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ABSTRACT With the rapid growth of scientific publications, it is hard for researchers to acquire appropriate

papers that meet their expectations. Recommendation system for scientific articles is an essential technology

to overcome this problem. In this paper, we propose a novel low-rank and sparse matrix factorization-

based paper recommendation (LSMFPRec) method for authors. The proposed method seamlessly combines

low-rank and sparse matrix factorization method with fine-grained paper and author affinity matrixes

that are extracted from heterogeneous scientific network. Thus, it can effectively alleviate the sparsity

and cold start problems that exist in traditional matrix factorization based collaborative filtering methods.

Moreover, LSMFPRec can significantly reduce the error propagated from intermediate outputs. In addition,

the proposed method essentially captures the low-rank and sparse characteristics that exist in scientific rating

activities; therefore, it can generatemore reasonable predicted ratings for influential and uninfluential papers.

The effectiveness of the proposed LSMFPRec is demonstrated by the recommendation evaluation conducted

on the AAN and CiteULike data sets.

INDEX TERMS Paper recommendation, low rank and sparse matrix factorization, heterogeneous network.

I. INTRODUCTION

With the rapid development of information science, people

are currently suffering from information overload problem.

Recommendation systems, which allow users to find what

they want and enable platforms to provide users what they

might like, can significantly alleviate this problem. Due to

their necessity and efficiency, recommendation systems have

been widely applied and achieved success in many fields such

as e-commerce [1], multimedia [2], social networks [3], [4]

and web services [5].

Scientific paper recommendation is a particular recom-

mendation service provided for researchers. When doing

research, people are usually overwhelmed by the large

amount of scholarly literature, which leads to a laborious and

time-consuming search task for papers. Therefore, a timely

and effective scientific paper recommendation system can

significantly improve the work efficiency of researchers.

According to different usages, paper recommendation can

be divided into two types: personalized recommendation

[6]–[9], [16]–[20], [50] and passive recommendation

[10]–[15]. A personalized recommendation system requires

user initiative by providing some text information, e.g.,

an entire manuscript or part of it, and it returns an article

list that is related to the provided text. Typical examples

of this type are academic search engines [11] and citation

recommendation systems [7]–[9], [16], [17], [19]. However,

a small amount of text may be too short or too ambiguous.

Moreover, asking an author to provide a manuscript is some-

times impractical. Unlike personalized recommendation, pas-

sive recommendation does not require user involvement.

It recommends articles according to the users’ historical

activities. For example, academic social networking sites,

such as ResearchGate1 and Academia,2 recommend articles

according to the historical publications of a researcher. There-

fore, the articles recommended by passive recommendation

1www.researchgate.net
2www.academia.edu
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FIGURE 1. An example of a heterogeneous bibliographic network.

can provide researchers with a panoramic view of knowledge

that matches their background, and it benefits long-term

studies for researchers. In this paper, we focus on passive

recommendation.

Collaborative filtering (CF), which automatically predicts

the interests of a specific user based on the collective histori-

cal rating records of similar users or items, has been exten-

sively studied in the field of paper recommendation [11],

[21], [22], [28]. The most representative approach of CF is

matrix completion [21], [49]. This approach decomposes the

original rating matrix into two low-rank matrixes with a joint

latent factor space. One matrix represents the latent interests

of users, and the other represents the possessed factors of

items. The recommendation results are thus obtained by the

inner products of user vectors and item vectors. In reality,

this approach usually suffers from the sparsity and cold start

problem because the number of interactions between users

and items is usually limited. A suitable solution for the above

problem is adding more related information. In a scholarly

dataset, there are various types of nodes and relations in

addition to the author and paper. Therefore, the dataset is usu-

ally formed as a heterogeneous network. The bibliographic

network shown in Fig. 1 is an example. There are four types

of objects: paper, author, venue and keyword. These objects

are also connected by various relationships, such as venue-

publishes-paper relationship between venues and papers,

and paper-contains-keyword relationship between papers and

keywords. To utilize these various kinds of relationships,

some variants of CF have been proposed by jointly decom-

posing other relationships [13]–[17], [20], [22]. However,

the above methods have two drawbacks. First, the predicted

rating is recovered from intermediate matrixes, which makes

the error generated by intermediate values propagate to the

final prediction. Second, these methods display a lack of

interpretability due to the uninterpretable low dimensions.

In recent years, low-rank and sparse matrix factoriza-

tion (LSMF) methods have gained increasing attention in

many research fields [23]–[25]. Compared with traditional

matrix decomposition in CF, some LSMF methods, such as

GoDec [23] and RPCA [24], factorize the original matrix

into a low-rank matrix and a sparse matrix. Matrix com-

pletion is then completed by adding the two matrixes.

Unlike vector inner product, addition involves less compu-

tation. Furthermore, most values in the completed matrix are

even directly obtained from the low-rank matrix because the

sparse matrix is formed mostly by zero values. Therefore,

LSMF can significantly reduce the error propagated by inter-

mediate outputs. For scientific paper recommendation, LSMF

also has more interpretability due to the natural low-rank and

sparse characteristics of scientific article rating activities. Let

us take citing as an example. Some influential articles are

usually co-cited by authors who work in a similar research

field. For example, nearly all authors who work on citation

recommendation fields will cite [9], for this is the first paper

that formally proposes the task definition of citation recom-

mendation. Another example is that nearly all papers that

are related to topic model cite LDA [26] because it is the

most popular topic model. According to this similar citing

pattern, the citing matrix for influential articles demonstrates

low-rank character. Further, uninfluential articles are usually

less cited, and the citing pattern for these papers shows more

randomness. Therefore, the citing matrix for uninfluential

papers shows sparse character. Amore intuitive explanation is

demonstrated in Fig. 2. We can see that by factoring the origi-

nal ratingmatrix, influential articles p1 and p4 are captured by

a low-rank matrix, while uninfluential articles p2, p3 and p5
are captured by a sparse matrix. Traditional matrix decom-

position in CF fails to capture these low-rank and sparse

characteristics when recommending papers. Zhao et al. [27]

proposed a low-rank and sparse matrix decomposition algo-

rithm for movie and food recommendations. However, they

directly decomposed a rating matrix into a single low-rank

and sparse matrix, which can not reveal the characteristics of

rating in scientific work. Moreover, their method cannot uti-

lize various and valuable link information in heterogeneous

scientific network, and also suffers from the sparsity and cold

start problem.

In this paper, we propose a novel low-rank and sparse

matrix factorization based paper recommendation (LSMF-

PRec) method for authors. We extract fine-grained paper

and author affinity matrixes from heterogeneous scientific

network and seamlessly combine these useful relations into

the learning process of LSMF. The proposed method can

not only utilize abundant link information in the heteroge-

neous scientific network but also remedy the sparsity and

cold start problems that existed in traditional CF. LSMFPRec

can also significantly prevent the error generated by inter-

mediate outputs. In addition, the rating characteristics of

scientific articles can be directly revealed from the decom-

posed low-rank and sparse matrixes, which is beneficial for

generating more suitable predicted ratings. LSMFPRec can

also apply bilateral random projections (BRP) [39], which

significantly accelerates the computation speed of matrix

factorization.

The main contributions of this paper are summarized as

follows.

(1) We propose a novel paper recommendation method

with low-rank and sparse matrix factorization. As far as
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FIGURE 2. An example of low-rank and sparse characteristics in author rating activity.

we know, this is the first work that recommends papers by

applying the LSMF method.

(2) We extend the original LSMF with link information in

a heterogeneous scientific network, and prove the correctness

and convergence of the learning process.

(3) Thorough experimental studies on the AAN and

CiteULike datasets are performed to validate the effective-

ness of the proposed method.

The reminder of the paper is organized as follows.

Section II reviews related work. Section III presents the con-

struction of paper and author affinity matrixes. Section IV

provides a detailed description of the proposed method.

Section V presents the experimental results and analysis. The

paper is concluded in Section VI.

II. RELATED WORK

A. PAPER RECOMMENDATION

In 1998, Bollacker et al. [10] introduced the first sci-

entific paper recommender system which is part of the

CiteSeer project. Since then, many different methods have

been employed for paper recommendation in the litera-

ture. Some systems also recommended ‘‘citations’’. However,

in our opinion, differences between papers and citations are

marginal. In general, paper recommendation methods can

be divided into four categories: CF, content-based filter-

ing (CBF), graph-based approaches and hybrid approaches.

Pennock et al. [22] considered that a user’s ratings

of unseen items are affected by the rating frequency of

other users, and proposed a paper recommendation method,

called personality diagnosis (PD), by using a Bayesian net-

work. PD can be considered as a particular user-based CF

approach. McNee et al. [9] took the citations of an author

as positive votes for a paper and applied CF to recommend

scientific papers. Yang et al. [28] combined memory based

CF and ranking to predict the preference of a user towards

articles. Liu et al. [17] considered co-concurrency to be a vital

factor and proposed a context-based collaborative filtering

method for paper recommendation. However, the above CF

approaches suffer from cold start and sparsity problems.

To overcome these disadvantages, some researchers explored

recommendation through CBF. Unlike CF approach that only

utilizes rating relationships, CBF explores information of

user and item from the text content; thus, it is less affected

by the above problems of CF. Sugiyama and Kan [12] built

author profiles from published papers lists and recommended

scholarly papers by capturing author research preferences.

The author profile is enhanced through past publications

that cited the work of the author. Alzoghbi et al. [57] pro-

posed a learning-to-rank based CBF (LRCBF) method for

paper recommendation. They developed two different val-

idation mechanisms to examine pair-wise preferences, and

applied Rank SVM [60] to predict suitable papers for author.

Wang and Blei [13] proposed CTR model to recommend

articles by combining a topic model with collaborating fil-

ter. CTR utilizes LDA to estimate latent topics for articles

and matrix factorization to infer user-item relations. Many

works followed CTR by adding more relations [14]–[16].

Wang et al. [55] proposed a deep learning based CBF, named

collaborative deep learning (CDL), to extend CTR method.

CDL uses stacked denoising autoencoder (SDAE) [56] to

learn the deep representation of items, and is able to per-

form collaborative filtering for the rating matrix simulta-

neously. Despite its success, CBF approaches are limited

by problems in traditional information retrieval, such as

semantic ambiguity. In addition, the estimation of profile of

authors and articles is usually time-consuming. To alleviate

the above problem, Sharma et al. [58] proposed a concept-

based paper recommendation approach (ConceptPRec). The

method uses Paragraph Vector [59] to learn deep repre-

sentations of papers, then calculates the similarity between

candidate papers and user interested papers to perform

recommendation.

Graph model is another widely applied method in paper

recommendation field. Gori and Pucci [18] constructed a
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homogenous citation graph from bibliographic dataset and

applied PageRank algorithm to recommend scientific papers.

Meng et al. [6] referred topic as a node type and applied a

random walk algorithm to recommend scientific papers from

a four-layer heterogeneous graph. Guo et al. [7] extracted

a fine-grained co-authorship from a citation graph and rec-

ommended papers by a graph-based paper ranking in multi-

layered graph. They further expanded the ranking approach

with mutually reinforced learning for personalized citation

recommendation [8]. However, the major drawback of graph-

based approach is the high time complexity when applied

to large graphs. Moreover, the topic shift problem in graph

model will retrieve many irrelevant results [29]. The pre-

vious introduced approaches may be combined in hybrid

approaches. Torres et al. [11] proposed a recommendation

system, named TechLens, that explores both the social rela-

tionships and the content of paper. TechLens is consists of

three CBF variations, two CF variations, and five hybrid

approaches. Ren et al. [19] assumed that each author has

their own citation pattern and proposed a hybrid citation

recommendation method ClusCite. The method combines a

cluster and graph propagation approach to learn relativity

and importance for recommended papers. Lee et al. [20] pro-

posed a hybrid paper recommendation system that combines

a content-based approach and a graph-based approach. The

recommended papers are obtained by the weighted results of

two approaches. Recently, there are emerging graph embed-

ding [51], [52] or mining algorithms [53], [54] for graph

analytics, which can be adapted to paper recommendation as

well.

B. LOW-RANK AND SPARSE MATRIX FACTORIZATION

In recent years, the low-rank and sparse matrix factorization

(LSMF) problem has attracted considerable attention in many

fields, including video surveillance [30], [31], low-rank tex-

tures [32], image processing [33]–[35] and computer vision

[36], [37]. Halko et al. [38] proposed randomized approxi-

mate matrix decomposition and demonstrated that a matrix

can be well compressed by random sampling on column

space. This revelatory approach provides an approximation

of SVD/PCA with fast speed. Candès et al. [24] proved that

the low-rank and sparse parts of a matrix can be disentangled

exactly by convex programming and proposed robust prin-

cipal component analysis (RPCA). Compared with former

approaches that only consider low-rank components or sparse

components, RPCA provides a unique separation of low-rank

data and sparse noises. However, RPCA cannot predefine the

rank of low-rank matrix and the sparsity of noise. To address

this issue, Zhou and Tao [23] proposed the GoDec algo-

rithm for LSMF. In addition to controllable rank and spar-

sity, GoDec applies bilateral random projections (BRP) [39]

to increase the convergence speed. The decomposition of

GoDec usually converges within 10∼15 iterations. These

characteristics make GoDec a good choice for recommenda-

tion systems.

In recommendation area, Ning andKarypis [40] introduced

a sparsity coefficient into the original CF and proposed sparse

linear method (SLIM) for product and movie recommenda-

tion. The sparsity in SLIM is controlled by ℓ1-norm of item

matrix, and the optimization problem is solved by coordinate

descent and soft thresholding [41]. However, SLIM did not

consider the low rank character in rating activity, and the

results will be affected by the error propagated from inter-

mediate outputs as in CF. Zhao et al. [27] proposed a low-

rank and sparse matrix completion (LSMC) method to obtain

a low-rank and sparse predicted rating for food andmovie rec-

ommendation. Unlike SLIM, there is only one low-rank and

sparse matrix learned in LSMC; thus, it can remedy the error

introduced by intermediate outputs. However, the assumption

of LSMC seems unsuitable for paper recommendation, and it

is hard to utilize various link information in a bibliographic

network. Moreover, due to the regulation by Lagrange multi-

plier, LSMC cannot control the value of sparsity accurately.

III. FINE-GRAINED AFFINITY MATRIX CONSTRUCTION

FROM HETEROGENEOUS BIBLIOGRAPHIC NETWORK

In a given heterogeneous bibliographic network, the edge

weights between vertexes are usually all binary. For example,

if paper pi cites paper pj, the weight of edge between them

is 1; otherwise, it is 0. Directly applying these binary values

as a relevance measurement of vertexes is irrational. There

are two reasons. First, a zero value does not mean that there

is no relation between vertexes. Take paper citation relations

as an example. The reason why paper pi did not cite pj
might be that the author was not aware of it, rather than pj
is irrelevant to pi. Second, some important latent correlations

between vertexes cannot be directly revealed by links. In a

heterogeneous bibliographic network, papers contain abun-

dant text content in addition to links, and these texts contain

their own contextual features, such as semantic and syntactic

information. This information is crucial when considering the

correlations of papers. It is also obvious that the research

interests and communities should be taken into account when

measuring the relations of authors rather than considering

only binary coauthor relations. Therefore, extracting fine-

grained relations of rich information nodes is critical and

essential for heterogeneous bibliographic network. In this

section, we extract a fine-grained paper affinity matrix and

an author affinity matrix. These affinity matrixes will be

integrated into the low-rank and sparse matrix factorization

process in Section IV.

A. CONSTRUCTION OF FINE-GRAINED PAPER

AFFINITY MATRIX

Given a heterogeneous bibliographic network, we can extract

three types of relations between papers: immediate relation,

mediate relation and latent relation.

1) IMMEDIATE RELATION BETWEEN PAPERS

In a bibliographic network, the immediate relation can

be obtained directly from citing links between papers.

59018 VOLUME 6, 2018



T. Dai et al.: LSMFPRec in Heterogeneous Network

Define W c
pp as the citing matrix, and each element of it is

calculated as follows.

wcpipj =

{

1 if pi is cited by pj

0 otherwise
(1)

2) MEDIATE RELATION BETWEEN PAPERS

The mediate relation between papers is defined as the rela-

tions of two paper nodes that share same neighbor node.

We consider three types of mediate relations between two

papers: they contain same keyword (W kw
pp ), they were pub-

lished in same venue (W v
pp) and they were cited by same

author (W a
pp). Each element of W kw

pp , W
v
pp and W a

pp is calcu-

lated as:

w{kw,v,a}
pipj

=

{

1 if pi shares same node with pj

0 otherwise
(2)

3) LATENT RELATION BETWEEN PAPERS

Different from other node types, papers contain large amounts

of text. These abundant texts contain crucial latent infor-

mation that can be considered a unique feature to represent

a paper. It is obvious that papers with closer relations will

have a higher latent correlation, such as semantic and syntax

correlation. We use latent Dirichlet allocation (LDA) [26],

which is a widely used topic model in many research areas,

to excavate the latent correlation hidden between papers.

Given a set of documents, the aim of LDA is to explore

semantically coherent topics that can be further used to rep-

resent the content of documents. Topics can be regarded as

better features than words/terms for documents since they

embed documents into a lower dimensional space and have

good semantic interpretability. We take the paper-topic dis-

tribution θp as the latent feature for a paper; then, the element

of latent relation matrix W l
pp is calculated according to inner

product between paper-topic distribution:

wlpipj = θpi · θpj (3)

After extracting immediate, mediate and latent relations,

we merge these three types of relations to obtain the final

paper affinity matrix Wpp. It should be noted that Wpp is

an asymmetric matrix for citing links between papers are

directed. Each element of Wpp is calculated as:

wpipj = min(avg(wcpipj + wkwpipj + wvpipj + wapipj ) + wlpipj , 1)

(4)

B. CONSTRUCTION OF FINE-GRAINED AUTHOR

AFFINITY MATRIX

Unlike paper nodes, there are no immediate relation between

author nodes because all links between authors can be

derived through papers in a bibliographic network. Therefore,

we only construct mediate and latent relations for authors.

1) MEDIATE RELATION BETWEEN AUTHORS

A scientific paper usually contains several authors,

so we consider co-authorship to be the mediate relation

between authors. Instead of binary co-authorship, we apply

weighted co-authorship [42] to calculate coauthormatrixW c
aa.

The reason is that authors should have a higher co-authorship

weight if they frequently coauthor, while individual coauthor

relationship should be weighted less if the paper has many

authors. Each element of W c
aa is calculated as:

wcaiaj =

m
∑

k=1

ci,j,k/Na (5)

where ci,j,k denotes author ai coauthored paper pk with author

aj andNa is normalized parameter to ensure the co-authorship

weight of an author sums to one.

2) LATENT RELATION BETWEEN AUTHORS

The research activity of authors is always strongly relevant to

their latent factors, such as an interest profile and the research

community, and an author is more likely to form a link with

another author if they have similar latent factors. We apply

ACT [43] to extract these latent features for authors. ACT is

an extension of LDA that can discover topics among authors

in a heterogeneous bibliographic network. We consider these

topics as author latent features; then, the element of latent

correlation matrix W l
aa between authors is computed as:

wlaiaj = θai · θaj (6)

Finally, we merge W c
aa and W

l
aa to obtain the final author

affinity matrix Waa. Unlike Wpp, Waa is a symmetric matrix.

Each element of Waa is calculated as:

waiaj = min(avg(wcaiaj + wlaiaj ), 1) (7)

IV. LOW-RANK AND SPARSE MATRIX FACTORIZATION

FOR SCIENTIFIC PAPER RECOMMENDATION

In this section, we formally propose LSMFPRec, a novel

scientific paper recommendation method that predicts

recommendation results from an author citing matrix with

fine-grained affinity matrixes extracted from heterogeneous

bibliographic network. The detailed parameter learning algo-

rithm is also derived in this section. We believe that LSMF-

PRec is the first method to use low-rank and sparse matrix

factorization for paper recommendation task.

A. RECOMMENDATION WITH BASIC LOW-RANK AND

SPARSE FACTORIZATION

Given a rating matrix X ∈ ℜm×n, the traditional matrix

factorization-based CF maps both users and items into a

joint latent factor space of low dimensionality such that

user-item interactions are modeled as inner products in that

space [21]. The resulting dot product between user matrix U

and item matrix V captures the recommended rating of users

in the characteristics of items, which leads to the following

estimate:

arg
U ,V

min ‖X − UV‖2F (8)
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FIGURE 3. An example for generating new rating matrix YS.

The above matrix factorization manner has two drawbacks

when is applied to recommendation. First, the predicted rat-

ing is recovered from intermediate matrix, which may cause

error propagates from intermediate matrix into final predic-

tion. Second, the manner lacks interpretability due to the

uninterpretable low dimensions. Authors working in a similar

research field will always read and cite some influential

papers when writing a scientific paper. According to this

rating pattern, the rating matrix for influential papers presents

low-rank character. In addition, the rating pattern for uninflu-

ential papers seems more random. Moreover, compared with

influential papers, uninfluential papers are usually less cited.

Therefore, the rating matrix for uninfluential papers presents

sparse character.

Based on the above low-rank and sparse characteristics

in rating activity of scientific work, we model paper recom-

mendation as matrix completion of the author rating matrix

X ∈ ℜm×n from a low-rank matrix L ∈ ℜm×n and a sparse

matrix S ∈ ℜm×n. Although many LSMF methods have

been proposed, including RPCA [24], LU_CRTP [25] and

GoDec [23], we choose GoDec for its effectiveness and effi-

ciency. By applying GoDec method, the objective function is

formulated according tomean-square error (MSE) as follows.

arg
L,S

min ‖X − L − S‖2F

s.t. rank (L) < r

card (S) < k (9)

where r and k are hyper parameters that represent the rank

range of L and the cardinality range of S, respectively.

B. INTEGRATING PAPER AND AUTHOR AFFINITY

MATRIXES FOR LSMF

The objective function in above subsection only contains

author rating information. In Section 3, we have extracted

paper and author affinity matrixes from heterogeneous biblio-

graphic network.We integrate these matrixes into the original

LSMF in this section.

1) USING THE PAPER AFFINITY MATRIX

In this subsection, we integrate the paper affinity matrixWpp.

For brevity, we denote Y as Wpp. In the sparse matrix S in

Eq. 9, each of its columns can be considered as the rating

of an author for partial papers. If we let the affinity matrix

Y multiply S, then we can obtain a new matrix YS. Now,

let us carefully examine YS. We can see that YS can be

considered as a completion of S using Y . Fig. 3 shows an

example of obtaining YS from Y and S. As seen in Fig. 3, S

is a sparse matrix in which most values are zero; thus, S can

be considered as a bipartite author-paper network with few

links. A new author rating matrix YS can be obtained from S

by left multiplying Y . If we assume that there is a new link if

an element of YS exceeds threshold 0.3, then we obtain 3 new

rating relations (with the blue color in the matrix YS and blue

dotted line in the related bipartite author-paper network). The

results have sufficient interpretability. First, the original links

of S (with the green color in matrix S and green line in the

related bipartite author-paper network) are preserved in YS.

Second, the directed correlations between papers will prop-

agate to author rating. For example, the directed correlation

from p4 to p2 is 0.6 in Y , and a2 rated p4. Thus, it is highly

likely that a2 will cite p4. Other new author ratings, such as

a1 → p2 and a1 → p4, hold same regularity.

As we can see, YS is a new author rating matrix completed

from Y and S. Therefore, it is reasonable that YS holds same

low-rank and sparse characteristics as the original author

rating matrix X . Thus, we can obtain the following objective

function based on YS.

arg
L,S,M

min ‖YS − L −M‖2F

s.t. rank(L) < r

card (S) < k

card (M ) < q (10)

whereM ∈ ℜm×n is a sparse matrix with cardinality range q.

There are two functions for matrixM . One is that L is a low-

rankmatrixwhile YS is not, sowe need a non-low-rankmatrix
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M to make the equation holds. The other is that M can be

considered the loss error between YS and L.

2) USING THE AUTHOR AFFINITY MATRIX

While paper affinity matrix Y is used to expand sparse matrix

S, we also utilize author affinity matrixWaa to regularize the

learning of S. The author affinity matrix Waa contains pair-

wise linkage information between each two authors, which

offers an additional network topology structure constraint.

In Eq. 9, each column of S represents the interest of an author

towards uninfluential papers, which reflects the randomness

of the author’s rating pattern.We assume that this randomness

also has its own regularities, which is constrained by the

network topology structure of author affinity matrix Waa.

The reason is that authors with a closer correlation will

have higher possibility to co-rate the same papers. Since the

network related toWaa is weighted and undirected, we apply

graph regularization to model the constraint. The objective

function is then obtained as follows:

arg
S

min

m
∑

i=1

m
∑

j=1

(si − sj)
2Waiaj = tr(STHS) (11)

where tr(·) denotes the trace of a matrix, H = D − Waa

denotes the Laplacian matrix, and D = diag(
∑

jWaiaj ).

3) OVERALL OBJECTIVE FUNCTION

Considering the original author rating matrix, the paper affin-

ity matrix and the author affinity matrix all together, we can

obtain the overall objective function of LSMFPRec as fol-

lows:

arg
L,S,M

min ‖X−L−S‖2F + α ‖YS − L −M‖2F + βtr(STHS)

s.t. rank (L) < r,

card (S) < k,

card (M ) < q (12)

where α and β are regularization parameters to control the

weight of each term.

C. ESTIMATION PROCESS

In this subsection we formulate the learning process of

LSMFPRec. The estimation process applies an alternative

optimization scheme that learns each variable separately by

fixing others. At each iteration step t , the optimization prob-

lem of Eq. 12 is equal to solving the following three sub-

problems until converging to a local minimum.






































Lt = arg min
rank(L)<r

‖X − L − St−1‖
2
F

+α ‖YSt−1 − L −Mt−1‖
2
F )

St = arg min
card(S)<k

‖X − Lt−1 − S‖2F

+α ‖YS−Lt−1−Mt−1‖
2
F + βtr(STHS)

Mt = arg min
card(M )<q

‖YSt−1 − Lt−1 −M‖2F

(13)

We now derive the update rules for L, S andM during each

alternative step t .

1) UPDATE RULE FOR L

The objective function of L in t-th iteration can be rewritten

as:

JL = ‖X − L − St−1‖
2
F + α ‖YSt−1 − L −Mt−1‖

2
F

= tr[(X − L − St−1)
T (X − L − St−1)]

+ αtr[(YSt−1 − L −Mt−1)
T (YSt−1 − L −Mt−1)]

= tr[STt−1L + αMT
t−1L − XTLY TL − LTX − αLTYSt−1

−αSTt−1 + LT St−1 + αLTMt−1 + LTL + αLTL) + C

= tr[(
X + αYSt−1 − St−1 − αMt−1

1 + α
− L)T

× (
X + αYSt−1 − St−1 − αMt−1

1 + α
− L)] + C

=

∥

∥

∥

∥

X + αYSt−1 − St−1 − αMt−1

1 + α
− L)

∥

∥

∥

∥

2

F

(14)

where C is a constant that is neglected in final equation.

Based on GoDec algorithm, the objective function of

Eq. 14 can be solved by updating Lt through singular value

hard thresholding as:

Lt =

r
∑

i=1

λiUiV
T
i ,

svd(
X + αYSt−1 − St−1 − αMt−1

1 + α
) = U3V T (15)

where svd(·) denotes singular value decomposition.

2) UPDATE RULE FOR S

Considering the objective function in Eq. 13 in relation to S,

the t-th iteration of S can be rewritten as:

JS = ‖X − Lt−1 − S‖2F + α ‖YS − Lt−1 −Mt−1‖
2
F

+ βtr(STHS)

= tr[(X − Lt−1 − S)T (X − Lt−1 − S)]

+ αtr[(YS − Lt−1 −Mt−1)
T (YS − Lt−1 −Mt−1)]

+ βtr(STHS)

= tr[(αY TY + βHT + I )

× (
X − Lt−1 + αY TLt−1 + αY TMt−1

αY TY + βH + I
− S)

× (
X − Lt−1 + αY TLt−1 + αY TMt−1

αY TY + βH + I
− S)T ] + C

=̇ tr[(
X − Lt−1 + αY TLt−1 + αY TMt−1

αY TY + βH + I
− S)T

× (
X − Lt−1 + αY TLt−1 + αY TMt−1

αY TY + βH + I
− S)] + C

=

∥

∥

∥

∥

X − Lt−1 + αY TLt−1 + αY TMt−1

αY TY + βH + I
− S)

∥

∥

∥

∥

2

F

(16)

The equivalence between the second and third lines from

the bottom needs to be proved, for tr(AB) ≤ tr(A)tr(B).
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Lemma 1 ((The Second-Derivative Test) [44]): Let f (X ) :

ℜm×n → ℜ be a real-valued function defined on a set

X ∈ ℜm×n. Assume that f is twice differentiable at an interior

point C of X. If

∇C f (C) =
∂f (X )

∂X

∣

∣

∣

∣

X=C

= 0m×n and (17)

∇2
C f (C) =

∂2f (X )

∂vec(X )∂(vecX )T

∣

∣

∣

∣

X=C

≻0 (18)

then f has a local minimum at C .

Based on lemma 1, we now provide the following theorem.

Theorem 1: The optimization problem

arg
S

min tr[(αY TY + βH + I )

× (
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
− S)T

× (
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
− S)] (19)

which shares the same local minimum S with the optimization

problem.

arg
S

min tr[(
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
− S)T

× (
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
− S)] (20)

Proof: Because the above optimization problems are all

related to S, we denote B as

B =
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
(21)

Then, the optimization functions of Eq. 19 and Eq. 20 are

rewritten as:

J1 = tr[(αY TY + βH + I )(B− S)T (B− S)] (22)

J2 = tr[(B− S)T (B− S)] (23)

First, according to Eq. 17 in Lemma 1, we derive the first

derivative of S in J1 and J2 as:

∂J1(S)

∂S
= (αY TY + βH + I )(−2BT + 2ST ) = 0 (24)

∂J2(S)

∂S
= −2BT + 2ST = 0 (25)

Then, we obtain the same S = B from the above two

equations.

Second, we derive the second derivative of S in J1 and

J2 according to Eq. 18 in Lemma 1. Because Y TY and the

Laplacian matrixH are all positive semidefinite matrixes, the

following inequalities hold.

∂2J1(S)

∂vec(S)∂(vecS)T
= 2(αY TY + βH + I ) � 0 (26)

∂2J2(S)

∂vec(S)∂(vecS)T
= 2I � 0 (27)

By applying Lemma 1, we can see that the optimization

problem in Eq. 19 shares the same local minimum S with the

optimization problem in Eq. 20. �

Based on the objective function in Eq. 16 and GoDec,

the update rule for St can be solved though entry-wise hard

thresholding, which is shown as follows:

St = Ŵ�(
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
),

� :

∣

∣

∣

∣

(
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
)i,j∈�

∣

∣

∣

∣

6= 0

and ≥

∣

∣

∣

∣

(
X − Lt−1 + αLt−1Y + αMt−1Y

αY TY + βH + I
)i,j∈�

∣

∣

∣

∣

,

|�| ≤ k (28)

where |A| denotes the l0 norm of A and Ŵ�(A) denotes the

projection matrix to an entry set. � is the nonzero entry set

of the first k largest entries of A.

3) UPDATE RULE FOR M

The objective function forM is a simple ℓ2-norm subtraction

form, so we can directly obtain the update rule of M as:

Mt = Ŵ9 (YSt−1 − Lt−1), 9 :
∣

∣(YSt−1 − Lt−1)i,j∈9

∣

∣ 6= 0

and ≥
∣

∣(YSt−1 − Lt−1)i,j∈9

∣

∣, |9| ≤ q (29)

where 9 is the nonzero entry set of the first q largest entries

of YSt−1 − Lt−1.

D. ACCELERATE LSMFPRec WITH BRP

The parameter estimation of Lt in Eq. 15 uses SVD, which

is a time-consuming process. The time complexity of SVD is

min(mn2,m2n) flops. When the original rating matrix is too

large, the decomposition is impractical. Therefore, we apply

BPR to accelerate the parameter estimation of LSMFPRec.

More specifically, we apply the power scheme [45] to accel-

erate the decay of singular values. For brevity, we denote Z as

(X+αYSt−1−St−1−αMt−1)/(1−α). Then, a new matrix Z̃

that is to be decomposed can be obtained by:

Z̃ = (ZZT )bZ (30)

where b is a power scheme term.

It should be noted that both Z and Z̃ share the same singular

vectors [8]. Thus, the r rank approximation of Z̃ via BPR is:

L̃ = F1(A
T
2 F1)

−1FT2 (31)

whereF1 = Z̃A1 andF2 = Z̃TA2.A1 ∈ ℜn×r andA2 ∈ ℜm×r

are independent random matrixes built from F1 and F2 by

subsampled randomized Fourier transform (SRFT) [46] with

Gaussian noise, respectively.

To acquire the r rank approximation of Z̃ , we apply QR

factorization of F1 and F2. Then, the low-rank approximation

of Z̃ is given by:

L = (L̃)1/(2b+1) = Q1[R1(A
T
2 F1)

−1RT2 ]
1/(2b+1)QT2 (32)

where Q1R1 = F1 and Q2R2 = F2 represent the QR

factorization of F1 and F2, respectively. The value of power

scheme term b is set to 2, as in GoDec.

By applying the above process, we can reduce the time

complexity of SVD in Eq. 15 from min(mn2,m2n) flops to
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Algorithm 1 Estimation Process of LSMFPRec

Input: author rating matrix X , author affinity matrix Waa,

paper affinity matrix Y , rank range r , cardinality range k

and q, threshold ε, bias term α and β.

Output: low-rank matrix L, sparse matrix S

Initialize: L0 := X , S0 := 0, M0 := 0, t := 0

1: while the loss error of Eq. 12 > ε do

2: t := t + 1;

3: Z = (X + αYSt−1 − St−1 − αMt−1)/(1 − α);

4: L̃ = (ZZT )bZ ;

5: F1 = L̃A1, A2 = F1;

6: F2 = L̃TF1 = Q2R2, F1 = L̃F2 = Q1R1;

7: if rank(AT2 F1) < r

8: r := rank(AT2 F1), go to step (1);

9: end if

10: update Lt according to Eq. 32;

11: update St according to Eq. 28;

12: update Mt according to Eq. 29;

13: end while

min(r2m, r2n,mnr) flops. Because r is usually much smaller

than m and n, the above process can significantly reduce the

time complexity of LSMFPRec.

E. LEARNING ALGORITHM AND RECOMMENDATION

PROCESS OF LSMFPRec

The learning algorithm of LSMFPRec is summarized in

Algorithm 1. In steps 10–12, the algorithm updates L, S

andM iteratively until convergence, and the optimal solution

of the overall objective function (Eq. 12) can be obtained

simultaneously.

After the estimation process, we can obtain the approxi-

mate author rating matrix X̃ from the learned low-rank matrix

L and sparse matrix S as:

X̃ = L + S (33)

Then, we take the top n entries in a column of matrix X̃ ,

which are zero in the original matrix X , as the recommended

results for an author.

F. CONVERGENCE ANALYSIS OF LSMFPRec

We now analyze the convergence property of LSMFPRec.

First, let us introduce following lemmas:

Lemma 2 [39]: Given a real matrix Z ∈ ℜm×n with

singular value decomposition Z = U3V T = U131V
T
1 +

U232V
T
2 , the Eq. 32 approximates Z with the error upper

bounded by

‖Z − L‖2F ≤ (

∥

∥

∥
3

2(2b+1)
2 (V T

2 A1)(V
T
1 A1)

T3
−(2b+1)
1

∥

∥

∥

2

F

+

∥

∥

∥
32b+1

2

∥

∥

∥

2

F
)1/(2b+1) (34)

Lemma 3 [47]: Given a minimization problem

min ‖f − u‖2F + 2(u) (35)

where2(u) is a sparsity constraint in the form of lp-penalties

that is convex but possibly non-smooth. Exclusively using

iterated hard thresholding produces a sequence {un} that

converges linearly to the unique minimizer u∗.

Based on the above two lemmas, we now provide the

following theorem.

Theorem 2: The iterations of algorithm 1 lead the objective

function of Eq. 12 converges to a local minimum.

Proof: Algorithm 1 is equivalent to solve three sub-

problems in Eq. 13. Let us denoteE1
t ,E

2
t andE

3
t as the overall

loss error of these three sub-problems at t-th iterations. More

specifically,







































E1
t = ‖X − Lt − St−1‖

2
F + α ‖YSt−1 − Lt −Mt−1‖

2
F

+βtr(STt−1HSt−1)

E2
t = ‖X − Lt − St‖

2
F + α ‖YSt − Lt −Mt−1‖

2
F

+βtr(STt HSt )

E3
t = ‖X − Lt − St‖

2
F + α ‖YSt − Lt −Mt‖

2
F

+βtr(STt HSt )

(36)

By applying Lemma 1, we can obtain E3
t−1 ≥ E1

t . We can

also obtain E1
t ≥ E2

t and E2
t ≥ E3

t by applying Lemma 2.

Therefore, the loss errors in Eq. 13 aremaintained as descend-

ing throughout the iterations of algorithm 1 as:

E1
1 ≥ E2

1 ≥ E3
1 ≥ E1

2 ≥ . . . ≥ E1
t ≥ E2

t ≥ E3
t ≥ E1

t+1 ≥ . . .

(37)

It can be seen that the overall loss error of Eq. 12 decreases

monotonically. Therefore, algorithm 1 produces a sequence

that leads the objective function of Eq. 12 converges to a local

minimum. �

V. EXPERIMENTS AND EVALUATIONS

A. DATASETS AND PREPROCESSING

We choose two different real-world datasets to validate the

effectiveness of LSMFPRec. One is the ACL anthology net-

work (AAN), which is a bibliographic dataset. The other is

the scholarly social network CiteULike.

·AAN dataset3: Radev et al. [48] established the ACL

Anthology Network (AAN) dataset that contains full-text

information of conference and journal papers in computa-

tional linguistics and natural language processing area. We

used a subset of the 2013 release, which contains papers

published from 1965 to 2013. We removed papers with

incomplete information, e.g., missing authors or keywords.

We also removed authors who cited fewer than 10 papers.

The final dataset contains 4,497 authors and 12,274 papers

with 187,540 observed author-paper pairs. The sparsity of

the rating matrix is 99.66%. On average, each author cited

42 papers in the data set, ranging from 10 to 1145, and 86.68%

of authors cited fewer than 100 papers.

3clair.eecs.umich.edu/aan/
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TABLE 1. Statistics of Aan and Citeulike.

·CiteULike dataset4: CiteULike is a well-known scholarly

social network that allows researchers to store, organize,

share and discover links to academic research papers. When a

researcher posts a paper, CiteULike will automatically extract

its abstract, title and keywords from the Web. We use the

dataset released in [13], which contains 5,551 authors and

16,980 papers. The overall number of ratings is 204,997.

The sparsity of the rating matrix is 99.78%. It should be

noted that the rating values in CiteULike are all binary. If a

user reads or posts a paper, the corresponding rating is 1.

Otherwise, the corresponding rating is 0. Similar to [13],

we removed the authors with fewer than three papers.

The statistics of these two datasets are summarized

in Table 1.We can see that both datasets are extremely sparse.

The ratios of rated entries (equal to 1) in the rating matrixes

of AAN and CiteULike are 0.0034 and 0.0022, respectively.

To extract topics using LDA and ACT, the titles and abstracts

are extracted as text content for each paper. Then, we used

Porter stemmer to remove stop words and extract stems.

Words that is consist of fewer than three characters and appear

fewer than ten times are also removed to reduce the impact of

short words.

B. EVALUATION METHODOLOGY

For performance evaluation, we randomly sampled 10% of

rated entries as test set. The rest of ratings are merged as

training set. We first used training set to obtain an estimated

low rank matrix and sparse matrix and then presented the top

N papers to authors who pertained to test set according to

approximated rating matrix. To reduce the errors caused by

inappropriate sampling, the experiments were cross validated

on 10 sets of randomly chosen samples.

Following common practice in information retrieval (IR)

task, we employed following two evaluation metrics to eval-

uate recommendation results:

· Recall is a commonly used metric for IR field. Recall@N

measures the rate of real ratings that are retrieved in the top

N recommendation list. This metric is calculated as follows:

Recall =

∑

a∈Q(A) |R(a) ∩ T (a)|
∑

a∈Q(A) |T (a)|
(38)

where Q(A) is testing author set, T (a) is ground truth papers

rated by author a, and R(a) is recommended papers for

author a.

· Normalized Discounted Cumulative Gain (NDCG) is a

retrieval metric that was devised specifically for measuring

4www.citeulike.org

ranking in IR tasks. For an author a, the ranked recommen-

dations are examined from the top-ranked down. NDCG is

computed as:

NDCGa = na
∑

j
(2r(j) − 1)/ log(1 + j) (39)

where na is a normalization constant chosen such that a

perfect ordering would obtainNDCGa = 1, and r(j) is integer

label for the relevance level of j-th paper in sorted recommen-

dation list. NDCG is well-suited for paper recommendation

evaluation, as it rewards relevant papers in the top-ranked

results more heavily than those ranked lower.

C. COMPARISON WITH OTHER APPROACHES

To evaluate the recommendation performance of LSMFPRec,

we compare it against several other approaches. The com-

pared methods are summarized as follows:

· CF [21]: This is the basic model-based CF that is based

on traditional matrix factorization. Without loss of generality,

we do not add any biases in factorization process.

· CTR [13]: CTR combines collaborative filtering and

probabilistic topic modeling, which can learn latent matrixes

and topics simultaneously. We employ in-matrix prediction

in CTR since our recommendation scenario belongs to tradi-

tional collaborative filtering.

· RCTR [15]: RCTR extends CTR by adding user-item

feedback information, item-content information, and network

structure among items. It also provides a family of link prob-

ability functions to increase the capacity of model. Similar to

CTR, we employ RCTR for only in-matrix prediction.

· LRCBF [57]: LRCBF considers papers that marked as

interesting by users are positive instances, while other papers

published at same venue are negative instances. Then LRCBF

uses these instance pairs to train Rank SVM [60] to per-

form recommendation. We use weighting based validation

methods in experiments for it is better than pruning based

validation according to [57].

· ConceptPRec [58]: ConceptPRec uses Paragraph Vec-

tor [59] to learn deep representations of papers. We concate-

nate user rated papers into an input paper, and recommend

papers that have higher similarity with the input paper.

· SLIM [40]: SLIM learns a user latent matrix and a sparse

item coefficient matrix from the original rating by matrix

factorization. Despite different definition on the latent item

matrix, SLIM still applies nearly the same recommendation

approach as traditional CF.

· LSMC [27]: LSMC estimates only a single low-rank and

sparse matrix from the original rating matrix. Without any

further computation, the final predicted rating can be directly

obtained after learning process of LSMC.

In addition to the above approaches, we also compare

the performance of LSMFPRec by using only partial link

information. LSMFPRec-b denotes basic LSMFPRec that

does not utilize paper and author affinity matrixes, and its

objective function is equal to Eq. 9. It should be noted that

LSMFPRec degenerates into original GoDec in this case.
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TABLE 2. Performance comparison between different methods on AAN.

TABLE 3. Performance comparison between different methods on CiteULike.

We denote LSMFPRec-p and LSMFPRec-a as learning only

by using paper affinity matrix and author affinity matrix,

respectively.

The performance of the above methods in two datasets are

shown in Table 2 and 3. It is obvious that our LSMFPRec

leads the performance in all cases. Themore detailed analyses

are outlined as follows:

We first analyze the performance among CF, CTR, RCTR,

LRCBF, ConceptPRec and LSMFPRec. Due to the lack

of content information, we can see that CF is obviously

worse than any of the other methods in terms of all met-

rics. Although ConceptPRec recommends papers uses deep

learning, the performance of ConceptPRec is just merely

better than CF. We believe the reason is that ConceptPRec

neglects various link information when learning deep repre-

sentations of papers. CTR works much better than CF, which

indicates that content information plays an important role

in recommending scientific papers. LRCBF performs better

than CTR for it explores the relationships of papers in same

venue. RCTR shows a clear performance gain over LRCBF

because it explores more sophisticated link information when

extracting topics of content. Compared with RCTR, the aver-

age performance improvements of LSMFPRec for NDCG

in AAN and CiteUlike are 7.99% and 11.17%. For recall,

LSMFPRec achieves 11.17% and 8.47% higher performance

than RCTR does in AAN and CiteUlike. The experimental

results demonstrated that our LSMFPRec completely and

significantly exceeds RCTR in all metrics. The reasons are

twofolds: First, although both RCTR and LSMFPRec utilize

homogeneous link information of paper and authors, the links

used in LSMFPRec are all fine-grained.We constructed paper

and author affinity matrixes by diversifying links and exploit-

ing topic correlations, which can generate highly qualified

paper-paper and author-author links to improve performance.

Second, the recommendation results of RCTR are generated

by the inner product of a latent user vector and an item

vector, while our LSMFPRec does not have such intermedi-

ate outputs. This character reduces the error accumulated in

generating interim outputs.

Next, we analyze the results among SLIM, LSMC and

LSMFPRec. It is not surprising that SLIM and LSMC

perform much worse than LSMFPRec, because both of

them neglect content information. In particular, LSMFPRec

achieves 73.95% higher recall@300 than LSMC in AAN

and 94.90% higher recall@300 than SLIM in CiteULike.

Although SLIM explores sparse correlations between papers,
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FIGURE 4. The performance impact of r . (a) AAN dataset. (b) CiteULike
dataset.

FIGURE 5. The performance impact of k . (a) AAN dataset. (b) CiteULike
dataset.

FIGURE 6. The performance impact of q. (a) AAN dataset. (b) CiteULike
dataset.

it is still based on traditional CF, which cannot avoid the

defect of intermediate outputs. LSMC improved SLIM by

factorizing the original rating matrix directly into a single

low-rank and sparse predicted rating matrix, which can pre-

vent all intermediate outputs. However, a single low-rank

and sparse rating matrix might be too coarse to match rating

patterns and recommend correct papers for researchers.

Finally, we compare the recommendation performance

among the variants of LSMFPRec. We can see that without

content information, LSMFPRec-b achieves the lowest per-

formance than other variants. LSMFPRec-p works better than

LSMFPRec-a, which indicates that paper affinity matrix is

more important than author affinity matrix in recommending

scientific papers.

D. PARAMETER TUNING

In our method, there are five essential parameters: a rank

range r , two cardinality ranges k and q, and two bias terms α

and β. In this subsection, the effect of these hyper parameters

are studied and evaluated. We evaluate these parameters by

empirically fixing others. Due to page limitations, we only

demonstrate the tuning results on recall@300; other metrics

generate similar results in our experiments.

We first evaluate the effect of r , k and q by empirically

fixing α = 80 and β = 60. Since these three parameters are

scalars that ranged according to original rating, we transmit

them into the following percentage variables for ease of

tuning.

pr =
r

Rank(X )
, pk =

k

Size(X )
, pq =

q

Size(X )
(40)

Fig. 4 illustrates the recall@300 by varying r on AAN and

CiteULike datasets. Both k and q are empirically set to 40% ·

Size(X ). We can see that when r is very small (about < 15% ·

Rank(X )), the performance of LSMFPRec is even lower than

that of traditional CF. The recommendation is improved as the

value of r increases. Ourmodel achieves the best performance

when r = 30% · Rank(X ) and r = 40% · Rank(X ) in AAN

and CiteULike, respectively.

The cardinality range k and q control the sparsity of S

and M , respectively. The recall@300 with varying k and q

on the AAN and CiteULike dataset are shown in Fig. 5 and

Fig. 6. For AAN dataset, the best performance is achieved

when k = 40% · Size(X ) and q = 50% · Size(X ).

For CiteULike dataset, the best performance is achieved at

k = 20% · Size(X ) and q = 30% · Size(X ). It should be

noted that when M is too sparse (q < 23% · Size(X ) in AAN

and q < 20% · Size(X ) in CiteULike), LSMFPRec works

even worse than traditional CF. The reason is that although

M does not participate in final recommendation, an extreme

sparse M will produce less noise in decomposition process,

which causes overfitting problem. To illustrate the sparsity

better, we plot a partial matrix of S with different cardinality

ranges k on the CiteULike dataset in Fig. 7, where white

points represent zero entries.

We then study the effectiveness of α and β. The two

parameters control the importance of paper affinity matrix

and author affinity matrix separately. Fig. 8 and Fig. 9 show

how our model performs when these two parameters vary on

AAN and CiteULike datasets. To investigate further, we also

plotted recall contours. We can see that when α = 0 and

β = 0, the performance is obviously not satisfactory since no

content information is involved. The performance improves

when increasing α and β. It should be noted that there is

a region where the optimal values of α and β ensure the

best prediction accuracy. The region is approximately at

α = 80 ∼ 90 and β = 65 ∼ 75. Moreover, the results

also indicate that paper link information plays a more impor-

tant role than author link information for scientific paper

recommendation.

E. RECOMMENDATION ANALYSIS FOR INFLUENTIAL

AND UNINFLUENTIAL PAPERS

The predicted results of LSMFPRec are obtained from a

low-rank matrix and a sparse matrix. These two matrixes

have a good recommendation interpretation on influential and

uninfluential papers separately. Although many metrics have
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FIGURE 7. Partial of sparse matrix S generated in different cardinality ranges k on CiteULike. The values of pk are from 0.9 to 0.2, with a
0.1 decrement from left to right.

FIGURE 8. The performance impact of LSMFPRec by varying the bias terms α and β in AAN.

FIGURE 9. The performance impact of LSMFPRec by varying bias term α and β in CiteULike.

TABLE 4. Recommendation results for ‘‘Agirre, Eneko’’.

been proposed tomeasure the degree of influence of scientific

papers, we choose citation count without loss of generality.

To gain a better insight into LSMFPRec, we present the

top 10 correctly recommended articles for an author whose

name is ‘‘Agirre, Eneko’’ in AAN dataset, and their citation

counts which are extracted from Google Scholar. As shown
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FIGURE 10. The average citation counts of top 20 recommended results
in the low-rank matrix and the sparse matrix.

in Table 4, the recommended papers contributed by low-rank

matrix L are all highly cited (all above 200), whichmeans that

L captures the interests of the author on influential papers.

In contrast, the citation counts of papers obtained by sparse

matrix S are much lower (all below 200), which illustrates

that S provides the author with preferred uninfluential papers.

We only show the results of one author here, there are more

evidences that support the finding in testing set.

To better illustrate the effect of low-rank matrix and sparse

matrix, we separately counted the average citation counts of

top 20 recommended results in low-rank matrix and sparse

matrix. It can be seen in Fig. 10 that the average citation

counts of low-rank matrix L are 179 and 131 for AAN

and CiteUlike, respectively. In contrast, for sparse matrix,

the average citation counts are 56 and 32. The statistical

results demonstrated that LSMFPRec can reveal the rating

characteristics of influential and uninfluential papers.

VI. CONCLUSIONS

In this paper, we proposed a novel method, named

LSMFPRec, for passive paper recommendation. To fully

utilize content information and diversified links, we first

extracted fine-grained paper and author affinity matrixes

from heterogeneous bibliographic network. Then, we seam-

lessly integrated these fine-grained affinity matrixes into the

decomposition process of low-rank and sparse matrix fac-

torization. The estimated low-rank and sparse matrixes are

used to generate predicted ratings for authors. LSMFPRec

can utilize author rating information, paper content infor-

mation and network structure to alleviate sparsity and cold

start problem encountered by traditional collaborative filter-

ing method. Finally, extensive experiments were conducted

on two real-world datasets, AAN and CiteULike, to evalu-

ate the performance. The experimental results demonstrated

that our LSMFPRec outperforms other baseline algorithms.

Moreover, we demonstrated that LSMFPRec has the ability

to reveal the rating characteristics of influential and uninflu-

ential papers.

The matrix decomposition manner of LSMFPRec is suffi-

ciently flexible to integrate other related networks. For exam-

ple, we can integrate links of traditional social networks into

LSMFPRec by adding more matrix decompositions. We can

also combine LSMFPRec with impact propagation to better

capture influential papers. Moreover, it is easy to design

distributed factorization algorithms for LSMFPRec, which

would make LSMFPRec scalable for big data modeling. The

above possible extensions will be pursued in our future work.
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