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Low-rank approximation based multichannel

Wiener filter algorithms for noise reduction

with application in cochlear implants

Romain Serizel, Marc Moonen, Bas Van Dijk and Jan Wouters

Abstract

This paper presents low-rank approximation based multichannel Wiener filter algorithms for noise

reduction in speech plus noise scenarios, with application in cochlear implants. In a single speech source

scenario, the frequency-domain autocorrelation matrix of the speech signal is often assumed to be a

rank-1 matrix, which then allows to derive different rank-1 approximation based noise reduction filters.

In practice, however, the rank of the autocorrelation matrix of the speech signal is usually greater than

one.

Firstly, the link between the different rank-1 approximation based noise reduction filters and the

original speech distortion weighted multichannel Wiener filter is investigated when the rank of the

autocorrelation matrix of the speech signal is indeed greater than one.
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Secondly, in low input signal-to-noise-ratio scenarios, due to noise non-stationarity, the estimation

of the autocorrelation matrix of the speech signal can be problematic and the noise reduction filters

can deliver unpredictable noise reduction performance. An eigenvalue decomposition based filter and a

generalized eigenvalue decomposition based filter are introduced that include a more robust rank-1, or

more generally rank-R, approximation of the autocorrelation matrix of the speech signal. These noise

reduction filters are demonstrated to deliver a better noise reduction performance especially in low input

signal-to-noise-ratio scenarios. The filters are especially usefull in cochlear implants, where more speech

distortion and hence a more agressive noise reduction can be tolerated.

I. INTRODUCTION

A major challenge in cochlear implant (CI) design is to improve the speech understanding in noise

for CI recipients [1] and so having an efficient front-end noise reduction (NR) is important. Therefore,

several NR algorithms have been developed and tested with CI recipients [2], [3], [4]. Recent commercial

CIs usually include multiple microphones and allow for multichannel adaptive NR algorithms, such as

the BEAMTM in the Cochlear FreedomTM device, which have been shown to greatly improve speech

understanding for CI recipients [5].

In general, CI recipients need a 10dB to 25dB higher signal-to-noise-ratio (SNR) than normal hearing

subjects to achieve a similar speech understanding performance [6] but they can tolerate a much higher

speech distortion (SD) [7]. This motivates the use of more aggressive NR strategies. The speech distortion

weighted multichannel Wiener filter (SDW-MWF) has been developed to allow to tune multichannel

Wiener filter (MWF)-based NR and perform a more aggressive NR by allowing more SD [8], [9], [10],

[11]. In the case of a single speech source the SDW-MWF performance can sometimes be improved if the

filters are reformulated based on the assumption that the frequency-domain autocorrelation matrix of the

speech signal is a rank-1 matrix, leading to the so-called spatial-prediction MWF (SP-MWF) [12], [13]

and the rank-1 MWF (R1-MWF) [14]. In this paper, the difference is investigated between the original

SDW-MWF and these two rank-1 approximation based NR filters when the rank of autocorrelation matrix

of the speech signal is actually greater than one.

All these NR algorithms rely on the estimation of the autocorrelation matrix of the speech signal,

which is based on a rank-1 approximation with a so-called first column decomposition, as well as on

the assumption that the (unknown) speech signal and the noise are uncorrelated and that these signals

are stationary. In low input SNR scenarios, if these assumptions are violated, the autocorrelation matrix

of the speech signal can be wrongly estimated and become non positive semi-definite. The SDW-MWF
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as well as the rank-1 approximation based filters can then deliver unpredictable NR performance. This

paper proposes a solution to this problem that is to select an alternative rank-1 approximation based on

an eigenvalue decomposition (EVD) [15], or a generalized eigenvalue decomposition (GEVD) [16], [17],

[18], of the autocorrelation matrix of the speech signal.

These alternative NR filters are demonstrated to deliver a better NR performance especially in low

input SNR scenarios and are especially usefull in cochlear implants, where more SD and hence a more

agressive NR can be tolerated. The GEVD based NR filter is also extended to a rank-R approximation

based filter, in which the rank reduction is shown to be equivalent to tuning the NR to be more agressive.

The rank-1 approximation based filter then indeed represents the extreme case with the most agressive

NR. A performance comparison is provided between the original SDW-MWF, the EVD based NR filter

and the GEVD based NR filter applied on both bilateral and binaural set-ups [19], [20], [21], [22], [23].

The signal model and the SDW-MWF are described in Section II. The so-called first column decompo-

sition and how this provides an interpretation of the SDW-MWF versus the SP-MWF and the R1-MWF

is described in Section III. The EVD based NR filter is introduced in Section IV. The GEVD based NR

filter is presented in Section V and is extended to a rank-R approximation based filter in Section VI. The

performance of the original SDW-MWF, the EVD based NR filter and the GEVD based NR filter are

compared in Section VII. Finally, a summary of the paper and conclusions are provided in Section VIII.

II. BACKGROUND AND PROBLEM STATEMENT

A. Signal model

Let M be the number of microphones (channels). The frequency-domain signal Xm(ω) for microphone

m has a speech component Xm,s(ω) and an additive noise component Xm,n(ω), i.e.:

Xm(ω) = Xm,s(ω) + Xm,n(ω) m ∈ {1 . . . M} (1)

where ω = 2πf is the frequency-domain variable. For conciseness, ω will be omitted in all subsequent

equations. Subscripts “s” and “n” will also be used to denote the “speech” and “noise” component of

other quantities.

Signal model (1) holds for so-called “speech plus noise periods”. There are also “noise only periods”

(i.e., speech pauses), during which only a noise component is observed.

In practice, in order to distinguish between “speech plus noise periods” and “noise only periods” it is

necessary to use a voice activity detector (VAD). The performance of the VAD can affect the performance

of the NR. For the time being, a perfect VAD is assumed.
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The compound vector gathering all microphone signals is:

X = [X1 . . . XM ]T (2)

The autocorrelation matrix of the microphone signals in “speech plus noise periods”, and of the speech

component and the noise component of the microphone signals are given by:

Rx = E{XX} (3)

Rs = E{XsXs
H} (4)

Rn = E{XnXn
H} (5)

where H denotes the Hermitian transpose. Rn can be estimated during “noise only periods” and Rx

can be estimated during “speech plus noise periods”. If the speech and noise signals are assumed to be

uncorrelated and if the noise signal is stationary, Rs can be estimated by using:

Rs = Rx − Rn (6)

In practice, the autocorrelation matrices are estimated recursively. The estimate of the autocorrelation

matrix of the microphone signals is updated during “speech plus noise periods”, using:

R̃x = λR̃x + (1 − λ)XXH (7)

where λ ∈ [0, 1] is an exponential forgetting factor that depends on the number of past samples to be

taken into account. Here λ = 1 − 1
Nframe

with Nframe set so that the forgetting time is about 1 second.

This clearly exceeds the spectral stationarity of speech signals (around 20ms) but not necessarily the

spatial stationarity of the sources.

The estimate of the autocorrelation matrix of the noise component of the microphone signals is updated

similarly during “noise only periods”, using:

R̃n = λR̃n + (1 − λ)XXH (8)

= λR̃n + (1 − λ)XnXn
H (9)

The estimate of the autocorrelation matrix of the speech component of the microphone signals is then

given by:

R̃s = R̃x − R̃n (10)

It is noted that in the sequel, NR filters are specified as functions of Rx, Rn and/or Rs, whereas

in practice these matrices are replaced by their estimated versions R̃x, R̃n and/or R̃s (or modifications

thereof).
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B. MWF-based Noise Reduction

An MWFW = [W1 . . . WM ]T will be designed and applied to the microphone signals, which minimizes

a Mean Squared Error (MSE) criterion:

JMWF = E{|E|2} (11)

where E is the expectation operator and E is an error signal to be defined next, depending on the scheme

applied. The filter output signal Z is defined as:

Z = WHX (12)

The desired signal for the MWF is arbitrarily chosen to be the (unknown) speech component of the

first microphone signal (m = 1). This can be written as:

DMWF = eH
1 Xs (13)

where e1 is an all-zero vector except for a one in the first position.

The MWF aims to minimize the squared distance between the filtered microphone signal (12) and the

desired signal (13). The corresponding MSE criterion is:

JMWF = E{|WHX− eH
1 Xs|

2} (14)

which is equivalent to:

JMWF = WHRsW−WHRse1 − eH
1 RsW + eH

1 Rse1 + WHRnW (15)

The MWF solution is given as:

WMWF = (Rs + Rn)−1Rse1 (16)

The SDW-MWF has been proposed to provide an explicit trade-off between the NR and the SD [8], [9],

[10], [11]. Changing the optimization problem to a constrained optimization problem, the MSE criterion

effectively becomes:

JSDW−MWF = E{|WHXs − eH
1 Xs|2} + µE{|WHXn|2} (17)

where µ is a trade-off parameter. The SDW-MWF solution is then given as:

WSDW−MWF = (Rs + µRn)−1Rse1 (18)
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In a single speech source scenario, the autocorrelation matrix of the speech component of the micro-

phone signals Rs is often assumed to be a rank-1 matrix (rank(Rs) = 1) and can then be rewritten

as:

Rs = PsAA
H (19)

where Ps is the power of the speech source signal and A is the M -dimensional steering vector, con-

taining the acoustic transfer functions from the speech source position to the microphones (including the

microphone characteristics).

Based on this rank-1 assumption it is possible to derive the so-called spatial-prediction MWF (SP-

MWF) [12], [13]:

WSP−MWF = R−1
n Rse1

eH
1 Rse1

µeH
1 Rse1 + Tr{R−1

n Rse1e
H
1 Rs}

(20)

and the rank-1 MWF (R1-MWF) [14]:

WR1−MWF = R−1
n Rse1

1

µ + Tr{R−1
n Rs}

(21)

The filters (18), (20) and (21) are fully equivalent if rank(Rs) = 1. In practice, however, (19) may

not hold, i.e., rank(Rs) > 1 even for a single speech source scenario and then (18), (20) and (21) are

different filters.

III. FIRST COLUMN DECOMPOSITION

When rank(Rs) > 1 the matrix Rs can be decomposed as:

Rs = Rsr1
+ RZ (22)

where Rsr1
is a rank-1 approximation of Rs and RZ is a “remainder” matrix. The decomposition is not

unique and so several choices for Rsr1
can be considered.

The most obvious choice for Rsr1
is a rank-1 extension of the first column and row of Rs, i.e.:

Rs = ddHσ1,1
︸ ︷︷ ︸

Rsr1

+











0 0 · · · 0

0 x · · · x

...
...

...

0 x · · · x











︸ ︷︷ ︸

RZ

(23)

where

σi,j = [Rs]i,j (24)

d = [1
σ2,1

σ1,1
. . .

σ1,N

σ1,1
]T (25)
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and σ1,1 is the speech power in microphone 1. This decomposition will be referred to as the “first column

decomposition”. It allows to pinpoint the differences between the filters (18), (20) and (21) whenever

rank(Rs) > 1. This decomposition has also been exploited in [24].

It is noted that:

Rse1 = Rsr1
e1 + RZe1

︸ ︷︷ ︸

=0

(26)

which means that the (rightmost) “desired signal part” Rse1 in (18), (20) and (21) can be (obviously)

replaced by the “rank-1 approximation desired signal part” Rsr1
e1. The difference between the filters (18),

(20) and (21) then effectively depends on how RZ is treated, as will be explained next. Note that when

rank(Rs) = 1, then RZ = 0 and so it is again seen that the filters are fully equivalent.

A. SDW-MWF

Plugging (23) into the SDW-MWF formula (18) leads to:

WSDW−MWF = (Rsr1
+ µ(Rn +

1

µ
RZ))−1Rsr1

e1 (27)

This means that in the SDW-MWF (18) Rs can be replaced by Rsr1
and then the remainder matrix RZ

is effectively treated as noise (up to a scaling with 1
µ ).

To avoid the scaling with 1
µ an alternative approach is to start from the MSE criterion (15). Plugging (23)

into (15), merging RZ with the noise and (only then) introducing the trade-off factor µ, leads to:

J⋄
SDW−MWF = WHRsr1

W−WHRsr1
e1 − eH

1 Rsr1
W

+eH
1 Rsr1

e1 + µ(WHRZW + WHRnW) (28)

where superscript ⋄ is used to denote the alternative formulation where the trade-off factor µ is introduced

after RZ and Rn are merged.

The filter minimizing (28) is then:

W⋄
SDW−MWF = (Rsr1

+ µ(Rn + RZ))−1Rsr1
e1 (29)

This again means that in the SDW-MWF (18) Rs is replaced by Rsr1
and then the remainder matrix RZ

is effectively returned to noise, i.e, Rn is replaced by Rn+RZ . The initial speech plus noise decomposition

Rx = Rs + Rn is then effectively reshuffled into Rx = Rsr1
+ (Rn + RZ).

It is seen that (27) and (29) only differ in the weighting applied to RZ . While (27) is fully equivalent

to (18), (29) adopts a weighting that is intuitively more appealing if RZ is considered to be a noise

contribution. However, RZ can come not only from noise estimate leaking into the speech estimate but
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also from various factors such as VAD errors, over/understimation of the noise during speech periods,

correlation between speech and noise. . . Therefore, it is unclear which of noise weighting strategies (27)

and (29) is the more appropriate.

For µ = 1, filters (27) and (29) are obviously equivalent.

B. SP-MWF

Plugging (23) into the SP-MWF formula (20) leads to:

WSP−MWF = R−1
n Rsr1

e1
1

µ + Tr{R−1
n Rsr1

}
(30)

and

WSP−MWF = (Rsr1
+ µRn)−1Rsr1e1 (31)

This means that the SP-MWF effectively corresponds to the SDW-MWF (18) where Rs is replaced by

Rsr1
and the remainder matrix RZ is simply ignored.

C. R1-MWF

Plugging (23) into the R1-MWF formula (21) leads to:

WR1−MWF = R−1
n Rsr1

e1
1

µ + Tr{R−1
n (Rsr1

+ RZ)}
(32)

and

WR1−MWF = (Rsr1
+ µ̄Rn)−1Rsr1

e1 (33)

where

µ̄ = µ + Tr{R−1
n RZ} 6= µ (34)

By comparing (33) with (27) and (31), it is seen that the R1-MWF represents an intermediate approach

between the SDW-MWF and the SP-MWF. Indeed, in the R1-MWF the remainder matrix RZ is ignored

in the spatial filter (R−1
n Rsr1

e1) as it is also the case for the SP-MWF filter (see (30) and (32)). The

remainder matrix RZ changes the trade-off parameter from µ to µ̄ which effectively changes the spectral

postfilter in (30) and (32). If RZ is positive semi-definite, µ̄ > µ which corresponds to putting a higher

weight on the noise. This is similar to RZ being treated as noise in the SDW-MWF case.
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D. Speech autocorrelation matrix estimation

In low input SNR scenarios it is observed that:

R̃x ≈ R̃n (35)

and then, especially so if the noise is non-stationary, the estimated R̃s = R̃x − R̃n can loose its positive

semi-definiteness, which is problematic and indeed has been observed to lead to unpredictable NR

performance. The first column decomposition in particular suffers from this estimation problem where

then the estimated speech power in microphone 1 (σ̃1,1 , [R̃s]1,1 = [R̃x]1,1−[R̃n]1,1) can become negative

(which is meaningless) so that R̃sr1
is negative semi-definite and hence the desired signal is ill-defined.

This explains why the first column decomposition based filters often provide poor NR performance in

low input SNR scenarios. In addition, if RZ is non positive definite, then the µ̄ in the R1-MWF (33)

may be spuriously decreased instead of increased compared to the µ in the SP-MWF (30).

IV. EVD BASED NR FILTERS

An alternative to the first column decomposition based rank-1 approximation is a rank-1 approximation

based on an EVD of Rs, as also introduced in [15]:

Rs = dmaxd
H
maxλmax

︸ ︷︷ ︸

Rsr1

+RZ (36)

where λmax is Rs’s (real-valued) largest eigenvalue, dmax is the corresponding normalized eigenvector

and RZ is again a remainder matrix. When rank(Rs) = 1, then RZ = 0 and Rsr1
is the same as in

the first column decomposition. When rank(Rs) > 1, then the rank-1 estimated part R̃sr1
is positive

semi-definite if the dominant eigenvalue of R̃s is positive (which is more likely than the first diagonal

element σ̃1,1 of R̃s being positive as needed in the first column decomposition approach).

It is noted that:

Rsf1 = Rsr1
f1 + RZ f1

︸ ︷︷ ︸

=0

= Rsr1
e1 (37)

to be compared to (26), where

f1 = dmaxdmax(1)
∗ (38)

with dmax(1) is the first element of dmax.

An analysis similar to the analysis for the first column decomposition in Section III can then be done

where Rs is replaced by the rank-1 approximation Rsr1
and the remainder matrix RZ is either treated
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as noise or ignored. Equivalently, one can start from a modified MSE criterion where, compared to (17),

the (arbitrary) e1 is replaced by f1:

JEVD−SDW−MWF = E{|WHXs − fH1 Xs|2} + µE{|WHXn|2} (39)

Replacing the desired signal e1Xs by f1Xs is indeed equivalent to replacing Rs by the EVD based Rsr1

as demonstrated by (37).

A. EVD-SDW-MWF

The filter minimizing (39) is given as:

WEVD−SDW−MWF = (Rs + µRn)−1Rsf1 (40)

Plugging (36) and (37) into (40) leads to:

WEVD−SDW−MWF = (Rsr1
+ µ(Rn +

1

µ
RZ))−1Rsr1

e1 (41)

This means that in the SDW-MWF (18) Rs is replaced by the EVD based Rsr1
and the remainder matrix

RZ is effectively treated as noise (up to a scaling with 1
µ ).

To avoid the scaling with 1
µ , the same alternative derivation as for (29) can be applied leading to:

W⋄
EVD−SDW−MWF = (Rsr1

+ µ(Rn + RZ))−1Rsr1
e1 (42)

This means that in the SDW-MWF (18) the desired signal vector Rs is replaced by the EVD based Rsr1

and the remainder matrix RZ is effectively returned to noise.

B. EVD-SP-MWF

Based on the MSE criterion (39) it is also possible to derive the SP-MWF:

WEVD−SP−MWF = R−1
n Rsf1

fH1 Rsf1

µfH1 Rsf1 + Tr{R−1
n Rsf1f

H
1 Rs}

(43)

Plugging (36) into the EVD-SP-MWF formula (43) leads to:

WEVD−SP−MWF = R−1
n Rsr1

f1
1

µ + Tr{R−1
n Rsr1

}
(44)

and

WEVD−SP−MWF = (Rsr1
+ µRn)−1Rsr1

e1 (45)

This means that in the SDW-MWF (18) Rs is replaced by the EVD based Rsr1
and the remainder matrix

RZ is simply ignored.

The EVD-R1-MWF derivation is omitted for conciseness.
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C. A matrix approximation based derivation of EVD-SDW-MWF and EVD-SP-MWF

From a given Rx and Rn the autocorrelation matrix of the speech component can be computed as

Rs = Rx−Rn and these matrices can be plugged in the SDW-MWF formula (18). It has been mentioned

in Section III-D that this may result in poor NR performance, in particular in low input SNR scenarios,

where then the estimated R̃s is oftentimes indefinite rather than positive semi-definite. To avoid this, an

alternative approach can be followed where first a better autocorrelation matrix of the speech component

is computed (call it Rsr1
) together with a better autocorrelation matrix of the noise component (call

it Rnr1
). To compute the {Rsr1

,Rnr1
}, a matrix approximation problem is formulated, specifying that

Rnr1
should provide a good approximation to the given Rn, while (Rnr1

+ Rsr1
) should provide a good

approximation to the given Rx. In addition, “a priori knowledge” is incorporated, namely that Rsr1
should

be a rank-1 matrix. The so obtained {Rsr1
,Rnr1

} can then be used in the SDW-MWF formula (18). It is

demonstrated in this section that this approach indeed leads to the EVD-SDW-MWF and EVD-SP-MWF,

and so provides an alternative interpretation of these filters.

It is noted that the rank-1 condition for the autocorrelation matrix of the speech component is general-

ized to a rank-K condition in section VI. The rank condition is then also seen to be a crucial ingredient,

where in the extreme case of K = M (i.e., effectively no rank condition) the solution to the matrix

approximation problem is merely {Rx − Rn,Rn}, i.e., the autocorrelation matrices remain unchanged.

The {Rsr1
,Rnr1

} should minimize the following criterion:

Jr1 = α||Rx − (Rnr1
+ Rsr1

)||2F + (1 − α)||Rn − Rnr1
||2F (46)

with ||.||F the Frobenius norm. Here, Rnr1
and Rsr1

are positive semi-definite matrices and Rsr1
is a

rank-1 matrix. The two approximations may be given a different weight, i.e., α and (1−α), where α is a

constant (0 < α < 1). In the case of estimated autocorrelation matrices, for instance, it may make sense

to give a smaller weight to the approximation of the noise autocorrelation matrix (i.e. α > 0.5 ), as this

is estimated in older (hence possibly more outdated) “noise only” frames whenever a noise reduction is

computed in a “speech plus noise” frame.

It is easy to check that when an optimal Rsr1
is given, the optimal solution for Rnr1

is:

Rnr1
= α(Rx − Rsr1

) + (1 − α)Rn (47)

with the positive semi-definiteness of Rnr1
yet to be checked. As Rn is positive semi-definite by

construction, it remains to check if Rx − Rsr1
is positive semi-definite (see below).
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The Rnr1
can then be eliminated from the optimization problem by plugging (47) into (46). Therefore,

after some simple manipulation, Rsr1
should minimize the following criterion:

Jsr1 = α(1 − α)||Rx − Rn − Rsr1
||2F (48)

The optimal solution is then known to be:

Rsr1 = dmaxd
H
maxmax(λmax, 0) (49)

as defined in (36) (assuming λmax is non-negative). For this Rsr1
, the matrix Rx − Rsr1

is indeed seen

to be positive semi-definite, as required.

Once Rsr1
is defined according to (49), Rnr1

is computed based on (47). Two extreme cases can then

be considered, as follows:

• If α → 1, which means that Rnr1
+ Rsr1

is to give the best possible approximation to Rx (first

term in the original optimization function (46)), then Rnr1
= Rx − Rsr1

= Rn + RZ with RZ

defined in (36). By replacing {Rs,Rn} by this {Rsr1
,Rnr1

} in formula (18), the EVD-SDW-MWF

formula (42) is obtained.

• If α → 0, which means that Rnr1
is to give the best possible approximation to Rn (second term in the

original optimization function (46)), then Rnr1
= Rn. By replacing {Rs,Rn} by this {Rsr1

,Rnr1
}

in formula (18), the EVD-SP-MWF formula (45) is obtained.

V. GEVD BASED NR FILTERS

A second alternative to the first column decomposition based rank-1 approximation is a rank-1 ap-

proximation based on the GEVD [16], [17], [18] of the matrix pencil {Rx,Rn}:

Rn = QΣnQ
H (50)

Rx = QΣxQ
H

⇒ R−1
n Rx = Q−H(Σ−1

n Σx)Q
H = Q−H

ΣQH

where Q is an invertible matrix, the columns of which are normalized and define the generalized

eigenvectors. Σx, Σn and Σ are real-valued diagonal matrices with Σx = diag{σx1
· · · σxM

}, Σn =

diag{σn1
· · · σnM

} and Σ = diag{
σx1

σn1
· · ·

σxM

σnM

} (with ordering
σx1

σn1
≥

σx2

σn2
≥ · · · ≥

σxM

σnM

) defining the

generalized eigenvalues.

The Rs is then obtained as:

Rs = Rx − Rn = Q(Σx − Σn
︸ ︷︷ ︸

Σs

)QH (51)
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where Σs = diag{σs1
· · · σsM

} and SNRi =
σsi

σni

=
σxi

σni

− 1 is the SNR in the ith “mode”.

The rank-1 approximation is then based on the decomposition:

Rs = q1q
H
1 σs1

︸ ︷︷ ︸

Rsr1

+RZ (52)

where q1 is the first column of the matrix Q, which corresponds to the highest SNR mode and RZ is

again a remainder matrix. The decomposition can then be sumarized as follows:

Rs = Qdiag{σs1
, σs2

, . . . , σsM
}QH

Rsr1
= Qdiag{σs1

, 0, . . . , 0}QH (53)

RZ = Qdiag{0, σs2
, . . . , σsM

}QH (54)

When rank(Rs) = 1, then RZ = 0 and Rsr1
is the same as in the first column decomposition. When

rank(Rs) > 1, then the estimated rank-1 approximation R̃sr1
is positive semi-definite if the estimated

σ̃s1
= σ̃x1

− σ̃n1
is positive (which is again more likely than the first diagonal element σ̃1,1 of the matrix

R̃s being positive as needed in the first column decomposition approach).

It is noted that:

Rst1 = Rsr1
t1 + RZ t1

︸ ︷︷ ︸

=0

= Rsr1
e1 (55)

to be compared to (26), where

t1 = Q−He1q1(1)
∗ (56)

with q1(1) is the first element of q1.

An analysis similar to the analysis for the first column decomposition in Section III and the EVD

based decomposition in Section IV can then be done where Rs is replaced by the rank-1 approximation

Rsr1
and the remainder matrix RZ is either treated as noise or ignored. Equivalently, one can start from

a modified MSE criterion where, compared to (17), the (arbitrary) e1 is replaced by t1:

JGEVD−SDW−MWF = E{|WHXs − tH1 Xs|2}

+ µE{|WHXn|2} (57)

Replacing the desired signal e1Xs by t1Xs is indeed equivalent to replacing Rs by the GEVD based Rsr1

as demonstrated by (55).
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A. GEVD-SDW-MWF

The filter minimizing (57) is given as:

WGEVD−SDW−MWF = (Rs + µRn)−1Rst1 (58)

Plugging (52) and (55) into (58) leads to:

WGEVD−SDW−MWF = (Rsr1
+ µ(Rn +

1

µ
RZ))−1Rsr1

e1 (59)

To avoid the scaling with 1
µ , the same alternative derivation as for (29) can be applied leading to:

W⋄
GEVD−SDW−MWF = (Rsr1

+ µ(Rn + RZ))−1Rsr1
e1 (60)

This means that in the SDW-MWF (18) the desired signal vector Rs is replaced by the GEVD based

Rsr1
and the remainder matrix RZ is treated as noise.

Plugging (50), (53) and (54) into the GEVD-SDW-MWF formula (59) also leads to:

WGEVD-SDW-MWF = Q−H






σs1
σn1

µ+
σs1
σn1

0

0 0




QHe1 (61)

Note that (61) is still true if (59) is replaced by (60).

From (50) and (53) it appears that (61) can be reformulated as follows:

WGEVD−SDW−MWF = (Rsr1
+ µRn)−1Rsr1

e1 (62)

By comparing (62) to (59) it is seen that the remainder matrix RZ actually has no influence on the

GEVD-SDW-MWF (see also Section V-B).

B. GEVD-SP-MWF

Based on the MSE criterion (57) it is also possible to derive the SP-MWF:

WGEVD−SP−MWF = R−1
n Rst1

tH1 Rst1

µtH1 Rst1 + Tr{R−1
n Rst1f

H
1 Rs}

(63)

Plugging (52) into the GEVD-SP-MWF formula (63) leads to:

WGEVD−SP−MWF = R−1
n Rsr1

t1
1

µ + Tr{R−1
n Rsr1

}
(64)

and

WGEVD−SP−MWF = (Rsr1
+ µRn)−1Rsr1

e1 (65)
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This means that in the SDW-MWF (18) Rs is replaced by the GEVD based Rsr1
and the remainder

matrix RZ is simply ignored. From equations (62) and (65) it appears that the GEVD-SDW-MWF and

the GEVD-SP-MWF are fully equivalent.

WGEVD−SDW−MWF = WGEVD−SP−MWF (66)

The good news here is that the question as to whether RZ should be either treated as noise (GEVD-

SDW-MWF) or ignored (GEVD-SP-MWF) becomes void, as the corresponding solutions are indeed the

same.

C. A matrix approximation based derivation of GEVD-SDW-MWF and GEVD-SP-MWF

In matrix approximation problem (46), rather than using an unweighted Frobenius norm, where absolute

(squared) approximation errors are summed, it may be more appropriate to consider relative approximation

errors, where larger errors are tolerated in places where there is a lot of noise. This is standardly done

by including a noise prewhitening operation. From the GEVD (50) it follows that:

Rn = (QΣ
1/2

n )(QΣ
1/2

n )H (67)

The noise prewhitening is then done by premultiplying each vector with (QΣ
1/2
n )−1. Each autocorre-

lation matrix is premultiplied with (QΣ
1/2

n )−1 and postmultiplied with (QΣ
1/2

n )−H (so that for instance

Rn is prewhitened into I).

The criterion (46) is then replaced by:

Jpw−r1 =α||(QΣ
1/2

n )−1[Rx − (Rnr1
+ Rsr1

)](QΣ
1/2

n )−H ||2F

+ (1 − α)||(QΣ
1/2

n )−1[Rn − Rnr1
](QΣ

1/2

n )−H ||2F (68)

where now Rsr1
and Rnr1

are sought such that after the prewhitening the Frobenius norms are minimal.

It can be verified that the prewhitening does not change (47), i.e., when an optimal Rsr1
is given, the

optimal solution for Rnr1
is still given by (47).

The Rnr1
can then again be eliminated from the optimization problem by plugging (47) into (68).

Therefore, after some simple manipulation, Rsr1
should minimize the criterion (68).

The optimal solution is then shown to be:

Rsr1 = qmaxq
H
maxmax(σx1

− σn1
, 0)

= Qdiag{max(σx1
− σn1

, 0), 0, . . . , 0}QH (70)

January 30, 2014 DRAFT



16

Jspw−r1
= α(1−α)||(QΣ

1/2

n )−1[Rx−Rn−Rsr1
](QΣ

1/2

n )−H ||2F = α(1−α)||(Σ−1
n Σs−I−(QΣ

1/2

n )−1Rsr1
(QΣ

1/2

n )−H ||2F

(68)

Rnr1
= Qdiag{σn1

, ασx2
+ (1 − α)σn2

, . . . , ασxM
+ (1 − α)σnM

}QH (71)

Assuming σx1
− σn1

is non-negative, this corresponds to (55).

Once Rsr1
is defined according to (70), Rnr1

is computed based on (47), leading to (71).

Again, two extreme cases can be considered, as follows:

• If α → 1 then Rnr1
= Rx − Rsr1

= Rn + RZ with RZ defined in (52). By replacing {Rs,Rn} by

this {Rsr1
,Rnr1

} in formula (18), the EVD-SDW-MWF formula (62) is obtained.

• If α → 0 then Rnr1
= Rn. By replacing {Rs,Rn} by this {Rsr1

,Rnr1
} in formula (18), the EVD-

SP-MWF formula (65) is obtained.

It is reiterated that the GEVD-SDW-MWF and GEVD-SP-MWF are found to be fully equivalent (for-

mula (66)), so that in this case, the selection of a good α, remarkably, becomes irrelevant.

VI. RANK-R APPROXIMATION GEVD BASED NR FILTERS

The GEVD based rank-1 approximation in (52) can be seen as an extreme case of a more general

rank-R approximation, which then leads to more general rank-R approximation based NR filters.

Plugging (50) and (51) into the SDW-MWF formula (18) leads to:

WSDW-MWF = Q−H(diag{

σsi

σni

µ +
σsi

σni

})QHe1 (72)

Considering the gains in the diagonal matrix in (72):

1 ≥

σs1

σn1

µ +
σs1

σn1

≥

σs2

σn2

µ +
σs2

σn2

≥ · · · ≥

σsM

σnM

µ +
σsM

σnM

≥ 0 (73)

It has been demonstrated that CI recipients can tolerate a much higher SD than normal hearing subjects.

This means that the NR can be tuned to be more aggressive, which in the SDW-MWF corresponds to

increasing the trade-off parameter µ. Following (73), by increasing µ, a relatively larger weight is given

to the modes with the highest SNR. The modes with the lowest SNR are eventually set to 0.

January 30, 2014 DRAFT



17

This can also be pursued more explicitly by setting the M − R modes with the lowest SNR to 0,

leading to a rank-R approximation based NR filter:

WGEVD-R = Q−H













σs1
σn1

µ+
σs1
σn1

0

. . . 0

0

σsR
σnR

µ+
σsR
σn1

0 0













QHe1 (74)

This NR filter is then equivalent to (72) where the trade-off parameter µ is mode-dependent. In the

M − R modes with the lowest SNR the trade-off parameter µ = ∞ whereas in the R modes with the

highest SNR µ is set to a real value. This approach then again corresponds to tuning the SDW-MWF to

perform a more agressive NR, which indeed makes sense for CI recipients. Note that for R = 1 (rank-1

approximation case) only the mode with the highest SNR is not set to 0 and then (74) reduces to (61),

i.e.,

WGEVD−1 = WGEVD−SDW−MWF = WGEVD−SP−MWF (75)

For R = M , none of the modes is set to 0 and hence

WGEVD−M = WSDW−MWF (76)

The rank-R approximation is effectively based on the decomposition:

Rs = RsrR
+ RZ (77)

where RsrR
is a rank-R approximation of Rs. For R > 1 the matrices can be expressed as follows:

Rs = Qdiag{σs1
, σs2

, . . . , σsM
}QH (78)

RsrR
= Qdiag{σs1

, . . . , σsR
, 0, . . . , 0}QH (79)

RZ = Qdiag{0, . . . , 0, σs(R+1), . . . , σsM
}QH (80)

The rank-R approximation can be further decomposed into a sum of rank-1 terms:

RsrR
=

R∑

i=1

qiq
H
i σsi

︸ ︷︷ ︸

RsRi

(81)

where qi is the ith column of the matrix Q, which corresponds to the ith mode, leading to:

RsRi
= Qdiag{0, . . . , σsi

, . . . , 0}QH (82)
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It is then noted that:

Rs

R∑

i=1

ti =

R∑

i=1

(Rsri
ti + (RZ +

R∑

j=1
j 6=i

Rsri
)ti

︸ ︷︷ ︸

=0

) = RsrR
e1 (83)

to be compared to (26), where

ti = Q−Heiqi(1)
∗ (84)

with qi(1) is the first element of qi and ei an all-zero vector except for a one in the ith position.

An analysis similar to the analysis for the first column decomposition in Section III, the EVD based

decomposition in Section IV and the GEVD based decomposition in Section V can then be done where

Rs is replaced by the rank-R approximation RsrR
and the remainder matrix RZ is either treated as noise

or ignored. Equivalently, one can start from a modified MSE criterion where, compared to (17), the

(arbitrary) e1 is replaced by trR:

JGEVD−R = E{|WHXs − tHrRX
s|2} + µE{|WHXn|2} (85)

where:

trR =

R∑

i=1

ti (86)

Replacing the desired signal e1Xs by trRXs is indeed equivalent to replacing Rs by the GEVD based

RsrR
as demonstrated by (83). Note that trM = e1 and so

JGEVD−M = JSDW−MWF (87)

again leading to (76).

As in the rank-1 approximation case (Section V), it can easily be shown that the RZ can be either

treated as noise or ignored as the corresponding NR filters are both equal to WGEVD−R as given in (74).

VII. EXPERIMENTAL RESULTS

A. Experimental setup

The simulations were run on acoustic path measurements obtained in a reverberant room (RT60 = 0.61s [25],

[26]) with a CORTEX MK2 manikin equipped with two Cochlear SP15 behind-the-ear devices. Each

device has two omnidirectional microphones. The manikin head is used so that the head shadow effects

are taken into account. The sound sources (FOSTEX 6301B loudspeakers) were positioned at 1 meter

from the center of the head. The system was calibrated with a microphone placed at the position of the

center of the head. The input SNR is then the SNR at the center of the head.
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In each experiment, the speech signal was composed of five consecutive sentences from the English

Hearing-In-Noise Test (HINT) database [27] concatenated with five second silence periods. The noise

was the multitalker babble signal from Auditec [28]. Three spatial scenarios were considered, two single

noise source scenarios (S0N45 and S90N270) and one scenario with multiple noise sources (S0N90-180-

270) where the speech source (S) and the noise source(s) (N) are located at the specified angle. When

multiple noise sources are present, different time shifted versions of the multitalker babble signal were

used to ensure uncorrelated noise sources. In each scenario, signals with input SNR varying from -15dB

to 5dB are presented to the left and right devices. The microphone signals are then filtered by several

NR algorithms and the performance is compared.

All the signals were sampled at 20480Hz. The filter lengths and DFT size were set to N = 128 and

the frame overlap was set to half of the DFT size (L = 64). When mentioned, the so-called input SNR

is the SNR at the center of the head (excluding the HRTF effects).

B. Performance measures

An intelligibility weighted SD (SIW-SD) measure is used defined as

SIW − SD =
∑

i

IiSDi (88)

where Ii is the band importance function defined in [29] and SDi the average SD (in dB) in the i-th one

third octave band,

SDi =
1

(21/6 − 2−1/6)f c
i

∫ 21/6fc
i

2−1/6fc
i

|10 log10 Gs(f)|df (89)

with center frequencies f c
i and Gs(f) is given by:

Gs(f) =
PXs

(f)

PZs
(f)

(90)

where PXs
(f) and PZs

(f) are the power, for the frequency f , of the speech component of the input

signal Xs and the speech component output signal Zs, respectively.

The speech intelligibility-weighted SNR (SIW-SNR) [30] is used here to compute the SIW-SNR im-

provement which is defined as

∆SNRintellig =
∑

i

Ii(SNRi,out − SNRi,front) (91)

where SNRi,out and SNRi,front represent the output SNR (at the considered ear) of the NR filter and the

SNR of the signal in the front microphone (at the considered ear) of the ith band, respectively.
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The percentage of estimated Rsr1
’s that are not positive semi-definite (%NPD) is defined as follows:

%NPD =
NPD

NMat
∗ 100 (92)

where NPD is the number of estimated Rsr1
’s that are not positive semi-definite and NMat is the total

number of estimated Rsr1
’s.

C. Algorithms tested

For the first spatial scenario (S0N45) the SDW-MWF (18), the SP-MWF (20), the EVD-SDW-MWF (40)

and the GEVD-SDW-MWF (61) are first tested (Figures 1 and 2), then only the performance of the

SDW-MWF and the GEVD-MWF are investigated further (Figures 3 and 4). For the other two spatial

scenarios (S90N270 and S0N90-180-270) only the performance of the SDW-MWF and the GEVD-MWF

are compared (Figures 5 and 6, respectively Figures 7 and 8).

For each algorithm (SDW-MWF and GEVD-SDW-MWF), three cases are then considered: a bilateral

(2+0) system, a binaural (2+1) system where only the signal from the front microphone of the contra-

lateral device is used (this is referred to as “front”) and a binaural (2+2) system where both microphone

signals from the contra-lateral device are used (this is referred to as “binaural”).

D. Speech source at 90◦, single noise source at 45◦ (S0N45)

In the first spatial scenario, the speech source is located at 0◦ and the noise source at 45◦. The aim

of this scenario is to investigate to which extent an MWF-based NR can benefit from the EVD or the

GEVD based approach when the speech source and the noise source are closely spaced.

The SIW-SNR improvement at the left ear for bilateral NR filters (where each device uses only its own

microphones) is presented in Figure 1. The EVD based NR filters and the GEVD based NR filter exhibit

similar SIW-SNR improvement performance and improve the SIW-SNR by about 2dB compared to the

SDW-MWF. In this particular scenario, at low input SNR, the behaviour of the SP-MWF is unpredictable,

this is caused by the sensitivity of the SP-MWF to the estimated Rsr1
.

Figure 2 presents the %NPD, for the left ear, as a function of the input SNR. At -15dB input SNR,

direct estimation leads to a %NPD of about 70%. EVD and GEVD based approaches allow to decrease

this to 60% and 50% ,respectively.

From now on, only the SDW-MWF and the GEVD-SDW-MWF are going to be considered as, for this

particular scenario, the SP-MWF has been seen to provide unpredictable NR performance and the EVD

based NR does not provide any improvement compared to the GEVD-SDW-MWF.
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Fig. 1: SIW-SNR performance at the left ear (bilateral filters)
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Fig. 2: %NPD for the left ear (bilateral filters)

The next results demonstrate the benefit from the GEVD-SDW-MWF for binaural systems (Figure 3).

Figure 3(c) presents the %NPD, at the left ear, as a function of the input SNR for bilateral, front and

binaural SDW-MWF and GEVD-SDW-MWF. For the SDW-MWF’s the first diagonal element of Rsr1
,
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i.e., Rsr1
(1, 1) is the same in all three cases, therefore, bilateral, front and binaural return the same %NPD

that can be as high as 65% at -15dB input SNR. For the GEVD-SDW-MWF’s on the other hand, the

positive semi-definiteness of Rsr1
depends on σmax = max

σxi

σni

and each additional channel can help to

improve this. Therefore, whereas the bilateral GEVD-SDW-MWF already decreases the %NPD to 50%

at -15dB input SNR, the front GEVD-SDW-MWF and the binaural GEVD-SDW-MWF allow to further

decrease the %NPD to 25% and 20%, respectively.

Figures 3(a) and 3(b) present the SIW-SNR improvement and the SIW-SD introduced at the left ear,

respectively. At low input SNR, the bilateral SDW-MWF barely gives any SIW-SNR improvement while

it is still introducing about 10dB SD. The front and the binaural SDW-MWF allow to improve the SIW-

SNR from 2dB to 6dB depending on the input SNR while introducing lower SIW-SD than the bilateral

SDW-MWF. It is important to notice that in this scenario, the left ear is the so-called best ear (i.e., the ear

with the highest input SNR) and an improvement of the SIW-SNR of around 2dB to 6dB at the best ear

can already improve comfort and speech understanding tremendously. The GEVD-SDW-MWF provides

an SIW-SNR improvement that is about 2dB to 6dB higher than the improvement for the SDW-MWF but

at the cost of a higher SD. For input SNR higher than -10dB, the GEVD-SDW-MWF and the SDW-MWF

are introducing a similar amount of SD.

Figure 3(f) presents the %NPD, at the right ear, as a function of the input SNR for bilateral, front and

binaural SDW-MWF and GEVD-SDW-MWF. The SDW-MWF returns a %NPD that can be as high as

70% at -15dB input SNR whereas the GEVD-SDW-MWF can decrease this percentage down to about

20%. In this scenario, as the right ear in the worst ear, the Rsr1
can benefit from the higher SNR of the

signal from the contra-lateral device. This is especially the case for the binaural GEVD-SDW-MWF that

is delivering a %NPD as low as 20% at -15dB SNR, which is the same figure as for the best ear (see

also Figure 3(c)).

Figures 3(d) and 3(e) present the SIW-SNR improvement and the SIW-SD introduced at the right ear,

respectively. The bilateral SDW-MWF provides an SIW-SNR improvement below 4dB while it is still

introducing 5db to 10dB SD. The front and the bilateral SDW-MWF allow to improve the SIW-SNR

from 4dB to 7dB depending on the input SNR while introducing less than 6dB SD. The GEVD-SDW-

MWF provides an SIW-SNR improvement that is up to 10 dB higher than the improvement for the

corresponding SDW-MWF, at a cost of a higher SIW-SD at low input SNR (up to 5dB). For input SNR

higher than -10dB, however, the GEVD-SDW-MWF and the SDW-MWF are introducing a similar SD.

In this scenario, as the right ear in the worst ear, the NR can benefit from the higher SNR of the signals

from the contra-lateral device which is especially the case for the GEVD-SDW-MWF.
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The next two experiments support the claim that the GEVD-SDW-MWF allows to increase the SIW-

SNR while introducing only a controlled SD (Figure 4). In the first experiment, the trade-off parameter

µ in the GEVD-SDW-MWF is set such that the same amount of SIW-SD is introduced as with the

corresponding SDW-MWF with a µ = 1. Figures 4(a) and 4(b) present the SIW-SNR improvement at the

left and right ear, respectively, for the SDW-MWF and the GEVD-SDW-MWF. In all cases the SIW-SNR

performance of the GEVD-SDW-MWF is decreased by about 1dB compared to Figures 3(a) and 3(b).

This means that, the GEVD-SDW-MWF still allows to improve the SIW-SNR by up to 10dB compared

to the SDW-MWF.

In the second experiment, the trade-off parameter µ in the SDW-MWF is set such that the SDW-

MWF delivers the same SIW-SNR improvement as the corresponding GEVD-SDW-MWF with µ = 1.

Figures 4(c) and 4(d) present the SIW-SD introduced by the SDW-MWF and the GEVD-SDW-MWF at

the left and right ear, respectively. In order to deliver a similar SIW-SNR performance, the SDW-MWF

has to introduce 5dB to 10dB more SIW-SD than the corresponding GEVD-SDW-MWF at low input

SNR.

E. Speech source at 0◦, single noise source at 270◦ (S90N270)

In the second spatial scenario, the speech source is located at 90◦ and the noise source at 270◦. The

aim of this scenario is to investigate to which extent the GEVD based NR can improve the SIW-SNR

performance at the best ear and the worst ear (Figure 5).

Figure 5(c) presents the %NPD, at the left ear, for the SDW-MWF and GEVD-SDW-MWF. The SDW-

MWF returns a %NPD that can be as high as 70% at -15dB input SNR. The GEVD-SDW-MWF can

decrease the %NPD to about 20% in the binaural case. In this scenario, as the left ear in the worst ear,

the Rsr1
can benefit from the higher SNR of the signals from the contra-lateral device. This is especially

the case for the front and the binaural GEVD-SDW-MWF that are delivering the same %NPD as the for

the best ear (see also Figure 5(f)).

Figures 5(a) and 5(b) present the SIW-SNR improvement and the SIW-SD introduced at the left ear,

respectively. The bilateral SDW-MWF provides an SIW-SNR improvement varying between 3dB and 7dB

depending on the input SNR. The front and the binaural SDW-MWF allow to improve the SIW-SNR

by 7dB to 8dB while introducing lower SIW-SD than the bilateral SDW-MWF. The GEVD-SDW-MWF

provides an SIW-SNR improvement 7dB to 15dB higher than the improvement for the corresponding

SDW-MWF, at the cost of higher SIW-SD (up to 4dB) at low input SNR.

Figure 5(f) presents the %NPD, at the right ear, for the SDW-MWF and and the GEVD-SDW-MWF.
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The SDW-MWF returns a %NPD that can be as high as 55% at -15dB input SNR whereas the GEVD-

SDW-MWF can decrease the %NPD to about 20% in the binaural case.

Figures 5(d) and 5(e) present the SIW-SNR improvement and the SIW-SD introduced at the right ear,

respectively. The bilateral SDW-MWF delivers an SIW-SNR improvement from 2dB to 4dB. At low

input SNR, the front and the binaural SDW-MWF suffer from the low input SNR of the signals from

the contra-lateral device and deliver a lower SIW-SNR than the bilateral SDW-MWF. The GEVD-SDW-

MWF delivers an SIW-SNR up to 6dB higher than the improvement for the corresponding SDW-MWF,

at the cost of a higher SIW-SD (up to 5dB at low input SNR). It is important to note that, at low input

SNR, the front and the binaural GEVD-SDW-MWF still deliver a better SIW-SNR improvement than

the bilateral GEVD-SDW-MWF and are therefore less affected by the low SNR of the signals from the

contra-lateral device than the corresponding SDW-MWF.

Figures 6(a) and 6(b) present the SIW-SNR improvement at the left and right ear, respectively, for the

SDW-MWF and the GEVD-SDW-MWF when the trade-off parameter µ is set so that the GEVD-SDW-

MWF introduces the same amount of SIW-SD as the corresponding SDW-MWF (with µ = 1). In this

case, the GEVD-SDW-MWF still outperforms the corresponding SDW-MWF and allows to improve the

SIW-SNR by up to 8dB.

Figures 6(c) and 6(d) present the SIW-SD introduced by the SDW-MWF and the GEVD-SDW-MWF at

the left and right ear, respectively when the trade-off parameter µ is set so that the SDW-MWF delivers the

same SIW-SNR as the corresponding GEVD-SDW-MWF (with µ = 1). The SDW-MWF then introduces

at least 5dB more SIW-SD than the corresponding GEVD-SDW-MWF at low input SNR. Once again, at

the best ear, the front and the binaural SDW-MWF suffer from the poor input SNR of signals from the

contra-lateral device and introduce an extensive amount of SD.

F. Speech source at 0◦, multiple noise sources

(S0N90-180-270)

In the third spatial scenario, the speech source is located at 0◦ and the uncorrelated noise sources at

90◦, 180◦ and 270◦. The aim of this scenario is to investigate to which extent the GEVD based approach

can improve the robustness in multiple noise sources scenarios. The scenario is spatially symmetrical so

the NR will perform similarly in both ears. Therefore, only the results for the right ear are presented

here (Figure 7).

Figure 7(c) presents the %NPD, as a function of the input SNR for the SDW-MWF and the GEVD-

SDW-MWF. The SDW-MWF returns a %NPD that can be up to 65% at -15dB SNR. The GEVD-SDW-
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MWF can decrease this percentage to less than 10%.

Figures 7(a) and 7(b) present the SIW-SNR improvement and the SIW-SD introduced at the right

ear, respectively. The SDW-MWF delivers a SIW-SNR improvement varying between 3dB and 7dB

depending on the input SNR. As the scenario is symmetrical, the input SNR is similar at both ears and

the front and the binaural NR cannot benefit from the higher input SNR at the contra-lateral device.

There is no clear benefit either from the increased number of channels in the case of the SDW-MWF.

The GEVD-SDW-MWF provides an SIW-SNR improvement 3dB to 4dB higher than the improvement

for the corresponding SDW-MWF. The front and the binaural GEVD-SDW-MWF deliver an SIW-SNR

improvement up to 2dB higher than the bilateral GEVD-SDW-MWF, which shows the benefits from the

increased number of channels in the case of the GEVD-SDW-MWF.

When the trade-off parameter µ is set so that the GEVD-SDW-MWF introduces the same amount

of SIW-SD as the corresponding SDW-MWF (with µ = 1), the GEVD-SDW-MWF performance is

just slightly reduced and still better than the SDW-MWF performance. Figure 8 presents the SIW-SD

introduced by the SDW-MWF and the GEVD-SDW-MWF at the right ear when the trade-off parameter

µ is set so that the SDW-MWF delivers the same SIW-SNR as the corresponding GEVD-SDW-MWF

(with µ = 1). The SDW-MWF then introduces up to 20dB more SIW-SD than the GEVD-SDW-MWF.

VIII. CONCLUSIONS

In this paper first the difference between the SDW-MWF, the R1-MWF and the SP-MWF (which are

equivalent when the autocorrelation matrix of the speech signal is a rank-1 matrix) has been analysed

when the rank of autocorrelation matrix of the speech signal is effectively greater than one. In this case,

it is possible to decompose the autocorrelation matrix of the speech signal into the sum of a rank-1

approximation and a remainder matrix. The SDW-MWF, the R1-MWF and the SP-MWF then differ in

the way this remainder matrix is treated.

At low input SNR, due to noise non-stationarity, the estimated autocorrelation matrix of the speech

signal may not be positive semi-definite. To tackle this problem, an EVD based rank-1 approximation

approach to SDW-MWF and to SP-MWF has been introduced. It is then again possible to decompose

the autocorrelation matrix of the speech signal into the sum of a rank-1 approximation and a remainder

matrix and the difference between the EVD based SDW-MWF and SP-MWF again depends in the way

the remainder matrix is treated. It has been demonstrated that the EVD-SDW-MWF provides an improved

SIW-NSR performance.

A GEVD based rank-1 approximation approach to SDW-MWF and to SP-MWF has finally been
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Fig. 8: SIW-SD performance at the right ear, comparison between SDW-MWF and GEVD-SDW-MWF

with equal SIW-SNR improvement

proposed. The rank-1 approximation based SDW-MWF and SP-MWF have then been shown to be fully

equivalent even when the rank of the autocorrelation matrix of the speech signal is greater than one.

As it effectively selects the mode with the highest SNR this approach has been shown to allow a more

reliable estimation of the autocorrelation matrix of the speech signal than both the original SDW-MWF

an SP-MWF approaches and the EVD based approaches, fully taking advantage of the high input SNR

at best ear in the case of a binaural system.

The GEVD-SDW-MWF has been shown to deliver a better SIW-SNR than the corresponding SDW-

MWF while introducing the same SD. Similarly, it has been shown that if the SDW-MWF was to be

set to deliver similar SIW-SNR as the corresponding GEVD-SDW-MWF, it introduces a large amount

of SD. Finally, the rank-1 approximation based GEVD-SDW-MWF has been generalised to a rank-R

approximation based approach (GEVD-R), which encompasses the GEVD-SDW-MWF (GEVD-1) and

the SDW-MWF (GEVD-M) as extreme cases.

As a final remark, in this paper a perfect VAD is used and the benefits of the presented algorithms

might be limited by the need of a VAD at SNR ranging from -15dB to 5dB. However, the improvement

due to the GEVD-SDW-MWF happens not only at -15dB SNR but also at 5dB SNR where typically,

VADs are functional. Also, binaural VADs have been shown to be functional down to about -5dB [31]
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SNR whereas a monaural VAD usually stops being efficient around 0dB SNR.
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