
Low-Power Pervasive Wi-Fi Connectivity Using WiScan
Tianxing Li, Chuankai An, †Ranveer Chandra, Andrew T. Campbell, and Xia Zhou

Department of Computer Science, Dartmouth College †Microsoft Research
{ltx, chuankai, campbell, xia}@cs.dartmouth.edu ranveer@microsoft.com

ABSTRACT

Pervasive Wi-Fi connectivity is attractive for users in places
not covered by cellular services (e.g., when traveling abroad).
However, the power drain of frequent Wi-Fi scans under-
mines the device’s battery life, preventing users from stay-
ing always connected and fetching synced emails and instant
message notifications (e.g., WhatsApp). We study the energy
overhead of scan and roaming in detail and refer to it as the
scan tax problem. Our findings show that the main processor
is the primary culprit of the energy overhead. We propose a
simple and effective architectural change of offloading scans
to the Wi-Fi radio. We design and build WiScan to fully ex-
ploit the gain of scan offloading. Our experiments demon-
strate that WiScan achieves 90%+ of the maximal connectiv-
ity, while saving 50-62% energy for seeking connectivity.

Author Keywords

Wi-Fi connectivity; Wi-Fi scans; energy efficiency

ACM Classification Keywords

C.2.1 Computer-Communication Networks: Network Archi-
tecture and Design

INTRODUCTION

Wi-Fi operates over unlicensed spectrum and is easy to use.
Hence, it is often a preferred, low-cost alternative to connect
to the Internet. Businesses, such as coffee shops, restaurants,
and city municipalities, frequently offer free (or inexpensive)
Wi-Fi connectivity in exchange for user’s data and time on
their premises. In fact, large portions of big cities are blan-
keted by Wi-Fi hotspots [13, 21, 23, 27, 28], such that a user
can be connected to the Internet 24/7 [13].

Several applications would benefit if a mobile device could
continuously stay connected over Wi-Fi. For example, when
a user is traveling internationally and the cellular data plans
are expensive. The users’ mobile device could stay in sync
with his/her e-mail, WhatsApp, and Skype messages. In an-
other example, in countries where users have pay-per-byte
plans, the monthly bill could be reduced by maximizing con-
nectivity over Wi-Fi, especially for traffic-heavy applications
on file synchronization (e.g., Dropbox, Google Drive) or mu-
sic streaming (e.g., Pandora, Spotify). Furthermore, this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UbiComp ’15, September 7–11, 2015, Osaka, Japan.
Copyright 2015 c© ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2807515

ability could give rise to new business models (e.g., an in-
expensive, Wi-Fi only Skype or Hangouts phone [8, 20]).
It also serves as an appealing means to complement exist-
ing cellular services. Recent Microsoft WiFi service [15]
and Google’s Project Fi [18] both leverage millions of Wi-Fi
hotspots worldwide to provide pervasive connectivity.

However, achieving pervasive Wi-Fi connectivity is non-
trivial. The biggest challenge is the power consumed by fre-
quent Wi-Fi scans. Unlike cellular modems, the Wi-Fi chipset
and the main processor need to stay awake to scan for avail-
able Wi-Fi Access Points (APs) and roam across small Wi-Fi
cells. In our experiments, scans from Skype (every 60 s) re-
duced the battery life of a Nexus 4 by 43%. Even the default
300 s scan interval reduces the battery life by 19%.

As we investigate the energy overhead of Wi-Fi scans, we find
that the primary culprit is the main processor, which has to be
active during the scan operation. From our measurements,
the main processor typically consumes 1-2 times more en-
ergy than the Wi-Fi radio during the scan. We refer to the
main processor’s energy cost as the scan tax paid for each
scan operation. As increasing applications rely on aggressive
scanning for better Wi-Fi connectivity, it is critical to find so-
lutions to the scan tax problem. Existing solutions either turn
off the Wi-Fi radio, or rely on users’ manual hunting for Wi-
Fi hotspots, both leading to a poor user experience.

In this paper, we consider a simple architectural change that
can significantly drive down the scan tax by offloading the
Wi-Fi scan to Wi-Fi radios. The key idea is as follows. First,
the main processor computes a list of SSIDs and scan-related
parameters (i.e., scan interval, timeout) by considering AP lo-
cations and user mobility with the goal of maximizing Wi-Fi
connectivity. For secure SSIDs that require authentication,
the login passwords are also offloaded to the Wi-Fi radio. Us-
ing techniques such as Hotspot 2.0 (or Wi-Fi Passpoint) [24,
59] and WISPr [34], we can automate the authentication with-
out requiring user interactions. Second, the Wi-Fi radio per-
forms periodic scans and wakes up the main processor only
when it discovers any SSID in the SSID list. The main pro-
cessor then associates with the discovered SSID. By reduc-
ing the active duration of the main processor, offloading scan
improves the energy efficiency of the disconnected state. In
fact, part of this architectural change has emerged in recent
products [6, 17]. However, the current adoption uses a very
rudimentary design, which can lead to significant (up to 90%)
connectivity loss and is unable to support various use cases
(e.g., traveling). So far, little is known on the full potential of
scan offloading and how to effectively unleash it.

We aim to bridge this gap in this paper. To fully exploit
the benefits of scan offloading, we face three key challenges.

Table 1. Smart devices used in our measurements. We measure the baseline power when the device is in disconnected idle state, where we turn off the
phone screen, and disable all radios, apps and services.

Metric
Smart Phone Smart Glass

Samsung Samsung LG LG Samsung Google
Galaxy S3 Galaxy Nexus Nexus 4 Nexus 5 Note 3 Glass

OS Android 4.1.2 Android 4.3 Android 4.4.2 (developer image) Android 4.3 Android 4.0.4

Wi-Fi
Murata Broadcom Atheros Broadcom Broadcom Broadcom

M2322007 BCM4330 WCN3660 BCM4339 BCM4339 BCM4330
Main Exynos 4 TI OMAP 4460 Snapdragon S4 Pro Snapdragon 800 Exynos 5 TI OMAP 4430
processor quad-core 1.4 GHz dual-core 1.2 GHz quad-core 1.5 GHz quad-core 2.26 GHz quad-core 1.9 GHz dual-core 1.2 GHz
Battery 2100 mAh, 3.8 V 1750 mAh, 3.7 V 2100 mAh, 3.8 V 2300 mAh, 3.8 V 3200 mAh, 3.8 V 570 mAh, 3.7 V
Baseline power 8.87 mW 18.31 mW 14.04 mW 12.24 mW 12.70 mW 23.87 mW

First, computing the offloading SSID list is nontrivial. Wi-
Fi chipsets have very limited memory and can store only up
to 10-16 SSIDs [19, 14], while users typically encounter 2-3
times more SSIDs even in half an hour [1, 2]. A larger on-
chip memory mitigates the problem and yet entails a higher
material cost, unlikely to be adopted by hardware vendors
since Wi-Fi chipset is a low-end market. Second, user mobil-
ity complicates the configuration of scan parameters, which
depends on the user’s location, moving speed/direction, and
the density of surrounding APs. Third, smart devices have
limited computational power and battery. We need low-
complexity algorithms to adapt the SSID list and scan pa-
rameters online without much additional sensing overhead.
In the future, the adaptation process may be fully offloaded to
the Wi-Fi radio as the mobile architecture advances [55].

To address the above challenges, we design and build WiScan.
To compute the offloaded SSIDs, WiScan uses a lightweight
learning scheme that integrates historical SSIDs and user mo-
bility prediction to estimate the SSIDs that the user will en-
counter in the near future. Unlike prior work that typically
requires frequent sensing (e.g., location, accelerometer) [43,
51, 58], our SSID learning scheme does not require continu-
ous sensing and makes no assumption on AP’s coverage. To
configure scan parameters, WiScan integrates the output of
low-power activity sensors in smart devices to calibrate the
user’s velocity estimation and adapts the scan frequency and
timeout based on the location of the next available hotspot.
Our results demonstrate WiScan’s energy efficiency across
diverse network deployments and user mobility patterns. It
achieves 90%+ of the optimal Wi-Fi connectivity, yet reduces
50-62% of the energy on seeking Wi-Fi connectivity.

Our key contributions are as follows:

• We analyze the Wi-Fi scan tax problem, conduct measure-
ments on diverse smart devices to examine the root cause,
and quantify its impact on device’s battery life;

• To cut the Wi-Fi scan tax, we design intelligent algorithms
that compute the offloading SSID list and scan-related pa-
rameters to fully exploit the benefits of scan offloading;

• We build a WiScan prototype on the Nexus 5 and perform
real-world experiments to validate WiScan’s significant en-
ergy saving and near-optimal connectivity;

• We evaluate WiScan using large-scale emulations driven
by scan traces of smartphone users across the world.

We believe that WiScan represents a significant departure
from prior efforts [33, 43, 50, 60, 64] by tackling the root

cause of Wi-Fi scan energy inefficiency. The principle of
WiScan can potentially be extended to other types of radios
(e.g., cellular, white spaces radios). WiScan is similar in
spirit to the industrial trend (e.g., Apple’s M7, Moto X) of
offloading sensing to low-power co-processors [25, 26]. Ul-
timately, WiScan can enable “always-on” Wi-Fi connectiv-
ity necessary for future context-aware applications such as
Glass-based augmented reality and gesture-driven HCI.

WI-FI SCAN TAX PROBLEM

We first examine the problem of Wi-Fi scan tax and analyze
its implications on maximizing Wi-Fi connectivity.

Energy Consumption of Wi-Fi Scan

To examine the energy consumed by Wi-Fi scans, we test
five models of Android smartphones and Google Glass (Ta-
ble 1). We measure the device’s power draw using the Mon-
soon power monitor [16], which reports instantaneous power
averaged every 0.2 ms. As shown in Figure 1(a), we remove
the device battery, and connect battery pins to the power mon-
itor1. By powering the device using the power monitor, we
are able to collect accurate power measurements. We modify
the Android framework so that the radio scans with a speci-
fied interval without associating with any AP. To obtain clean
measurements, we turn off the screen and disable all other ra-
dios and apps/services. We validate our setup by measuring
each device’s baseline power, where we disable all radios,
apps/services with the screen off. Our baseline power mea-
surements (Table 1) align with prior results [11].

For all measured devices, we observe that their Wi-Fi radios
perform active scans when the screen is off2. Figure 1(b) plots
the total power draw of Nexus 5. The scan consists of three
phases: scan initialization (0 - 0.3 s), channel scan (0.3 - 1.4
s), and returning scan results to the application layer (1.4 -
3.6 s). The radio first sends out a channel probe to each Wi-Fi
channel to solicit replies from APs on each channel. It stays
for 20 ms on each channel, and sends the scan result to main
processor. After receiving scan results, the main processor
sends them to the application layer. Overall the scan lasts 3.6
s, and consumes 0.74 J energy. We observe similar patterns
when measuring other devices (Table 2).

1We were unable to use the power monitor to measure Google Glass,
so we developed an application to specify the scan interval and mea-
sured its resulting battery life.
2The radio conducts passive scans only when it has no SSID con-
nection history and the screen is off. Passive scans entail long delay,
where the radio stays on each channel for 400 ms. Active scan is the
dominating scan type we observed in all our measurements.

(a) Setup

 0

 400

 800

 1200

 1600

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
o

w
e

r
(m

W
)

Time (s)

Scan initialization
Channel scan
Returning scan

results

(b) Power draw of the phone

 0

 20

 40

 60

 80

 100

5 60 120 180 240 300

B
a

tt
e

ry
 l
if
e

 r
e

d
u

c
ti
o

n
 (

%
)

Scanning interval (s)

S3
Note 3

Nexus 5
Galaxy

Nexus 4
Glass

(c) Impact on battery life

Figure 1. Energy measurements of Wi-Fi scans using Nexus 5. We connect a Monsoon power meter to the
phone’s battery pins (a). (b) shows the total power consumption of the phone during a scan, and (c) shows
that frequent Wi-Fi active scans significantly reduce the battery life.

 0

 20

 40

 60

 80

 100

5 60 120 180 240 300

C
o

n
n

e
c
ti
v
it
y
 (

%
)

Scanning interval (s)

Downtown
Resident

Rural

Figure 2. Impact of Wi-Fi scans on
Wi-Fi connectivity, using a dataset
collected in Keene, NH. Default scan
intervals (300 s or 240 s) reduce Wi-Fi
connectivity by nearly half.

The energy overhead of Wi-Fi scan significantly affects the
device’s battery life. To examine this impact, we vary Wi-
Fi radio’s scan interval from 5 s (the minimal) to 300 s, and
compare the resulting battery life BTs under scan interval Ts

to the baseline battery life B when the device is in the discon-
nected idle state consuming the baseline power. We derive
BTs and B as follows. Assume the device has a battery with
V volts and A mAh, its baseline power is Pb in mW, and the
energy consumed by a Wi-Fi scan is Es in mJ (Table 2, not
including baseline power), then we have B = (A ·V)/Pb and
BTs = (A · V)/(Es/Ts +Pb). Figure 1(c) shows the battery
life reduction (1 − B/BTs) of different devices under each
scan interval Ts. We see that across all devices, frequent Wi-
Fi scans significantly drain the battery, reducing the battery
life by up to 90%+. Because of the energy overhead, existing
smart devices either turn off Wi-Fi radio when the screen is
off or use large scan intervals (e.g., 300 s for Android frame-
work). Next, we examine the impact of scan interval on the
resulting Wi-Fi connectivity.

Impact on Wi-Fi Connectivity

We built a system service to collect Wi-Fi scan traces and
user mobility. Unlike prior Wi-Fi traces [7] that are collected
using default Wi-Fi scan intervals (180 s or 300 s), or us-
ing laptops, our dataset contains much finer grained Wi-Fi
scan results using smartphones. This allows us to examine
the impact of smaller scan interval on the Wi-Fi connectivity
received by the user. Specifically, our service forces the Wi-
Fi radio to scan every 5 s without associating with any AP.
The service collects scan results (i.e. SSIDs, operating chan-
nels), timestamp, GPS coordinate, and user activity inferred
by Google service [9]. We have collected Wi-Fi scan traces
from four cities across the world: our local city, Keene in New
Hampshire, Canberra in Australia, and Beijing in China, with
4 users over 7 days. Table 3 summarizes the dataset statistics.

Using these Wi-Fi scan traces as ground truth, we now ex-
amine the resulting Wi-Fi connectivity using different scan
intervals. We assume the device can only connect to public
SSIDs, and it connects to the SSID with the strongest received
signal until it no longer sees this SSID during the scan. For
a given scan interval, we calculate the user’s connectivity as
the percentage of time that the user connects to any SSID.

Take the dataset at Keene as an example. In this 5 hr walk-
ing trace, the user passes traffic lights, parking lots, buildings,

and bridges. Figure 2 plots the connectivity as the scan inter-
val varies from 5 s to 300 s. We identify three types of areas:
downtown area (120 APs per km2), residential area (40 APs
per km2), and rural area (5 APs per km2). We make two key
observations. First, across all different areas, scan frequency
significantly affects the achieved Wi-Fi connectivity. A scan
interval of 60 s leads to a 20% reduction in Wi-Fi connec-
tivity, and the default scan interval (300 s in Android frame-
work) reduces Wi-Fi connectivity by at least half. Second,
in areas with relatively sparser APs (i.e., residential and ru-
ral areas), scanning frequently is essential to seize the sparse
connectivity. Overall, maximizing Wi-Fi connectivity needs
frequent Wi-Fi scans, which however drain the battery signif-
icantly (Figure 1(c)). Thus, the energy inefficiency of scan is
a big hurdle for maximizing Wi-Fi connectivity.

Wi-Fi Scan Tax

We quantify the scan tax and analyze its associated activities.

Quantifying the Wi-Fi Scan Tax

We quantify the scan tax by measuring the main processor’s
power during an active scan. This is challenging because indi-
vidual components (e.g., Wi-Fi radio, main processor) do not
expose pins for us to measure their power draw. Although the
Android framework provides an estimated energy breakdown
for each component, it uses the built-in battery sensor far less
accurate than the power monitor.

To address this challenge, we design and implement a ghost
service in the Android kernel and framework to emulate the
existence of Wi-Fi scan without actually turning on Wi-Fi.
The ghost service intercepts scan requests from the main pro-
cessor, and sends fake scan result of each channel to the scan
event handler in the framework. The timing of sending fake
scan results is set based on our measurements. The main pro-
cessor then processes these fake results as if the Wi-Fi radio
were actually scanning, and returns the results to the applica-
tion layer. We verified that the ghost service consumes negli-
gible energy, so the power monitor readings accurately reflect
main processor’s power draw.

Table 2 shows the energy breakdown and the active duration
of the Wi-Fi radio (and the bus) and main processor during
an active scan. We observe that across all devices, the Wi-Fi
radio and the bus consume only approximately 40% of the
energy for performing the scan! The majority of the energy
is consumed by the main processor, which is active for 3–4 s,

Table 2. Energy consumption and active duration of the Wi-Fi radio and the main processor (MP)
for an active Wi-Fi scan. We do not include the baseline power in MP’s energy numbers to truly
reflect MP’s energy consumption associated with the scan. Across all smart devices, MP’s energy
consumption consistently occupies nearly 60% of the total energy of a Wi-Fi scan.

Samsung Galaxy
Nexus 4 Nexus 5

Samsung Google
S3 Nexus Note 3 Glass

Wi-Fi 0.34 J (34%) 0.34 J (37%) 0.26 J (42%) 0.32 J (44%) 0.31 J (37%) 0.34 J (31%)
(+bus) 0.99 s 1.11 s 0.85 s 1.08 s 1.07 s 1.05 s

MP
0.67 J (66%) 0.59 J (63%) 0.37 J (58%) 0.42 J (56%) 0.53 J (63%) 0.76 J (69%)

2.85 s 3.97 s 2.16 s 3.64 s 3.83 s N/A

 0

 400

 800

 1200

 1600

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
o
w

e
r

(m
W

)

Time (s)

Initialize scan requests

Monitor

Wi-Fi scan
Broadcast scan

results

Figure 3. The Wi-Fi scan tax: main processor’s
power draw in a Wi-Fi active scan (Nexus 5).

WiFi Radio

3

1

O oad

SSID list L,

scan interval

Ts, timeout X

Wake up MP if any

match in the list

2

Scan

periodically

Memory slot

Main Processor (MP)

SSID list

(a) Offloading Wi-Fi scan

Existing

scan
Find other

SSIDs?

MP associates

with new SSID

Match in

L?

MP computes SSID list L, scan

interval Ts, timeout X

O!oaded

Wi-Fi scan
Matching fails

X times? Wake up

MP

Connected
Y

N

N

Y

Y

N

Wake up MP

Lost

connection

MP

sleeps

(b) Flowchart of Wi-Fi offloading

Figure 4. WiScan overview. (a) WiScan realizes the idea of offloading Wi-Fi scans: the main processor offloads a list of SSIDs (L) and scan-related
parameters (scan interval Ts, timeout X) to the radio. The radio scans independently and wakes up main processor only when it discovers SSID in the
list. (b) The system enters the mode of Wi-Fi scan offloading in the disconnected state.

much longer than the radio. This high scan tax fundamentally
limits the potential of maximizing Wi-Fi connectivity.

How is the Wi-Fi Scan Tax Spent?

We further analyze the main processor’s activities during a
Wi-Fi scan. As shown in Figure 3, the main processor per-
forms the following operations:

• Initializing scan requests. The main processor checks Wi-
Fi radio status (e.g., connection state, supplicant pending
state, and driver state). If it is valid, the main processor
initializes an I/O buffer to store the package from Wi-Fi
radio. It then invokes the Wi-Fi driver to prepare a scan
request that includes the scan type, scan interval, and scan
timeout. The processor sends the scan request to Wi-Fi
firmware. The peak power of these operations is 1300 mW.

• Monitoring Wi-Fi scan. The main processor monitors the
scan result as the radio sends a scan probe to each channel
sequentially. Once the radio finishes scanning a channel,
the main processor collects the scan result and counts APs
on this channel. In the end, the main processor receives a
package of scan results of all channels from the radio.

• Broadcasting scan results. The main processor unpacks the
scan result package, which contains SSID, received signal
strength, channel number, and BSSID. It then broadcasts
this information to the application layer, updates UI, and
waits 600 ms for app requests. If no request comes, the
processor releases the I/O buffer and sets the timer for the
next scan, leading to a peak power of 1000 mW.

WiScan: OFFLOADING WI-FI SCAN

We present WiScan to cut the scan tax. We describe the con-
cept of offloading scans and the detailed design of WiScan.

Concept and Design Challenges

Figure 4(a) illustrates the concept. The device offloads the
scan when it is not connecting to any AP and the screen is off.

Before entering the sleep mode, the main processor computes
a list of SSIDs and scan-related parameters (scan interval and
timeout), and writes the SSID list into the memory slot of the
Wi-Fi radio. The SSID list contains the SSIDs and their en-
cryption information (e.g. encryption type, password). The
Wi-Fi radio then periodically scans and compares its discov-
ered SSIDs to the SSID list. If any match is found, the radio
wakes up the main processor to associate with the matched
SSID3. If there are multiple SSID matches, it picks the SSID
with the strongest signal. With the SSID list, we can filter out
private APs that the device cannot connect to. This ensures
that the radio wakes up the main processor only if Wi-Fi con-
nectivity is available, avoiding waking up the main processor
for APs unable to connect to (e.g., unsubscribed APs). The
radio also wakes up the processor if it cannot find any matches
afterX independent scans, so that the system is not stuck with
outdated SSID list and scan parameters (Figure 4(b)).

The concept of scan offloading can be generalized in two
aspects. First, we can consider offloading BSSIDs. As
unique identifiers of wireless routers, BSSIDs are much
harder to manipulate than SSIDs and thus offer better se-
curity. Second, we can design more sophisticated metric to
select SSIDs/BSSIDs, which can take into account not only
signal strength but also its bandwidth and other performance
metrics. We leave these discussions to future work.

To realize the concept of offloading Wi-Fi scan, we need to
determine: 1) the offloading SSID list so that the device does
not miss any available Wi-Fi connectivity; and 2) the scan
frequency and timeout to avoid unnecessary scan operations
and thus save energy. Configuring these parameters brings
three challenges. First, off-the-shelf Wi-Fi chipsets have very
limited memory, which can only store up to 10-16 SSIDs [19,
14] and is costly to increase. Using our Wi-Fi scan traces

3For SSIDs that require login, Hotspot 2.0 [24] and WISPr [34] can
be used to automate the login and avoid user interaction.

(a) Nearest SSIDs

AP w/ SSID i

AP w/ SSID j

(b) Sector-based (c) Non-uniform

Figure 5. Schemes of deciding SSID list assuming N = 8, with selected SSIDs marked by red circles. (a) Nearest-SSIDs scheme is highly affected
by AP distribution. A user can be stuck with SSIDs that he/she is moving away from and unable to connect to; (b) Sector-based scheme selects SSID
in all directions. But an SSID per sector still can lead to miss connectivity. Here the user will encounter SSIDj , rather than the selected SSIDi; (c)
Non-uniform scheme picks more SSIDs in the estimated user’s moving direction, and thus better predicts the SSID the user will encounter.

and other existing traces [1, 2], our analysis shows that a user
typically can encounter 2-3 times more SSIDs in even half an
hour. So it is nontrivial to decide the SSID list that maximizes
the Wi-Fi connectivity. It becomes more challenging when
we generalize the idea to offloading BSSIDs. Second, user
mobility further complicates the configuration. Prior work on
mobility prediction [51, 58] requires training using long-term
historical data and assumes that users have a regular routine.
These assumptions, however, do not always hold (e.g., users
travel to new places). We need to predict future SSIDs on
the fly even without historical data. Third, smart devices have
limited energy and computation power. Thus the algorithm
has to be low-complexity and energy-efficient. Next we de-
scribe our solutions to addressing the above challenges.

Computing the Offloading SSID List

The first key design component is to determine the SSID list
to offload to the Wi-Fi radio. The locations of public hotspot
can be easily obtained in public databases such as JiWire [12]
and wefi [22], which contain over 100 million Wi-Fi hotspot
entries around the world. Let N be the maximal number of
SSIDs Wi-Fi memory can store. We aim to seek schemes that
generate list L of N SSIDs containing the next SSID that the
device will encounter and can connect to.

Our search starts with a few straw-man solutions. The sim-
plest approach is popular SSIDs, where we offline set L to
the most popular SSIDs. To examine how well this approach
works, we crawled large-scale hotspot data4 from Jiwire for
three cities: Seattle, Chicago, and San Francisco. Our analy-
sis shows that popular SSIDs (occurrence> 1%) occupy only
10%+ of the SSIDs at each city (4.8% for San Francisco).
We also estimate the area covered by popular SSIDs, assum-
ing each hotspot covers a circle area. We found that popular
SSIDs cover only 40%+ of all SSIDs’ coverage and solely re-
lying on them leads to significant connectivity loss (>50%).

The above observations turn our attentions to approaches that
compute L online. Existing industry approach caches the
N most recently connected SSIDs [6, 17], referred to as the
history-only scheme. While simple, this approach fails when
users travel to new places or have irregular mobility patterns.
Another intuitive approach is to select the N SSIDs nearest to

4Our dataset contains SSIDs and GPS coordinates for 1307, 1005,
and 972 hotspots at city and suburban areas of Seattle, Chicago, and
San Francisco, respectively. We use Google Geocoding API [10] to
obtain hotspot GPS coordinates based on their addresses on Jiwire.

the user, referred to as the nearest-SSIDs scheme. However,
by ignoring the user’s moving direction, this approach can
result in incorrect prediction of the next available SSID. Fig-
ure 5(a) illustrates a simple example, where the user’s nearest
N SSIDs are clustered. The user is walking away from their
coverage and can no longer connect to any of them. However,
the nearest-SSIDs scheme still predicts these SSIDs, which
clearly are no longer relevant to the user.

To take into account user’s moving direction, a smarter alter-
native is to divide all nearby SSIDs into N equal sectors and
pick the nearest SSID in each sector, referred to as the sector-
based scheme (Figure 5(b)). This scheme is simple and does
not require mobility estimation. But it is limited by the small
number of sectors (i.e., the number of SSIDs N), which can
still lead to connectivity losses (Figure 5(b)).

We propose a variant of the sector-based scheme, where we
perform non-uniform partition of the sectors guided by the
estimated user’s moving direction and select more SSIDs in
sectors in user’s moving direction (Figure 5(c)). Furthermore,
we also consider previously connected SSIDs, which serve
as a valuable indication of future possible Wi-Fi connectiv-
ity, especially for users with regular mobility pattern. Using
SSIDs’ distances to the user, our method makes no assump-
tion on hotspot coverage area, which is typically irregular due
to the complex wireless signal propagation. Our method takes
the following input: 1) the user’s current location, which can
be obtained by using existing localization techniques [35, 37]
or the GPS sensor), and 2) map information (e.g., street).
Note that to lower the overhead of acquiring user’s location,
WiScan adapts the GPS sampling rate based on user’s current
mobility status. We plan to leverage low-power localization
techniques [45, 52, 54, 56, 61] to further minimize the over-
head. Our approach has three steps.

Step #1: Predicting Direction. We predict user’s moving di-
rection if the user is non-stationary based on the activity infer-
ence [9]. Assume p1 is user’s current location at time t1, we
estimate user’s moving direction as −−→p0p1, where p0 is the lat-
est location that is at least 10 m away from p1 and t1−t0 > 60
s. This is to reduce the impact of potential location sensing
error (e.g., GPS or Wi-Fi localization error can be higher than
10 m). We further refine the direction estimation using street
information to eliminate directions where feasible paths do
not exist. Overall, our prediction method does not require fre-
quent location tracking and works upon sparse location data.

Step #2: Partitioning Sectors. Based on the estimated moving
direction −−→p0p1, we first divide the space around the user into
N uniform sectors, such that −−→p0p1 is the angular bisector of
a sector. We classify the N sectors into two groups: forward
sectors whose angular bisectors have acute angles to −−→p0p1,
and backward sectors whose angular bisectors have obtuse
angels to −−→p0p1. Then we adjust the sector partition by merg-
ing every x adjacent backward sectors and obtain ⌊N/(2x)⌋
backward sectors. We exhaustively tested different x values
offline, and x = 2 performs the best in all experiments. By
assigning more sectors in the forward direction, we increase
the likelihood of including SSIDs the user will encounter.
We still consider backward sectors due to the observed non-
uniformity of Wi-Fi signal propagation: The device cannot
connect to any AP in backward sectors now, yet it can as it
moves to a direction with better received signal. In the end,
we have M = ⌈N/2⌉+ ⌊N/4⌋ sectors. Figure 5(c) shows a
simple example, where 4 backward sectors are merged into 2
sectors, resulting into 6 sectors in total.

Step #3: Selecting SSIDs. The last missing piece is to select
N SSIDs from these M sectors. A straightforward method
is to select the nearest SSID in each sector, which, however,
can provide wrong estimation because of the complex wire-
less propagation. Instead, we consider both SSIDs’ distances
and the connection history. Our selection works as follows.
First, we select 2N nearest SSIDs as candidate SSIDs. This is
similar in spirit to the ghost list design in adaptive caching al-
gorithm (ARC) [49]. For these 2N SSIDs, we rank the histor-
ical SSIDs by the number of times they have been connected
to in a descending order. Second, for each sector, we select
the top-ranked historical SSID in this sector. If no historical
SSID resides in a sector, we resort to the nearest SSID in this
sector. We obtain M SSIDs in the end. Finally, we select the
(N − M) nearest SSIDs from the remaining new SSIDs in
forward sectors. This completes the SSID selection.

Configuring Scan Parameters

The second component is to determine the scan interval Ts

and timeout X of offloaded Wi-Fi scan. We adapt both pa-
rameters based on the nearby hotspot distribution and user’s
mobility pattern. Unlike prior work [43], our configuration
makes no assumption on hotspot coverage shape and size.

Adapting Scan Interval

Our method uses the following input: 1) user current loca-
tion, and 2) activity inference from Google Play Service us-
ing low-power sensors (e.g. gyro sensor and accelerometer).
It works as follows. First, from activity inference, we ob-
tain user’s current motion status: still, tilting, walking, bik-
ing, and driving. If the user is static and cannot connect to
any SSID, Wi-Fi radio scans with the maximal scan interval
(1000 s) that the hardware can support, similarly to the exist-
ing technique [60]. If the user is non-stationary, we estimate
the moving velocity ~v using the current location p1 and the
previous location p0, where ~v = |p1 − p0|/(t1 − t0). To re-
duce the sensitivity to location estimation errors and the spar-
sity of historical location data, we calibrate ~v using the speed
range inferred by the user’s current activity status [36, 48]. If

Application

Framework

Driver

Hardware

Determing SSID list

and scan parameters

Wi-Fi state machine

JAVA

C
WPA suppliant library

Update WPA

con!guration

Update

SSID list

Preferred network o"oad module

Update scan

interval and timeout

Update

scan request

Wi-Fi manager

Broadcast

wpa_supplicant.conf
Write

Read

Wi-Fi !rmware

JNI

Figure 6. WiScan implementation on Nexus 5 (Android 4.4.2 developer
image). Shaded blocks are modified/added modules. SSID list configu-
ration is implemented above the driver level, and scan parameters (scan
interval, timeout) are adapted in the driver.

~v < vmin, or ~v > vmax, we calibrate ~v to vmin or vmax re-
spectively. Otherwise we do not adjust its value. Second, we
use street information to infer the feasible path from the cur-

rent location to the nearest SSID in L, and estimate T̃s, the
time for the next scan, by dividing the inferred path length
over the estimated velocity ~v. Overestimating the scan inter-
val will make the system miss potential connectivity until the
next scan. Thus, we configure scan interval Ts conservatively.

We map T̃s into pre-defined time windows: 0–10 s, 10–40 s,
and 40–70 s. We set the final scan interval Ts as the minimal

value of the time window T̃s resides.

Configuring Timeout Value

The timeout value X is to prevent the system from stick-
ing with an outdated SSID list and missing new connectivity.
Thus, if Wi-Fi radio fails to find any SSID in the list after
X offloaded scans, the radio wakes up the main processor to
re-compute an SSID list. Because of the energy cost of com-
puting an SSID list, we need to reduce the number of SSID
list updates while ensuring that the list is still relevant to the
current network environment. In WiScan, we compute X by
estimating the duration when the user can maintain connec-
tivity to any SSID in the list. Specifically, based on the esti-
mated moving direction, we derive the probability pi of the
user moving towards sector i assuming pi follows a standard
normal distribution N (0, 1), where the sector in the estimated
direction has the highest probability. So the expected distance

d to the furthest SSID is d =
∑

N

i=1
di ∗ pi, where di is the

distance to the furthest SSID in sector i. The X value is then
set as d/dmin, where dmin is the distance to the nearest SSID
in the list. This approximates the number of scans before the
user loses connection to any SSID in the current list.

WiScan PROTOTYPE EVALUATION

We build a proof-of-concept prototype of WiScan and exam-
ine its practical performance.

WiScan Implementation

We implement WiScan on the Nexus 5 Android phone
(4.4.2 OS developer image). The phone uses the Broadcom
BCM4339 Wi-Fi chipset, where the Wi-Fi scan operation is

 0

 200

 400

 600

 800

 0 0.2 0.4 0.6 0.8 1 1.2

P
o

w
e

r
(m

W
)

Time (s)

Figure 7. Indoor energy measurement of a
Nexus 5 during an offloaded scan in WiScan.
After removing the scan tax, a single scan
consumes 0.33 J energy, down from 0.74 J of
the existing scan (Table 2).

 0

 50

 100

 150

 200

 250

 20 30 40 50 60

E
n

e
rg

y
 (

J
)

Connectivity (%)

300s
60s

30s

10s

5s

(default)

Existing
WiScan (Nearest)

WiScan (Sector)
WiScan (Non-uniform)

(a) Overall performance

 0

 40

 80

 120

 160

Existing
(Ts=10s)

WiScan
(Non-uniform)

WiScan
(Sector)

WiScan
(Nearest)

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

(b) Energy breakdown

Figure 8. WiScan outdoor field experiments at a local city. We carried multiple Nexus 5
phones, where one phone runs WiScan, and the others use existing scans under different
scan intervals. We observe that WiScan reduces 67% energy compared to existing scan
while achieving similar connectivity.

built in the chipset’s firmware, and the chipset has a mem-
ory slot that can store up to 16 SSIDs. This Wi-Fi chipset
supports a mode called “scheduled scan”. In this mode,
when Wi-Fi radio is first switched on, the framework reads
an SSID list from the wpa supplicant.conf file under
/data/misc/wifi/, and loads these SSIDs to Wi-Fi ra-
dio’s memory. The radio performs active scans with a fixed
scan interval (15 s)5 independently, and wakes up the main
processor only if it discovers any of these 16 SSIDs. The
SSID list is configured as the 16 most recently connected
SSIDs. Both the SSID list and scan interval are static and
non-configurable. This scheduled scan mode, however, is dis-
abled in the developer image.

To implement WiScan, we need to activate the scheduled
scan under specified conditions and enable real-time configu-
ration of the SSID list and scan parameters using proposed
algorithms. We accomplish these tasks by modifying and
adding related modules at the driver, framework, and applica-
tion level. Figure 6 shows the system architecture of WiScan.
Specifically, we implemented SSID list selection above the
driver layer. Our SSID learning scheme is implemented at the
application layer as a background system service. It writes an
SSID list in the wpa supplicant.conf file, which will
be read by our added module in the WPA supplicant library
in the framework. Our module uses the new SSID list to re-
place the previous list in WPA configuration data structure.
The configuration of scan parameters is implemented in the
driver. We rewrote the Wi-Fi driver so that it can create a
new scan request using specified SSID list and scan parame-
ters and pass the request to the Wi-Fi firmware. To avoid the
delay (≈1 s) of cleaning cached scan requests, we set up a
parallel thread to expedite scan offloading.

Indoor Energy Measurements

We start with examining the energy consumption of an of-
floaded Wi-Fi scan in WiScan. We follow the setup in Fig-
ure 1(a), and plot in Figure 7 the instantaneous power draw
of the phone during an offloaded scan. Comparing it to the
existing scan (Figure 1(b)), we make the following observa-
tions. First, by removing main processor’s operations, an of-
floaded scan is much faster (only 1.1 s), while an existing
scan lasts for 3.6 s. Specifically, it has two phases: 1) the ra-
dio probes 22 channels, generating 22 energy spikes 1.7-2 ms

5In Android 4.4.2 factory image, the scan interval starts from 15 s,
and then doubles after 4 failed tries. It is capped by 240 s.

each (700 mW+ stays for 1 ms). The radio compares the dis-
covered SSIDs to the SSID list; and 2) the radio releases the
chipset buffer storing scan results and prepares for the next
scan, resulting into 300 mW+ power draw. Second, the of-
floaded scan consumes 56% less energy by cutting the scan
tax. The scan energy comes from only the Wi-Fi radio (0.32
J) plus the phone’s baseline energy (0.01 J in Table 2). We
expect similar energy reduction (60%+) for other devices.

Next we examine the energy overhead of computing SSID
list and scan parameters in WiScan. The overhead is from: 1)
the main processor computing SSID list and scan parameters,
2) the location sensor, and 3) the activity sensors for Google
activity inference. We measure the energy of each component
by instrumenting the phone to perform each operation. We
observe that the main processor consumes 0.1 J to run our
algorithms6, GPS on Nexus 5 costs 0.7 J to return a location,
and activity sensors cost 0.1 J to infer activity. Note that all
the overhead is shared by multiple offloaded scans, since the
system only updates the SSID list and scan parameters when
it first enters the mode of scan offloading or when offloaded
scans fail to find any SSID matches after hitting the timeout.

Outdoor Field Experiments

Next we conduct WiScan experiments in a local shopping
area. The area is roughly 4 km2 with 75 APs (44 SSIDs)
set up by commercial stores, cafes, and restaurants. 5 SSIDs
are encrypted and we requested passwords from their own-
ers. All SSID information is saved on the phone. In the ex-
periments, users walk casually (0.2 – 2 m/s) with occasional
pauses while carrying three Nexus 5 phones. One phone is
implemented with WiScan and the others use existing scan.
We log the active duration of GPS, activity sensors, main pro-
cessor, and Wi-Fi radio. We derive the energy consumption
of these sensors using offline energy measurement. We repeat
the experiment in three rounds and test existing scan with a
fixed scan interval from 5 s (the minimal) to 300 s (the de-
fault). Each round lasts 2 hours with the same walking route.

We focus on Wi-Fi connectivity (the percentage of connected
time) and the energy cost of seeking Wi-Fi connectivity. Fig-
ure 8(a) compares existing scans to WiScan with three SSID
algorithms. Since WiScan automatically adapts its scan in-
terval based on user’s current location and mobility, its per-
formance is shown as a point in the figure. In comparison,

6We have measured the energy consumption of different SSID se-
lection algorithms, and observed the same number.

Table 3. Summary of four Wi-Fi scan traces, collected from smartphone
users at four cities across the world.

Dataset # of public Area
Duration

Stationary
Setting

(City) SSIDs (km2) duration

Local 44 (75 APs) 4 10.5 hr 19% Outdoor

Keene 148 (183 APs) 6 5 hr 27% Outdoor

Canberra 72 (241 APs) 9 21.8 hr 88%
Indoor

& Outdoor

Beijing 41 (41 APs) 2 4 hr 63% Outdoor

existing scans use a fixed scan interval without adaptation, so
we manually vary the scan interval and plot the results as a
line. Clearly a shorter scan interval leads to higher connectiv-
ity, as the radio is seeking for hotspots more aggressively and
hence is less likely to miss available connectivity. Compared
to existing scans, WiScan significantly reduces the energy
cost while achieving similar connectivity. Compared to ex-
isting scans with the highest frequency (Ts = 5 s), WiScan
achieves 90% of its connectivity using only 21% of its en-
ergy. WiScan achieves similar connectivity to existing scan
with Ts = 10 s, yet reduces the energy by two thirds.

Figure 8(b) further shows the energy breakdown of WiScan
and the existing scan with Ts = 10 s. We make three key
observations. First, WiScan’s energy saving is contributed by
two factors. The main factor is cutting the scan tax, where the
main processor costs 56% of the energy for existing scan, yet
only 3% in WiScan. Another factor is adapting the scan in-
terval and timeout, which avoids unnecessary scans when no
hotspots are nearby or the user is stationary. Second, WiScan
brings additional sensing overhead, dominated by GPS (22%
of overall energy). The GPS cost can be driven down with
the recent low-power GPS design [46]. We can also lever-
age other localization techniques [35, 37] to obtain user lo-
cation without turning on GPS. Third, among SSID learning
schemes, Non-uniform moderately outperforms others. By
leveraging user’s moving direction, it predicts future SSIDs
more accurately, leading to 4-6% increase in connectivity.

The energy saving of WiScan greatly increases the phone’s
battery life. In our experiments, all phones are fully charged
initially. We switch off phone screens and disable all radios
except Wi-Fi. After each round of the experiment, the phone
using WiScan consumes 6% of the battery life, while other
phones consumes 17% of the battery life to achieve the same
Wi-Fi connectivity.

TRACE-DRIVEN EMULATIONS

After examining the WiScan prototype, we now use large-
scale emulations to examine WiScan in diverse network de-
ployments and the impact of design choices in WiScan.

Emulation Setup

We developed an emulator using Python to examine WiScan
and existing scan implementation. The emulator takes our
collected Wi-Fi scan traces (Table 3) as the ground truth of
Wi-Fi connectivity at each location. We obtain hotspot loca-
tions using public hotspot databases (JiWire and wefi) and
manual labeling. The users in our traces consist of office
workers, students, and professors. Their activities include sit-
ting still, walking (0.5 – 2 m/s), biking, and driving (3 – 15
m/s). Table 3 summarizes dataset statistics.

We assume that a device can connect to an SSID if the device
discovers this SSID and its received signal strength is above
-90 dBm, which is the signal threshold observed in our ex-
periments. We emulate WiScan based on Figure 4(b). We
consider the existing scan implementation as the baseline, re-
ferred to as Existing, and examine Existing with the fixed scan
interval from the minimal (5 s) to the default (300 s). We
also compare WiScan to a prior mechanism WiFisense [43],
which leverages periodical activity sensing to adapt scan in-
terval. We configure WiFisense’s parameters so that they best
fit our datasets and examine WiFisense with activity sensing
frequency (f) from 5 s to 300 s.

To evaluate the above mechanisms, we focus on their
achieved connectivity and energy cost. We define connec-
tivity as the percentage of connected time. From our experi-
ments, we observe that AP association takes 4 s and obtain-
ing GPS location takes 3 s. So we subtract these delays from
the connected time. We define energy cost as the energy con-
sumed in the disconnected state, which is computed using our
measurement numbers (Table 2).

Overall Performance

To evaluate the overall performance of WiScan, Existing, and
WiFisense, we compute the optimal connectivity assuming
perfect knowledge on future Wi-Fi connectivity. The optimal
connectivity is the percentage of connected duration when
the device never misses any connectivity. Figure 9 plots the
connectivity-energy tradeoff and Figure 10 shows the energy
breakdown when these mechanism achieve similar connectiv-
ity. There is only a single point for WiScan in Figure 9 be-
cause WiScan automatically adapts it scan interval based on
user mobility and AP distribution. However, WiFisense and
existing method in Android work with a fixed scan interval,
so we configure their fixed scan interval to different values
and examine their tradeoff between energy consumption and
achieved connectivity. We also include WiScan without the
automatic adaptation of scan interval, referred to as WiScan
(Fixed), with the goal of understanding the contribution of
adapting scan intervals. Our key observations are as follows.

Observation 1: WiScan achieves 90%+ optimal connectiv-
ity. Across all four datasets, WiScan consistently achieves
90%+ of the optimal connectivity, demonstrating that our
SSID learning scheme accurately predicts future SSIDs. In
particular, WiScan achieves 97% of the optimal in the Can-
berra dataset. This is because the user in this dataset is mostly
stationary (Table 3) and follows a regular mobility pattern
(work and home), which eases the SSID prediction. We no-
tice that although the Beijing dataset has a dense hotspot de-
ployment (20 per km2), its connectivity percentage is lower
than other datasets. This is because most hotspots in this
dataset are clustered with overlapping coverage.

Observation 2: WiScan reduces 50-62% energy cost of seek-
ing Wi-Fi connectivity compared to existing scans (Figure 9).
We have four key findings when comparing WiScan to ex-
isting methods. First, cutting the scan tax contributes the
most on energy saving. While the main processor consumes
more than half of the energy in Existing and WiFisense, it
consumes less than 1% of energy in WiScan. This indicates

 0

 300

 600

 900

 40 45 50 55 60 65 70 75 80

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s

50s

Existing
WiFisense

WiScan
Optimal

(a) Local

 0

 300

 600

 900

 1200

 20 30 40 50 60 70 80

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s
30s

Existing
WiFisense

WiScan
Optimal

(b) Keene

 0

 700

 1400

 2100

 2800

 3500

 45 48 51 54 57 60

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s

50s

Existing
WiFisense

WiScan
Optimal

(c) Canberra

 0

 75

 150

 225

 300

 0 5 10 15 20 25 30 35 40

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s

20s

Existing
WiFisense

WiScan
Optimal

(d) Beijing

Figure 9. Overall performance of WiScan, WiFisense with different activity sensing frequency (f), and existing scan with different scan interval (Ts).
WiScan achieves 90%+ of the optimal connectivity and reduces 50%-62% of the energy cost for seeking Wi-Fi connectivity compared to WiFisense and
Existing with similar connectivity.

 0

 40

 80

 120

 160

 200

Existing
(Ts=50s)

WiFisense
(f=40s)

WiScan
(Fixed)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity

(a) Local

 0

 60

 120

 180

 240

 300

Existing
(Ts=30s)

WiFisense
(f=20s)

WiScan
(Fixed)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity

(b) Keene

 0
 100
 200
 300
 400
 500
 600

Existing
(Ts=50s)

WiFisense
(f=30s)

WiScan
(Fixed)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity

(c) Canberra

 0

 30

 60

 90

 120

 150

Existing
(Ts=5s)

WiFisense
(f=5s)

WiScan
(Fixed)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity

(d) Beijing

Figure 10. Energy breakdown of Existing, WiFisense, WiScan (Fixed) that uses fixed scan parameters (i.e., scan interval, timeout), and WiScan. We
configure the first three so that they achieve nearly the same connectivity as WiScan. WiScan’s significant energy saving is from cutting the scan tax
(energy consumed by main processor), and adapting scan parameters to reduce unnecessary scans and SSID list computations.

that the cost of computing SSID list and scan parameters in
WiScan is negligible. Second, adapting scan parameters in
WiScan moderately reduces (10-30%) the energy cost. The
adaptation achieves higher gain in the Canberra and Beijing
dataset, where the available connectivity is lower than other
datasets (Figure 9(c)(d)) and users are mostly stationary (88%
and 63% of the total duration respectively, Table 3). Hence
adapting scan parameters avoids more unnecessary scans and
saves more energy. Third, the sensing overhead of WiScan
is negligible, with GPS as the dominating sensor (87.5% of
the sensing overhead). The sensing overhead, however, is
compensated by the energy saving of cutting the scan tax.
Fourth, WiFisense effectively reduces the number of scans,
yet it overlooks the energy cost of the main processor and
periodical activity sensing. This cost outweighs the energy
saving in the Wi-Fi radio, leading to a higher total energy.

Efficacy of SSID Learning Schemes

Next we evaluate different SSID learning schemes, design
choices within the Non-uniform scheme, and the impact of
SSID list size. We consider ideal SSID list as a reference, the
ideal case where we can perfectly predict future SSIDs, or
when the Wi-Fi radio’s memory can store all public SSIDs.

Figure 11(a) compares the connectivity achieved by different
SSID schemes to that of the ideal SSID list. We also include
the algorithm in Android 4.4.2 factory image, which uses the
most recently connected SSIDs, referred to as History-only.
Windows 8 uses the same SSID selection policy. We make
three key observations. First, using purely historical SSIDs
leads to significant loss of Wi-Fi connectivity, especially for
Keene and Beijing datasets where users do not have repeated
routes, where it achieves less than one-tenth of the connectiv-
ity of the ideal SSID list. Both cases reflect the user traveling
case where historical SSIDs are not relevant. This empha-
sizes that to support diverse user mobility patterns, we need
new design of SSID selection policy. Second, Non-uniform
consistently reaches 96%+ of the connectivity of the ideal

SSID list. This verifies the effectiveness of Non-uniform,
which incorporates user directionality to better predict future
SSIDs. Third, compared to the straw-man solutions, Non-
uniform achieves larger gain in Keene and Beijing datasets,
where hotspots are denser and unevenly distributed and user
directionality a critical factor for SSID selection.

We further dive into specific design choices of Non-uniform
and evaluate their impact on final performance. Specifically,
we focus on two design decisions: 1) incorporating map/road
information to calibrate the estimation of moving direction,
and 2) including historical SSIDs to construct the SSID list.
We examine their impact by examining Non-uniform without
map information, and Non-uniform without historical SSIDs.
Figure 11(a) shows that including map information leads to
larger gain (10%+) in connectivity than historical SSIDs.
This is because street information always helps eliminates di-
rections where feasible paths do not exist, while historical
SSIDs are only helpful for users with regular mobility pat-
terns (e.g., the Local and Canberra datasets).

We also examine the impact of SSID list size. We vary the list
size from 4 to 60 and calculate the achieved connectivity us-
ing Non-uniform. The key observation is that for all datasets,
the connectivity quickly converges to that of the ideal list
once we offload 16 SSIDs, which is also the maximal number
of SSIDs that existing Wi-Fi radio can store. This indicates
the efficacy of Non-uniform under the memory constraint of
the Wi-Fi radio. We omit the result in the interest of space.

Sensing Overhead and Performance Gain

Finally, we examine the gain of adding GPS and activity sen-
sors in WiScan, aiming to understand whether the perfor-
mance gain justifies the sensing overhead. Figure 12 shows
the achieved network connectivity and total sensing energy
cost when WiScan uses only GPS sensor, and when WiS-
can uses both GPS and activity sensors. The output of activ-
ity sensors is used to calibrate the velocity estimation when

 0

 20

 40

 60

 80

Local Keene Canberra Beijing

C
o

n
n

e
c
ti
v
it
y
 (

%
)

Dataset

Ideal
Nearest

Sector

Non-uniform
History-only

(a) SSID learning schemes

 0

 20

 40

 60

 80

Local Keene Canberra Beijing

C
o

n
n

e
c
ti
v
it
y
 (

%
)

Dataset

Non-uniform
Non-uniform w/o historical SSIDs

Non-uniform w/o map info

(b) Non-uniform

Figure 11. Impact of SSID schemes, decision choices within Non-uniform, and SSID list size
on network connectivity. Non-uniform consistently achieves 96%+ of the connectivity of an
ideal SSID list, and outperforms other schemes.

 0

 20

 40

 60

 80

 100

Local Keene Canberra Beijing
 0

 10

 20

 30

 40

 50

 60

C
o

n
n

e
c
ti
v
it
y
 (

%
)

S
e

n
s
in

g
 e

n
e

rg
y
 (

J
)

Dataset

GPS(Connectivity)
GPS+Activity(Connectivity)

GPS(Energy)
GPS+Activity(Energy)

Figure 12. Impact of sensing on connectivity and
energy cost. Adding sensors reduces overall energy
by cutting the number of updates on SSID list and
scan parameters.

calculating scan interval. Adding activity sensors marginally
improves the achieved connectivity and surprisingly leads to
lower energy cost. The reason is two-fold. First, activity sen-
sors (e.g., accelerometer) consumes low power, much lower
than that of GPS. Second and more importantly, adding activ-
ity sensors fine-tunes the calibration of scan parameters. As
a result, it reduces the times when the number of offloaded
scans hits the timeout value. This leads to fewer updates of
the SSID list, scan parameters, and GPS data, and reduces the
energy cost. For Local and Keene datasets, adding activity
sensors achieves much higher energy saving (70%+ and 50%
respectively). This is because users in these two datasets are
non-stationary for a higher percentage of time (Table 3) and
the calibration of speed estimation leads to higher energy sav-
ing. Overall adding sensors is beneficial: it improves connec-
tivity while reducing the total sensing cost.

RELATED WORK

Prior work has offloaded partial upper-layer protocol to hard-
ware either to boost performance [31, 39] or to save en-
ergy [38]. The offloaded protocols range from TCP/IP
stack [31, 39] to ARP and ICMP [38] protocols. These
designs introduce a secondary processor to perform the of-
floaded tasks. WiScan differs in that it uses the existing mi-
croprocessor on the Wi-Fi radio without introducing a sec-
ondary processor. We explore offloading a Wi-Fi protocol
task (scan) to the radio microprocessor, aiming to seek maxi-
mal Wi-Fi connectivity with low power.

Active research has examined Wi-Fi energy efficiency in the
connected state [41, 42, 47, 57, 62]. Our work complements
them by examining the disconnected state where considerable
energy saving is possible. To save Wi-Fi scan energy, existing
work [33, 43, 50, 60, 64] reduces the number of scans, using
either cellular/Bluetooth information [33, 60], or optimized
scan intervals [43], or connection history [50], or Wi-Fi bea-
con patterns [64]. Yet they all overlook the main processor’s
energy, which is the root cause of the scan energy inefficiency.

Existing work [33, 40, 43, 51] on predicting Wi-Fi connec-
tivity provides valuable insights for our algorithmic designs.
Yet they overlook the energy associated with the main proces-
sor, work only for users with a regular mobility pattern, and
require frequent periodical location sensing to achieve accu-
rate prediction. Our design executes prediction algorithms
only when the main processor is active. It computes the SSID
list and scan-related parameters on the fly while minimizing

the sensing overhead. Prior work on mobility prediction [32,
44, 53, 63] either require additional devices or entail heavy
computational overhead. WiScan uses a lightweight mobility
prediction scheme to minimize the energy consumption.

CONCLUSION AND FUTURE WORK

We studied the Wi-Fi scan tax problem, the energy ineffi-
ciency of existing Wi-Fi scan implementation. We presented
WiScan to cut the scan tax by fully exploiting the benefits of
scan offloading. Our results validated that WiScan enables
ultra-low power hunting for Wi-Fi connectivity, critical for
future context-aware apps requiring always-on connectivity.

We also recognize the limitations and possible extensions of
our study. First, our current design assumes perfect knowl-
edge of hotspot locations. We will study the impact of inaccu-
rate or incomplete hotspot database on WiScan performance
and possible design enhancement. Second, We plan to ex-
tend WiScan to other mobile platforms (e.g., Windows). Im-
plementing WiScan requires the firmware support that recent
Wi-Fi chipsets [14, 19] already provide, and modifications at
the OS and driver level. We also plan to explore WiScan on
other smart devices, especially wearable devices with tight
energy budget. Third, we plan to examine offloading BSSIDs
to Wi-Fi radio for better security. BSSIDs are unique iden-
tifiers of APs. Thus it is crucial to design effective schemes
that select a small set of BSSIDs to offload. The principle of
our SSID learning scheme still applies. We plan to further
examine the selection metric. Fourth, our current prototype
uses GPS for localization. It raises concerns on the energy
cost and its efficacy in indoor scenarios. We are interested
in integrating low-power alternatives [45, 52, 54, 56, 61] for
indoor localization. Fifth, when a device roams across APs,
the link setup and association can take more than 6 s. We
plan to examine features in the 802.11 ai [5] protocol, which
speeds up the link setup for Wi-Fi roaming and reduces it to
less than 1 s. Finally, the number of available networks will
increase with the deployment of carrier Wi-Fi networks [3, 4]
and long-range white space networks [29, 30]. We plan to ex-
tend WiScan’s methodology to other types of radio networks,
seeking ubiquitous network connectivity with low energy.

Acknowledgment

We sincerely thank reviewers for the insightful comments.
We also thank DartNets lab members Rui Wang and Fanglin
Chen for their support on this study. This work is supported
in part by the Google Faculty Research Award Program.

REFERENCES

1. http://crawdad.org/uiuc/uim/.

2. http://crawdad.org/cmu/hotspot/.

3. http://www.cablelabs.com/carrier-grade-wi-fi-

keeps-pace-with-wi-fi-network-growth-how-

cablelabs-is-contributing/.

4. http://www.fiercewireless.com/tech/story/

confirmed-hotspot-20-comcasts-roadmap-its-

xfinity-wi-fi-network/2014-04-11.

5. 802.11ai. http://www.ieee802.org/11/Reports/tgai_
update.htm.

6. Android Kit-Kat 4.4. http://www.android.com/
versions/kit-kat-4-4/.

7. CRAWDAD. http://crawdad.cs.dartmouth.edu/.

8. FreedomPop. http://www.freedompop.com/.

9. Google Activity Inference. http://developer.
android.com/reference/com/google/android/gms/

location/ActivityRecognitionClient.html.

10. Google Geocoding API. https://developers.google.
com/maps/documentation/geocoding/.

11. IFIXIT.com. http://www.ifixit.com/Teardown/.

12. Jiwire. http://www.jiwire.com/.

13. LinkNYC. http://www.link.nyc/.

14. Marvell Avastar 88W8787. http://www.marvell.com/
wireless/avastar/88W8787/.

15. Microsoft Wi-Fi. https://www.microsoftwifi.com/.

16. Monsoon Solutions Inc. http://www.msoon.com/.

17. NLO in Windows. http://msdn.microsoft.com/en-
us/library/windows/hardware/hh440295(v=VS.85).

aspx.

18. Project Fi. https://fi.google.com/about/.

19. Qualcomm Atheros AR6003. http://www.qca.
qualcomm.com/technology/technology.php?nav1=47&

product=67.

20. Republic Wireless. https://republicwireless.com/.

21. San Francisco WiFi. http://www6.sfgov.org/index.
aspx?page=246.

22. wefi. http://www.wefi.com/.

23. Wireless Minneapolis. http://www.ci.minneapolis.
mn.us/wireless/.

24. The future of hotspots: Making Wi-Fi as secure and easy
to use as cellular. White paper, Cisco, 2011.

25. The Era of Ubiquitous Listening Dawns. MIT Tech
Review, 2013.

26. What Apples M7 Motion-Sensing Chip Could Do. MIT
Tech Review, 2013.

27. Boston spreads free Wi-Fi hotspots. The Boston Globe,
2014.

28. When wireless worlds collide. The Economist, 2014.

29. Green light for ’TV white space’ wireless technology.
Ofcom for Consumers, 2015.

30. Microsoft Starts Slashing African Internet Prices with
White-Space Networks. MIT Tech Review, 2015.

31. Agarwal, Y., et al. Somniloquy: augmenting network
interfaces to reduce PC energy usage. In Proc. of NSDI
(2009).

32. Alvarez-Lozano, J., Garcı́a-Macı́as, J. A., and Chávez,
E. Learning and user adaptation in location forecasting.
In Proc. of UbiComp (2013).

33. Ananthanarayanan, G., and Stoica, I. Blue-Fi:
Enhancing Wi-Fi performance using Bluetooth signals.
In Proc. of MobiSys (2009).

34. Anton, B., Bullock, B., and Short, J. Best current
practices for wireless internet service provider (WISP)
roaming, version 1.0. Wi-Fi Alliance (2003).

35. Bahl, P., and Padmanabhan, V. RADAR: an in-building
RF-based user location and tracking system. In Proc. of
INFOCOM (2000).

36. Bertram, J. E. A., et al. Multiple walking speedfrequency
relations are predicted by constrained optimization.
Journal of Theoretical Biology (2001), 445–453.

37. Chen, Y., et al. FM-based indoor localization. In Proc. of
MobiSys (2012).

38. Christensen, K. J., et al. The next frontier for
communications networks: power management.
Computer Communications 27, 18 (2004), 1758–1770.

39. Currid, A. TCP offload to the rescue. Queue 2 (May
2004), 58–65.

40. Deshpande, P., et al. Predictive methods for improved
vehicular WiFi access. In Proc. of MobiSys (2009).

41. Dogar, F. R., Steenkiste, P., and Papagiannaki, K.
Catnap: exploiting high bandwidth wireless interfaces to
save energy for mobile devices. In Proc. of MobiSys
(2010).

42. Garcia-Saavedra, A., et al. Energy consumption
anatomy of 802.11 devices and its implication on
modeling and design. In Proc. of CoNEXT (2012).

43. Kim, K.-H., et al. Improving energy efficiency of Wi-Fi
sensing on smartphones. In Proc. of INFOCOM (2011).

44. Koehler, C., Banovic, N., Oakley, I., Mankoff, J., and
Dey, A. K. Indoor-alps: an adaptive indoor location
prediction system. In Proc. of UbiComp (2014).

45. Liu, H., Darabi, H., Banerjee, P., and Liu, J. Survey of
wireless indoor positioning techniques and systems.
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 37, 6 (2007),
1067–1080.

http://crawdad.org/uiuc/uim/
http://crawdad.org/cmu/hotspot/
http://www.cablelabs.com/carrier-grade-wi-fi-keeps-pace-with-wi-fi-network-growth-how-cablelabs-is-contributing/
http://www.cablelabs.com/carrier-grade-wi-fi-keeps-pace-with-wi-fi-network-growth-how-cablelabs-is-contributing/
http://www.cablelabs.com/carrier-grade-wi-fi-keeps-pace-with-wi-fi-network-growth-how-cablelabs-is-contributing/
http://www.fiercewireless.com/tech/story/confirmed-hotspot-20-comcasts-roadmap-its-xfinity-wi-fi-network/2014-04-11
http://www.fiercewireless.com/tech/story/confirmed-hotspot-20-comcasts-roadmap-its-xfinity-wi-fi-network/2014-04-11
http://www.fiercewireless.com/tech/story/confirmed-hotspot-20-comcasts-roadmap-its-xfinity-wi-fi-network/2014-04-11
http://www.ieee802.org/11/Reports/tgai_update.htm
http://www.ieee802.org/11/Reports/tgai_update.htm
http://www.android.com/versions/kit-kat-4-4/
http://www.android.com/versions/kit-kat-4-4/
http://crawdad.cs.dartmouth.edu/
http://www.freedompop.com/
http://developer.android.com/reference/com/google/android/gms/location/ActivityRecognitionClient.html
http://developer.android.com/reference/com/google/android/gms/location/ActivityRecognitionClient.html
http://developer.android.com/reference/com/google/android/gms/location/ActivityRecognitionClient.html
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
http://www.ifixit.com/Teardown/
http://www.jiwire.com/
http://www.link.nyc/
http://www.marvell.com/wireless/avastar/88W8787/
http://www.marvell.com/wireless/avastar/88W8787/
https://www.microsoftwifi.com/
http://www.msoon.com/
http://msdn.microsoft.com/en-us/ library/windows/hardware/hh440295(v=VS.85).aspx
http://msdn.microsoft.com/en-us/ library/windows/hardware/hh440295(v=VS.85).aspx
http://msdn.microsoft.com/en-us/ library/windows/hardware/hh440295(v=VS.85).aspx
https://fi.google.com/about/
http://www.qca.qualcomm.com/technology/technology.php?nav1=47&product=67
http://www.qca.qualcomm.com/technology/technology.php?nav1=47&product=67
http://www.qca.qualcomm.com/technology/technology.php?nav1=47&product=67
https://republicwireless.com/
http://www6.sfgov.org/index.aspx?page=246
http://www6.sfgov.org/index.aspx?page=246
http://www.wefi.com/
http://www.ci.minneapolis.mn.us/wireless/
http://www.ci.minneapolis.mn.us/wireless/

46. Liu, J., et al. Energy efficient GPS sensing with cloud
offloading. In Proc. of SenSys (2012).

47. Liu, J., and Zhong, L. Micro power management of
active 802.11 interfaces. In Proc. of MobiSys (2008).

48. Long, L. L., and Srinivasan, M. Walking, running, and
resting under time, distance, and average speed
constraints: optimality of walk-run-rest mixtures.
Journal of The Royal Society Interface 10, 81 (2013).

49. Megiddo, N., and Modha, D. ARC: A self-tuning, low
overhead replacement cache. In Proc. of FAST (2003).

50. Navda, V., et al. MobiSteer: Using steerable beam
directional antenna for vehicular network access. In
Proc. of MobiSys (2007).

51. Nicholson, A. J., and Noble, B. D. BreadCrumbs:
forecasting mobile connectivity. In Proc. of MobiCom
(2008).

52. Otsason, V., Varshavsky, A., LaMarca, A., and De Lara,
E. Accurate GSM indoor localization. In Proc. of
UbiComp. 2005.

53. Patterson, D. J., Liao, L., Fox, D., and Kautz, H.
Inferring high-level behavior from low-level sensors. In
Proc. of UbiComp (2003).

54. Popleteev, A. Device-free indoor localization using
ambient radio signals. In Proc. of UbiComp (2013).

55. Ra, M.-R., et al. Improving energy efficiency of personal
sensing applications with heterogeneous
multi-processors. In Proc. of UbiComp (2012).

56. Rabaey, J. M., Ammer, M. J., da Silva Jr, J. L., Patel, D.,
and Roundy, S. Picoradio supports ad hoc ultra-low

power wireless networking. Computer 33, 7 (2000),
42–48.

57. Rozner, E., et al. NAPman: network-assisted power
management for WiFi devices. In Proc. of MobiSys
(2010).

58. Scellato, S., et al. NextPlace: A spatio-temporal
prediction framework for pervasive systems. In In Proc.
of Pervasive (2011).

59. von Nagy, A. Wi-Fi alliance rebrands Hotspot 2.0 as
Wi-Fi certified passpoint. http://www.
revolutionwifi.net/2012/05/wi-fi-alliance-

rebrands-hotspot-20-as.html, 2012.

60. Wu, H., et al. Footprint: Cellular assisted Wi-Fi AP
discovery on mobile phones for energy saving. In Proc.
of WINTECH (2009).

61. Xie, H., Gu, T., Tao, X., Ye, H., and Lv, J. Maloc: a
practical magnetic fingerprinting approach to indoor
localization using smartphones. In Proc. of UbiComp
(2014).

62. Zhang, X., and Shin, K. G. E-MiLi: energy-minimizing
idle listening in wireless networks. In Proc. of MobiCom
(2011).

63. Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.-Y.
Understanding mobility based on GPS data. In Proc. of
UbiComp (2008).

64. Zhou, R., et al. ZiFi: Wireless LAN discovery via
ZigBee interference signatures. In Proc. of MobiCom
(2010).

http://www.revolutionwifi.net/2012/05/wi-fi-alliance-rebrands-hotspot-20-as.html
http://www.revolutionwifi.net/2012/05/wi-fi-alliance-rebrands-hotspot-20-as.html
http://www.revolutionwifi.net/2012/05/wi-fi-alliance-rebrands-hotspot-20-as.html

	Introduction
	Wi-Fi Scan Tax Problem
	Energy Consumption of Wi-Fi Scan
	Impact on Wi-Fi Connectivity
	Wi-Fi Scan Tax
	Quantifying the Wi-Fi Scan Tax
	How is the Wi-Fi Scan Tax Spent?

	WiScan: Offloading Wi-Fi Scan
	Concept and Design Challenges
	Computing the Offloading SSID List
	Configuring Scan Parameters
	Adapting Scan Interval
	Configuring Timeout Value

	WiScan Prototype Evaluation
	WiScan Implementation
	Indoor Energy Measurements
	Outdoor Field Experiments

	Trace-Driven Emulations
	Emulation Setup
	Overall Performance
	Efficacy of SSID Learning Schemes
	Sensing Overhead and Performance Gain

	Related Work
	Conclusion and Future Work
	REFERENCES

