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Abstract

A variable length (32 ~ 2,048), low power, floating point fast Fourier transform (FP-FFT) processor is designed and

implemented using energy-efficient butterfly elements. The butterfly elements are implemented using distributed

arithmetic (DA) algorithm that eliminates the power-consuming complex multipliers. The FFT computations are

scheduled in a quasi-parallel mode with an array of 16 butterflies. The nodes of the data flow graph (DFG) of the

FFT are folded to these 16 butterflies for any value of N by the control unit. Register minimization is also applied

after folding to decrease the number of scratch pad registers to (log2 N − 1) × 16. The real and imaginary parts of

the samples are represented by 32-bit single-precision floating point notation to achieve high precision in the

results. Thus, each sample is represented using 64 bits. Twiddle factor ROM size is reduced by 25% using the

symmetry of the twiddle factors. Reconfigurability based on the sample size is achieved by the control unit. This

distributed floating point arithmetic (DFPA)-based design of FFT processor implemented in 45-nm process occupies

an area of 0.973 mm2 and dissipates a power of 68 mW at an operating frequency of 100 MHz. When compared

with FFT processor designed in the same technology with multiplier-based butterflies, this design shows 33% less

area and 38% less power. The throughput for 2,048-point FFT is 222 KS/s and the energy spent per FFT is 7.4 to 14

nJ for 64 to 2,048 points being one among the most energy-efficient FFT processors.

Keywords: Fast Fourier transform (FFT); Distributed floating point arithmetic (DFPA); Twiddle factor; DIF FFT;

Butterfly element; Array architecture

1 Introduction
Fast Fourier transforms (FFTs) efficiently compute the

coefficients of a discrete Fourier series (DFS). Also, FFT

is one of the most commonly used signal processing al-

gorithms in any communication or multimedia system.

Direct applications of FFT include spectral analysis,

spectral estimation, image processing, interpolation,

decimation, convolution, correlation, filtering, etc. FFT

is also used in all wideband digital communication systems,

which use orthogonal frequency division multiplexing

(OFDM) as the modulation technique.

1.1 Need for reconfigurable FFT

In a multi-mode, multi-band, multi-functional wireless

communication system like software-defined radio (SDR),

OFDM is used for base band processing. FFTs of different

size are required for different applications, which use

OFDM. Table 1 tabulates the wired and wireless commu-

nication technologies that use OFDM as their modulation

technique and their FFT size. The size of FFT varies from

64 to 2,048 in these applications and the need for a

variable-length reconfigurable FFT processor is inevitable.

This is the motivation for the researchers to propose as

many methods and architectures for a reconfigurable

FFT processor.

1.2 Need for low power FFT processor

While implementing FFT algorithm on hardware, the area,

power, and speed are the major performance parameters.

FFT algorithm is a computationally intensive algorithm and

the large number of complex multiplications consumes a

lot of power and area.

Implementing FFT and inverse fast Fourier transform

(IFFT) blocks using digital signal processors (DSPs) is the

method used in the initial years and it is followed even

now, as reconfiguring the requirements can be done easily
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through software. But DSPs are power hungry and not

suitable for battery-operated communications equip-

ment. The FFT and IFFT can also be implemented on

field-programmable gate array (FPGA) and other re-

usable IP cores, but the area and power consumption

are not as low as for dedicated hard FFT cores.

Also as the technology node shrinks, with millions of

switching transistors per μm2, the total power dissipated

by the high performing VLSI circuits greatly increases

the temperature of devices and reduces its reliability.

It needs higher efforts for cooling and increases the

battery weight. In this scenario, a number of low power

reconfigurable FFT processors with different architectures

have been proposed in the literature and they are summa-

rized in Section 2.

1.3 Review of FFT algorithm

Reviewing the basic discrete Fourier transform (DFT)

equation of a N-point sequence x(n) consisting of the

samples, {x(0),x(1),x(2).......x(N-1)}, the DFT X(k) is given

by Equation 1.

X kð Þ ¼
X

N−1

n¼0

x nð ÞW kn
N ; ð1Þ

where the variables ‘k’ and ‘n’ vary from 0 to N − 1. The

transforming coefficient W kn
N , commonly called as the

‘twiddle factor’, is defined as given by Equation 2.

W kn
N ¼ e−j2πkn=N : ð2Þ

The direct computation or implementation of the

DFT equation requires N2 complex multiplications and

N(N − 1) number of complex additions. Fast Fourier

transforms (FFTs) compute the DFT efficiently with

reduced number of multiplications and additions. The

basic FFT algorithm was developed by Cooley and Tukey in

1965 [1]. The techniques used in developing the FFT algo-

rithm are breaking down the DFT of a long sequence into

small DFTs and exploiting the following properties of

the twiddle factor. Those two properties are given in

Equations 3 and 4.

• Symmetry property

W
kþN=2ð Þ
N ¼ −W k

N : ð3Þ

• Periodicity property

W
kþNð Þ
N ¼ W k

N : ð4Þ

There are hundreds of different versions of the FFT

algorithm. Decimation in time (DIT) and decimation

in frequency (DIF) are the two methods in grouping

the N samples. Radix-2 DIF FFT algorithm is applied in

this work.

2 FFT processor architectures
2.1 General FFT architectures

Based on the FFT algorithm used, radix chosen, size of FFT

and the number of channels, a variety of FFT architectures

have been proposed in the literature [2-18]. While mapping

the FFT algorithm into hardware generally, three [2] or

more different architectures are followed [3].

2.1.1 Single PE architecture

A monoprocessor, i.e. a single processing element, is used

to perform all the butterflies in the signal flow graph. As

the single processing element is reused, usually a butterfly

element of higher radix is preferred to reduce the latency.

The advantage of single processing element (PE) architec-

ture is high hardware utilization and the disadvantages are

discontinuous input and output data streams [3].

2.1.2 Pipelined architecture

The pipelined architecture uses one PE for each stage

and the speed of processing is increased. Thus, many

concurrent processing elements are used to process

different stages to achieve high throughput with less

number of cycles [4,5]. Single-path delay feedback (SDF),

single-path delay commutator (SDC) [6], and multi-path

delay commutator (MDC) [7-9] are the common types of

pipelined architectures.

2.1.3 Fully parallel FFT architecture

Parallel or column FFT processor maps the signal flow

graph or a single stage of the signal flow graph, isomor-

phically, into a hardware structure. One stage of FFT

computation is done using several processing elements

and the same hardware is reused for the next stages.

This architecture is hardware intensive.

2.1.4 Array architecture

Array-based architecture uses an array of processing

elements to do the FFT computation. All the processing

Table 1 Wired/wireless technologies which use OFDM

Applications FFT points N

High-performance local area network (LAN) 64

Wireless LAN 64

Multiple-input and multiple-output (MIMO)
OFDM system

64/128

Institute of Electrical and Electronics Engineers
(IEEE) 802.16 based wireless systems

128 ~ 2,048

Digital audio broadcasting (DAB) 256 ~ 2,048

Very-high-bit-rate digital subscriber line (VDSL) 256 ~ 2,048

Asymmetric digital subscriber line (ADSL) 512

Worldwide interoperability for microwave access 2,048

Digital video broadcasting-terrestrial (DVB-T) 2,048/8,912
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elements can be enabled in parallel to increase the speed

of operation. Thus, an area-speed trade-off is done.

The scheduling logic of the processing elements makes

the design complex and hence, this architecture is not

commonly used.

2.2 Low power FFT architectures and techniques

Several low power FFT implementation approaches have

been proposed in the literature over the past two decades,

but still there is a continuing search for an ultra low power

implementation of FFT. The research papers [19-21] on

methods for motion estimation on a customizable reconfig-

urable hardware motivate the researchers to search for bio-

logically inspired FFT architectures which might provide

the best solution to design a low power FFT.

To achieve low power implementation of DSP circuits,

pipelining, parallel processing, algebraic transformations,

and algorithmic modifications are generally employed

[10]. Reducing the physical switching capacitance either

by reducing the physical capacitance or by reducing the

switching activity is an appropriate solution to achieve

low power. The physical capacitance can be reduced by

reducing the complexity of the architecture, while the

switching activity can be reduced by an appropriate data

encoding method, by proper reordering of the operations,

and by using point-to-point data buses [10]. The reduction

in complexity and increase in throughput is depicted in

[7] for MIMO OFDM system using 4-channel radix-23

(R23) and mixed radix architecture, as R23SDF needs the

smallest number of non-trivial multiplications.

Pipelined FFT processor architecture is put into practice

in [2,4,5,11]. Pipelining can be used either to increase the

operating frequency or to lower the operating voltage,

thus decreasing the power consumption. Radix-2, radix-4,

and radix-8 butterflies are used in a pipeline to achieve

the implementation of 64 to 2,048 point FFT in [11], and

a high-speed radix-25 based processor is presented in [14].

A pipelined low power FFT/IFFT processor, along with

optimized complex multiplier, is designed for up to 2,048

points for WiMax application in [15].

In [16], low power consumption is achieved by novel

radix-2 and radix-4 butterfly elements, which share two

complex multipliers. High throughput is also achieved in

[16] using three distributed memories for loading the in-

put data and for reading/writing data before and after

computation. The low power FFT processor proposed in

[5] uses radix-22 algorithm and power saving is achieved

by using asynchronous memory instead of synchronous

memory. The 64-point low power FFT processor of [4]

has used radix-2, pipelined architecture. Twiddle factor

ROM size is reduced by using a reconfigurable complex

multiplier. Five types of twiddle factor multiplications

are identified and thus the number of computations is

reduced, achieving low power consumption [4]. There

are many more architectures in the literature, which

proposes low power design.

In [17], a 64 to 8,192 point FFT processor for low power

applications is presented, by using dynamic data scaling

scheme, thereby using a small word length of 11 × 2.

To compensate for the signal-to-quantization-noise

ratio (SQNR) of the reduced word length, ‘trounding’

(truncation and rounding) strategy is used instead of

rounding/truncation. A power and area optimized recon-

figurable FFT processor, employing radix factorization

using the algorithmic, architectural, and also the circuit

level optimization is proved to be highly energy-efficient in

[18]. The possibility of achieving the most energy-efficient

FFT processor architecture is investigated in all dimensions.

An area and energy-efficient multimode processor pro-

posed in [22] is also designed based on flexible-radix and

multi-path delay feedback architecture and has achieved

high throughput with good SQNR. Better SQNR and also

2.5 GS/s are reported in [14].

To summarize, the following methodologies are com-

monly employed in FFT processors to achieve low power.

� Reducing the load capacitance C or the switching

frequency ‘f ’

� Pipelining

� Memory partitioning and reducing the twiddle

ROM size

� Using higher radix, mixed radix algorithms, and

radix factorization

� Using energy-efficient processing blocks

3 The proposed methodology
Three major approaches are used to achieve both low

power and reconfigurability of the FFT core in our

work. In a FFT core, the major portion of power con-

sumption occurs in two blocks, namely the butterflies

with complex twiddle factor multiplications and the

internal data storage registers. These two issues are

addressed in this design to achieve low power, and

reconfigurability is also achieved with the following

listed methodologies.

� Conventional butterfly with complex multipliers is

replaced with distributed arithmetic-based butterfly,

which reduces the dynamic power generated by the

butterfly computation by 80% (at 20 MHz), thus

the whole FFT computation consumes very less

dynamic power.

� Reconfigurability of the processor to accommodate

different lengths of FFT is made possible by the

folded butterfly architecture done for an array of 16

coarse grain butterfly processing elements. This is

an atypical architecture in contrast to the typical

pipelined or parallel architectures.
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� Using register minimization technique [23],

the internal memory requirement is reduced

to (log2 N − 1) × 16, which further reduces the

power.

These three features are explained in detail in the fol-

lowing sections.

3.1 The DAA-based butterfly design

Butterfly operation is the basic computation in the FFT

algorithm. Distributed arithmetic algorithm is used for

low-power finite impulse response (FIR) filter imple-

mentation without multipliers. [24] shows such an im-

plementation of FIR filter with a combination of DA

and common sub-expression elimination (CSE) and

genetic algorithm on a reconfigurable hardware. Relat-

ing distributed arithmetic to a butterfly computation

and constructing a FFT processor based on the bit ser-

ial butterfly with high latency are done for the first

time in this project. The butterfly element is hand

crafted using distributed floating point arithmetic

(DFPA) for high-energy efficiency. The FFT processor

design using distributed arithmetic was proposed as

long back as in 1981 in the literature [25] but distrib-

uted arithmetic algorithm (DAA) is not applied to the

butterfly operation, instead it is used directly for com-

puting prime number DFTs. Combining many prime

number FFTs, a larger length FFT is formed. In [25], a

pipelined prime factor FFT algorithm is implemented

for 504 points using shorter transforms of 8-point, 9-

point, and 7-point which are implemented using DAA.

But in this work, DA is applied in the butterfly level so

that the design can be modularized for reusing it for

variable-length, thus making reconfigurability possible.

Figure 1 shows the radix-2 DIF butterfly operation.

Here x and y are the two complex inputs to the DIF

butterfly and the two outputs X and Y are defined as

in Equations 5 and 6. The real and imaginary parts of

the inputs x and y and the outputs X and Y are repre-

sented as 32-bit single-precision floating point number

in the IEEE 754 format. Thus, each sample is 64 bits

wide.

The outputs X and Y of the butterfly in Figure 1 are

given by Equations 5 and 6.

X ¼ xþ y; ð5Þ

Y ¼ x−yð ÞW k
N ; ð6Þ

where x, y, X, and Y have real and imaginary parts and

these complex values are represented in a 64-bit format.

Equations 5 and 6 can be expanded as given in Equations 7

and 8, respectively.

Xre þ jX img ¼ xre þ yreð Þ þ j ximg þ yimg

� �

: ð7Þ

Y re þ jY img ¼ xre−yreð Þ þ j ximg−yimg

� �� �

� W re þ jW img

� �

: ð8Þ

Thus in a conventional butterfly, to compute output

X, two floating point adders/subtractors are required. To

compute output Y, four floating point adders/subtractors

and four floating point multipliers are required. These

floating point multipliers consume more dynamic power

and occupy more area.

DFPA algorithm-based butterfly (DFPABF) does not

employ floating point complex multipliers. Instead, it

uses two numbers of shift-accumulators and look-up

tables (LUT) to generate the output Y. DA is a bit ser-

ial computation technique for finding the inner prod-

uct of two vectors, when one of the vectors is known.

The radix-2 butterfly, which is a two-point DFT, can

be computed using DAA as the twiddle factors are

known values. Design of a DAABF is described in [26]

completely, by the same authors. Figure 2 shows the

block diagram of a DFPABF. Table 2 shows the hard-

ware requirement of a conventional butterfly and the

DFPABF.

When implemented in 45-nm technology, the DFPA

butterfly shows 80% less power and 44% less area com-

pared with the conventional butterfly. As DAA is a bit

serial operation, this design has a latency of 31 cycles

to produce the output of the butterfly operation. But this

latency is used efficiently to operate the butterflies in a

quasi-parallel mode, in this design of the DFPABF-based

FFT processor.

3.2 Mapping the DFG on the array of DA butterflies using

folding transformation

Getting the insight from the FPGA architecture, 16

DFPA butterflies arranged in an array topology are

used to compute FFT up to 2,048 points, instead of

the pipelined architecture used in the conventional

FFT processor. In pipelined architecture, one butterfly

is employed for one stage of computation and the

hardware utilization of a pipelined processor is not

100% except for the higher FFT points. But in this
Figure 1 Radix-2 DIF butterfly.
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methodology, all the butterflies are used even for

small FFT size.

Pipeline FFT architecture can be derived systematic-

ally via folding transformation [27]. In this work, the

folding transformation is used to arrive at array archi-

tecture and the scheduling of this array of butterflies

is done. In other words, the nodes in the data flow

graph (DFG) of FFT of any size can be folded on to

the array of 16 butterfly elements available in the

hardware. Such a folding transformation for a 32-

point FFT is shown as an illustration to explain the

reconfigurability of this design. DFG of the N = 32

point FFT is shown in Figure 3. These (N/2) log2 N

(=80) butterfly operations are mapped using folding

transformation on to the butterfly block with 16

DFPABFs.

Note: The delays are shown only along the first set

of edges and not shown for other edges for simplicity.

They are present along the appropriate edges, and the

pipelining delays used in the calculations are not

shown.

For folding transformation, the folding set which is

the set of nodes folded to a single computational unit

and also the folding order should be determined. The

folding set and the order of each node vary with the

number of FFT points N. Null operations are not re-

quired in the folding set, as this is not a pipelined

architecture. The instance at which A0 would fire

is taken as t = 0, though it fires only after receiving

both x(0) and x(N/2) which arrives after N/2 cycles

with respect to the arrival of x(0). Considering the

first N/2 cycles as the initial latency, the orders of all

‘A’-type nodes are ‘0’. The 80 butterfly nodes shown in

the DFG for N = 32 are folded on to the 16 DFPABFs

available in the hardware. Therefore, 16 folding sets

each containing log2 N nodes are formed as shown in

Equation 9.

S1 ¼ BF0 ¼ A0;B0;C0;D0; E0f g
S2 ¼ BF1 ¼ A1;B1;C1;D1; E1f g
:

S16 ¼ BF15 ¼ A15;B15;C15;D15; E15f g

: ð9Þ

Here the folding factor F is 5 for all the sets, the

folding order is the time instance at which a particu-

lar node in the set fires, and the folding order varies

from 0 to F − 1. For example, in the folding set BF0

containing five operations, the folding orders of A0 is

0, B0 is 1, C0 is 2, D0 is 3, and E0 is 4. The folding

edges and switched inputs/outputs for set S1 folded to

butterfly element BF0 = {A0,B0,C0,D0,E0} are derived

as follows.

For an edge e from the node U whose lth iteration is

scheduled at Fl + u time units to a node V whose lth

iteration is scheduled at Fl + v time units in the original

DFG with weight w(e), with F as the folding factor, the

new weight on the folded edge is calculated using the

formula given in Equation 10. [23],

DF U→Vð Þ ¼ Fw eð Þ−PU þ v−u; ð10Þ

where PU is the number of pipeline stages in the butter-

fly unit, which are 31 for DFPABF. The new weights of all

the edges of the folded set for BF0 are calculated as

Figure 2 Block diagram of a DFPA-based butterfly.

Table 2 Hardware used for conventional BF and DFPABF

Hardware Conventional DAABF

Floating point adder/subtractor 6 4

Floating point multiplier 4 0

Shift accumulators 0 2

4-input LUT 0 2
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Figure 3 DFG of 32-point FFT.
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follows. Pipelining delays are added on the edges to get

positive delays on the folded edges.

DF A0→B0ð Þ ¼ 5� 14−31þ 1−0 ¼ 40D
DF A8→B0ð Þ ¼ 5� 6−31þ 1−0 ¼ 0D
DF B0→C0ð Þ ¼ 5� 10−31þ 2−1 ¼ 20D
DF B4→C0ð Þ ¼ 5� 6−31þ 2−1 ¼ 0D
DF C0→D0ð Þ ¼ 5� 8−31þ 3−2 ¼ 10D
DF C2→D0ð Þ ¼ 5� 6−31þ 3−2 ¼ 0D
DF D0→E0ð Þ ¼ 5� 7−31þ 4−3 ¼ 5D
DF D1→E0ð Þ ¼ 5� 6−31þ 4−3 ¼ 0D

ð11Þ

Pipelining registers are added along the feed forward

cut set, so that all the delays of the folded DFG are positive

to make the block realizable. The delays added as pipelining

delays along the edges are not shown in DFG diagram.

Using the folding equations given in Equation 11, the set

of nodes {A0,B0,C0,D0,E0,} is folded to one computational

element BF0 as shown in Figure 4. The DAA-based BF

takes 31 cycles by itself for a complete butterfly operation

including the twiddle factor multiplication. This is consid-

ered as internal pipelining delay of the node.

Similar folding switches are added for ‘output 2’ ter-

minal of the butterfly too. All the sets are folded to form

BF1, BF2, etc. Thus, DFG for N = 32 with 80 nodes is

folded/rolled over in the horizontal direction on to the

16 BFs, in contrast to vertical folding as done in the

pipelined architecture. The same technique can be used

for a FFT and the corresponding DFG of any size.

3.3 Register minimization

The number of internal registers required for storing the

outputs of the nodes is determined systematically using

the register minimization technique explained in [23].

The lifetime analysis is done for the five nodes in BF0

and the output variables produced by them. For each

node, Tinput→ Toutput is calculated. Tinput is the time at

Figure 4 Folded butterfly BF0 for the nodes A0 to E0 for N = 32.

Table 3 Life time of nodes in the folding set BF0

Node Tinput→ Toutput1 Tinput→ Toutput2

A0 31→ 71 31→ 71

B0 32→ 52 32→ 32

C0 33→ 43 33→ 33

D0 34→ 39 34→ 34

E0 35→ 35 35→ 35
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which the node produces data and Tinput = u + PU, where

u is the folding order and PU is the pipelined delay of

the node. Toutput = u + PU +max v DF (U→ V), where

max v DF(U→ V) is the longest folded path delay for all

the paths from node U. Here for every butterfly node

there are two outputs, so the edges along both the out-

puts should be considered. The life time table for the set

BF0 is given in Table 3.

The life time chart is given in Figure 5 and it can be

seen that the number of registers required is only four,

maximum number of live variables at a time instance.

With 16 butterflies available in the hardware, each would

require four registers and the total register array require-

ment is 64 for N = 32. When N increases by an order 2,

the additional requirement is only 16 registers. The number

of registers R required is given by R = (log2 N − 1) × 16.

Thus for N = 2,048, we need only (10 × 16) 160 in-

ternal storage registers. Thus, the registers required

are reduced drastically. It is mentioned here that the

size of each register is 64 bits as 32-bit floating point

numbers are used for both real and imaginary parts of

the data.

Figure 5 Life time chart.

Figure 6 Architecture of proposed processor.
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4 The adapted architecture
The FFT processor proposed in this work is reconfigur-

able for processing up to 2,048 input samples using an

array of 16 low power DFPA butterflies on to which all

the nodes in the DFG are folded. The delays along the

folded edges differ with respect to the FFT size N and

are configured by the stage control unit. Two register

banks of size 64 words each (64 × 64) are fabricated in

the FFT processor as a basic internal RAM, and they are

alternatively used for storing the incoming data and as

an internal register array. An additional register array of

32 registers is set aside to attain the maximum register

size of 160 required for 2 K-point FFT. The butterflies

are fired one after the other once in three clock cycles

with its inputs, which process the FFT computation and are

controlled by the control unit. This array and memory-

based floating point FFT processor architecture as given in

Figure 6 is presented in this section.

4.1 The IO block and butterfly block

The IO (input/output) block is the interface with the

outside world. It receives the input samples in 64-bit for-

mat and writes the incoming samples to the RAM. The

FFT output (64 bits), which is available in one of the

RAMs after all the stages of processing, is transmitted

out by the IO module.

The butterfly block consists of 16 DFPA-based butter-

fly elements. Each folded butterfly receives a set of two

data from the read control block. The addresses of these

data are also generated by the folding control block

which is programmed with the address-generating algo-

rithm for the different N values. Only one of the butter-

flies gets the inputs at a time and it ends the process

after 31 cycles. The compute finite-state machine (FSM)

is shown in Figure 7. In the meantime, the other butter-

flies receive the data sequentially once in every two clock

cycles. Thus, there is an added latency of 1 cycle. Thus,

outputs come sequentially once in every two clock cycles

after the initial latency of 31 cycles from the butterfly

block and get stored in the register array for the next

stage of processing by one of the folded butterflies. The

scheduling of the 16 butterflies is shown in Figure 8

and how the butterfly resources are allocated for the

computation using the minor butterfly cycles is shown

in Figure 9, for N = 64.

4.2 Reduced size twiddle ROM

A reduced twiddle factor ROM of size 256 × 64 bits

(2 KB) is used in this processor. For an N-point FFT,

there are N/2 distinct twiddle factors but there is

inherent symmetry among the twiddle factors. The

twiddle factor entry to the ROM can be further

Figure 7 Compute FSM.

Figure 8 Scheduling of the 16 butterflies.
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reduced with additional logic to either N/4 or N/8

using t π/2 symmetry or π/4 symmetry of the sine

and cosine values [28]. In this design, the additional

glue logic calculates the twiddle from the N/8 values.

Thus for a 2,048 point FFT, the 1,024 distinct twiddle fac-

tors are obtained only with 256 values.

4.3 Configuration registers and control

FFT size N is given as the input to the configuration

block. Aiding to the reconfiguration, the configuration

registers configure the control unit for the required

number of stages, number of butterflies per stage,

number of times the BF block is used, etc. The stage

Figure 9 BF block in minor cycles-stages 1 and 2 computation for N = 64.
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control FSM shown in Figure 8 controls the whole

computation process and reconfiguration process. On

receiving the information from the configuration reg-

isters and other blocks, it controls the flow of data

from the RAM and from the IO block. It also controls

the data flow in the BF block and controls all the dif-

ferent stages of the FFT computation. The address

generation for accessing the data and the twiddle fac-

tors from the RAM and ROM respectively are done by

the read, write, and twiddle blocks but monitored and

Figure 10 Stage control FSM.

Figure 11 Data flow through routers I and II.
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controlled by the signals generated by the stage con-

trol block.

Once one of the RAMs is filled with the samples to

be processed, the stage control FSM initiates the read

module to read the pair of samples from RAM. The

samples to be fed to a particular butterfly are read one

after the other as a pair in three clock cycles. Then,

one of the 16 butterflies is enabled and it starts pro-

cessing. As the butterfly operation is based on DA

algorithm, which is a bit serial operation, it takes

31 cycles to produce the output. In the meantime, the

next butterfly receives the data samples and starts pro-

cessing. For writing the two outputs to RAM, again

three clock cycles are required (Figure 10).

Thus, the first butterfly finishes the whole process in

2 + 31 + 3 = 36 clock cycles. When all the 16 butterflies

are enabled, the first butterfly has finished the process

and ready to process the next set of data. The scheduling

of the 16 butterflies is shown in Figure 6. As shown in

the Figure 6, BF0 produces its output at the 36th clock

cycle and after that, for every two cycles, one set of out-

puts is produced and stored in the register array. Thus,

there is an initial latency of 36 clock cycles, to get the

first output of the first stage of FFT computation. One

cycle of computation of all the 16 butterflies is called

one minor cycle. One minor cycle gets completed in 66

clock cycles.

For N =32, one stage of computation is done in one

minor cycle, and five minor cycles finish the compu-

tation. The inputs and outputs of all the 16 butterflies

are fed back and forwarded from the register array

using the folded architecture/switches. The data flow

between the folded butterfly nodes is controlled by

the stage control block. If N = 64, two minor cycles

Figure 12 Layout of the distributed arithmetic-based processor.

Table 4 Chip implementation details

Technology 45-nm CMOS

Voltage 1.08 V

Process 1P6M

PVT conditions Typical

Word length 64 bits

FFT size 32 to 2,048

Internal RAM 1.25 KB

ROM 2 KB

Maximum frequency 100 MHz

Core area 0.973 mm2

Cell count 307,201

Leakage power 0.034 mW

Total power 68.17 mW

Energy per FFT 14 nJ for 2,048 points
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are required to finish one stage of FFT computation.

Then, the folding architecture is different. For N =

1,024, 32 minor cycles complete one stage. When one

stage is completed, the next stage is carried out with

another set of minor cycles. The design works with a

clock frequency of 100 MHz with a clock period of

10 ns. Thus, final FFT output of 64-point FFT will be

available after six stages, each stage consisting of two

minor cycles of the BF block. Thus, for N = 64, the

final FFT output will be available after an initial la-

tency of 2 × 66 × 6 × 10 ns plus some stages over de-

lays adding to it becomes 7.64 μs.

4.4 Data routers

There are two routers which routes the data to and

from the two RAMs. Data router I receives data from

the IO module and also the outputs from the BF block

and sends them to RAM0 or RAM1 based on the

control signals. Similarly, router II receives data from

RAM0 and RAM1. It routes them to the BF block for

processing and at the FFT output to the IO block. All

the data are 64-bit wide as 32 bits are used for real part

and 32 bits are used for imaginary part. The diagrams

of the routers are given in Figure 11.

5 Chip implementation and results
The proposed DFPABF-based reconfigurable processor

core is implemented in Verilog hardware description

language, synthesized using Cadence RTL compiler

(Cadence Design Systems, San Jose, CA) using standard

45-nm technology library, with a Vdd supply of 1.08 V,

for normal PVT conditions. The back end physical de-

sign up to layout of the chip is done using Cadence

Encounter (Cadence Design Systems, San Jose, CA)

for a six metal layer and one poly process. The layout is

shown in Figure 12. This design runs with a maximum

clock frequency of 100 MHz. A reconfigurable 64 to

2,048-point FFT processor using conventional multiplier-

based butterflies with the same array architecture is also

implemented in Verilog and implemented using the

same technology, in order to compare and demonstrate

the higher performance of the distributed arithmetic-based

FFT processor.

5.1 Reduced area and power reports

The proposed distributed arithmetic-based FFT processor

results in reduced area as well as power, as the computations

are distributed over many clock cycles with less hardware.

The latency created due to this bit serial distributed

operations is exploited in the architecture of the pro-

cessor, making this design area and power efficient.

This reconfigurable FFT core is a coarse grain type,

whose basic building blocks are the power- and area-

efficient, radix-2 DIF butterflies.

Table 5 Comparison of conventional and DAA-based designs at 20 MHz

Parameter DFPABF Conventional BF Percentage
saving

Proposed FFT
processor

Conventional
BF-based processor

Percentage
saving

Maximum frequency (MHz) 100 20 − 100 20 −

No. of cells 18,074 46,886 61.45 245,452 571,590 57.06

Area (mm2) 0.031 0.055 43.64 0.694 1.04 33.27

Leakage power (nw) 1,318 2,711 51.38 26,574 48,679 45.41

Total power at 20 MHz (mW) 0.9878 4.937 79.99 28.9 46.85 38.31

Figure 13 Frequency versus power.

Table 6 Latency as a function of N

FFT Size (N) Latency Throughput (KS/s)

64 7 μs 119.375

128 15.56 μs 139.375

256 38.36 μs 159.843

512 87.36 μs 180.625

1,024 0.196 ms 201.601

2,048 0.435 ms 222.625
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Table 7 Comparison of design features and performance of various FFT processors

This work [Kai-Jiun] [Chia] [Song] [Chu yu] [Manish]

Technology 45 nm 90 nm 65 nm 180 nm 180 nm 180 nm

Voltage (Vdd) 1.08 V 1 V 0.45 V 1.8 V 1.8 V 1.8 V

Architecture/algorithm Array-based, DFPABF/radix-2 MDC, 4-stream, Radix-4/8 Mixed radix MDF Flexible radix, MDF multiple stream Pipelined, SDF R2SDF

FFT size/modes Variable 64 to 2,048 Variable 128 to 2,048 Variable 128 to 2,048 128/256/512/1024 Fixed 64 Variable 128 to 2,048

1-4 streams

Maximum frequency 100 MHz 40 MHz 20 MHz 300 MHz 20 MHz 40 MHz

Word length 64 bits 16 bits (input) 24 20 16 32

Memory 3.25 KB internal memory (RAM + ROM) Dual port SRAM (10,224 × 16 bits) 48 KB of register file Mixed SRAM DL buffers FIFO of varying sizes

Core area 0.973 mm2 3.1 mm2 1.375 mm2 3.2 mm2 0.88 mm2 4.52 mm2

Power consumption 68 mW 63.72 mW 4.05 507 mW at 512 points 9.79 mW 55.64 mW

Normalized area 0.475 1.51 0.858 1.25 3.45 0.275

Normalized power 0.332 μw 3.62 μw 1.51 μw 3.8 μw 11 μw 0.489 μw
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The chip implementation detail of the proposed FFT

core is given in Table 4. The proposed FFT processor

performance is basically evaluated by comparing with

performance of the FFT processor designed with the

same configuration and architecture. The synthesis re-

sults of the DAA-based butterfly/conventional butter-

fly and the results of the DFPABF-based reconfigurable

(64 to 2 K points) FFT processor and the conventional

butterfly-based (64 to 2 K points) FFT processor with

the same architecture are compared in Table 5 which

shows 33% less area and 38% less power for the same

architecture.

The power consumption of the proposed processor at

various operating frequencies is observed by synthesizing

the design at different frequencies. The processor consumes

less power at lower frequencies and the frequency versus

power graph is shown in Figure 13.

5.2 Latency and throughput of the design

The FFT output points are generated with an initial latency

which depends on the FFT size. Each minor cycle takes

66 clock cycles, and change over delays are encountered

at the end of the stages. The latency in getting the first

output for different values of N is shown in Table 6. After

the initial latency, output data is generated at the rate of

one FFT point per 10 ns.

6 Comparison with prior low power FFT processors
Performance of the FFT processor, designed in this

work, is compared against other existing processors

with low power consumption. As the implemented tech-

nologies, frequencies, word sizes, FFT lengths, and their

latencies different for these processors, they are ordered

based on the normalized area and power. In [29], the

concept of using normalized area/power for compari-

son of designs implemented in different technologies is

first introduced. There are many variations of the for-

mulae to calculate the normalized area and power

with respect to the factors like FFT size. Operating

frequency are found in the literature [4,8,18,22], etc.

In this work, the word size of the complex data is 64

bits (as IEEE 754 standard single-precision floating

point representation is used), whereas no other de-

signs have used a long word size. The highest data

width found for the complex data is 32, whereas most

designs have used a data width of 16/20/22 bits. Thus,

it is absolutely necessary to include the word size fac-

tor while normalizing the values with respect to this

design. The formulae used for normalized area and

power with respect to this implementation are given

in Equations 12 and 13. Energy per FFT is calculated

using the formula given in Equation 14. Normalized

energy is not found as the execution times of other

processors are not known.

Normalized area

FFT
¼

Area � 1000

FFT Sizeð Þ� Lmim

45

� �2� Wordlength
64�

� � :

ð12Þ

Normalized power

FFT
¼

Power�Clock period�1000
�

V=ð1:08Þ$
�2

� FFT sizeð Þ� Wordlength
64

� �

:

ð13Þ

Note: *Data width used in this design is 64
$Supply voltage in this work is 1.08 V

Energy

FFT
¼

Power � Execution time

FFT size
: ð14Þ

Table 7 shows the comparison of the FFT processor

proposed in this work with six other processors on various

parameters.

From the table, it can be observed that the FFT pro-

cessor proposed in this work has less normalized area

and power compared with five of the processors in the

table as illustrated in Figure 14. All the processors have

adapted a pipelined architecture with the variations

like SDF or MDF with multiple streams and mixed

radix algorithms. Only our work has used novel array

architecture with 16 BF processing elements, each being

fired one after the other, thus making them work in

parallel with the required time delay. Thus, this

Figure 14 Power and area of various processors.

Table 8 Energy per FFT

FFT size (N) Execution time (μs) Energy per FFT (nJ)

64 7.64 7.43

128 17.84 8.79

256 40.92 10.18

512 92.48 11.60

1,024 206.44 13.01

2,048 456.08 14.44
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architecture becomes suitable for the serial operation

of the distributed arithmetic butterfly. The inherent

advantage of the distributed arithmetic makes our pro-

cessor both area and power efficient compared with

most of the existing designs.

The throughput of the proposed processor is in the

range of 119 to 222 KS/s. As the execution times of all

the processors are not known, the normalized energy

per FFT could not be calculated. The energy per FFT of

this processor is calculated and it is proved with good

results of 7.4 to 14.4 nJ for 64-point and 2,014-point

FFT computation as shown in Table 8. Thus, it is more

energy efficient than many other existing processors.

This is achieved by the energy-efficient butterflies, register

minimization, and the efficient scheduling of butterflies

with folding transformation.

7 Conclusions
In this paper, we have presented an array architec-

ture with folding transformation for a reconfigurable

(32/64/128/256/512/1,024/2,048 points) FFT processor.

The systematic folding transformation is illustrated for

N = 32 and this approach is used for other FFT sizes

also. The computational nodes are ultra low power and

low-area distributed arithmetic-based FP butterflies,

which accomplishes low power, less silicon processor,

compared with existing low power FFT processors.

The array of 16 folded butterfly elements works in a

quasi-parallel mode. The number of butterflies is se-

lected as 16 after analyzing different implementation

factors and the control mechanism. Another new fea-

ture of this processor is it uses very low power butter-

fly elements whose design is based on DAA. The

processor designed in this work occupies a silicon area

of 0.973 mm2 with a power dissipation of 68 mW at

100-MHz operating frequency. The throughput is also

calculated to be in the higher range of 119 to 222 KS/s,

where as one sample is 64 bits. The energy efficiency

is also very high ranging from 7.4 to 14.4 nJ/FFT for the

FFT size varying from 64 to 2,048. Thus, this design is one

of the most energy-efficient processors designed so far.
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