
Low Power Optimization Technique for BDD Mapped Circuits

Per Lindgren Mikael Kerttu Mitch Thornton Rolf Drechsler
Lule̊a University of Technology Mississippi State University University of Freiburg

Lule̊a, Sweden Mississippi State, MS, USA Freiburg, Germany

{pln,kerttu}@sm.luth.se mitch@ece.msstate.edu drechsle@informatik.uni-freiburg.de

Abstract

The minimization of power consumption is an important de-
sign constraint for circuits used in portable devices. The
switching activity of a circuit node in a CMOS digital cir-
cuit directly contributes to overall power dissipation. By ap-
proximating the switching activity of circuit nodes as internal
switching probabilities in Binary Decision Diagrams (BDDs),
it is possible to estimate the dynamic power dissipation char-
acteristic of circuits resulting from a structural mapping of a
BDD. A technique for minimizing the overall sum of switching
probabilities is presented. The method is based on efficient lo-
cal operations on a BDD representing the functionality of the
circuit to be realized. The resulting circuit that is obtained by
mapping the BDD to CMOS Pass Transistors has in simu-
lation (using a commercially available process model) shown
reduced power dissipation characteristic. Experimental results
on a set of MCNC benchmarks are given for this technique.

1 Introduction

The popularity of small, portable communications and com-
puting devices has contributed to an increasing interest in
producing digital circuits optimized for low power dissipa-
tion. The design of low power consumption circuits can allow
for the production of devices that operate longer for a given
amount of battery power, are more reliable due to reduced
heat generation and have lower packaging costs. These facts
motivate designers to place emphasis on optimization for low
power dissipation, see e.g. [7] for an excellent overview.

The power dissipation characteristic for CMOS based digi-
tal circuitry results from a static and a dynamic component.
The static component consists of contributions from “leak-
age” and “standby” currents while the dynamic component is
attributed to “switching” and “capacitive” currents. The dy-
namic components only occur during the transition of internal
circuit nodes from one logic level to another.

At the architectural level, power dissipation has been re-
duced by the inclusion of automatic power management tech-
niques, scaling down the supply voltage and the clock fre-
quency and using more sophisticated packaging techniques
that reduce the chip and package capacitance. At the device
level, there have been advances in the development of new
CMOS properties that reduce the static currents and for the
development of “low-power” cell libraries. However, methods
that focus on reducing the internal circuit switching activity
have not been as prevalent.

Here, we propose a heuristic method to reduce the esti-

mated internal switching activity which reduces the overall
amount of dynamic switching current. The method is based
on local, and hence efficient, Binary Decision Diagram (BDD)
operations. Since BDDs may be used as structural descrip-
tions of digital circuits, we focus on developing techniques
that optimize the BDD such that the resultant circuit ob-
tained through a direct BDD mapping has a smaller overall
switching current.

The remainder of the paper is organized as follows. In
the next two sections we briefly survey the power dissipa-
tion characteristic of CMOS digital circuitry and basic prop-
erties of BDDs. Next, we show how the output probability
can be used to estimate the switching activity in a BDD-
based circuit. Furthermore, we show that the computations
of a switching probability at an internal BDD vertex can be
manipulated through purely local operations on the graph.
Based on the local graph operations, we develop a heuristic
approach for minimizing the overall switching activity and
then perform a set of experiments evaluating the effectiveness
of the minimization method as well as the effect on the size
of the resultant BDD. To further emphasize the applicabil-
ity of our approach, we develop a mapping method for Pass
Transistor Logic (PTL) circuits for a commercially available
CMOS process. For a given set of inputs, the process specific
transistor models allow not only the functionality of the re-
sulting circuit to be verified, but also an estimate of power
dissipation to be derived.

2 Power Dissipation in CMOS

Circuits based on NMOS and PMOS transistors using
“CMOS technology” are known for good power dissipation
characteristics since very little current flows internally while
a circuit is at some logic level. The small amount of current
that does flow is termed the “static” component and is due to
leakage currents (i.e. reverse bias currents in the FETs) and
subthreshold currents which are the small magnitude currents
flowing from Vdd to ground. During a logic-level transition,
additional “dynamic” currents exist that can be classified as
“capacitive” currents which are those that are required for
charging/discharging capacitive loads during transitions and
as “switching” currents which occur on DC paths between the
supply rails during logic transitions. The total power dissipa-
tion, PD, can then be described as a sum of the contributions

from each of these currents as given in Equation 1.

PD = Vdd(il+isub)+V 2
dd ·fclk·

N∑

k=1

Pswk ·Ck+Vdd·fclk·
N∑

k=1

Pswk ·isck

(1)
Where, the following notation is used:

• Vdd is the Supply voltage (Volts)

• il is the leakage current (Amps)

• isub is the subthreshold current (Amps)

• fclk is the circuit clock frequency (Hz)

• N is the total number of internal circuit nodes

• Ck is the capacitive load at circuit node k (farads)

• isck is the short circuit current due to dynamic switching
at circuit node k (Amps)

• Pswk is the switching activity at circuit node k

Equation 1 shows that the dynamic power dissipation com-
ponent is dependent on the switching activity parameter,
Pswk . Past research has shown that the switching activity
parameter is highly dependent on temporal correlations of cir-
cuit input signal values [12]. As an example, a combinational
circuit that is responsible for generating next-state values in
a synchronous finite state machine exhibits a definite correla-
tion between previously produced logic values and those to be
produced in the near future since only a subset of all possible
states are reachable given the current state. If it is assumed
that all circuit input signals are statistically uncorrelated and
are completely independent, the switching activity, Pswk may
be approximated by the switching probability, ˆPswk.

In the work presented here, we develop a technique for min-
imizing the switching probability value, ˆPswk , in a digital cir-
cuit that is generated based on structural information of a
BDD. We are thus, minimizing an estimate of the total power
dissipation, ˆPD as shown in Equation 2.

ˆPD = Vdd(il+isub)+V 2
dd ·fclk ·

N∑

k=1

ˆPswk ·Ck+Vdd ·
N∑

k=1

ˆPswk ·isck

(2)

3 Binary Decision Diagrams

Let f0 (f1) denote the cofactor of f with respect to x (x).
A Boolean function, f : Bn → B, can then be represented
by the following formula commonly known as the Shannon
Decomposition:

f = xf0 + xf1 (3)

Consider a rooted, Directed Acyclic Graph (DAG), G, hav-
ing terminals 0 and 1 and non-terminals (internal nodes) la-
beled with binary decomposition variables, x. Each internal
node has two exiting edges that point to cofactor subgraphs,
f0 and f1. The edge with the attribute, 0(1), points to the
subgraph representing f0 (f1). In this work, we only consider
ordered BDDs [4] where each variable can occur only once on

each path and in the same order for any possible path. Ver-
tices having the same decomposition variable are considered
to be at the same level in the diagram. Diagram levels are
enumerated from the root (top level) toward the terminals
(bottom level). Furthermore, we assume that the BDDs are
fully reduced in that the following rules of “reduction” have
been applied:

• There exist no two subgraphs expressing the same func-
tion (i.e., no two subgraphs are graph-isomorphic).

• There exist no redundant nodes (i.e. f0 = f1 does not
occur).

A single graph can be used to represent both f and f , where
the latter function is identified by a complement attribute on
the incoming edge [13, 3]. For a given ordering, a reduced
BDD provides a canonical representation of the function un-
der some restrictions for the use of complemented edges. The
restrictions are that only one terminal is to be used (e.g., the
0-terminal), and complementation is only allowed to occur on
one type of the outgoing edges (e.g., the 1-edge).

The form of BDD described above can be used to also repre-
sent multiple-output functions by allowing each single output
to be rooted arbitrarily in the resulting shared-BDD.

4 Switching Probability Estimation

An output probability of a function, f , denoted as P [f] is
the probability that f has a value of “1” at some arbitrary
time of observation [14, 6, 10]. Consider a function f having
the output probability P [x] for the input variable x and the
output probabilities P [f0] and P [f1] for the corresponding
cofactors f0 and f1. In terms of a BDD, this relationship is
shown in Figure 1.

P[f] P[f]

f

P[x]

0 1

x
10

Figure 1: Switching Probability in BDD Vertex.

We seek the switching probability Psw[f] of f . Switching
occurs if and only if the value of f changes from 0 to 1 or 1 to
0. We note that the probability that a function is 0-valued is
given as the probability that the variable, x and the cofactor
f0 are 0-valued or that the variable, x is 1-valued but the
cofactor, f1 is 0-valued. A similar statement can be made for
the probability that f = 1. These relationships are given in
the following equations.

(1 − P [x])(1 − P [f0]) + P [x](1 − P [f1]) for f = 0 (4)
(1 − P [x])P [f0] + P [x]P [f1] for f = 1 (5)

Now, consider the value of f at two different observation
times ft1 and ft2. f is considered to “switch” if the value
of ft1 �= ft2. Table 1 enumerates the possible states of f at
two subsequent observation times, t1 and t2:

P [f t1 ∩ f t2] f t1 f t2

((1 − P [x])(1− P [f0]) + P [x](1 − P [f1]))2 0 0
((1 − P [x])(1− P [f0]) + P [x](1− P [f1]))((1 − P [x])P [f0] + P [x](P [f1])) 0 1
((1 − P [x])P [f0] + P [x](P [f1]))((1 − P [x])(1− P [f0]) + P [x](1 − P [f1])) 1 0

((1 − P [x])P [f0] + P [x](P [f1]))
2 1 1

Table 1: Probabilities at Subsequent Observations.

Due to the definition of “switching”, ft1 �= ft2, we can
derive the probability of switching based on the output prob-
abilities given in Table 1. Hence the switching probability
Psw[f] of f can be computed as:

Psw[f] = P [ft1 = 0 ∩ ft2 = 1] + P [ft1 = 1 ∩ ft2 = 0] (6)

Using the expression in Table 1 and substituting them into
Equation 6, we have the result:

Psw[f] = 2((1 − P [x])(1 − P [f0]) + P [x](1 − P [f1])) (7)
((1 − P [x])(P [f0]) + P [x](P [f1]))

5 Circuits Based on BDD Mappings

An Ordered Binary Decision Diagram (OBDD) [4] can be di-
rectly mapped to a MUX based circuit as described in [1], to
a “timed” circuit as described in [11] or to a “pass-transistor”
based circuit as described in [2, 5, 15]. In all cases, the re-
sulting circuit can be considered to be one that is obtained
by replacing BDD vertices with small subcircuits and BDD
edges with wires.

It is known that the diagram size (and therefore the circuit
complexity) is sensitive to the ordering of the function vari-
ables (which represent circuit input signals), and may vary
from linear to exponential under different orderings for some
functions. Both exact and heuristic methods have been de-
veloped to tackle this problem. However, in this paper we are
not only concerned with the complexity of the circuit result-
ing from a BDD, but to an even greater extent, the power
dissipation.

As discussed in a previous section, one of the main factors
of power drain in a CMOS digital circuit is the switching
probability of each MUX output. In order to provide the
background for our technique, we state the following Lemma:

Lemma 1 Consider a level l in the diagram and its corre-
sponding set of nodes Nl having decomposition variable xl.
The output probability of each node in Nl is unaffected by the
variable ordering above and below l.

Proof 1 This follows from the properties of BDDs [8]. The
cofactors to be implemented at level l are independent of the
ordering above l. The cofactors implemented by level l + 1 re-
main unaltered as they are derived from l only. As the output
probability of nodes at Nl are solely defined from the output
probabilities of nodes at Nl+1 and the probability of xl we have
the lemma.

Now, let us consider the switching probability of nodes Nl

at level l. As defined in Equation 8, the switching probabil-
ity depends only on the output probability of the cofactors

(P [Nl+1]) and (P [xl]) of variable xl under our assumptions.
In the next section we show how this property can be utilized
in a reordering method for BDDs.

5.1 Local Variable Exchange

Many state of the art heuristics for BDD minimization are
based on “sifting” operations which are popular due to the
ease in which local variable exchanges can be accomplished
[9]. The key property is that a local exchange of variables in
a BDD can be done solely by redirecting edges locally in the
diagram. Since our main concern is to minimize the overall
switching probability (activity) of the resulting circuit, we
show that the switching probability can be computed by local
operations during sifting.

Consider a function f represented by a BDD. The switch-
ing probability of f (as represented by a root node in a BDD)
is independent of the variable ordering, as switching proba-
bility is a functional property of f . We can now show that
changes in internal switching probabilities can occur due to lo-
cal BDD variable exchanges as illustrated in Figure 2. Due to
the reduction rules that are applied after a local variable ex-
change, some vertices and edges may be eliminated resulting
in fewer intermediate switching probability values. From the
functional property of switching probability, it follows that
the switching probability of f remains unaffected by local
variable exchanges. Furthermore, switching probabilities of
subfunctions below the exchanged levels are also preserved,
since the cofactors at levels indicated by the word “below”
are intact during sifting. This holds for exchanging arbitrary
(neighboring) levels in the diagram.

P[b]

P[b]

P[b] P[a]P[a]

P[a]

ff

ff

P[f] P[f]P[f]P[f] P[f] P[f]P[f] P[f]
below

lower

upper

(a) (b)

1000 11

0 1

b b

a

10

0 1

10

1101 0100

b

a
10101

a
_0 _1

0

Figure 2: BDD Local Variable Exchange and Effect on
Switching Probabilities.

Finally we need to show that the switching probabilities of
the nodes (f0 and f1) at levels denoted by the word “lower”
in Figure 2 can be computed locally during sifting.

From Equation 8 we derive:

Psw[f0] = 2((1 − P [a])(1 − P [f00]) + (8)
P [a](1 − P [f10)))((1 − P [a])(P [f00]) + P [a](P [f10]))

Psw[f1] = 2((1 − P [a])(1 − P [f01]) + (9)
P [a](1− P [f11]))((1 − P [a])(P [f01]) + P [a](P [f11]))

As the output probabilities {P [f00], P [f10], P [f01], P [f01]} are
unaltered during sifting, the operation is local.

5.2 Complemented Edges

The use of complemented edges has shown both to reduce
BDD complexity and improve performance of operations,
[13, 3]. The statements above apply for BDDs using com-
plemented edges by making the following observations:

1. The output probability P [f] of f is equal to 1 − P [f].

2. The switching probability Psw[f] of f is equal to Psw[f].

We can utilize these properties to compute local switching
probabilities during variable exchange operations on BDDs
with complemented edges.

6 Power Minimization

Given the results described above, we can now state the BDD
based algorithm for the minimization of total estimated power
dissipation due to switching in a circuit based on BDD map-
ping. The algorithm is similar to those of BDD minimization
based on local variable exchange but the cost measure is dif-
ferent.

6.1 Cost Model

We define the cost model based on the total circuit switching
activity under a given set of dependent variable output prob-
abilities. In the following we denote the dependent variables
as support variables. We attempt to minimize the sum of all
internal switching probabilities at each BDD vertex.

This model has some assumptions. We assume the input
signals to the resultant circuit to be statistically independent
from each other and uncorrelated in a temporal sense. This is
the assumption that allows us to use the switching probability
computed in the BDD representation as an estimate for the
actual switching activity of a circuit.

Furthermore, we use a linear model for fan-out cost. This
model can be refined if more information is known about the
target architecture properties, such as gate or inverter sizing,
for cell library or full custom implementations respectively.
Also, we apply a unit cost for the load of each fan-in. This
measure can be further refined using technology dependent
capacitance measures weighted by the estimated length of the
interconnection.

Finally we consider only the dynamic power dissipation
component of the circuitry. A technology dependent measure
for the static power dissipation of each subcircuit could also
be applied easily if the target circuit architecture is known in
advance.

D min() {
1 compute Dsw[total]
2 for each variable {
3 sift to position minimizing Dsw[total]
4 } repeat until no further improvement
}

Figure 3: Minimization of Power Dissipation.

D sift(upper, lower) {
1 Dsw[total] -= (Dsw[upper] + Dsw[lower] + Dsw[below])
2 ref remove edges to(upper,lower)
3 perform local variable exchange
4 ref add edges to(upper,lower)
5 Dsw[total] += (Dsw[upper] + Dsw[lower] + Dsw[below])
}

Figure 4: Updating Power Dissipation During Sifting.

6.2 Heuristic Minimization Algorithm

The proposed heuristic minimization algorithm, iteratively
seeks a variable order reducing the circuit’s switching proba-
bility weighted by the fan-out cost for each node. We outline
the procedure in Figure 3.

The sifting and re-calculation of output and switching prob-
abilities is performed solely through local operations on the
BDD representation. The total estimated power dissipation
due to switching (Dsw[total]) can also be updated by local
operations on the two levels sifted (upper and lower) and
nodes connecting to the sifted levels (below). By maintain-
ing reference counters (i.e., the number of incoming edges)
for each node, the effect of fan-out changes for nodes below
in the diagram can be handled. Figure 4 shows how the to-
tal switching probability is updated during sifting. In line
1, we subtract the contribution of the two levels to be sifted
(Dsw[upper]+Dsw[lower]) and the contribution of fan-outs
from connecting nodes (Dsw[below]). The number of refer-
ences for connecting nodes are updated (line 2) before apply-
ing the sifting (line 3). After the variable exchange is per-
formed, we update the reference counters of the connecting
nodes (line 4) and compute the total estimated power dis-
sipation in line 5. Due to the variable exchange, switching
probabilities and reference counters may change, hence also
the estimated power dissipation Dsw[total] .

Example 1 Figure 5 (a) shows a portion of a BDD before
sifting. The number at each node denote the number of in-
coming edges, (i.e, the fan-out in a MUX based mapping).
Before sifting we need to determine fan-out changes of the
lower levels in the BDD, given as (b) in the Figure 5. Note
that only nodes connecting to the “upper” and “lower” levels
are updated. After sifting is performed, the new fan-out values
(reference counters) of the connecting nodes are computed, as
shown in part (c) of Figure 5.

1

24

1 2

1

1
upper

lower

below

1

1

1 42 21

0

5

4

3

(b) (c)(a)

e

b

e

c

e

d

b

a

b

c

dd

c

a

Figure 5: Reference Count Update During Sifting.

Stage 1 Stage 2 Stage 3 Stage 4 Stage . . .
fan-out p/n p/n p/n p/n . . .

1 4/2 4/2 - - -
> 1 4/2 8/4 8/4 - -
> 3 4/2 16/8 16/8 - -
> 6 4/2 8/4 32/16 32/16 -
> 12 4/2 16/8 64/32 64/32 -
.

Table 2: Driver width in lambda.

7 CMOS PTL Mapping

As mentioned in Section 5 a circuit can be derived from a
structural mapping of the BDD. In order to verify our min-
imization method we have developed a simple mapping tool
for PTL based CMOS circuits. Each BDD node is mapped
to a subcircuit shown in Figure 6. The select signal (input)
is present in both polarities a and a. f and f are always
computed (no optimization is applied). The driver is chosen
according to the total fan-out of the node as shown in Ta-
ble 2. (This assumes the worst case situation, all outputs
of the same polarity.) The number of inverter stages ranges
from 2 (as shown in Figure 6) (a) and upwards (b) in Fig-
ure. The transistor sizings for each inverter stage are given in
nominal values for the process, p for P-transistors and n for
N-transistors. Values are chosen to ensure balanced rise and
fall times. Edges in the diagram are implemented as mere
interconnections (without parasitics).

fff f

f

ff

f

(a) (b)

a

a

a

a

0 10 1

VDD VDDVSS VSS

Stage 1Stage 1

Stage 2

Stage m

Figure 6: PTL Mapping of BDD Node.

8 Experimental Results

We have implemented a prototype evaluation of this technique
based on the CUDD 2.3.0 [16] package for BDD manipula-
tion with custom data types for storing the internal switching
properties of the BDD nodes.

In the first set of experiments (Table 3), the output proba-
bilities of the support variables are set to 0.5 (i.e. we assume
each variable is equally likely to have a value of ‘0’ or ‘1’). The
columns labeled “Naive Ord.” show the size and estimated
dynamic power dissipation (ˆPD) under an initial variable or-
dering obtained as the order in which the variables appear
in the .pla files from the LGSynth93 benchmark suite. Note
that ˆPD:s are unitless values. The column “BDD Ord.” is
minimized by size and “Power Ord.” is minimized by our
proposed method (for size reduction, the group sifting algo-
rithm with convergence [16] is applied). The column labeled
“CPU” shows the run time in seconds for our optimization
heuristic. Area optimized circuits “BDD Ord.” outperform
the initial ones for all benchmarks both with respect to size
and estimated power consumption, the latter attributed to
the fact that our cost model computes the sum of all inter-
nal switching probabilities (weighted by the fan-out of each
node), hence fewer nodes leads (in general) to reduced power
dissipation. The more interesting outcome of these experi-
ments is that in some cases, allowing the BDD to increase in
size slightly (and thus increasing the size of the underlying
BDD-mapped circuit) can cause a further reduction in esti-
mated dynamic power dissipation, “Power Ord.”. This is due
to decreased internal switching probabilities in the circuitry
obtained by our minimization method.

In the second set of experiments (Table 4), the output prob-
abilities of the support variables are alternatively set to 0.1
and 0.9 (i.e., {P [x1] = 0.1, P [x2] = 0.9, P [x3] = 0.1, . . .}).
Columns “BDD Ord.” and “Power Ord.” compare the size
and estimated dynamic power dissipation for circuits mini-
mized by size and our proposed algorithm respectively. The
column labeled “CPU” shows the run time in seconds for our
optimization heuristic. On the average, the power dissipation
is reduced by 20%, while the size increase is only 12%. For
some cases, the power dissipation can be significantly reduced.
As an example, consider “chkn”, “in2” and “x6dn”, where the
estimated dynamic power dissipation is reduced to less than
1/2, while the circuit sizes are increased only by 30%, 5% and
13% respectively. These results show that knowledge about
the output probabilities of the circuit’s input signals can be
exploited to sometimes give significant dynamic power dissi-
pation reductions in BDD-mapped circuits. For evaluation of
the quality of the presented heuristic, an exhaustive enumera-
tion of all variable orders is performed on benchmarks having
up to 10 variables. The worst and best results (optimal) are
shown in columns “Worst Ord.” and “Optimal Ord.” respec-
tively. The experiment shows our algorithm to obtain the
optimal results for the these functions. As for other sifting
based heuristics, we conclude our method to give high quality
results within reasonable run times.

For the PTL implementation we have used transistor mod-
els from a commercial 0.35u process. All analog simulations
are performed on the process specific models using a commer-
cial “SPICE-like” circuit simulator. The unit transistor width

Naive Ord. BDD Ord. Power Ord. CPU

name in/out Size ˆPD Size ˆPD Size ˆPD sec

5xp1 7/10 74 66 41 32 41 30 0.01
add6 12/ 7 308 272 28 23 28 23 0.01
apex7 49/37 1659 1237 289 176 316 158 11.19
bc0 26/11 589 369 522 320 540 310 2.84
chkn 29/7 741 298 267 132 361 85 3.43
duke2 22/29 972 268 355 107 361 93 2.10
exp 8/18 209 84 169 80 176 62 0.06
in2 19/10 2360 1464 234 116 244 95 3.48
in7 26/10 234 146 79 22 78 20 0.46
inc 7/ 9 76 47 70 45 70 45 0.02
intb 15/ 7 1033 687 537 349 556 305 0.98
misex3 14/14 1300 644 520 224 592 205 1.60
sao2 10/ 4 154 73 80 36 87 34 0.05
tial 14/ 8 1306 1027 579 423 579 423 0.27
vg2 25/ 8 1043 650 80 46 80 46 0.11
x6dn 39/ 5 274 142 240 143 244 122 2.58

Table 3: All Output Probabilities of Inputs are set to 0.5.

is 0.35u. Transistor sizings from Table 2 give approximately
100p seconds rise and fall times. This results in a total delay of
150p seconds (select to output) for a PTL MUX implementa-
tion with a fan-out of 4 (without internal routing parasitics).
To gain confidence in our mapping tool, the functional behav-
ior for some smaller circuits from the LGSynth93 benchmark
suite (“5xp1”, “majority” and “xor5”) has been successfully
verified against the specification using exhaustive simulation
of input vectors. For the experiments below we have applied
pseudo-random values {‘0’,‘1’} (according to output probabil-
ity) for the support variables. The pseudo-random vectors are
generated from constant seeds, producing exactly the same set
of vectors in the same order for each simulation run.

To ensure stable outputs, cycle time (1us) is set well longer
than the (combinational) critical path. The total power dissi-
pation is calculated from the average current (through the cir-
cuit without routing parasitics) times the VDD (3.3v). Power
dissipation for the primary inputs (support variables) are as-
sumed negligible as they only affect the select-inputs of the
multiplexors.

Due to the extensive time of analog simulation, only a small
selection of interesting benchmarks was chosen. To keep run-
times manageable the number of cycles was limited to 1000
and CPU time limited to approximately 4 hours, for each
selected experiment. Columns “PTL” in Table 5 show the
energy dissipated in pico watt seconds during the 1000us sim-
ulation, (in cases where simulation was earlier aborted due to
time limit, an interpolation is given, e.g. “chkn” simulated
for only 1000/5 cycles). Note, that neither our minimization
method, nor the mapping tool makes any attempt at reducing
glitches in the final circuit. However, the effect of glitches is
present in the analog simulations. Furthermore, for the larger
benchmarks, only a small subset of the input vector space has
been applied, therefore the presented simulation results can
be used only as rough estimates of the power dissipation. Ta-
ble 5, gives a comparison between estimated and simulated
values, where the output probability of the support variables
is set to 0.5. The correlated results confirm our minimization
method to be applicable to CMOS PTL circuits.

BDD Ord. Power Ord. Worst Opt. CPU

name Size ˆPD Size ˆPD ˆPD ˆPD sec

5xp1 42 16 41 15 43 15 0.01
add6 28 14 28 14 - - 0.01
apex7 289 54 329 47 - - 23.62
bc0 522 140 551 131 - - 1.90
chkn 267 77 348 33 - - 2.05
duke2 355 79 399 72 - - 1.04
exp 169 48 174 39 73 39 0.06
in2 234 73 247 25 - - 0.69
in7 79 6 86 5 - - 0.40
inc 70 20 75 19 45 19 0.02
intb 537 137 577 124 - - 1.14
misex3 520 150 592 122 - - 0.51
sao2 80 13 89 10 66 10 0.04
tial 579 242 691 227 - - 0.89
vg2 80 25 80 24 - - 0.23
x6dn 240 78 272 28 - - 8.57

Table 4: Output Probabilities set {0.1, 0.9} Alternating.

Naive Ord. BDD Ord. Power Ord.

name in/out ˆPD PTL ˆPD PTL ˆPD PTL

5xp1 7/10 66 2422 32 895 30 858
chkn 29/7 298 - 132 729*5 85 626*5
exp 8/18 84 - 80 1587*2 62 1281*2
in2 19/10 1464 - 116 851*5 95 697*5
sao2 10/ 4 73 - 36 1305 34 1077

Table 5: Analog Simulation vs. Estimated Values.

9 Conclusions

A method for the reduction of the overall sum of internal
switching probabilities for a BDD based on efficient local
variable exchange operations has been presented. When the
switching probability is used as an estimate for circuit switch-
ing activity in BDD-mapped circuits, it is shown that the dy-
namic power dissipation can be reduced using the technique.
The second set of experiments suggests that if statistical infor-
mation is known about the nature of the circuit input signals
prior to using the minimization technique, significant reduc-
tions in internal switching activity and hence, dynamic power
dissipation can be obtained. Furthermore, it is shown that
the increase in the size of the resulting circuits is relatively
small as compared to that obtained through the use of a BDD
size reduction technique.

Our model can be tailored to the target technology at hand,
further increasing the quality of the overall power dissipa-
tion estimate through the inclusion of static terms and more
knowledge about the internal capacitances.

Our minimization method has been validated by a straight-
forward mapping to PTL circuitry. Simulation results (utiliz-
ing transistor models from a commercial CMOS process) are
well correlated to our estimates, which confirms the applica-
bility of our approach.

References

[1] S.B. Akers. Binary decision diagrams. IEEE Trans. on
Comp., 27:509–516, 1978.

[2] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and
G. De Micheli. Decision diagrams and pass transistor
logic synthesis. In Int’l Workshop on Logic Synth., 1997.

[3] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient im-
plementation of a BDD package. In Design Automation
Conf., pages 40–45, 1990.

[4] R.E. Bryant. Graph - based algorithms for Boolean func-
tion manipulation. IEEE Trans. on Comp., 35(8):677–
691, 1986.

[5] P. Buch, A. Narayan, A.R. Newton, and A.L.
Sangiovanni-Vincentelli. Logic synthesis for large pass
transistor circuits. In Int’l Conf. on CAD, pages 663–
670, 1997.

[6] S. Chakravarty. On the complexity of using BDDs for the
synthesis and analysis of Boolean circuits. In Communi-
cation, Control and Computing, pages 730–739, 1989.

[7] S. Devadas and S. Malik. A survey of optimization tech-
niques targetting low power VLSI circuits. In Design
Automation Conf., pages 242–247, 1995.

[8] S.J. Friedman and K.J. Supowit. Finding the optimal
variable ordering for binary decision diagrams. In Design
Automation Conf., pages 348–356, 1987.

[9] N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchange of variables.
In Int’l Conf. on CAD, pages 472–475, 1991.

[10] R. Krieger. PLATO: A tool for computation of exact
signal probabilities. In VLSI Design Conf., pages 65–68,
1993.

[11] L. Lavagno, P. McGeer, A. Saldanha, and A.L.
Sangiovanni-Vincentelli. Timed shannon circuits: A
power-efficient design style and synthesis tool. In De-
sign Automation Conf., pages 254–260, 1995.

[12] R. Marculescu, D. Marculescu, and M. Pedram. Efficient
power estimation for highly correlated input streams. In
Design Automation Conf., June 1995.

[13] S. Minato, N. Ishiura, and S. Yajima. Shared binary deci-
sion diagrams with attributed edges for efficient Boolean
function manipulation. In Design Automation Conf.,
pages 52–57, 1990.

[14] K.P. Parker and E.J. McCluskey. Analysis of logic cir-
cuits with faults using input signal probabilities. IEEE
Trans. on Comp., 24:573–578, 1975.

[15] C. Scholl and B. Becker. On the generation of multiplexer
circuits for pass transistor logic. In Design, Automation
and Test in Europe, 2000.

[16] F. Somenzi. CUDD: CU Decision Diagram Package Re-
lease 2.3.0. University of Colorado at Boulder, 1998.

