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Abstract: Power consumption and power-related issues have become a first-order concern for most
designs and loom as fundamental barriers for many others. While the primary method used to date
for reducing power has been supply voltage reduction, this technique begins to lose its effectiveness
as voltages drop to below one volt and further reductions in the supply voltage begin to create more
problems than are solved. Under these circumstances, the process of design and the automation
tools required to support that process become the critical success factors. In the last decade, huge
effort has been invested to come up with a wide range of design solutions that help solve the power
dissipation problem for different types of electronic devices, components and systems. These
techniques range from RTL power management and multiple voltage assignment, to power-aware
logic synthesis and physical design, to memory and bus interface design. A number of
representative low-power design techniques from this large set are explained. More precisely,
basic techniques are described, that are applicable at RT-level and below, and have proved to hold
good potential for power optimisation in practical design environments.

1 Introduction

A dichotomy exists in the design of modern microelectronic
systems; they must be low power and high performance,
simultaneously. This dichotomy largely arises from the use
of these systems in battery-operated portable (wearable)
platforms. Accordingly, the goal of low-power design for
battery-powered electronics is to extend the battery service
life while meeting performance requirements. Unless
optimisations are applied at different levels, the capabilities
of future portable systems will be severely limited by the
weight of the batteries required for an acceptable duration of
service. In fixed, power-rich platforms, the packaging cost
and power density=reliability issues associated with high-
power and high-performance systems also force designers to
look for ways to reduce power consumption. Thus, reducing
power dissipation is a design goal even for nonportable
devices, since excessive power dissipation results in
increased packaging and cooling costs as well as potential
reliability problems. Meanwhile, following Moore’s Law,
integrated circuit densities and operating speeds have
continued to go up in unabated fashion. The result is that
chips are becoming larger, faster and more complex, and
because of this, consuming increasing amounts of power.
These increases in power pose new and difficult

challenges for integrated circuit designers. While the initial
response to increasing levels of power consumption was to
reduce the supply voltage, it quickly became apparent that
this approach was insufficient. Designers subsequently
began to focus on advanced design tools and methodologies
to address the myriad of power issues. Complicating

designers’ attempts to deal with these issues are the
complexities, logical, physical and electrical, of contem-
porary IC designs and the design flows required to build
them.

This article reviews a number of representative RT-level
design automation techniques that focus on low-power
design. It should be of interest to designers of power-
efficient devices, IC design engineering managers, and EDA
managers and engineers. More precisely, it covers tech-
niques for sequential logic synthesis, RT-level power
management, multiple-voltage design and low-power bus
encoding techniques. Interested readers can find wide-
ranging information on various aspects of low-power design
in [1–3]. Note that although, in many of today’s designs, the
leakage component of power consumption has become
comparable to the dynamic component, this tutorial does not
discuss the leakage issue. Interested readers may refer to any
of the excellent references on leakage power, including
those in the abovementioned edited books.

2 Multiple-voltage design

Using different voltages in different parts of a chip may
reduce the global energy consumption of a design at a rather
small cost in terms of algorithmic and=or architectural
modifications. The key observation is that the minimum
energy consumption in a circuit is achieved if all circuits
paths are timing-critical (there is no positive slack in the
circuit). A common voltage scaling technique is thus to
operate all the gates on non-critical timing paths of the
circuit at a reduced supply voltage. Gates=modules that are
part of the critical paths are powered at the maximum
allowed voltage, thus avoiding any delay increase; the
power consumed by the modules that are not on the critical
paths, however, is minimised because of the reduced supply
voltage. Using different power supply voltages on the same
chip of circuitry requires the use of level shifters at the
boundaries of the various modules (a level converter is
needed between the output of a gate powered by a low VDD

and the input of a gate powered by a high VDD; i.e. for a step-
up change). Figure 1 depicts a typical level converter
design. Notice that if a gate that is supplied with VDD;L drives
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a fanout gate at VDD;H, transistors N1 and N2 receive inputs
at reduced supply and the cross-coupled PMOS transistors
do the level conversion. Level converters are obviously not
needed for a step-down change in voltage. Overhead of level
converters can be mitigated by doing conversions at register
boundaries and embedding the level conversion inside the
flip-flops (see [4] for details).

A polynomial time algorithm for multiple-voltage
scheduling of performance-constrained non-pipelined
designs is presented by Raje and Sarrafzadeh in [5].
The idea is to establish a supply voltage level for each of
the operations in a data flow graph, thereby fixing the
latency of that operation. The goal is then to minimise the
total power dissipation while satisfying the system timing
constraints. Power minimisation is in turn accomplished by
ensuring that each operation will be executed using the
minimum possible supply voltage. The proposed algorithm
is composed of a loop where, in each iteration, slacks of
nodes in the acyclic data flow graph are calculated. Then,
nodes with the maximum slack are assigned to lower
voltages in such a way that timing constraints are not
violated. The algorithm stops when no positive slack exists
in the data flow graph. Notice that this algorithm assumes
that the Pareto-optimal voltage against delay curve is
identical for all computational elements in the data flow
graph. Without this assumption, there is no guarantee that
this algorithm will produce an optimal design.

In [6], the problem is addressed for combinational
circuits, where only two supply voltages are allowed.
A depth-first search is used to determine those compu-
tational elements which can be operated at low supply
voltage without violating the circuit timing constraints.
A computational element is allowed to operate at VDD;L only
if all its successors are operating at VDD;L. For example,
Fig. 2a demonstrates a clustered voltage scaling (CVS)
solution in which each circuit path starts with VDD;H and
switches to VDD;L when delay slack is available. The timing-
critical path is shown with thick line segments. Here grey-
coloured cells are running at VDD;L. Level conversion
(if necessary) is done in the flip-flops at the end of the circuit
paths. An extension to this approach is proposed in [7],
which is based on the observation that by optimising the
insertion points of level converters, one can increase the
number of gates using VDD;L without increasing the number
of level converters. This leads to higher power savings. For
example, in the CVS solution depicted in Fig. 2a, assume
that the path delay from flip-flop FF3 to gate G2 is much
longer than that of the path from FF1 to G2. In addition,
assume that if we apply VDD;L to G2, then the path from FF3
to FF5 through G2 will miss its target combinational delay,
i.e. G2 must be assigned a supply level of VDD;H. With the
CVS approach, it immediately follows that G3 must be
assigned VDD;H although a potentially large positive slack
remains in the path from FF1 to G2. The situation is the
same for G4 and G5. Consequently, the CVS approach can
miss opportunities for applying VDD;L to some gates in the
circuit. If the insertion point of the level converter LC1 is

allowed to move up to the interface between G3 and G2, the
gates G3 through G5 can be assigned a supply of VDD;L,
as depicted in Fig. 2b. The structure shown there is one that
can be obtained by the extended CVS (ECVS) algorithm.
Both CVS and ECVS assign the appropriate power supply to
the gates by traversing the circuit from the primary outputs
to the primary inputs in a levelised order. ECVS allows a
VDD;L-driven gate to feed a VDD;H-driven gate along with the
insertion of a dedicated level converter.

In [8], the authors propose an approach for voltage
assignment in combinational logic circuits. First, a lower
bound on dynamic power consumption is determined by
exploiting the available slacks and the value of the dual-
supply voltages that may be used in solving the problem of
minimising dynamic power consumption of the circuit.
Next, a heuristic algorithm is proposed for solving the
voltage-assignment problem, where the values of the low
and the high supply voltages are either specified by the user
or fixed to the estimated ones.

In [9], the authors present resource- and latency-
constrained scheduling algorithms to minimise power=
energy consumption when the resources operate at multiple
voltages. The proposed algorithms are based on efficient
distribution of slack among the nodes in the data-flow graph.
The distribution procedure tries to implement the minimum
energy relation derived using the Lagrange multiplier
method in an iterative fashion.

An important phase in the design flow of multiple-voltage
systems is that of assigning the most convenient supply
voltage, selected from a fixed number of values, to each
operation in the control-date flow graph (CDFG). The
problem is to assign the supply voltages and to schedule the
tasks so as to minimise the power dissipation under
throughput=resource constraints. An effective solution has
been proposed by Chang and Pedram in [10]. The technique
is based on dynamic programming and requires the
availability of accurate timing and power models for
the macromodules in a RTL library. A preliminary
characterisation procedure must then be run to determine

Fig. 1 Typical level-converter design

Fig. 2 Examples

a CVS solution
b ECVS solution
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an energy-delay curve for each module in the library and for
all possible supply-voltage assignments. The points on the
curve represent various voltage assignment solutions with
different tradeoffs between the performance and the energy
consumption of the cell. Each set of curves is stored in the
RTL library, ready to be invoked by the cost function that
guides the multiple supply-voltage scheduling algorithm.
We provide a brief description of the method for the simple
case of control and data flow graphs (CDFGs) with a tree
structure. The algorithm consists of two phases; first, a set of
possible power-delay tradeoffs at the root of the tree is
calculated, then a specific macromodule is selected for each
node in such a way that the scheduled CDFG meets the
required timing constraints. To compute the set of possible
solutions, a power-delay curve at each node of the tree
(proceeding from the inputs to the output of the CDFG) is
computed; such a curve represents the power-delay trade-
offs that can be obtained by selecting different instances of
the macromodules, and the necessary level shifters within
the subtree rooted at each specific node. The computation of
the power-delay curves is carried out recursively, until the
root of the CDFG is reached. Given the power-delay curve
at the root node, that is the set of tradeoffs the user can
choose from, a recursive preorder traversal of the tree is
performed, starting from the root node, with the purpose of
selecting which module alternative should be used at each
node of the CDFG. Upon completion, all the operations are
fully scheduled; therefore, the CDFG is ready for the
resource-allocation step.
More recently, a level-converter-free approach is pro-

posed in [11], where the authors try to eliminate the
overhead imposed by level converters by suggesting a
voltage scaling technique without utilising level converters.
The basic initiative is to impose some constraints on the
voltage differences between adjacent gates with different
supply voltages based on the observation that there will be
no static current if the supply voltage of a driver gate is
higher than the subtraction of the threshold voltage of a
PMOS from the supply voltage of a driven gate. In [12], the
authors propose behavioural-level power optimisation
algorithms that use voltage and frequency scaling. In this
work, the operators in a data flow graph are scheduled in the
modules of the given architecture by applying voltage and
frequency scaling techniques to the modules of the
architecture, such that the power consumed by the modules
is minimised. The global optimal selection of voltages and
frequencies for the modules is determined through the use of
an auction-theoretic model and a game-theoretic solution.
The authors present a resource-constrained scheduling
algorithm, which is based on applying the Nash equilibrium
function to the game-theoretic formulation.

3 RT-level power management

Digital circuits usually contain portions that are not
performing useful computations at each clock cycle.
Power reductions can then be achieved by shutting down
the circuitry when it is idle.

3.1 Precomputation logic

Precomputation logic, presented in [13], relies on the idea of
duplicating part of the logic with the purpose of precompu-
ting the circuit output values one clock cycle before they are
required, and then uses these values to reduce the total
amount of switching in the circuit during the next clock
cycle. In fact, knowing the output values one clock cycle in
advance allows the original logic to be turned off during the
next time frame, thus eliminating any charging and

discharging of the internal capacitances. Obviously, the
size of the logic that precalculates the output values must be
kept under control since its contribution to the total power
balance may offset the savings achieved by blocking the
switching inside the original circuit. Several variants to the
basic architecture can then be devised to address this issue.
In particular, sometimes it may be convenient to resort to
partial, rather than global, shutdown, i.e. to select for power
management only a (possibly small) subset of the circuit
inputs.

Figure 3 shows a combinational block A that implements
an n-input, single-output Boolean function f, with registers
R1 and R2 connected to its inputs and output pins,
respectively. A precomputation architecture realisation of
this same logic block placed between register sets R1 and
R2 is depicted in Fig. 4. The key elements of the
precomputation architecture are two n-input, single-output
predictor functions g1 and g2, which satisfy the following
constraints:

g1 ¼ 1 ) f ¼ 1

g2 ¼ 1 ) f ¼ 0

If, at the present clock cycle, g1 or g2 evaluate to one, then
the load enable signal LE goes to zero, and the inputs to
block A at the next clock cycle are forced to retain the
current values. Hence, no gate output transitions inside
block A occur, while the correct output value for the next
time frame is provided by the two registers located on the
outputs of g1 and g2. Note that the precomputation logic is a
function of a subset of the input variables, hence, it is called
a ‘subset input-disabling architecture’.

The synthesis algorithm presented in [13] suffers from the
limitation that if a logic function is dependent on the values
of several inputs for a large fraction of the applied input
combinations, then no reduction in switching activity can be
obtained. In [14], the authors focus on a particular
sequential precomputation architecture, where the precom-
putation logic is a function of all of the input variables.
The authors call this architecture the ‘complete input-
disabling architecture’. It is shown that the complete
input-disabling architecture can reduce power dissipation

Fig. 3 Pipeline stage of a data path

Fig. 4 Precomputation logic realisation of the pipeline stage
(subset-input disabling architecture)
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for a larger class of sequential circuits compared to the
subset input-disabling architecture. The authors present an
algorithm to synthesise precomputation logic for the
complete input-disabling architecture.

In Fig. 5, a complete input-disabling precomputation
architecture for a comparator circuit is shown. Functions g1
and g2 satisfy the conditions of (1) and (2) as before. During
clock cycle t; if either g1 or g2 evaluates to a 1, the load
enable signal of register R1 is set to be 0. This means that in
clock cycle t þ 1; none of the inputs to the combinational
logic block A change. If g1 evaluates to 1 in clock cycle t,
the input to register R2 is a 1 in clock cycle t þ 1, and if g2
evaluates to a 1, then the input to register R2 is a 0. Note that
g1 and g2 cannot both be 1 during the same clock cycle, due
to the conditions imposed by (1) and (2). The important
difference between this architecture and the subset input-
disabling architecture shown in Fig. 4 is that the
precomputation logic can be a function of all input
variables, allowing us to precompute any input
combination.

3.2 Clock gating

Another approach to RT-level and gate-level dynamic
power management, known as gated clocks [15–17],
provides a way to selectively stop the clock, and thus
force the original circuit to make no transition, whenever the
computation that is to be carried out at the next clock cycle
is redundant. In other words, the clock signal is disabled
according to the idle conditions of the logic network. For
reactive circuits, the number of clock cycles in which the
design is idle in some wait states is usually large. Therefore,
avoiding the power waste corresponding to such states may
be significant.

The logic for the clock management is automatically
synthesised from the Boolean function that represents the
idle conditions of the circuit (cf. Fig. 6.) It may well be the
case that considering all such conditions results in additional
circuitry that is too large and too power consuming. It may
then be necessary to synthesise a simplified function, which
dissipates the minimum possible power and stops the clock
with maximum efficiency. The use of gated clocks has the

drawback that the logic implementing the clock-gating
mechanism is functionally redundant, and this may create
major difficulties in testing and verification. The design of
highly testable gated-clock circuits is discussed in [18].

Another difficulty with clock-gating is that one must stop
hazards=glitches on the EN signal from corrupting the clock
signal to the register sets. This can be accomplished by
introducing a transparent negative latch between EN and the
AND gate as shown in Fig. 7.

3.3 Computational kernels

Sequential circuits may have an extremely large number of
reachable states, but during normal operation these circuits
tend to visit only a relatively small subset of the reachable
states. A similar situation occurs at the primary outputs;
while the circuit walks through the most probable states,
only a few distinct patterns are generated at the combina-
tional outputs of the circuit. Many researchers have
proposed approaches for synthesising a circuit that is fast
and power-efficient under typical input stimuli, but
continues to operate correctly even when uncommon input
stimuli are applied to the circuit.

Reference [19] presents a power optimisation technique
by exploiting the concept of computational kernel of a
sequential circuit, which is a highly simplified logic block
that imitates the steady-state behaviour of the original
specification. This block is smaller, faster and less power-
consuming than the circuit from which it is extracted, and
can replace the original network for a large fraction of the
operation time.

The p-order computational kernel of an FSM is defined
with respect to a given probability threshold p and includes
the subset of the states Sp of the original FSM whose steady-
state occupation probabilities are larger than p. The
combinational kernel also includes the subset of states Rp,
where for each state in Rp there is an edge from a state in Sp
to that state. As an example, consider the simple FSM
shown in Fig. 8a in which the input and output values are
omitted for the sake of simplicity and the states are
annotated with the steady-state occupation probabilities
calculated through Markovian analysis of the corresponding
state transition graph (STG.) If we specify a probability
threshold of p ¼ 0:25, then the computational kernel of the
FSM is depicted in Fig. 8b. States in black represent set Sp,
while states in grey represent Rp. The kernel probability is
ProbðSpÞ ¼ 0:29þ 0:25þ 0:32 ¼ 0:86.

Given a sequential circuit with the standard topology
depicted in Fig. 9a, the paradigm for improving its quality
with respect to a given cost function (e.g. power dissipation,
latency) is based on the architecture shown in Fig. 9b.

The basic elements of the architecture are the combina-
tional portion of the original circuit (block CL), the

Fig. 5 Example of a complete input-disabling precomputation
architecture

Fig. 6 Clock gating logic for ALU in a typical processor
microarchitecture with negative-edge triggered flip-flops

Fig. 7 Clock is disabled when EN ¼ 0; furthermore, a hazard on
EN will be stopped from reaching GCLK
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computational kernel (block K), the selector function
(block S), the double-state flip-flops (DSFF) and the output
multiplexers (MUX).
The computational kernel can be seen as a ‘dense’

implementation of the circuit from which it has been
extracted. In other terms, K implements the core functions
of the original circuit and, because of its reduced complex-
ity, it usually implements such functions in a faster and
more efficient way. The purpose of selector function S is
that of deciding what logic block, between CL and K, will
provide the output value and the next-state in the following
clock cycle. To take a decision, S examines the values of
the next-state outputs at clock cycle n. If the output and
next-state values in cycle nþ 1 can be computed by the
kernel K, then S takes on the value 1. Otherwise, it takes on
the value 0.
The value of S is fed to a flip-flop, whose output is

connected to the MUXes that select which block produces
the output and the next-state. The optimised implementation
is functionally equivalent to the original one. Computational
kernels are a generalisation of the precomputation archi-
tecture from combinational and pipelined sequential circuits
to finite-state machines. The authors in [19] proposed an
algorithm for generating the computational kernel of a FSM
by iterative simplification of the original network by
redundancy removal.
In [20], the authors raise the level of abstraction at which

the kernel-based optimisation strategy can be exploited and
show how RTL components, for which only a functional
specification is available, can be optimised using the
computational kernels. They present a technique for
computational kernel extraction directly from the functional
specification of a RTL module. Given the state transition
graph (STG) specification, the proposed algorithm

calculates the kernel exactly through symbolic procedures
similar to those employed for FSM reachability analysis.
The authors also provide approximate methods to deal with
large STGs. More precisely, they propose two modifications
to the basic procedure. The first one replaces the exact
probabilistic analysis of the STG with an approximate
analysis. In the second solution, symbolic state probability
computation is bypassed and the set of states belonging to
the kernel is determined directly from RTL simulation
traces of a given (random or user-provided) stream.

3.4 State machine decomposition

Decomposition of finite-state machines for low power has
been proposed in [21]. The basic idea is to decompose the
STG of a finite-state machine (FSM) into two STGs that
jointly produce the equivalent input–output behaviour as
the original machine. Power is saved because, except for
transitions between the two sub-FSMs, only one of the sub-
FSMs needs to be clocked. The technique follows a standard
decomposition structure. The states are partitioned by
searching for a small subset of states with high probability
of transitions among these states and a low probability of
transitions to and from other states. This subset of states will
then constitute a small sub-FSM that is active most of the
time. When the small sub-FSM is active, the other larger
sub-FSM can be disabled. Consequently, power is saved

Fig. 8 Moore-type FSM and its computational bernel

a Moore-type FSM
b Its 0.25-order computational kernel

Fig. 9 Kernel-based optimised architecture
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because most of the time only the smaller, more power-
efficient sub-FSM is clocked.

In [22], the combinational logic block is partitioned (for
example to CL1 and CL2) and the active part is decided
based on the encoding of the present state. The states
selected for one of the sub-FSMs (i.e. M1) are all encoded in
such a way that the enable signal is always on for CL1,
while it is off for CL2. Conversely, for all states in the other
sub-FSM (i.e. M2), the enable signal is always off for CL1,
while it is on for CL2. Consequently, for all transitions
within M1, only CL1 will be active and vice versa.

Consider as an example dk27 FSM from the MCNC
benchmark set, depicted in Fig. 10. Assume that the input
signal values, 0 and 1, occur with equal probabilities. The
steady-state probabilities, which are shown next to the states
in this Figure, have been computed accordingly. Suppose
we partition the FSM into two sub-machines M1 and M2
along the dotted line. Then, around 40% of the transitions
occur in submachine M1, 40% of the transitions occur in
submachine M2 and 20% of the transitions occur between
sub-machines M1 and M2. Now suppose that the FSM is
synthesised as two individual combinational circuits for
sub-machines M1 and M2. Then, we can turn off the
combinational circuit for submachine M2 when transitions
occur within submachine M1. Similarly, we can turn off the
combinational circuit for submachine M1 when transitions
occur within submachine M2. The states are partitioned
such that the probability of transitions within any sub-FSM
is maximised and the estimated overhead is minimised.

These methods for FSM decomposition can be considered
as extensions of the gated-clock for FSM self-loops
approach proposed in [23]. In FSM decomposition the
cluster of states that are selected for one of the sub-FSMs
can be considered as a ‘super state’ and then transitions
between states in this cluster can be seen as self-loops on
this ‘super state’.

3.5 Guarded evaluation

Guarded evaluation [24] is the last RT-level and gate-level
shutdown technique we review in this Section. The
distinctive feature of this solution is that, unlike precompu-
tation and gated clocks, it does not require one to synthesise
additional logic to implement the shutdown mechanism.
Instead, it exploits existing signals in the original circuit.
The approach is based on placing some guard logic,
consisting of transparent latches with an enable signal, at
the inputs of each block of the circuit that needs to be
power-managed. When the block must execute some useful
computation in a clock cycle, the enable signal makes the
latches transparent. Otherwise, the latches retain their
previous states, thus blocking any transition within the
logic block.

Guarded evaluation provides a systematic approach to
identify where transparent latches must be placed within the
circuit and by which signals they must be controlled. For
example, let C be a combinational logic block (cf. Fig. 11a),
X be the set of primary inputs to C, and z be a signal in
C. Furthermore, let F be the portion of logic that drives z and
let Y be the set of inputs to F. Finally, let DZðXÞ be the
observability don’t-care set for z (that is, the set of primary
input assignments for which the value of z does not
influence the outputs of C). Now consider a signal s in C
which logically implies DZðXÞ, that is, s ) DZðXÞ. Then, if
s ¼ 1, then the value of z is not required to compute the
outputs of C. If we call teðYÞ the earliest time at which any
input to F can switch when s ¼ 1, and tlðsÞ as the latest time
at which s settles to one, then signal s can be used as the
guard signal for F (cf. Fig. 11b) if tlðsÞ< teðYÞ. This is
because z is not required to compute the outputs of C when
s ¼ 1, and therefore block F can be shut down. Notice that
the condition tlðsÞ< teðYÞ guarantees that the transparent
latches in the guard logic are shut down before any of the
inputs to F makes a transition.

This technique, referred to as pure guarded evaluation,
has the desirable property that when applied, no changes in
the original combinational circuitry are needed. However, if
some resynthesis and restructuring of the original logic is
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allowed, a larger number of logic shutdown opportunities
may become available.

4 Sequential logic synthesis for low power

Power can be minimised by appropriate synthesis of logic.
The goal in this case is to minimise the so-called switched
capacitance of the circuit by low-power-driven logic
minimisation techniques.

4.1 State assignment

State encoding=assignment, as a crucial step in the synthesis
of the controller circuitry, has been extensively studied. Roy
and Prasad were was the first to address the problem of
reducing switching activity of input state lines of the next
state logic, during the state assignment, formulating it as a
minimum weighted Hamming distance problem [25]. Olson
and Kang used a linear combination of switching activity of
the next-state lines and the number of literals as the cost
function [26]. Tsui et al. [27] used simulated annealing as a
search strategy to find a low-power state encoding that
accounts for both the switching activity of the next-state
lines and switched capacitance of the next-state and output
logic.
For example, consider the state transition graph for a

BCD to Excess-3 converter depicted in Fig. 12. Assume that
the transition probabilities of the thicker edges in this
Figure are more than those of the thin edges. The key idea
behind all of the low-power state assignment techniques is
to assign minimum Hamming distance codes to the states
pairs that have large interstate transition probabilities. For
example, the coding S0 ¼ 000, S1 ¼ 001, S2 ¼ 011,
S3 ¼ 010, S4 ¼ 100, S5 ¼ 101, S6 ¼ 111, and S7 ¼ 110
fulfills this requirement.
In [28], Wu et al. proposed the idea of realising a low-

power FSM by using T flip-flops. The authors showed that
the use of T flip-flops results in a natural clock gating and
may result in reduced next-state logic complexity. However,
that work was mostly focused on BCD counters, which have
cyclic behaviour. The cyclic behaviour of counters results in
a significant reduction of combinational logic complexity
and, hence, lowers power consumption. Reference [29]
introduces a mathematical framework for cycle represen-
tation of Markov processes and, based on that, proposes

solutions to the low-power state assignment problem. The
authors first identify the most probable cycles in the FSM
and encode the states on these cycles with Gray codes. The
objective function is to minimise the weighted Hamming
distance. This reference also teaches how a combination of
T and D flip-flops as state registers can be used to achieve a
low-power realisation of a FSM.

4.2 Retiming

Retiming is to reposition the registers in a design to improve
the area and performance of the circuit without modifying
its input–output behaviour. The technique was initially
proposed by Leiserson and Saxe [30]. This technique
changes the location of registers in the design in order to
achieve one of the following goals: (1) minimise the clock
period (2) minimise the number of registers (3) minimise the
number of registers for a target clock period.

Minimising dynamic power for synchronous sequential
digital designs is addressed in the literature. In [31],
Monteiro et al. presented heuristics to minimise the
switching activity in a pipelined sequential circuit. Their
approach is based on the fact that registers have to be
positioned on the output edges of the computational
elements that have high switching activity. The reason for
power savings is that in this case the output of a register
switches only at the arrival of the clock signal as opposed to
potentially switching many times in the clock period.
Consider the simple example of a logic gate belonging to a
synchronous circuit and a capacitive load driven by the
output gate. In CMOS technology, the power dissipated by
the gate is proportional to the product of the switching
activity of the output node of the gate and the output load.
At the output of the gate some spurious transitions
(i.e. glitches) may occur, which can result in a significant
power waste. Suppose a register is inserted between the
output of the gate and the capacitive load. In the new circuit,
the output of the register can make, at most, one transition
per clock cycle. In fact, the gate output may have many
redundant transitions, but they are all filtered out by the
register. Hence, these logic hazards do not propagate to the
output load.

The heuristic retiming technique of [31] applies to a
synchronous network with pipeline structure. The basic idea
is to select a set of candidate gates in the circuit such that if
registers are placed at their outputs, the total switching
activity of the network gets minimised. The selection of the
gates is driven by two factors; the amount of glitching that
occurs at the output of each gate and the probability that
such glitching propagates to the gates located in the
transitive fanout. Registers are initially placed at the
primary inputs of the circuit, and backward retiming
(which consists of moving one register from all gate inputs
to the output) is applied until all the candidate gates have
received a register on their outputs. Then, registers that
belong to paths not containing any of the candidate gates are
repositioned, with the objective of minimising both the
delay and the total number of registers in the circuit. This
last retiming phase does not affect the registers that have
been already placed at the outputs of the previously selected
gates. In [32], fixed-phase retiming is proposed to reduce
dynamic power consumption. The edge-triggered circuit is
first transformed to a two-phase level-clocked circuit, by
replacing each edge-triggered flip-flop by two latches.
Using the resulting level-clocked circuit, the latches of one
phase are kept fixed, while the latches belonging to the other
phase are moved onto wires with high switching activity and
loading capacitance.Fig. 12 Excess-3 converter state transition graph
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Fixed-phase retiming is best illustrated by the example
shown below. Figure 13a shows a section of a pipelined
circuit with edge-triggered flip-flops. The numbers on the
edges represent the potential reduction in power dissipation
when an edge-triggered flip-flop is present on that edge,
assuming that the rest of the circuit remains unchanged.
Negative values of power reduction indicate an increase in
power dissipation when a flip-flop is placed on an edge. This
reduction in power dissipation can be achieved if the edge
has a high glitching-capacitance product [3]. After replacing
each edge-triggered flip-flop by two back-to-back level-
clocked latches, the resulting circuit is fixed-phase retimed
to obtain the circuit in Fig. 13b.

Assuming a non-overlapping two-phase clocking scheme
p ¼ hf0 ¼ 4; g0 ¼ 1; f1 ¼ 4; g1 ¼ 1i such as the one
shown in Fig. 13c, power dissipation can be reduced by
11.8 units. Specifically, the glitching on edges B ! D,
E ! F and E ! H is ‘masked’ for 60% of the clock cycle
which decreases power dissipation by 0:6� ð12þ 13� 2Þ
¼ 13:8 units of power. At the same time, the glitching on
edges G ! J and H ! K is ‘exposed’ for 40% of the
clock cycle which increases power dissipation by 0:4�
ð10� 5Þ ¼ 2 power units. In order to simplify the
computation of changes in power dissipation for this
example, it is assumed that glitching is uniformly
distributed over the entire clock period and that the
relocation of latches does not change glitching significantly.

In [33], the authors propose a hybrid retiming and supply
voltage scaling. They observe that critical paths are related
to the position of registers in a design so they try not only to
scale down the supply voltage of computational elements
that are off the critical paths, but also to move registers to
maximise the number of computational elements that are off
the critical paths, thereby further minimising the circuit
power consumption. Registers have to be moved from their
positions by the standard retiming technique. Instead of
unifying basic retiming and supply voltages scaling, the
authors propose to apply ‘guided retiming’ followed by the
application of voltage scaling on the retimed design.
Polynomial time algorithms based on dynamic program-
ming to realise the guided retiming, as well as the supply
voltage scaling on the retimed design, are proposed.

5 Bus encoding for low power

A lot of power is consumed in the on-chip and off-chip
buses in a VLSI circuit. These buses, which connect various
internal blocks of the circuit or connect the circuit to the
external environment, have large capacitive loads and high
transition counts. Power on these buses can be reduced by
properly coding the data and=or address bus values so as to
minimise the number of transitions that occur on the bus.

Musoll, et al. proposed the working zone method in [34].
Their method takes advantage of the fact that data accesses
tend to remain in a small set of working zones. For the
addresses that lie in each of these zones, a relatively high
degree of locality is observed. Each working zone requires a
dedicated register called zone register that is used to keep
track of the accesses in that zone. When a new address
arrives, the offset of the address is calculated with respect to
all zone registers. The address is, thus, mapped to the
working zone with the smallest offset. If the offset is
sufficiently small, one-shot encoding is performed and the
result is sent on the bus using transition signalled
(by transition signalled we mean that instead of sending
the code itself we XOR it with the previous value of the
bus). Otherwise, the address itself is sent over the bus.
The working zone method uses one extra line to show
whether encoding has been done or the original value has
been sent. It also uses additional lines to identify the
working zone that was used to compute the offset. Based on
this information, the decoder on the other side of the bus can
uniquely decode the address.

The working zone method also has the ability to detect a
stride in any of the working zones. A stride is a constant
offset that occurs between multiple consecutive addresses
repeatedly and, if detected, can be used to completely
eliminate the switching activity for such addresses. For
instruction addresses, stride corresponds to the offset of
sequential instructions. Stride is very important when
instruction address encoding is tackled. In fact, the large
number of sequential instructions with constant stride is the
foundation of considerable transition savings that is usually
seen in instruction address encoding techniques. For data
addresses, stride can occur when, for example, a program is
accessing elements of an array in the memory. Except for
special cases, detecting and utilising strides has a very small
impact on decreasing the switching activity of data
addresses.

Another encoding method that can be used for data
addresses is the bus-invert method [35]. The bus-invert
selects between the original and the inverted pattern in a
way that minimises the switching activity on the bus. The
resulting patterns together with an extra bit (to notify
whether the address or its complement has been sent) are

Fig. 13 Illustration of fixed-phase retiming

a Initial edge-triggered circuit
b Fixed-phase retimed circuit
c Two-phase clocking scheme p ¼ hf0 ¼ 4; g0 ¼ 1; f1 ¼ 4; g1 ¼ 1i
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transition signalled over the bus (cf. Table 1, column 4.)
This technique is quite effective for reducing the number of
1’s in addresses with random behaviour, but it is ineffective
when addresses exhibit some degree of locality. To make
the bus-invert method more effective, the bus can be
partitioned into a handful of bit-level groups and a bus-
invert can be separately applied to each of these groups.
However, this scheme will increase the number of surplus
bits required for the encoding, which is absolutely
undesirable.
In [36], Benini et al. proposed the T0 code, which

exploits data sequentiality to reduce the switching activity
on the address bus. The observation is that addresses are
sequential, except when control flow instructions are
encountered or exceptions occur. T0 adds a redundant bus
line, called INC. If the addresses are sequential, the sender
freezes the value on the bus and sets the INC line.
Otherwise, INC is de-asserted and the original address is
sent (cf. Table 1, column 3.) Several methods that are
combinations of the bus-invert and T0 encodings were
proposed in [37]. For instance, one of the introduced
methods called T0–BI, adds two redundant bits, named INV
and INC to the bus. If the addresses are sequential, T0
encoding is applied and the bus is frozen; otherwise, the new
address, which is not sequential, is encoded based on the
bus-invert coding. INC and INV bits are used to correctly
decode the bus value on the receiver side (cf. Table 1,
column 5).
The major drawback of the encoding methods introduced

in this work is that they introduce redundant bits. In T0
code, one extra bit was used to identify between these two
cases in the receiver. Aghaghiri et al. [38] improved on this
technique by eliminating the redundant bit in T0-concise.
The idea is to send previous source plus stride if the bus
value is equal to the current nonsequential source word.

This is the only thing that the receiver does not expect,
therefore, it can correctly decode it as a jump back to the
address that was frozen on the bus at the beginning of the
current sequential access.

Reference [39] proposes a low-power coding framework
for address and data buses. They describe the general
architecture of a low power encoder (cf. Fig. 14.) In this
Figure, choices for function F1 include identity or increment
transformations, choices for F2 include XOR operation,
subtraction or difference-based mapping, and choices for F3
are inversion-or probability-based mapping. For example,
the INC–XOR encoder, also known as T0–XOR, generates
the new bus value as the XOR of the previous bus value
and the new code word (known as the transition signalled
over the bus). The new code word is in turn obtained as the
XOR of the new source word and the summation of
the previous source word and the stride value. Obviously,
when consecutive addresses grow by the stride, no
transitions will occur on the bus. The offset–XOR encoder
also relied on transition signalled. However, the new code
word is obtained as the new source word minus the
summation of the previous source word and the stride
value. In [40], Aghaghiri et al. presented offset–XOR–SM
encoding, whereby the new code word is again transition
signalled over the bus. The new code word itself is
generated as LSB–invert of the offset–XOR code word
followed by a codebook-based mapping. The LSB-invert
function is a simple mapping function that reduces the
number of 1’s in the binary representation of small negative
numbers (LSB–INVðXÞ ¼ ifðX > 0Þ X; otherwise
X� ð2N�1 � 1Þ. The codebook maps small offsets
(say up to 10 bits) to K-limited codes in order to reduce
the number of 1’s in the new code word (recall that a 1 in the
code word translates to a bit-level activity after transition
signalled the code word over the bus).

Table 1: Example showing the T0, BI and T0–BI codes

Address (Hex) Source word T0 Code word BI Code word T0–BI Code word

31 0011 0001 0 0011 0001 0 0011 0001 00 0011 0001

32 0011 0010 1 0011 0001 0 0011 0010 10 0011 0001

33 0011 0011 1 0011 0001 0 0011 0011 10 0011 0001

C2 1100 0010 0 1100 0010 1 0011 1101 01 0011 1101

C3 1100 0011 1 1100 0010 1 0011 1100 11 0011 1101

C4 1100 0100 1 1100 0010 1 0011 1011 11 0011 1101

C2 1100 0010 0 1100 0010 1 0011 1101 01 0011 1101

C3 1100 0011 1 1100 0010 1 0011 1100 11 0011 1101

C4 1100 0100 1 1100 0010 1 0011 1011 11 0011 1101

Tr. Cnt ¼ 19 Tr. Cnt ¼ 11 Tr. Cnt ¼ 16 Tr. Cnt ¼ 9

Fig. 14 Block diagram of a generic low-power encoder
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In [41], Mamidipaka et al. proposed an encoding
technique based on the notion of self-organising lists.
They use list to create one-to-one mapping between
addresses and codes. The list is reorganised in every clock
cycle to map the most frequently used addresses to codes
with fewer 1’s. For multiplexed address buses, the authors
used a combination of their method and INC–XOR. The
size of the list in this method has a significant impact on the
performance. To achieve satisfactory results, it is necessary
to use a long list. However, the large hardware overhead
associated with maintaining long lists makes this technique
quite expensive. Furthermore, the encoder and the decoder
hardware are practically complex and their power con-
sumption appears to be quite large.

In [42], the authors introduced a class of irredundant low-
power techniques for encoding instruction or data source
words before they are transmitted over buses. The key idea
is to partition the source word space into a number of sectors
with unique identifiers called sector heads (SH). These
sectors can, for example, correspond to address spaces for
the code, heap and stack segments of one or more
application programs. Each source word is then mapped to
the appropriate sector and is encoded with respect to the
sector head. Suppose X is an N-bit source word to be
encoded. There are 2k fixed sectors with 2k sector heads,
SH½0� . . . SH½2k � 1�. The code word is comprised of k most
significant Sec–ID bits used for identifying the sector, and
N – k least significant difference bits representing the XOR
difference between the source word and the corresponding
sector head. The encoder takes a source word
X : ðXN . . .X1Þ, and assigns it to the corresponding sector
by examining its Sec–ID bits. Next, it sets the N – k LSBs
of the code word to the XOR difference between the N – k
LSBs of the source word and the corresponding bits of the
SH for the identified sector. The SH of the identified sector
is set to X. Finally, the code word is transition signalled over
the bus. As an example, consider a five-bit space with four
sector heads initialised at equal distances from each other,
i.e. {00000,01000,10000,11000}. Table 2 shows the results
of the fixed four-sector encoder.

Note that the sectors are fixed, but the sector heads are
dynamically updated. In a generalisation of this approach
the sectors can dynamically be defined based on program
behaviour. This feature is very useful because the source
word space is very large while the total working zone of a
program is usually small. Therefore, it pays off to have
dynamically defined sectors which can ‘zoom into’ the
working zone of a program. The sector-based encoding
techniques are quite effective in reducing the number of
inter-pattern transitions on the bus, while incurring rather
small power and delay overheads.

In [43], the authors provide a modified bus-invert (MBI)
technique which, besides reducing delay and power, also

minimises the crosstalk noise that results from inductive
coupling between the bus lines. Their proposed approach is
based on the observation that opposite skews can reduce the
crosstalk noise. Therefore, the authors propose to minimise
the number of transitions that are in the same direction by
selectively inverting the data patterns. The method requires
an extra line which carries the ‘invert signal’ and is used
by the decoder in order to restore the original data. In the
encoder the bus lines are partitioned into pairs and each pair
of adjacent lines, as well as their values from the previous
clock cycle, drive the inputs of a logic cell, which encodes
the types of events that occur on the pair of bus lines. This
cell generates 11 if the transitions occur in the same
direction, 00 if both lines are idle, 01 if either only one line
switches or both lines switch in opposite directions.
A majority voter takes the outputs of the logic cells and
the previous invert signal and sets the invert signal to 0
when the count of 1’s is less than n and to 1 otherwise.

6 Conclusions

Several key elements emerge as enablers for an effective
low-power design methodology. The first is the availability
of accurate, comprehensive power models. The second is
the existence of fast, easy to use high level estimation and
design exploration tools for analysis and optimisation
during the design creation process, while the third is the
existence of highly accurate, high-capacity verification tools
for tape-out power verification. As befitting a first-order
concern, successfully managing the various power-related
design issues will require that power be addressed at all
phases and in all aspects of design, especially during the
earliest design and planning activities. Advanced power
tools will play central roles in these efforts.

This paper reviewed a number of techniques for low-
power design of VLSI circuits, including RT-level syn-
thesis, bus encoding and voltage scaling. Emphasis was
placed on runtime power management techniques and
sequential circuit synthesis. A review of techniques for
low power design of combinational logic circuits can be
found in many references, including [44, 45].
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