range of optical and electrical properties.
12–14

Huang et al.
15

explored the importance of addition of ZnO nanocrystals into

the surface stabilized FLCs �SSFLCs� by probing the mo-

lecular binding of FLC molecules which surrounded the

ZnO-NPs. Li et al.
16

proposed a model to show the interac-

tion between ZnO-NPs and FLC molecules surrounding

them.

In the present letter, we demonstrated the effect of ZnO-

NPs on the electro-optical response of FLC material, namely,

KCFLC 7S. The effect of ZnO-NPs on the physical param-

eters such as spontaneous polarization �PS�, rotational vis-

cosity ���, and electro-optical response time ��R� has also

been discussed.

The ZnO-NPs were synthesized in alcoholic medium us-

ing zinc acetate and lithium hydroxide at room temperature.

For this study, homogeneously aligned cells �thickness

3 �m� have been prepared using rubbed polyimide tech-

nique. The pure as well as ZnO-NPs doped KCFLC 7S ma-

terial were filled into the cell by means of capillary action.

The phase sequence of the material used is as follows:

cryst.↔

?

SmC�
↔

73 °C

SmA�
↔

100.5 °C

N�
↔

114.5 °C

iso.

The optical micrographs of the sample cells were taken

with the help of polarizing optical microscope �Ax-40, Carl

Zeiss, Germany� fitted with charge coupled device camera.

Optical tilt angle measurements were taken with the cell

mounted on a rotatable stage of the polarizing microscope on

application of the bias field. The determination of PS, �, and

�R have been performed using an automatic liquid crystal

tester �ALCT, Instec, U.S.A.�. An impedance analyzer 6540

A �Wayne Kerr, U.K.� was used to obtain the behavior of

relaxation frequency with temperature.

We have characterized the synthesized ZnO-NPs by tak-

ing its XRD pattern which is shown in Fig. 1. The typical

size of ZnO-NPs is found to be around �7 nm which is

calculated using Debye–Scherrer formula.
17

The nature of

alignments of pure and ZnO-NPs doped KCFLC 7S has been

analyzed by observing their optical micrographs under

crossed polarizers. Figure 2 shows the optical micrographs of

bright and dark states of homogeneously aligned sample

cells of pure and ZnO-NPs doped KCFLC 7S material. Fig-

ures 2�a� and 2�b� show the bright and dark states of pure

KCFLC 7S material. It is clear from Figs. 2�a� and 2�b� that

a�
Author to whom correspondence should be addressed. Electronic mail:

abiradar@mail.nplindia.ernet.in. FIG. 1. XRD pattern of zinc oxide NPs.
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the homogeneous �HMG� alignment of pure KCFLC 7S is

not uniform due to the presence of zigzag defects. In dark

state of homogeneously aligned FLCs, there should be no

light transmission. But the sharp edges of zigzag defects in

the FLC materials allow the light leakage even in the dark

state of the FLC cells. These defects degrade alignment and

hence the optical contrast of the FLC cells. Figures 2�c� and

2�d� show the optical micrographs of bright and dark states

of �1 wt % ZnO-NPs doped KCFLC 7S material. It can be

seen clearly from figures that the addition of ZnO-NPs into

the KCFLC 7S material has resulted almost defect free align-

ment. The number of light leakage centers has been in-

creased on increasing the concentration of ZnO-NPs from 1

to 2 wt % �Figs. 2�e� and 2�f��. The zigzag defects are al-

most absent in case of ZnO-NPs doped KCFLC 7S indicat-

ing the improvement in the optical contrast. It is worth to

notice here that ZnO-NPs do not perturb the order of FLC

molecules within a layer and only bind them along its direc-

tion of dipole moment through a coupling with the dipole

moment present in the LC molecules. In case of FLCs, opti-

cal tilt is the primary order parameter which reveals most of

the information about the switching behavior and molecular

response to external electric field. The value of optical tilt

increases with increasing applied voltage due to coupling of

PS with the applied field and attains a saturation value at

certain value of applied voltage �which is called as saturation

voltage�. The saturation voltage is intrinsic property of the

LC materials but it also depends on various factors such as

anchoring energy, cell thickness, etc. Figure 3 shows the be-

havior of optical tilt angle of pure and ZnO-NPs doped KC-

FLC 7S material, respectively, with applied bias at room

temperature. One can clearly see from figure that optical tilt

has been saturated at �2.5 V in case of ZnO-NPs doped

KCFLC 7S material whereas for pure KCFLC 7S material

saturation in tilt angle was achieved at �5 V. The doping of

ZnO-NPs reduced the saturation voltage of KCFLC 7S ma-

terial.

The doping of ZnO-NPs gave rise to long-range inter-

particle interactions of FLC molecules, surrounded the ZnO-

NPs. This interaction is found to be dependent on the orien-

tation and the local ordering of the FLC molecules with

respect to the ZnO-NPs. It has been observed that a ZnO

nanocrystal can interact with surrounding FLC dipolar mol-

ecules and tie them together to respond to an external driving

field in more unison.
16

The origin of permanent dipole mo-

ment is based on its structure to some extent. The ideal

wurtzite structure never exists in which each tetrahedron has

Td symmetry, but, in a real wurtzite compound AB, a slight

displacement of the A and B sublattices along the hexagonal

c-axis occurs. The c/a ratio �which is defined as the ratio of

magnitude of the third axis �c� to the axis lying in the basal

plane �a�; where a and c are the lattice parameters� should be

1.633 whereas in case of ZnO it is 1.6018.
18

Thus, the pres-

ence of a permanent dipole moment in real wurtzite, e.g.,

ZnO, can be attributed to C3v-distortion of the elementary

AB4 tetrahedron. Shim and Guyot-Sionnest proposed that a

major contribution for the possible origins of the large dipole

moments includes internal bonding geometry, shape asym-

metry, surface strain, and the surface localized charges.
19

The

ZnO-NPs with diameter �7 nm possess dipole moment

�100 D which is much larger than that of a LC molecule

��1.5 D�. This large value of dipole moment on ZnO-NPs

interacts strongly with dipolar species present in the FLC

mixture. This dipolar interaction enhances the anchoring and

hence the ordering of FLC molecules which surround the

ZnO-NPs. This enhanced ordering of FLC molecules has

been resulted in the form of improved optical contrast of

ZnO-NPs doped KCFLC 7S material. The magnitude of the

electrical torque experienced by ZnO-NPs is larger due to

their higher dipole moments and hence the FLC molecules

coupled with these ZnO-NPs could be switched by the appli-

cation of lower value of applied electric field.

Figure 4 shows the behavior of PS, �, and �R of pure and

ZnO-NPs doped KCFLC 7S material, respectively, with ap-

plied voltage at room temperature. It is clear from Fig. 4�a�,

that the value of PS in case of ZnO-NPs doped KCFLC 7S is

higher than that of pure one. The increment in the PS is a

consequence of increase in the effective polarization due to

doping of ZnO-NPs. The dipole moments of all the ZnO-NPs

get aligned in the field direction and add up with the FLC

polarization to give larger value of PS. The value of � of

KCFLC 7S cell has been increased by doping ZnO-NPs into

it �Fig. 4�b��. The increase in the � has been resulted due to

remarkable strength of dipolar interaction between ZnO-NPs

and FLC molecules. The electro-optical response time can be

calculated using the relation

(a) (b)

(c) (d)

(e) (f)

FIG. 2. �Color online� Polarizing optical micrographs of �a� bright, �b� dark

state of pure KCFLC 7S material; �c� bright, �d� dark state of 1 wt %

ZnO-NPs doped KCFLC 7S material; and �e� bright, �f� dark state of

2 wt % ZnO-NPs doped KCFLC 7S material. Crossed arrows show the

crossed polarizers while as single arrow shows the rubbing direction.
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FIG. 3. �Color online� Behavior of optical tilt ��� of pure KCFLC 7S

�squares� and ZnO-NPs doped KCFLC 7S �circles� with applied voltage at

room temperature.
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�R =
�

PSE
,

where �R and E denote response time and intensity of applied

electric field, respectively. As both the value of PS and � has

been increased in case of ZnO-NPs doped KCFLC 7S mate-

rial, the combined effect of increased value of these param-

eters has been resulted in the form of slightly slower re-

sponse of the ZnO-NPs doped KCFLC 7S material �Fig.

4�c��.
Figure 5 shows the behavior of relaxation frequencies of

pure and ZnO-NPs doped KCFLC 7S material with tempera-

ture. The transition from SmC� to SmA� phase has taken

place at 70 °C for both, pure and ZnO-NPs doped KCFLC

7S material. The doping of ZnO-NPs has not affected transi-

tion temperature �TC� which shows that ZnO-NPs do not

perturb the ferroelectric ordering and it also ruled out the

possibility of any chemical reactions or bonding of ZnO-NPs

with FLC.

We observed that the dipolar interaction between ZnO-

NPs and FLC molecules has been resulted in the form of low

operating voltage and improved optical contrast of the ZnO-

NPs doped FLC material. The lowering of the operating volt-

age and improvement in optical contrast have been attributed

to the larger dipole moment of ZnO-NPs that enhances the

anchoring of FLC molecules which surrounded the ZnO-

NPs. These studies will certainly provide a tool to utilize the

interaction of ZnO-NPs with FLC molecules in the form of

good optical contrast and low threshold electro-optic de-

vices.
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FIG. 4. �Color online� Behavior of �a� spontaneous polarization �PS�, �b�

rotational viscosity ���, and �c� response time ��R� of pure KCFLC 7S

�squares� and ZnO-NPs doped KCFLC 7S �circles� with applied voltage at

room temperature.
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FIG. 5. Behavior of relaxation frequency ��R� of ZnO-NPs doped and pure

�inset� KCFLC 7S material with temperature.
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