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Abstract: Adder is an important datapath unit of a general-purpose microprocessor or a digital signal

processor. In the nanoelectronics era, the design of an adder that is modular and which can withstand

variations in process, voltage and temperature are of interest. In this context, this article presents a

new robust early output asynchronous block carry lookahead adder (BCLA) with redundant carry

logic (BCLARC) that has a reduced power-cycle time product (PCTP) and is a low power design.

The proposed asynchronous BCLARC is implemented using the delay-insensitive dual-rail code

and adheres to the 4-phase return-to-zero (RTZ) and the 4-phase return-to-one (RTO) handshaking.

Many existing asynchronous ripple-carry adders (RCAs), carry lookahead adders (CLAs) and carry

select adders (CSLAs) were implemented alongside to perform a comparison based on a 32/28 nm

complementary metal-oxide-semiconductor (CMOS) technology. The 32-bit addition was considered

for an example. For implementation using the delay-insensitive dual-rail code and subject to the

4-phase RTZ handshaking (4-phase RTO handshaking), the proposed BCLARC which is robust and of

early output type achieves: (i) 8% (5.7%) reduction in PCTP compared to the optimum RCA, (ii) 14.9%

(15.5%) reduction in PCTP compared to the optimum BCLARC, and (iii) 26% (25.5%) reduction in

PCTP compared to the optimum CSLA.

Keywords: digital circuits; asynchronous design; low power design; computer arithmetic; adder;

indication; quasi-delay-insensitive; standard cells; CMOS

1. Introduction

In the nanoelectronics era, design-for-manufacturability issues such as process variability due

to process-induced defects, device variability due to random dopant and atomistic fluctuations, hot

carrier effects, negative bias temperature instability, stress-induced variation, electrostatic discharge

etc. and other metrology issues are more pronounced compared to the microelectronics era [1,2]. As a

result, the synchronous design method may involve more than a 100% overhead [3] in specifying the

practical timing of a digital circuit or system. This is to compensate for any or a combination of the

clock network delay, the clock jitter, unexpected statistical timing variation(s) of the combinational

logic, storage elements and control logic etc. [4]. In this backdrop, an asynchronous design method

that is modular and which can innately cope with arbitrary variations in processes or parameters

is preferable [5–7]. Such an asynchronous design method corresponds to the input-output timing

model [8], which utilizes delay-insensitive codes for data encoding (i.e., representation) and processing

and adheres to the 4-phase return-to-zero (RTZ) or return-to-one (RTO) handshake protocol for data

communication. An illustration of such an asynchronous circuit stage sandwiched between the data

sender and the receiver is given in Figure 1.
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Figure 1. An asynchronous circuit stage present between two register stages (current and next) is

correlated with the sender and receiver analogy. An example dual-rail data bus consisting of the

encoded inputs (W1, W0), (X1, X0) and (Y1, Y0) is shown. The datapath is highlighted in brown dashed

lines. The completion detectors, which would indicate i.e., acknowledge the receipt of the primary

inputs, corresponding to the 4-phase return-to-zero (RTZ) and return-to-one (RTO) handshaking are

also shown. The circle with the marking ‘C’ represents the (symmetric) Muller C-element.

In Figure 1, the sender and the receiver comprise registers, which are constructed using 2-input

Muller C-elements. C-elements are also called registers since they are fundamentally elements with

memory. One of the inputs to the 2-input C-element (i.e., register) is the ackin signal and the other is

an encoded data input rail. The Muller C-element [9] is an important building block of asynchronous

circuits. The C-element would output 0 or 1 if all its inputs are 0 or 1 respectively and would maintain

its existing state if its inputs are not identical. The data communication between the sender and the

receiver i.e., handshaking is performed by involving either an intermediate RTZ [10] or an intermediate

RTO [11] of the encoded data wires. The former is called 4-phase RTZ handshaking and the latter is

called 4-phase RTO handshaking. The 4-phase RTZ or the 4-phase RTO handshake protocol can be

used for data communication between the input and output registers of an asynchronous circuit stage

as shown in Figure 1. We shall first discuss the delay-insensitive dual-rail data encoding in the context

of the 4-phase RTZ handshaking followed by the 4-phase RTO handshaking.

1.1. Dual-Rail Data Encoding and 4-Phase RTZ Handshaking

In Figure 1, the inputs and outputs of the asynchronous circuit are dual-rail encoded [12].

For example, the data wire W is encoded as W1 and W0. According to the 4-phase RTZ

handshaking [10], W = 1 is represented as W1 = 1 and W0 = 0 and W = 0 is represented as W1 = 0 and

W0 = 1. These two combinations represent the data. W1 = W0 = 0 is called the spacer. W1 = W0 = 1 is

deemed to be illegal since the delay-insensitive coding scheme should be unordered [13]. In Figure 1,
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ackin and ackout represent the acknowledgment input and output signals of the asynchronous circuit

stage, and ackin is the Boolean complement of ackout. There is no explicit provision of a data request

wire since the data request is embedded within the encoded data wires.

In accordance with the 4-phase RTZ handshake protocol, the inputs are applied as follows:

data-spacer-data-spacer and so forth. Each application of input data is succeeded by a RTZ of the

encoded data wires. The 4-phase RTZ handshaking process is described using the following steps.

• In the first phase, the dual-rail data bus specified by (W1, W0) etc., is in the spacer state and ackin

is 1. After the sender transmits a data, this would result in rising signal transitions i.e., binary 0 to

1 on one of the dual rails of the dual-rail data bus.

• In the second phase, the receiver receives the data sent and drives ackout to 1.

• In the third phase, the sender waits for ackin to become 0 and then resets the dual-rail data bus to

the spacer state (i.e., all 0 s).

• In the fourth phase, after an unbounded, finite and positive time duration, the receiver drives

ackout to 0 and subsequently ackin would assume 1. One data transaction is now said to be

complete, and the asynchronous circuit may start the next data transaction.

1.2. Dual-Rail Data Encoding and 4-Phase RTO Handshaking

According to the 4-phase RTO handshake protocol [11], the dual-rail data encoding is done as

follows. For example, the data W = 1 is represented as W1 = 0 and W0 = 1 and the data W = 0 is

represented as W0 = 0 and W1 = 1. The spacer is represented as W0 = W1 = 1, and W0 = W1 = 0 is

deemed to be illegal. In accordance with the 4-phase RTO protocol, the application of inputs to an

asynchronous circuit follows this sequence: spacer-data-spacer-data, and so forth with each application

of input data succeeded by a RTO of the encoded data wires. The 4-phase RTO handshaking process is

described as follows:

• In the first phase ackin is 1. After the sender transmits the spacer i.e., all 1 s, this would cause

rising signal transitions on all the rails of the dual-rail data bus.

• In the second phase, the receiver receives the spacer sent, and drives ackout to 1.

• In the third phase, the sender waits for ackin to assume 0, and transmits the input data by resetting

any one of the respective dual-rails of the dual-rail data bus.

• In the fourth phase, after an unbounded but positive and finite time duration, the receiver would

drive ackout to 0 and ackin would assume 1. With this one data transaction is said to be complete,

and the asynchronous circuit stage may start the next data transaction.

2. Input-Output Mode Asynchronous Circuits

2.1. Types

Input-output mode asynchronous circuits are commonly categorized into four types as strong

indication [14,15], weak indication [14,16], early output [17], and relative timed [18]. The degree of

robustness would follow the descending order of hierarchy listed. But the optimizations achievable

in the design metrics generally follows the ascending order of the hierarchy. Of the four types listed,

strong indication, weak indication, and early output asynchronous circuits are robust when they

incorporate quasi-delay-insensitive (QDI) logic decomposition. In this context, strong indication,

weak indication, and early output asynchronous circuits are said to be QDI. QDI circuits represent

the practical implementation of delay-insensitive asynchronous circuits by assuming the presence of

isochronic forks [19]. The isochronic fork represents the weakest compromise to delay-insensitivity.

An isochronic fork assumption implies that all the wire branches forking out from a node/junction

experience concurrent signal transitions whether they are rising or falling. Reference [20] showed

that isochronic forks are realizable in the nanoelectronics regime which implies that the QDI circuit

implementations are feasible. QDI circuit/system implementations may also be feasible in emerging
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technologies such as silicon nanowire field-effect transistors (FETs) and graphene SymFETs [1].

In [21,22] the utility of these emerging technologies for hardware security applications based on

the synchronous design method was investigated and it was concluded that they can outperform

the CMOS technology. Relative timed circuits tend to incorporate additional timing assumptions

besides the assumption of isochronic forks, which are likely to be sophisticated (complicated). If the

additional timing assumptions made in a relative timed circuit are violated, then the circuit would not

be practically robust. Extensive timing verification and engineering effort may be required to realize

a relative timed circuit and despite these, a relative timed circuit may fail if the timing assumptions

introduced are violated due to process and/or parametric variations. Hence, relative timed circuits are

not QDI.

The input-output timing characteristics of various types of asynchronous circuits are portrayed in

Figure 2, corresponding to the 4-phase RTZ and RTO handshake protocols.

 

 

Figure 2. Timing behavior of strong indication, weak indication, and early output asynchronous

circuits corresponding to: (a) RTZ handshaking; (b) RTO handshaking.

Strong indication circuits would wait for the arrival of all the primary inputs (whether they are

data or spacer) after which they would process the data received to produce the primary outputs.

A composition of strong indication sub-circuits may yield a weak indication circuit. For example,

a connection of two strong indication full adders would result in a 2-bit weak indication RCA. This is

because if all the inputs to one full adder would arrive then the sum and carry output bits of that full

adder could be produced regardless of the non-arrival of the inputs to the other full adder.

Weak indication circuits can produce all but one of the primary outputs after receiving a subset of

the primary inputs. Nevertheless, only after receiving the last primary input, the last primary output

is produced. A composition of weak indication sub-circuits leads to a weak indication circuit. On the

other hand, a composition of strong and weak indication sub-circuits would also result in a weak

indication circuit.

Early output circuits can produce all the primary outputs (data or spacer) after receiving just

a subset of the primary inputs. If an early output circuit produces the data early, it is called early

set type. On the contrary, if an early output circuit produces the spacer early, it is called early reset

type. The early set and reset behaviors are captured within the violet and green ellipses in Figure 2a

corresponding to the RTZ handshaking, and they are captured within the pink and brown dotted

ellipses in Figure 2b corresponding to the RTO handshaking. A homogeneous composition of early

output sub-circuits or a heterogeneous composition of strong indication and/or weak indication and
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early output sub-circuits would result in an early output circuit of the same kind as that of the early

output sub-circuits comprising it.

Relative timed circuits correspond to the early output type but are not QDI. However, as

mentioned earlier, relative timed asynchronous circuits would tend to incorporate additional timing

assumptions to guarantee their safe operation, and they are the least robust of the input-output

mode asynchronous circuits. Nevertheless, they are likely to facilitate better optimizations in the

design metrics compared to their counterparts. Hence, when deciding to choose relative timing

for realizing computer arithmetic, there would be a trade-off between robustness and the quality

of results. However, to achieve the twin objectives of robustness and good quality of results, the

early output type may be preferred. Nevertheless, this observation may not be universally applicable

for the asynchronous realization of different kinds of computer arithmetic since the phenomenon of

robustness may also depend on the arithmetic circuit structure to be realized in asynchronous style.

2.2. Characteristics

Asynchronous circuits featuring delay-insensitive data encoding and adhering to a 4-phase

handshaking (RTZ or RTO) for data communication usually embed the monotonic cover constraint

(MCC) [10] in their underlying logic. To briefly explain what is the MCC, let us consider the dual-rail

encoded realization of a 2-input AND function shown in Figure 3, corresponding to the 4-phase RTZ

handshaking. (A1, A0) and (B1, B0) represent the dual-rail encoded primary inputs and (Y1, Y0)

represents the dual-rail encoded primary output. The circles with the markings C1, C2, C3 and C4 in

Figure 3 represent the 2-input Muller C-elements.

 

 

Figure 3. 2-input AND function realized using the delay-insensitive minterm synthesis (DIMS) method,

conforming to RTZ handshaking.

The logic expressions for the 2-input AND function are given below, which correspond to the

delay-insensitive minterm synthesis (DIMS) method [23]. Equation (1) contains only one product

term, which signifies the monotonic cover. On the other hand, (2) contains three product terms but

the cover constraint is still monotonic. This means only one out of the three product terms in (2)

would be activated for the application of appropriate input data, and the rest of the product terms

would remain deactivated. This is because the product terms constituting (2) are disjoint. In a disjoint

sum-of-products expression [24], the products are mutually orthogonal and the logical conjunction of

any two products would yield 0.

Y1 = A1B1 (1)

Y0 = A0B0 + A0B1 + A1B0 (2)

Figure 3 also portrays two example input scenarios. Let us first assume that A0 and B1 experience

rising signal transitions i.e., A0 = B1 = 1 during a data phase i.e., after a spacer phase where A0 and

B1 were equal to 0. This would cause a rising signal transition to occur on the output of C3, which

would be followed by a rising signal transition on the primary output rail Y0. Thus, the rising signal

transitions on A0 and B1 are unambiguously indicated (i.e., acknowledged) by the primary output rail
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Y0 while involving the intermediate gate output of C3. Let us now consider falling signal transitions

on the inputs A1 and B1 i.e., A1 = B1 = 0 after a data phase where A1 and B1 were equal to 1 earlier.

This would result in the reset of Y1 i.e., Y1 = 0. These two example input scenarios show that the signal

transitions occur monotonically throughout the circuit [25], i.e., the signals monotonically increase

for the application of input data and they monotonically decrease for the application of the spacer

throughout the entire circuit from the primary inputs up to the primary outputs, in conformance with

the RTZ handshake protocol. In the case of RTO handshaking, the transitions would monotonically

increase for the application of the spacer and would monotonically decrease for the application of

the data.

The non-acknowledgment of a signal transition on a wire is called wire orphan and the

non-acknowledgment of a signal transition on the output of a gate is called gate orphan [26].

Wire orphans are less problematic than the gate orphans. Wire orphans may arise in a circuit, but they

can be overcome by imposing the isochronic fork assumption. Gate orphans, even if they are likely to

occur in a circuit, as is the case with most relative timed circuits, can be avoided by making certain

timing assumptions which however might be sophisticated to realize and may complicate the circuit

verification aspect. Nevertheless, if the environment is assumed to be rather slow changing then the

gate level realization is likely to be safe [27].

To shed the light on wire and gate orphans, we refer to Figure 4. Figure 4 shows a gate-level

implementation of an example Boolean function F, expressed as F = PQ + RS, where P, Q, R and

S are the primary inputs. A dual-rail logic equivalent that corresponds to the early output type is

shown where F1 = P1Q1 + R1S1 and F0 = (P0 + Q0) (R0 + S0). The gate pairs (G4, G5), (G6, G7), and

(G8, G9) form the respective early output logic equivalents of the gates G1, G2, and G3. X and Y are

the intermediate single-rail outputs, and (X1, X0) and (Y1, Y0) are the intermediate dual-rail outputs.

 

 

Figure 4. Dual-rail early output type asynchronous realization of the logic function F = PQ + RS,

corresponding to RTZ handshaking.

Figure 4 serves to illustrate the need for the proper indication of signal transitions at the primary

inputs and the intermediate (gate) outputs and points out how wire and gate orphans can probably

occur for an example RTZ handshaking. However, the following discussion is applicable for a circuit

corresponding to the RTO handshaking.

If the data inputs are currently assumed to be spacers, and in the next data phase, if P0 and R0

assume 1, the intermediate outputs X0 and Y0 would be driven to 1 and eventually F0 would assume

1. If Q0 and S0 also assume 1, but later, these signal transitions will not be acknowledged by the

intermediate outputs or by the primary output in the current data evaluation phase leading to the

occurrence of wire orphans because of the belated signal transitions on the inputs Q0 and S0. However,

the wire orphans arising on the inputs Q0 and S0 can be overcome by imposing the isochronicity

assumption on Q0 and S0.

Let us consider another scenario where P1 and Q1 assume 1 after a RTZ phase. This would result

in X1 to be driven to 1. If R1 and S1 also assume 1, but later in the current evaluation phase, Y1 would

become 1. However, F1 could have assumed 1 just because of X1 having become 1 and so the late signal
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transition on Y1 will not be acknowledged by the primary output (F1) resulting in the occurrence of a

gate orphan. This gate orphan problem may be eliminated by assuming that Y1 becomes 1 before F1

could assume 1, which is a complicated relative timing assumption.

References [28–30] discuss other scenarios as to how gate orphans could occur due to the unsafe

logic decomposition of a high fan-in OR gate and a high fan-in C-element. In general, gate orphans

should be avoided in the multi-level synthesis of asynchronous circuits to ensure the robustness.

One way of avoiding the gate orphans is by adhering to (safe) QDI logic decomposition principles,

which are described in [29–31]. The assumption of isochronic forks is essential to practically implement

asynchronous circuits belonging to strong indication, weak indication, and early output types.

However, such circuits should have to be free of gate orphan(s) to be identified as robust, and this

could be guaranteed by resorting to (safe) QDI logic decomposition. In the case of relative timed

circuits, gate orphans are more likely to occur and to overcome any potential problem due to those,

additional timing assumptions may have to be incorporated which could complicate the physical

realization. Nevertheless, despite the extra timing assumptions imposed besides the assumption of

isochronic forks, relative timed circuits are not guaranteed to be robust.

3. Datapaths Traversed in Asynchronous Adders

Ripple-carry adder (RCA), carry lookahead adder (CLA), and carry select adders (CSLA)

architectures were considered for the asynchronous implementations of 32-bit addition. The building

blocks used for the adder implementations such as the block carry lookahead generator without

redundant carry output (BCLG), the block carry lookahead generator with redundant carry output

(BCLGRC), the recursive 4-bit CLA, the full adder, the sum logic etc. correspond to strong indication,

weak indication, and early output timing models.

Figures 5 and 6 portray the various adder architectures. The numeral indices 31 and 0 denote the

most significant and the least significant adder bit positions. Dual-rail encoded A31 to A0 and B31

to B0 represent the adder inputs, and dual-rail encoded SUM31 to SUM0 represents the sum output.

‘C’ refers to carry and ‘RC’ refers to redundant carry. Figure 5 depicts the RCA and CSLA architectures.

Figure 6 portrays the block carry lookahead adder (BCLA), also called the section-carry based carry

lookahead adder, and the recursive CLA (RCLA) architectures.

Figures 5 and 6 show the fundamental differences between the respective adder architectures and

show the datapaths traversed in the various adders for the application of the data and the spacer. This is

important to note because in the case of synchronous designs the maximum (also called the longest or

the worst-case or the critical) datapath delay determines the speed of operation of a synchronous circuit.

However, in an asynchronous circuit incorporating delay-insensitive data encoding and adhering to a

4-phase RTZ or RTO handshaking for data communication, the ‘cycle time’ determines the speed of

operation i.e., the speed at which new data can be input to an asynchronous circuit. The cycle time is

composed of two timing metrics namely the forward latency and the reverse latency. Forward latency

is the time taken to process the data, which is akin to the critical path delay of a synchronous circuit,

and the reverse latency is the time taken to process the spacer. The sum of forward and reverse

latencies is the cycle time. In Figures 5 and 6, the datapaths traversed corresponding to the worst-case

forward latency are highlighted in blue dotted lines, and the datapaths traversed corresponding to the

worst-case reverse latency are highlighted in red dotted lines. The violet dotted lines signify that the

datapaths traversed in an adder are the same for the application of the data (corresponding to forward

latency) and the spacer (corresponding to reverse latency).

Figure 5a–c are asynchronous RCAs, which are constructed by cascading the full adders belonging

to strong indication [23,32], weak indication [28,33,34], and early output [35] types. The RCAs are

grouped in Figure 5 according to the longest datapaths traversed for the application of the data

(corresponding to forward latency) and the spacer (corresponding to reverse latency). It is mentioned

in [36] that a RCA featuring strong indication full adders would encounter the worst-case forward

and reverse latencies; a RCA comprising distributed weak indication full adders may experience
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data-dependent forward and reverse latencies; a RCA having biased weak indication or early output

full adders would experience a data-dependent forward latency and a constant reverse latency of two

full adder delays; and a relative timed RCA incorporating early output full adders would experience a

data-dependent forward latency and the minimal constant reverse latency of one full adder delay.

 

 

Figure 5. Longest datapaths traversed for the application of data and spacer in: (a) 32-bit ripple-carry

adder (RCA) comprising strong indication full adders [23,32] or distributed weak indication full

adders [33]; (b) 32-bit RCA comprising biased weak indication [28,34] or early output full adders [35];

(c) 32-bit relative timed RCA comprising early output full adders [36]; (d) an optimum 32-bit early

output carry select adder (CSLA) [37]. FA refers to the full adder, and 2:1 MUX refers to the two-input

multiplexer in the figures.
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From the perspectives of latencies and more importantly from the perspective of cycle time, a

relative timed RCA is quite preferable to its early output counterpart but there is a trade-off of the

robustness since the former is not QDI and hence less robust than the latter which is QDI. Further,

as noted in [36], the relative-timed RCAs presented exhibit a negative timing slack, which do not

guarantee a safe operation.

Figure 5d shows an optimum 32-bit asynchronous CSLA [37], realized based on a uniform 8-8-8-8

input partition, which is constructed using early output full adders [35] and strong indication two-input

multiplexers [38]. The internals of an 8-bit sub-CSLA is shown in Figure 5d and the datapath that will

be traversed within a constituent 8-bit CSLA for the application of the data and the spacer would be

the same, which is highlighted by the violet dotted lines.

Figure 6a shows the implementation of 32-bit weak indication [28,34,39], and early output [35,40]

robust BCLAs constructed using 4-bit sub-BCLAs involving early output 4-bit BCLGs and weak

indication or early output full adders and the sum logic based on [28,34,35]. Figure 6b shows a 32-bit

early output asynchronous recursive CLA (RCLA) [41] composed using eight 4-bit asynchronous

RCLAs. Note the absence of any redundant carry output logic in the case of Figure 6a,b. Figure 6c

shows a 32-bit early output BCLARC composed using seven early output 4-bit BCLGRCs incorporating

redundant carry output logic, one most significant 4-bit BCLG with no redundant carry output logic

and early output full adders and sum logic. Figure 6d is like Figure 6c excepting that the least significant

4-bit BCLG and the corresponding full adders and the sum logic are replaced by a 4-bit RCA comprising

early output full adders. Figure 6d is thus representative of a hybrid BCLARC-RCA architecture.

Unlike a RCLA where carries between sub-RCLAs (here, 4-bit RCLAs) are rippled and carries

within the sub-RCLAs are generated by lookahead, in a BCLA or BCLARC, carries ripple within the

sub-BCLAs/sub-BCLARCs (here, 4-bit BCLAs/BCLARCs) and carries generated by lookahead are

propagated between the sub-BCLAs/sub-BCLARCs [42]. In this context, the BCLA/BCLARC is also

called the section-carry based CLA/CLARC [39]. In an m-bit sub-RCLA, m lookahead carry outputs are

produced whereas in an m-bit sub-BCLA/sub-BCLARC, just one lookahead carry output is produced

and issued to the successive stage sub-BCLA/sub-BCLARC.

The primary difference between Figure 6c,d and Figure 6a is that there is an extra set of logically

equivalent carry outputs produced by seven 4-bit BCLGRCs in the former. In Figure 6a, the lookahead

carry output produced by a 4-bit BCLG is supplied to the successive 4-bit BCLG as well as to the least

significant full adder present in the next 4-bit BCLA. However, in Figure 6c,d, two sets of lookahead

carry outputs namely the regular and redundant carry outputs, which are logically equivalent to each

other, are produced by all but one of the 4-bit BCLGRCs. The redundant lookahead carry output

produced from a BCLGRC is supplied as the carry input for the successive BCLGRC/BCLG, and the

regular carry output produced from a BCLGRC is supplied as the carry input for the least significant

full adder present in the succeeding 4-bit BCLARC/BCLA. The advantage of redundant lookahead

carry outputs is that they can enable reductions in the forward latency and the reverse latency, and

hence can reduce the cycle time. Redundant logic insertion has been shown to facilitate a reduction in

the latency [43] at the expenses of meagre increases in the area and power dissipation compared to

their non-redundant counterparts. This work showcases how the redundant carry output logic of an

asynchronous BCLARC/hybrid BCLARC-RCA would help to significantly reduce the cycle time and

thereby achieve less power-cycle time product (PCTP) compared to an asynchronous BCLA (with no

redundant carry output logic).

In the case of Figure 6a, the longest datapath traverses through maximum of seven 4-bit BCLGs

and four full adders for the application of the data, and for the application of the spacer, the longest

datapath traverses through maximum of seven 4-bit BCLGs and one full adder. Supposing strong

indication or weak indication full adders and sum logic corresponding to [32] or [33] are used in

Figure 6a, then the longest datapath would traverse through maximum of seven 4-bit early output

BCLGs and four full adders for the application of both data and spacer, which implies the cycle time

would be double the forward latency, which is not desirable.
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Figure 6. ‘FA’, ‘SL’, ‘BCLG’ and ‘RCLA’ refer to the full adder, sum logic, block carry lookahead

generator, and recursive carry lookahead adder in the figure. (a) 32-bit BCLA [39]; (b) 32-bit RCLA [41];

(c) 32-bit BCLARC [40]; (d) 32-bit hybrid BCLARC-RCA [40].

In the asynchronous early output RCLA shown in Figure 6b, the longest datapath traversed is the

same regardless of the application of data or spacer, which involves eight 4-bit RCLAs. In Figure 6c,

for the application of data, the longest datapath traversed comprises seven 4-bit BCLGRCs and four

full adders like that of Figure 6a. The datapath in an intermediate 4-bit BCLGRC comprises just one

gate (AO21 complex gate in the case of RTZ handshaking, and OA21 complex gate in the case of

RTO handshaking), while the datapath in an intermediate 4-bit BCLG consists of two gates (a 2-input

C-element and a 2-input OR gate with respect to the RTZ handshaking, and a 2-input C-element and a

2-input AND gate with respect to the RTO handshaking). Hence the propagation delay encountered

in any intermediate 4-bit BCLGRC would be less than the propagation delay encountered in any

intermediate 4-bit BCLG. Also, for the application of the spacer, the longest datapath traversed is a

constant in Figure 6c, which comprises two 4-bit BCLGRCs and only one full adder. In Figure 6c,d,

after the application of the spacer, the redundant dual-rail carry output produced by an intermediate

4-bit BCLGRC is considered as the lookahead carry input by the successive 4-bit BCLGRC to produce

the corresponding regular dual-rail carry output. This regular dual-rail carry output would then
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be considered as the carry input by the full adder present in the succeeding 4-bit BCLARC stage to

produce the respective dual-rail sum output bit. The time required for this process signifies the reverse

latency in Figure 6c,d. Hence, the BCLARC architecture shown in Figure 6c would achieve a good

reduction in the cycle time compared to the plain BCLA and RCLA architectures shown in Figure 6a,b,

paving the way for a significant improvement in the operating speed of the former compared to

the latter.

In Figure 6c, maximum propagation delay is encountered while producing the redundant

lookahead carry output in the least significant 4-bit BCLGRC, and minimum propagation delays

would be encountered to produce the redundant lookahead carry outputs in the successive 4-bit

BCLGRCs. Hence, to compensate for the maximum propagation delay encountered in the least

significant 4-bit BCLGRC, a 4-bit RCA comprising four early output full adders may be introduced as

a replacement. This gives rise to a hybrid BCLARC-RCA architecture, shown in Figure 6d. While the

reverse latency for the BCLARC-RCA architecture shown in Figure 6d would be the same as the

BCLARC architecture shown in Figure 6c, the forward latency of the former would be slightly reduced

than the latter. Also, this could facilitate some reductions in area and power dissipation for the former

compared to the latter. The actual size of the least significant RCA to be introduced in a hybrid

BCLARC-RCA to achieve a reduction in the cycle time compared to the homogeneous BCLARC may

be predicted through mathematical modeling but it must be validated through static timing analysis.

This is because, beyond a certain size, using a bigger RCA in the least significant adder bit positions of

a hybrid BCLARC-RCA would become counterproductive by increasing the forward latency and the

cycle time.

In Figure 6, the different asynchronous CLA architectures feature only the regular dual-rail carry

output corresponding to the most significant nibble positions. This is different from the asynchronous

BCLA/BCLARC/hybrid BCLARC-RCA architectures discussed in [39,40] where a 4-bit BCLGRC is

used for the most significant nibble position which produces both regular and redundant dual-rail

carry outputs. The provision of a redundant carry output in the most significant 4-bit BCLGRC may

introduce unnecessary timing assumption(s), and this has been avoided in the asynchronous CLA

architectures shown in Figure 6 by eliminating the redundant carry logic for the most significant 4-bit

BCLG. This would also facilitate a slight reduction in the area requirement for the CLA architectures

shown in Figure 6a,c,d.

4. Robust Early Output Asynchronous BCLA/BCLARC

The proposed robust, early output asynchronous BCLA/BCLARC/hybrid BCLARC-RCA is

discussed in this section. Basically, the proposed design concerns the 4-bit early output BCLG

and BCLGRC, which form the important building blocks of the BCLA, BCLARC and the hybrid

BCLARC-RCA architectures depicted in Figure 6a,c,d. In Figures 7a and 8a, (A01, A00) to (A31, A30)

and (B01, B00) to (B31, B30) represent the dual-rail encoded adder inputs, and (C01, C00) represents

the dual-rail encoded carry input of the 4-bit BCLG/BCLGRC. The regular and redundant dual-rail

carry outputs are specified by (C41, C40) and (RC41, RC40).

The logic equations governing the dual-rail 4-bit lookahead carry output, corresponding to the

RTZ handshaking, are given by (3) and (4), where C41 and C40 represent the 4-bit regular dual-rail

lookahead carry output. The logical equations for the redundant 4-bit lookahead carry outputs viz.

RC41 and RC40 are the same as (3) and (4) although the physical realization of (RC41, RC40) is different

from (C41, C40) in the last logic level. In (3) and (4), P0 to P3 represent the carry-propagate signals,

G0 to G3 represent the carry-generate signals, and K0 to K3 represent the carry-kill signals. The logic

equations for the carry generate, propagate and kill signals are given in Figure 7a, corresponding to the

RTZ handshaking. Equations (3) and (4) are inherently in the disjoint sum-of-products form [24], thus

satisfying the MCC [10]. In a disjoint sum-of-products, the product terms are mutually orthogonal and

the logical conjunction of any two products would yield 0.

C41 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C01 (3)
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C40 = K3 + P3K2 + P3P2K1 + P3P2P1K0 + P3P2P1P0C00 (4)

The proposed early output 4-bit BCLG producing regular lookahead carry outputs, and the 4-bit

BCLGRC producing regular and redundant lookahead carry outputs are portrayed in the same figure

viz. Figure 7a, which corresponds to the RTZ handshaking. In Figure 7a, the logic highlighted in blue

corresponds to the regular carry output (C41, C40) and the logic highlighted in red corresponds to

the redundant carry output (RC41, RC40). In the absence of the logic highlighted in red, Figure 7a

showcases the 4-bit BCLG used as a building block in Figure 6a,c,d, and in the presence of the logic

highlighted in red, Figure 7a showcases the 4-bit BCLGRC used as a building block in Figure 6c,d.

 

 

Figure 7. (a) Proposed 4-bit block carry lookahead generator without redundant carry output

(BCLG)/block carry lookahead adder with redundant carry logic (BCLARC); (b) early output full

adder; (c) early output sum logic—all corresponding to the 4-phase RTZ handshaking.

The early output full adder and the sum logic based on [35], which adhere to the RTZ handshaking,

are shown in Figure 7b,c respectively along with the corresponding expressions for the sum and carry
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outputs. (A1, A0), (B1, B0) and (CIN1, CIN0) represent the dual-rail encoded augend, addend and

carry inputs of the full adder, and (SUM1, SUM0) and (COUT1, COUT0) represent the corresponding

dual-rail encoded sum and carry outputs in Figures 7b and 8b. The physical realization of the sum logic

in Figures 7c and 8c is identical to the full adder shown in Figures 7b and 8b, except for the dual-rail

encoded carry output. Figure 8a–c are the logical counterparts of Figure 7a–c, which correspond to the

RTO handshaking.

 

 

Figure 8. (a) Proposed 4-bit BCLG/BCLGRC; (b) early output full adder; (c) early output sum logic—all

corresponding to the 4-phase RTO handshaking.
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The logic rules for transforming an asynchronous design conforming to the RTZ handshaking

into a design conforming to the RTO handshaking and vice-versa are given in [44] along with the

proofs, and an interested reader may refer to the same for details. The AND, OR, AO21 and AO22

gates in Figure 7 are replaced by their respective duals viz. OR, AND, OA21 and OA22 gates in

Figure 8 to adhere to the RTO handshaking but their corresponding inputs are maintained the same.

The C-elements in Figure 7 are retained in Figure 8 with the corresponding inputs. In Figure 8a,

the logic highlighted in blue specifies the regular carry output (C41, C40), and the logic highlighted

in red specifies the redundant carry output (RC41, RC40). In the absence of the logic highlighted in

red, Figure 8a is interpreted as the 4-bit BCLG, used in Figure 6a,c,d, and in the presence of the logic

highlighted in red, Figure 8a is interpreted as the 4-bit BCLGRC, used in Figure 6c,d.

5. Implementation Results

Twenty-two 32-bit asynchronous adders viz. RCAs, CSLAs, BCLAs, RCLAs, BCLARCs and

hybrid BCLARC-RCAs were implemented using a 32/28 nm CMOS process [45]. The adders were

treated as an asynchronous circuit stage, as in Figure 1. The adders were realized based on both RTZ

and RTO handshaking. The appropriate gates in the standard digital cell library [45], and the 2-input

C-element, which was custom implemented as it is not available in the library, were used to realize

the asynchronous adders. The input and output registers and the completion detectors were kept

respectively identical for the asynchronous adders corresponding to the RTZ and RTO handshaking.

Given this, the diverse asynchronous adders differ only in their logic. Hence the differences between

their design metrics are due to the differences between their logic compositions.

Table 1. Design metrics of various quasi-delay-insensitive (QDI) asynchronous adders (of size 32-bits)

estimated using a 32/28 nm bulk CMOS process, corresponding to the 4-phase RTZ handshaking.

Asynchronous
Adder Type

Legends for
Referencing

Design
References

FL1 (ns) RL2 (ns) CT3 (ns)
Area

(µm2)
Power
(µW)

RCA

ZA1 [46] 14.61 14.61 29.22 2529.00 2190
ZA2 [23] § 9.26 9.26 18.52 2504.60 2181
ZA3 [29,31] 9.04 9.04 18.08 2293.14 2172
ZA4 [23] ξ 8.24 8.24 16.48 2423.27 2177
ZA5 [33] 7.00 7.00 14.00 2016.63 2171
ZA6 [34] 4.43 0.58 5.01 2097.96 2174
ZA7 [28] 3.32 0.73 4.05 2049.16 2171
ZA8 [35] 3.10 0.61 3.71 1658.80 2161

Uniform CSLA
(8-8-8-8)

ZA9

[37]

2.46 1.89 4.35 3000.17 2293

Non-uniform CSLA
(8-7-6-4-3-2-2)

ZA10 3.23 3.23 6.46 3384.44 2312

BCLA ZA11
[34,39]

3.31 2.93 6.24 2951.88 2191
BCLARC ZA12 2.46 1.69 4.15 2987.46 2192

BCLA ZA13
[28,39]

3.14 2.88 6.02 2915.29 2188
BCLARC ZA14 2.32 1.68 4.00 2950.87 2189

RCLA ZA15 [41] 2.75 2.75 5.50 2569.65 2177

BCLA ZA16
[40]

3.13 2.88 6.01 2524.92 2178
BCLARC ZA17 2.31 1.67 3.98 2560.50 2179

BCLA ZA18

Proposed

2.76 2.50 5.26 2209.78 2174
BCLARC ZA19 2.01 1.38 3.39 2245.36 2176

BCLARC-RCA1 ZA20 1.93 1.38 3.31 2171.41 2174
BCLARC-RCA2 ZA21 1.97 1.38 3.35 2097.45 2172
BCLARC-RCA3 ZA22 2.23 1.38 3.61 2023.49 2170

1 FL—Forward Latency; 2 RL—Reverse Latency; 3 CT—Cycle Time; § Utilizes the strong indication full adder;
ξ Utilizes the weak indication full adder.
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About a thousand input vectors corresponding to RTZ and RTO handshaking were separately

generated and were identically supplied to all the asynchronous adders at time intervals of 20 ns,

corresponding to the two handshake protocols, to simulate their functionalities and capture their

respective switching activity. Using the switching activity data, the average power dissipation was

estimated. Forward latency is akin to critical path delay and is directly estimated. The reverse

latency was evaluated based on the timing information pertaining to the gate-level simulations. Area

occupancy, worst-case forward and reverse latencies, the maximum cycle time, and the average power

dissipation were estimated using Synopsys tools and they are given in Tables 1 and 2.

The results given in Table 1 correspond to the RTZ handshaking and the results given in Table 2

correspond to the RTO handshaking. These were obtained by targeting a typical case specification of

the digital cell library [45] with a supply voltage of 1.05 V and an operating junction temperature of

25 ◦C. The optimum values of design metrics are highlighted in bold-face in Tables 1 and 2. Legends

ZA1 to ZA22 are used to refer to the adders given in Table 1 which conform to the RTZ handshaking,

and legends OA1 to OA22 are used to refer to those adders given in Table 2 which adhere to the RTO

handshaking. The adders are arranged in Tables 1 and 2 randomly i.e., not arranged according to their

year of appearance in the literature but are grouped according to their architectural type.

Table 2. Design metrics of various QDI asynchronous adders (of size 32-bits) estimated using a

32/28nm CMOS process, corresponding to the 4-phase RTO handshaking.

Asynchronous
Adder Type

Legends for
Referencing

Design
References

FL (ns) RL (ns) CT (ns)
Area

(µm2)
Power
(µW)

RCA

OA1 [46] 14.15 14.15 28.30 2529.00 2185
OA2 [23] § 8.74 8.74 17.48 2374.48 2167
OA3 [29,31] 8.88 8.88 17.76 2293.15 2168
OA4 [23] ξ 8.03 8.03 16.06 2358.21 2167
OA5 [33] 6.95 6.95 13.90 2016.63 2167
OA6 [34] 3.79 0.56 4.35 2097.96 2170
OA7 [28] 3.31 0.72 4.03 2049.16 2167
OA8 [35] 2.93 0.61 3.54 1658.80 2157

Uniform CSLA
(8-8-8-8)

OA9

[37]

2.38 1.85 4.23 3000.17 2285

Non-uniform CSLA
(8-7-6-4-3-2-2)

OA10 3.15 3.08 6.23 3384.44 2303

BCLA OA11
[34,39]

3.19 2.86 6.05 2984.41 2184
BCLARC OA12 2.36 1.69 4.05 3019.99 2185

BCLA OA13
[28,39]

3.10 2.84 5.94 2947.82 2182
BCLARC OA14 2.30 1.67 3.97 2983.40 2183

RCLA OA15 [41] 2.73 2.73 5.46 2553.39 2169

BCLA OA16
[40]

3.06 2.76 5.82 2557.45 2171
BCLARC OA17 2.26 1.66 3.92 2593.03 2172

BCLA OA18

Proposed

2.73 2.50 5.23 2193.52 2167
BCLARC OA19 1.95 1.37 3.32 2229.10 2168

BCLARC-RCA1 OA20 1.88 1.37 3.25 2157.17 2167
BCLARC-RCA2 OA21 1.89 1.37 3.26 2085.25 2165
BCLARC-RCA3 OA22 2.13 1.37 3.50 2013.33 2164

1 FL—Forward Latency; 2 RL—Reverse Latency; 3 CT—Cycle Time; § Utilizes the strong indication full adder;
ξ Utilizes the weak indication full adder.

6. Discussion

Some general observations can be made from Tables 1 and 2 as the trends in the design metrics

noticeable in the case of Table 1 are mirrored in Table 2. Adder architectures such as the CSLA and the

CLA pave the way for better reduction in the forward latency compared to the RCA architecture, with

the CLA architecture more effectively reducing the forward latency compared to the CSLA architecture.
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However, the RCA architecture enables less reverse latency than the CSLA and CLA architectures.

The RCA architecture, depending upon the type of full adder used for the realization, may require less

area than the CSLA or CLA architectures. For examples, ZA8 in Table 1 and OA8 in Table 2 require

the least area among the various asynchronous adders listed. Even in a synchronous design, the RCA

generally consumes less area than any other adder architecture [47]. Despite the difference in the

handshaking convention, which would give rise to differences in the kind of logic gates used for the

realization, ZA8 and OA8 occupy the same area as given in Tables 1 and 2. This is because many dual

gate pairs in the standard digital cell library [45] have the same area, which may not be the case with

commercial digital standard cell libraries. For examples, the minimum size 2-input AND and OR gates

in [45] have the same area of 2.03 µm2, the minimum size AO21 and OA21 complex gates have the

same area of 2.54 µm2, and the minimum size AO222 and OA222 complex gates have the same area of

3.3 µm2. As a result, it may be inferred that the percentage reductions in the design metrics achieved in

the case of the RTO handshaking compared to the RTZ handshaking here tends to serve as a baseline.

If a commercial standard digital cell library is considered for the implementations, then the percentage

savings in the design metrics for the RTO handshaking over the RTZ handshaking are likely to be

higher than what are reported in this work.

Although the latencies and cycle time (and area occupancy) may vary significantly across the

asynchronous adders corresponding to one architecture, the average power dissipation does not vary

much. For example, the cycle time of ZA1, as seen in Table 1, is 7.9× compared to ZA8 and ZA1

occupies 52.5% more area than ZA8 but the power dissipated by ZA1 is just 1.3% greater than the

power dissipation of ZA8. This is because the logic underlying all the asynchronous adders mentioned

in Tables 1 and 2 satisfy the MCC. Therefore, unique signal paths would be activated from the primary

inputs up to the primary outputs after the application of input data in all the asynchronous adders.

As a result, their average power dissipation tends to be quite close, and indeed close when considering

the adders belonging to a specific architecture. Overall, the RTO handshaking is found to be better than

the RTZ handshaking as the former enables reduced design metrics than the latter across all the adder

architectures, vindicating the observation made in [44]. However, [44] only considered the forward

latency, area, and average power dissipation of the existing asynchronous adders for a comparative

evaluation based on RTZ and RTO handshaking; the reverse latency, cycle time, and PCTP metrics

were neither considered nor provided.

The cycle time is the primary timing parameter of interest in an asynchronous design featuring

delay-insensitive data encoding and adhering to a 4-phase handshaking (RTZ/RTO) as the cycle time

determines the speed of operation, i.e., the rate at which new data can be input. It may be noted from

Tables 1 and 2 that the BCLARCs feature substantially reduced latencies and cycle time compared

to the BCLAs without any redundant carry outputs. It has been shown in [39] that ZA11 achieves

better reductions in the design metrics compared to the BCLAs based on [23,32]. This is because

the BCLAs pertaining to [23,32] require more logic gates, involve more logic depth, and so exhibit

excesses in the design metrics as mentioned in [39]. ZA12 is shown to achieve more optimizations

in the design metrics compared to ZA11 of [39]. ZA14, based on [28,39] in Table 1, achieves slightly

more optimizations in the design metrics than ZA12, and ZA17 described in [40] achieved by far the

maximum optimizations in the design metrics in comparison with other BCLAs, BCLARCs and RCLA.

The proposed BCLARC, identified as ZA19 in Table 1 achieves further reductions in all the design

metrics compared to ZA17, thus representing the best of the BCLARCs. Suffice to state that all these

observations hold well with respect to RTO handshaking. In the case of the CSLA, it is shown in [37]

that the asynchronous CSLA based on a uniform 8-8-8-8 input partition (ZA9) resulted in optimum

latency, area and power dissipation compared to the other asynchronous CSLAs with respect to the

RTZ handshaking. This is found to be also true in the case of the RTO handshaking in this work, where

OA9 has reduced design metrics than OA10.

ZA19 in Table 1 and OA19 in Table 2 report the least cycle time among the BCLAs, BCLARCs,

CSLAs and RCAs listed corresponding to RTZ and RTO handshaking. Hence, hybrid versions of the
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proposed BCLARCs (ZA19 and OA19) i.e., BCLARC-RCAs were implemented by utilizing a 4-bit

RCA (ZA20 and OA20), an 8-bit RCA (ZA21 and OA21), and a 12-bit RCA (ZA22 and OA22) in the

least significant adder bit positions. These hybrid BCLARC-RCAs are specified as BCLARC-RCA1,

BCLARC-RCA2 and BCLARC-RCA3 in Tables 1 and 2. The RCAs introduced serve as a replacement

for one, two and three instances of the 4-bit BCLARCs; the example portrayed by Figure 6c depicts

the BCLARC-RCA1. The RCAs in ZA20 to ZA22 use the early output full adder of [35] conforming to

the RTZ handshaking, and the RCAs in OA20 to OA22 use the same full adder but conforming to the

RTO handshaking.

From Table 1 it may be noted that ZA20 and ZA21 achieve reductions in the cycle time and the

other design metrics compared to ZA19 but ZA22 has more cycle time than ZA19. As the size of the

least significant RCA is increased in a hybrid BCLARC-RCA, beyond a certain limit, the forward latency

of the hybrid BCLARC-RCA would increase since the serial cascading of many full adders beyond a

certain limit would negatively impact the cycle time. This is found to be true for RTZ handshaking as

well, where OA20 and OA21 feature reductions in the design metrics than OA19 but OA22 reports

an increase in the cycle time compared to OA19. The proposed hybrid BCLARC-RCA (ZA20) has

the minimum cycle time in Table 1 with respect to the RTZ handshaking, and the proposed hybrid

BCLARC-RCA (OA20) has the minimum cycle time in Table 2 with respect to the RTO handshaking.

In synchronous designs, the power-delay product (PDP) is often used as a qualitative metric for

low power. For evaluating the PDP, the average power dissipation and the critical path delay are

considered. In asynchronous designs, the cycle time is the equivalent of the critical path delay of

synchronous designs. Therefore, the power-cycle time product (PCTP) is used as a qualitative low

power metric. Since the average power dissipation and the cycle time are desirable to be minimized

the least value of PCTP is indicative of the best design. The PCTPs of all the asynchronous adders

given in Table 1 are computed and then the actual PCTP values are divided by the highest PCTP value

to perform a normalization. The same procedure was followed in the case of Table 2.

Figure 9a,b show the plots of the normalized PCTPs of the asynchronous adders listed in Tables 1

and 2 respectively. The white drop lines in the plots signify the respective normalized PCTP values of

the asynchronous adders. The value of ‘1’ represents the highest PCTP value, and the lesser values

of PCTP suggest low power designs. Figure 9c shows a one-to-one mapping between the PCTPs

of the asynchronous adders corresponding to the RTZ and RTO handshaking after normalization.

To perform the normalization for Figure 9c, the actual PCTPs of an asynchronous adder corresponding

to the RTZ and RTO handshaking were calculated and the higher of the two PCTPs was used to divide

the original PCTPs of both the adders. From Figure 9c, it is seen that the RTO handshaking enables

reduced PCTP than the RTZ handshaking for the physical realization of asynchronous adders.

On the basis of the RTZ handshaking, the proposed BCLARC (ZA19) achieves the following

optimizations in cycle time and PCTP compared to the optimum RCA, CSLA and BCLARC given in

Table 1: (i) 14.8% reduction in the cycle time and 14.9% reduction in PCTP compared to the BCLARC

(ZA17), (ii) 22.1% reduction in the cycle time and 26% reduction in PCTP compared to the uniform

CSLA (ZA9), and (iii) 8.6% reduction in the cycle time and 8% reduction in PCTP compared to the

RCA (ZA8). On top of this, notably, the proposed hybrid BCLARC-RCA (ZA20) achieves a 2.4%

reduction in the cycle time and an equal reduction in the PCTP compared to the proposed BCLARC

(ZA19), which makes the former (ZA20) the best among the adders in Table 1. When comparing ZA20

with the relative timed 32-bit RCA [36] incorporating the latency optimized early output full adder

corresponding to the RTZ handshaking, it is noted that ZA20 enables a 4.3% reduction in the cycle

time and a 4.1% reduction in the PCTP compared to the latter. The latter is not included in Table 1

since it is not QDI and so non-robust since it incorporates a relative timing assumption of 0.49 ns and

the reverse latency being 0.55 ns. If the relative timing assumption exceeds the reverse latency due to

any timing variation of some internal gate associated with the carry output logic, then the robustness

of the relative timed RCA [36] would be compromised.
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For a similar comparison but based on the RTO handshaking, the proposed BCLARC (OA19)

achieves the following optimizations in cycle time and PCTP compared to the optimum RCA, CSLA

and BCLARC given in Table 1: (i) 15.3% reduction in the cycle time and 15.5% reduction in PCTP

compared to the BCLARC (OA17), (ii) 21.5% reduction in the cycle time and 25.5% reduction in PCTP

compared to the uniform CSLA (OA9), and (iii) 6.2% reduction in the cycle time and 5.7% reduction

in PCTP compared to the RCA (OA8). On top of this, notably, the proposed hybrid BCLARC-RCA

(OA20) achieves a 2.1% reduction in the cycle time and a 2.2% reduction in the PCTP compared to the

proposed BCLARC (OA19), which makes the former (OA20) the best among the adders in Table 2.

When comparing OA20 with the relative timed 32-bit RCA [36], incorporating the latency optimized

early output full adder corresponding to the RTO handshaking, it is noted that the former enables a

1.8% reduction in the cycle time and a 1.7% reduction in the PCTP compared to the latter. The latter

is not included in Table 2 since it is not QDI and so non-robust since it incorporates a relative timing

assumption of 0.49 ns and the reverse latency being 0.55 ns. Again, if the relative timing assumption

would exceed the reverse latency due to any timing variation of some internal gate associated with the

carry output logic then the robustness of the relative timed RCA [36] would be compromised.

 

Figure 9. (a) Normalized power-cycle time products (PCTPs) of the asynchronous adders

corresponding to RTZ handshaking; (b) normalized PCTPs of the asynchronous adders corresponding

to RTO handshaking; (c) portraying a one-to-one mapping of normalized PCTPs of asynchronous

adders (labelled as 1 to 22) with respect to RTZ and RTO handshaking.

7. Conclusions

This paper described new designs of robust asynchronous early output BCLA (ZA18 and OA18),

BCLARC (ZA19 and OA19) and its hybrid variant, the BCLARC-RCA (ZA20 and OA20) corresponding

to RTZ and RTO handshaking. The novelty concerns the design of the BCLGRC with respect to RTZ

and RTO handshaking (i.e., Figures 7a and 8a). Among the proposed adders, the hybrid BCLARC-RCA

(ZA20 and OA20) is found to be optimum from the perspectives of cycle time and PCTP. The proposed
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hybrid BCLARC-RCA is found to outperform the existing optimum robust asynchronous adders

pertaining to RCA, CSLA, and CLA architectures in terms of the cycle time and the PCTP. Further, it is

noted that the RTO handshaking is preferable to the RTZ handshaking. For example, the proposed

hybrid BCLARC-RCA corresponding to the RTO handshaking (OA20) requires 1.8% less cycle time

and achieves a 2.1% reduction in the PCTP than the proposed hybrid BCLARC-RCA corresponding to

the RTZ handshaking (ZA20) without any increase in the area occupancy. Hence, the proposed hybrid

BCLARC-RCA is a good candidate for the low power asynchronous realization of computer arithmetic

by utilizing the RTO handshaking.
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