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LOW-RANK APPROXIMATION OF GENERIC p × q × 2 ARRAYS
AND DIVERGING COMPONENTS IN THE

CANDECOMP/PARAFAC MODEL∗

ALWIN STEGEMAN†

Abstract. We consider the low-rank approximation over the real field of generic p×q×2 arrays.
For all possible combinations of p, q, and R, we present conjectures on the existence of a best rank-R
approximation. Our conjectures are motivated by a detailed analysis of the boundary of the set
of arrays with at most rank R. We link these results to the Candecomp/Parafac (CP) model for
three-way component analysis. Essentially, CP tries to find a best rank-R approximation to a given
three-way array. In the case of p× q× 2 arrays, we show (under some regularity condition) that if a
best rank-R approximation does not exist, then any sequence of CP updates will exhibit diverging
CP components, which implies that several components are highly correlated in all three modes
and their component weights become arbitrarily large. This extends Stegeman [Psychometrika, 71
(2006), pp. 483–501], who considers p× p× 2 arrays of rank p+1 or higher. We illustrate our results
by means of simulations.

Key words. low-rank tensor approximations, border rank, arrays, Candecomp, Parafac, three-
way arrays, degenerate Parafac solutions
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1. Introduction. We consider the problem of finding a best low-rank approxi-
mation to a three-way array X ∈ R

p×q×2. In this introductory section, we discuss the
general problem of finding a best low-rank approximation to a k-way array and its
applications in algebraic complexity theory (the multiplicative complexity of the com-
putation of bilinear forms) and psychometrics (the Candecomp/Parafac (CP) model
for three-way component analysis). Also, the consequences of an array not having
a best low-rank approximation are discussed for these fields of research. Finally, we
consider some results of the theory of matrix pencils with implications on the rank of
p× q × 2 arrays, and show how our analysis fits into this literature.

1.1. Low-rank approximation of arrays. Let the rank over a field F of a
k-way array X ∈ Fd1×···×dk be defined in the usual way, i.e., as the smallest number
of rank-1 arrays in Fd1×···×dk whose sum equals X; see Hitchcock [15, 16]. A k-way
array has rank 1 over F if it is the outer product of k vectors in Fd1 , . . . ,Fdk . The
problem of finding a best rank-R approximation of X ∈ R

d1×···×dk boils down to
minimizing ∥∥∥∥∥X −

R∑
r=1

a(1)
r ◦ · · · ◦ a(k)

r

∥∥∥∥∥(1.1)

over the vectors a
(j)
r ∈ Fdj , j = 1, . . . , k, r = 1, . . . , R, where ◦ denotes the outer

product and ‖ · ‖ denotes some norm on Fd1×···×dk . Unless stated otherwise, we will
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LOW-RANK APPROXIMATION OF p× q × 2 ARRAYS 989

assume that F = R and ‖ · ‖ is the Frobenius norm. We denote the rank of an array
X as rank◦(X).

For k = 2, all best rank-R approximations can be obtained from the singular
value decomposition of the matrix to be approximated; see Eckart and Young [11].
However, for k ≥ 3 a best rank-R approximation does not always exist. Examples of
arrays that can be approximated arbitrarily well by arrays of lower rank are known
from the algebraic complexity literature; see Bini et al. [1], Bini, Lotti, and Romani
[2], and Bini [3], as well as from the psychometric and chemometric literature; see
ten Berge, Kiers, and De Leeuw [37] and Paatero [30]. Stegeman [34] has shown,
under some regularity condition, that generic p× p× 2 arrays of rank p + 1 (a set of
positive volume in R

p×p×2) do not have a best rank-p approximation. De Silva and
Lim [10] show that a best rank-1 approximation always exists, while for any k ≥ 3,
any d1, . . . , dk ≥ 2, and any R ∈ {2, . . . ,min(d1, . . . , dk)}, a rank-(R + 1) array exists
which has no best rank-R approximation. Also, [10] show that all 2× 2× 2 arrays of
rank 3 (a set of positive volume in R

2×2×2) have no best rank-2 approximation, and
that, for any d1, d2, d3 ≥ 2, the set of arrays in R

d1×d2×d3 which have no best rank-2
approximation has positive volume.

1.2. Algebraic complexity theory and array rank. An important problem
in algebraic complexity theory is the multiplicative complexity of the computation of
a set of bilinear forms uTXkv, k = 1, . . .K, where u and v are indeterminates and
the Xk have elements in a field F . Strassen [36] showed that the K bilinear forms
uTXkv can be computed with R nonscalar multiplications (i.e., multiplications of
two elements not in F), where R is the rank over F of the array X with slices Xk.

Indeed, if X =
∑R

r=1 ar ◦ br ◦ cr, for vectors ar, br, and cr with elements in F , then
we have

uTXkv =

R∑
r=1

(uTar) (bT
r v) ckr ,(1.2)

and the K bilinear forms uTXkv can be computed using R nonscalar multiplications.
See also Brockett and Dobkin [6].

Suppose F = R and X can be approximated arbitrarily well by rank-(R − 1)
arrays. In that case, we could replace X in (1.2) by a rank-(R − 1) array close to
it and use only R − 1 nonscalar multiplications in the computation of the bilinear
form. Since the rank-(R − 1) array can be chosen arbitrarily close to X, the error in
the computation of the bilinear form can be made arbitrarily small. This idea was
pointed out by Bini et al. [1], Bini, Lotti, and Romani [2], and Bini [3, 4] and has
been used in the design of algorithms for matrix multiplication; see Bürgisser, Clausen,
and Shokrollahi [7, Chapter 15] and the references therein. Hence, the nonexistence
of a best rank-(R − 1) approximation of X yields a faster and arbitrarily accurate
computation of the bilinear forms.

To express the optimal computational gain that can be achieved by approximating
X with arrays of lower rank, Bini, Lotti, and Romani [2] have introduced the notion
of border rank. The border rank of an array X, which we denote by rankB(X), is
defined as

rankB(X) = min{R : X can be approximated arbitrarily well by arrays of rank R} .
(1.3)
From this definition it follows that rankB(X) ≤ rank◦(X). Results on the border
rank of various arrays have been obtained by Bini [4, 5] and Landsberg [25]. For later
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990 ALWIN STEGEMAN

use we state the following result. Let ranki(X) denote the rank of the set of mode i
fibers of X, where a mode i fiber is a vector obtained by varying the mode i index
and keeping all other indices fixed. This notion of rank is due to Hitchcock [15, 16]
and the set of ranki(X) for all i is called the multilinear rank of X in De Silva and
Lim [10]

Proposition 1.1. For a k-way array X ∈ R
d1×···×dk , there holds

max
i

ranki(X) ≤ rankB(X) ≤ rank◦(X) .(1.4)

Proof. The second inequality follows from (1.3). A proof of the inequality
ranki(X) ≤ rank◦(X) is given by De Silva and Lim [10]. We state it here for com-

pleteness. Let R = rank◦(X) and X =
∑R

r=1 a
(1)
r ◦ · · · ◦ a

(k)
r . Then all mode i fibers

lie in the span of a
(i)
1 , . . . ,a

(i)
R . This implies ranki(X) ≤ R.

We show the first inequality by contradiction. Suppose t = rankB(X) < ranki(X).

Then there exists a sequence of rank-t arrays Y(n) converging to X. But then also

the matrices Y
(n)
i , containing as columns the mode i fibers of Y(n), must converge

to the matrix Xi containing the mode i fibers of X. This is a contradiction, since

rank(Y
(n)
i ) ≤ t < rank(Xi) for all n, and a matrix cannot be approximated arbitrarily

well by matrices of lower rank. Note that the upper semicontinuity of the multilinear
rank is used here; see De Silva and Lim [10].

1.3. The CP model and diverging components. Carroll and Chang [9]
and Harshman [13] have independently proposed the same method for component
analysis of three-way data arrays and named it Candecomp and Parafac, respectively.
We denote the CP model as

X =

R∑
r=1

ωr (ar ◦ br ◦ cr) + E ,(1.5)

where X is a d1 × d2 × d3 data array, ωr is the weight of component r, and ‖ar‖ =
‖br‖ = ‖cr‖ = 1 for r = 1, . . . , R. The Frobenius norm of E is minimized to find the
R components ar ◦br ◦cr and the weights ωr. For an overview and comparison of CP
algorithms, see Hopke et al. [17] and Tomasi and Bro [41]. From (1.5) it is clear that
the CP model tries to find a best rank-R approximation to the three-way array X.

The CP model (1.5) can be seen as a three-way extension of the principal com-
ponent analysis model for matrices. For example, if the vectors ar are interpreted as
the components in mode 1, then br and cr are the loadings on these components for
modes 2 and 3, respectively. The real-valued CP model, i.e., where X and the model
parameters are real-valued, is used in a majority of applications in psychometrics
and chemometrics; see Kroonenberg [21] and Smilde, Bro, and Geladi [33]. Complex-
valued applications of CP occur in, e.g., signal processing and telecommunications
research; see Sidiropoulos [32]. In this paper, we consider only the real-valued CP
model.

A matrix notation of the CP model (1.5) is as follows. Let Xk (d1 × d2) and Ek

(d1 × d2) denote the kth slices of X and E, respectively. Then (1.5) can be written as

Xk = ACk ΩBT + Ek , k = 1, . . .K ,(1.6)

where A (d1×R) and B (d2×R) have the vectors ar and br as columns, respectively,
Ω (R×R) is the diagonal matrix with the weights ωr on its diagonal, and Ck (R×R)
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LOW-RANK APPROXIMATION OF p× q × 2 ARRAYS 991

is the diagonal matrix with the kth elements of the vectors cr on its diagonal. The
model part of the CP model is characterized by (A,B,C,Ω), where C (d3 × R) has
the vectors cr as columns. We refer to A,B,C as the component matrices and to Ω
as the weights matrix.

The most attractive feature of CP is its uniqueness property. Kruskal [22] has
shown that, for fixed residuals E, the vectors ar, br, and cr and the weights ωr are
unique up to sign changes and a reordering of the summands in (1.5) if

kA + kB + kC ≥ 2R + 2 ,(1.7)

where kA, kB, kC denote the k-ranks of the component matrices. The k-rank of a
matrix is the largest number x such that every subset of x columns of the matrix is
linearly independent. Hence, contrary to the matrix principal components model, the
CP components are rotationally unique if (1.7) holds.

However, the practical use of CP has been hampered by the occurrence of diverg-
ing CP components. In the majority of such cases, exactly two components displayed
the following pattern. Let the model parameters of the nth update of a CP algorithm
be denoted by a superscript (n). In the case of two diverging CP components, say

s and t, the weights ω
(n)
s and ω

(n)
t become arbitrarily large in magnitude while the

vectors a
(n)
s , b

(n)
s , and c

(n)
s become nearly identical (up to sign changes) to a

(n)
t , b

(n)
t ,

and c
(n)
t such that ∑

r=s,t

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

remains “small.” Hence, the contributions of components s and t diverge in nearly
opposite directions, but their sum still contributes to a better fit of the CP model.
The CP algorithm becomes very slow when this occurs; see Mitchell and Burdick [28].
When the CP algorithm is terminated, the CP components obtained are said to form
a degenerate CP solution. Since this use of the term degenerate is different from its
general meaning in mathematics, we will speak of diverging CP components instead.
This also reflects the fact that this phenomenon occurs when running a CP algorithm,
while a degenerate CP solution suggests a property of one CP solution only.

The first case of two diverging CP components was reported in Harshman and
Lundy [14]. Contrived examples are given by ten Berge, Kiers, and De Leeuw [37]
and Paatero [30]. The latter has also constructed sequences of CP updates with three
and four diverging components.

Kruskal, Harshman, and Lundy [24] have argued that diverging CP components
occur due to the fact that the array X has no best rank-R approximation. They
reason that every sequence of CP updates of which the objective value is approaching
the infimum of the CP objective function must fail to converge and displays a pattern
of diverging CP components. Stegeman [34] confirms this statement (under some
regularity condition) for generic p× p× 2 arrays of rank p+ 1 with R = p. Stegeman
[35] confirms the statement of [24] for generic 3 × 3 × p arrays with symmetric slices
of rank p + 1 with R = p, p = 4, 5, for generic 3 × 3 × 5 arrays of rank 6 with R = 5,
and for generic 8 × 4 × 3 arrays of rank 9 with R = 8.

For given d1, d2, d3 ≥ 2, let

SR = {Y ∈ R
d1×d2×d3 : rank◦(Y) ≤ R} ,(1.8)

and let SR denote its closure. We assume that rank◦(X) > R. Hence, if X has a
best rank-R approximation, it will be a boundary point of SR. So far, all but one
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992 ALWIN STEGEMAN

mathematically analyzed case of diverging CP components (i.e., ten Berge, Kiers,
and De Leeuw [37], Paatero [30], Stegeman [34, 35], and the results in the present

paper) are due to the fact that the sequence Y(n) ∈ SR of CP updates converges

to a boundary point X̃ of SR with rank◦(X̃) > R, i.e., X̃ ∈ SR\SR, where X̃ is a
best approximation of X from SR. In these cases, the phenomenon of diverging CP
components can be formalized as follows. There exist disjoint index sets I1, . . . , Im ⊂
{1, . . . , R} such that as Y(n) → X̃,

|ω(n)
r | → ∞ for all r ∈ Ij , j = 1, . . . ,m ,(1.9)

while

∥∥∥∥∥∥
∑
r∈Ij

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

∥∥∥∥∥∥ is bounded , j = 1, . . . ,m .(1.10)

For two diverging CP components, we have m = 1 and card(I1) = 2. For three
diverging CP components, we have m = 1 and card(I1) = 3. For two groups of
diverging CP components we have m = 2, et cetera. For the case of generic p× q × 2
arrays it will be shown in section 3 how the rank of X̃ is related to the number of
groups m and the number of diverging CP components in each group.

Note that we do not consider cases where rank◦(X) = R and its CP decomposition
resembles a case of diverging CP components, examples of which can be found in
Mitchell and Burdick [28] and Paatero [30].

If X does not have a best rank-R approximation, this implies that all best ap-
proximations X̃ of X from SR have at least rank R + 1. In the cases analyzed so
far, any sequence Y(n) of CP updates converging to X̃ has been shown (under some
regularity conditions) to exhibit diverging CP components in this situation. Hence,
modified CP algorithms designed to avoid diverging CP components (e.g., Rayens and
Mitchell [31] and Cao et al. [8]) are no remedy here.

As mentioned above, there is one known case where X has a best rank-R approx-
imation, but diverging CP components may still occur. This is the case of 3 × 3 × 5
arrays of rank 6 and R = 5. Here, a best rank-5 approximation X̃ of X may exist
while sequences Y(n) of CP updates converging to X̃ sometimes show diverging CP
components and sometimes do not; see Stegeman [35]. This is due to the partial

uniqueness of the CP decomposition of Y(n); see ten Berge [40].

Diverging CP components are a problem in the analysis of three-way arrays,
since the obtained CP solution is hardly interpretable. Diverging CP components can
be avoided by imposing orthogonality constraints on the components matrices (see
Harshman and Lundy [14]) but this will come with some loss of fit. Lim [27] shows
that for nonnegative X and nonnegative component matrices there always exists an
optimal CP solution and diverging CP components do not occur.

1.4. Matrix pencils and the rank of p × q × 2 arrays. A matrix pencil
X1 +λX2 consists of two matrices X1 and X2 with elements in a field F and a scalar
λ. A matrix pencil is called regular if both X1 and X2 are square matrices and there
exists an λ such that det(X1 + λX2) 
= 0. In all other cases, the pencil is called
singular. For regular matrix pencils, equivalence results and a canonical form were
established by Weierstrass [42]. The corresponding theory for singular pencils was
developed by Kronecker [20]. For an overview of matrix pencil theory we refer the
reader to Gantmacher [12, Chapter XII].
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Ja’ Ja’ [19] has extended Kronecker’s [20] equivalence results for p × q matrix
pencils to p×q×2 arrays. The same author [18] obtained results on the multiplicative
complexity of computing two bilinear forms by considering the Kronecker canonical
form of the associated matrix pencil and gave a complete characterization of the rank
of the associated p× q × 2 array. In particular, Ja’ Ja’ [18] showed that for p ≥ q,

X ∈ R
p×q×2 =⇒ rank◦(X) ≤ q + min(q, floor(p/2)) ,(1.11)

where the rank is over the real field and floor(x) denotes the largest integer smaller
than or equal to x; see also Kruskal [23]. The upper bound (1.11) is sharp, i.e., there
exist p× q× 2 arrays with rank equal to the upper bound. For later use, we state the
following result, also due to Ja’ Ja’ [18].

Proposition 1.2. Let X ∈ R
p×p×2 with p × p slices Xi, i = 1, 2. Suppose

det(X1) 
= 0 and X2X
−1
1 has p real eigenvalues. Let the Jordan normal form (see

Gantmacher [12, Chapter VI]) of X2X
−1
1 be given by diag(Jn1(λ1), . . . , Jnr (λr)),

where Jnj (λj) denotes an nj × nj Jordan block with diagonal elements equal to λj.
Then

rank◦(X) = p + k ,(1.12)

where the rank is over the real field and k is the number of Jordan blocks Jnj (λj) with
nj > 1.

For a p×p matrix Z with eigenvalues λ1, . . . , λr, we define the algebraic multiplicity
of λj as the multiplicity of λj as root of the characteristic polynomial det(Z − λIp),
and the geometric multiplicity of λj as the maximum number of linearly independent
eigenvectors of Z associated with λj (i.e., the dimensionality of the eigenspace of
λj). Recall that for Z = diag(Jn1(λ1), . . . , Jnr (λr)), the eigenvalues are λ1, . . . , λr

(not necessarily distinct), and each Jordan block Jnj (λj) adds nj to the algebraic
multiplicity of λj and 1 to the geometric multiplicity of λj . This establishes a relation
between the eigenvalues of X2X

−1
1 and the rank of the array X in Proposition 1.2. In

particular, if X2X
−1
1 has p real eigenvalues and is diagonalizable, then rank◦(X) = p

(see also Ten Berge [38]). Ja’ Ja’ [18] also showed that if X2X
−1
1 has at least one pair

of complex eigenvalues, then rank◦(X) ≥ p + 1 (see also [38]).
For generic p× q× 2 arrays, Ten Berge and Kiers [39] showed that, for p > q, the

rank of X is equal to min(p, 2q) almost everywhere, i.e., rank(X) 
= min(p, 2q) on a set
of zero volume in R

p×q×2. We call this rank value the typical rank. The same authors
show that for p = q, the typical rank of X is two-valued, namely {p, p+1}, where the
sets of both rank values have positive volume. Notice that for p× q× 2 arrays the set
SR of arrays with rank less than or equal to R has dimensionality 2pq if R is larger
than or equal to the typical rank. If R is smaller than the typical rank, then SR has
dimensionality lower than 2pq. Analogously, if R is larger than the typical rank, then
the set Sc

R = R
p×q×2\SR has dimensionality lower than 2pq.

Notice that if p ≥ 2q, then both the typical rank and the maximum rank (1.11)
are equal to 2q. If 2q > p > q, then the typical rank equals p, while the maximum
rank equals

q + floor(p/2) ≥ ((p + 1)/2) + floor(p/2) ≥ p .(1.13)

Bini [4] has studied the border rank of so-called nondegenerate p× q×2 arrays, where
a 3-way array X ∈ R

d1×d2×d3 is called nondegenerate if ranki(X) = di for i = 1, 2, 3.
The use of the term nondegenerate here is a bit strange, since generic p× q× 2 arrays
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are nondegenerate only if p ≤ 2q and q ≤ 2p. The following result is based on the
results of Ja’ Ja’ [18] and is due to Bini [4].

Proposition 1.3. Let X ∈ R
p×q×2 such that rank1(X) = p, rank2(X) = q, and

rank3(X) = 2. Let X1 and X2 be the p× q slices of X.
(i) Let p = q and det(X1) 
= 0. Then rankB(X) = p if and only if X2X

−1
1 has p

real eigenvalues. If X2X
−1
1 has at least one pair of complex eigenvalues, then

rankB(X) = p + 1.
(ii) Let p = q and det(X1) = 0. Then rankB(X) = p if det(X1 + λX2) has p

real roots λ. If det(X1 + λX2) has at least one pair of complex roots, then
rankB(X) ∈ {p, p + 1}.

(iii) If p > q, then rankB(X) = p if det(Y1 + λY2) has only real roots λ, where
Y1 + λY2 is the regular pencil kernel in the Kronecker canonical form of
X1 + λX2. If det(Y1 + λY2) has at least one pair of complex roots, then
rankB(X) ∈ {p, p + 1}.

Next, we discuss the link between the results in the present paper and the existing
results mentioned above. In this paper, we consider the low-rank approximation of
generic real-valued p× q×2 arrays, where we assume p ≥ q without loss of generality.
Such an array has typical rank min(p, 2q) and we show whether or not it has a best
rank-R approximation, with R < min(p, 2q). If such a generic array is nondegenerate
in the sense of Bini [4], then it has typical rank min(p, 2q) = p and rank◦(X) ≥ p; see
(1.4). If rank◦(X) = p, then it follows from (1.4) that also rankB(X) = p. The case
rankB(X) = p+1 is possible only for arrays X with rank larger than the typical rank p,
and such arrays are not generic. Hence, our results are not covered by Proposition 1.3.

To obtain our results, we study the boundary of SR, the set of p × q × 2 arrays
with rank at most R, and distinguish boundary arrays lying in SR from those with
rank larger than R. Clearly, a boundary array X̃ of SR has border rank at most R
and is not a nondegenerate array in the sense of Bini [4] since rank1(X̃) ≤ R < p; see
(1.4). However, we transform the set SR to a subset of the smaller space of R×R× 2
arrays if R ≤ q, or R × q × 2 arrays if R > q, and Propositions 1.2 and 1.3 apply to
individual boundary arrays in this smaller space. But to answer the question whether
a generic p× q× 2 array has a best rank-R approximation almost everywhere, or on a
set of positive volume, or on a set of zero volume, we need dimensionality arguments
to establish which rank values have positive volume on the boundary of SR. Moreover,
we do not use the Kronecker canonical form in (iii) of Proposition 1.3 to obtain our
results.

This paper is organized as follows. We present our results on the existence of a
best rank-R approximation to generic p × q × 2 arrays in section 2. In section 3 we
show (under some regularity condition) that if there is no best rank-R approximation,

then, in the CP model, any sequence Y(n) ∈ SR converging to an optimal boundary
point X̃ of SR (with rank◦(X̃) > R) will exhibit diverging CP components as defined
by (1.9) and (1.10). Moreover, we show that there is a direct relation between the rank

of X̃ and the number of groups of diverging CP components. This extends Stegeman
[34] who considered rank-p approximations to generic p× p× 2 arrays of rank p + 1.
In section 4 we illustrate our results by means of calculating rank-R approximations
to random p × q × 2 arrays for a variety of values for p, q, and R. Finally, section 5
contains a discussion on the presented results.

2. Low-rank approximation of generic p × q × 2 arrays. For generic X ∈
R

p×q×2, we consider the problem
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LOW-RANK APPROXIMATION OF p× q × 2 ARRAYS 995

Minimize‖X − Y‖(2.1)

subject to Y ∈ SR ,

where SR is the set of real-valued p× q × 2 arrays of rank at most R (see (1.8)) and
the rank is taken over the real field. We also consider the related problem

Minimize‖X − Y‖(2.2)

subject to Y ∈ SR ,

where SR is the closure of SR, i.e., the union of SR and all its boundary points.
Suppose rank◦(X) > R. There holds that any optimal solution of problem (2.2) is a
boundary point of SR. Indeed, from any interior point Y of SR a line to X can be
drawn which intersects with the boundary of SR. Suppose the intersection occurs at
boundary point X̃. Then X̃ has a lower objective value (i.e., is closer to X) than the
interior point Y. Hence, problem (2.1) has an optimal solution, or, equivalently, X

has a best rank-R approximation, if there exists a boundary point X̃ ∈ SR which is
an optimal solution of problem (2.2). Clearly, this always holds if SR is a closed set.
However, De Silva and Lim [10] have shown that SR is closed only for R = 1. Hence,
an investigation of the boundary points of SR is necessary to ascertain whether a best
rank-R approximation exists almost everywhere, or on a set of positive volume, or on
a set of zero volume.

We consider all possible combinations of p, q, and R, where, without loss of
generality, we assume that p ≥ q. As mentioned in section 1, we transform the set
SR to a subset of the smaller space of R×R× 2 arrays if R ≤ q or R× q × 2 arrays
if R > q and use the results of Stegeman [34] and Proposition 1.2 to characterize the
boundary points of SR; in particular, whether they are in SR or in Sc

R.
Unfortunately, our results are not complete. That is, they rely on conjectures

relating the dimensionality of parts of the boundary of SR to the existence of optimal
solutions of problem (2.1). Table 2.1 gives a summary of our results. Below, we
consider all cases in Table 2.1 and state explicitly whether we use a conjecture. Except
for cases 1, 4, and 6, the statements on the existence of a best rank-R approximation
are (partly) based on conjectures.

Cases 1, 4, and 6. In these cases, R is larger than or equal to the typical rank of
X, i.e., X itself lies in SR almost everywhere. Hence, the best rank-R approximation
of X is X itself.

Cases 2, 3, 5, 7, 8, and 9. For these cases, there holds X /∈ SR almost
everywhere. As discussed above, we need to characterize the boundary of SR. We
define the following subsets of R

p×q×2. Let

WR = {Y ∈ R
p×q×2 : rank[Y1|Y2] ≤ R} = {Y ∈ R

p×q×2 : rank1(Y) ≤ R} ,(2.3)

where Y1 and Y2 denote the p× q slices of Y, and let

VR+1 = {Y ∈ WR : rank◦(Y) ≥ R + 1} = WR ∩ Sc
R .(2.4)

We need the following lemma.
Lemma 2.1. We have the following results.
(i) The set WR is closed and the boundary of WR is the set WR itself.
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996 ALWIN STEGEMAN

Table 2.1

Results (cases 1, 4, and 6) and conjectures (cases 2, 3, 5, 7, 8, and 9) on the existence of a best
rank-R approximation to generic p× q × 2 arrays. Here, p ≥ q ≥ 2 and R ≥ 2.

Case X ∈ R
p×q×2 rank◦(X) R Best rank-R approx. exists?

1 p = q p + 1 R ≥ p + 1 almost everywhere

2 p = q p + 1 R = p zero volume

3 p = q p + 1 R < p positive volume

4 p = q p R ≥ p almost everywhere

5 p = q p R < p positive volume

6 p > q min(p, 2q) R ≥ min(p, 2q) almost everywhere

7 p > q min(p, 2q) min(p, 2q) > R > q almost everywhere

8 p > q min(p, 2q) R = q positive volume

9 p > q min(p, 2q) R < q positive volume

(ii) There holds

WR = SR ∪ VR+1 and SR ∩ VR+1 = ∅ .(2.5)

(iii) In case 2, there holds WR = R
p×q×2.

Proof. Statement (i) follows from the fact that any matrix of rank at most R can
be approximated arbitrarily well by rank-(R + 1) matrices.

Next, we prove (ii). From (1.4) it follows that SR ⊆ WR. Since VR+1 = WR∩Sc
R,

we have SR ∩ VR+1 = ∅ by definition. Hence, WR = (WR ∩ SR) ∪ (WR ∩ Sc
R) =

SR ∪ VR+1.
In case 2, we have R = p = q, which implies that [Y1|Y2] is a matrix of order

p × 2p. Obviously, this matrix always has rank less than or equal to p. Hence,
WR = R

p×q×2 in case 2. This proves (iii).
Next, we consider the boundary points of SR. The complement of SR is equal to

Sc
R = Wc

R ∪ VR+1 with Wc
R ∩ VR+1 = ∅ .(2.6)

Hence, the boundary of SR consists of the boundary between SR and VR+1 and the
boundary between SR and Wc

R. Note that these two boundaries may have a nonempty
intersection. We denote the boundary of SR as ∂SR and partition it into the following
two sets. Let

U (1)
R = ∂SR ∩ ∂VR+1 and U (2)

R = ∂SR ∩ (∂VR+1)
c .(2.7)

Hence, U (1)
R consists of all points on the boundary between SR and VR+1, i.e., all

points which can be approximated arbitrarily well from both SR and VR+1.
From Lemma 2.1 it follows that

∂SR ⊆ WR = SR ∪ VR+1 .(2.8)

The following lemma states that U (2)
R is either the empty set or is a subset of SR.

Lemma 2.2. We have the following results.

(i) In case 2, there holds U (2)
R = ∅.
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(ii) In cases 3, 5, 7, 8, and 9, there holds U (2)
R ⊆ SR.

Proof. From (2.8) it follows that U (1)
R ⊆ WR and U (2)

R ⊆ WR. In case 2, we

have WR = R
p×q×2 (see Lemma 2.1) and, hence, VR+1 = Sc

R. This implies that U (1)
R

consists of all points which can be approximated arbitrarily well from SR and Sc
R.

Since these are all boundary points of SR, it follows that U (2)
R = ∅. This proves (i).

Next, consider cases 3, 5, 7, 8, and 9. Here, Wc
R 
= ∅. Suppose Y ∈ VR+1 and

Y ∈ ∂SR. Since SR ∩ VR+1 = ∅, it follows that Y ∈ ∂VR+1 and, hence, Y ∈ U (1)
R .

This implies VR+1 ∩ U (2)
R = ∅. Moreover, from U (2)

R ⊆ WR = SR ∪ VR+1, we obtain

U (2)
R ⊆ SR. This proves (ii).

In the remaining part of this section, we consider the part U (1)
R of the boundary

of SR. For each of the cases 2, 3, 5, 7, 8 and 9 in Table 2.1, we argue that the

nonexistence of a best rank-R approximation is due to the fact that U (1)
R 
⊆ SR.

Case 2. We have p = q = R, WR = R
p×q×2 = SR ∪ VR+1, VR+1 = Sc

R, U (2)
R = ∅,

and X ∈ Sc
R. The typical rank of p×p×2 arrays is equal to {p, p+1}, where the sets

of both rank values have positive volume. This implies that the sets SR and VR+1

have equal dimensionality 2p2. We partition ∂SR = U (1)
R into the following three sets.

Let

U (11)
R = {Y ∈ U (1)

R with Y1 nonsingular and Y2Y
−1
1 diagonalizable} ,(2.9)

U (12)
R = {Y ∈ U (1)

R with Y1 nonsingular and Y2Y
−1
1 not diagonalizable} ,(2.10)

U (13)
R = {Y ∈ U (1)

R with Y1 singular} .(2.11)

In Stegeman [34], it is shown that Y ∈ U (11)
R ∪ U (12)

R if and only if Y2Y
−1
1 has p real

eigenvalues which are not all distinct. Although its proof is entirely different, this
result is closely related to Propositions 1.2 and 1.3(i). From Proposition 1.2 it follows

that U (11)
R ⊂ SR and U (12)

R ⊂ Sc
R. Stegeman [34] also shows that the dimensionality

of U (11)
R is lower that the dimensionality of U (12)

R .

Any array in U (13)
R can be approximated arbitrarily well by arrays in U (11)

R ∪U (12)
R .

The reverse, however, is not true. This implies that U (13)
R has lower dimensionality

than U (11)
R ∪ U (12)

R . Combined with the reasoning above, this implies that the subset

of the boundary of SR with the highest dimensionality is U (12)
R . Since these boundary

points have rank larger than R, we conjecture that for a generic X ∈ R
p×p×2 array

an optimal solution X̃ of problem (2.2) has rank larger than R almost everywhere.
Hence, we conjecture that problem (2.1) does not have an optimal solution almost
everywhere, and X does not have a best rank-R approximation almost everywhere.

Case 7. We have p > q and min(p, 2q) > R > q. From the definition of WR in
(2.3) it follows that Y ∈ WR if and only if there exists a nonsingular matrix S such
that

SY1 =

[
H1

O

]
and SY2 =

[
H2

O

]
,(2.12)

where H1 and H2 are R× q matrices and O is the (p−R)× q all-zero matrix. By H
we denote the R× q× 2 array with slices H1 and H2. The transformation S in (2.12)
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is rank preserving, i.e., rank◦(Y) = rank◦(H). Hence, it follows from (2.4) and (2.5)
that

SR = {Y ∈ WR : rank◦(H) ≤ R for H in (2.12)}(2.13)

and

VR+1 = {Y ∈ WR : rank◦(H) ≥ R + 1 for H in (2.12)} .(2.14)

It is important to note that the set of arrays H which can be obtained in (2.12) has
full dimensionality 2qR. The typical rank of R × q × 2 arrays (with 2q > R > q)
equals R. When the maximal rank of R × q × 2 arrays equals their typical rank, we
have VR+1 = ∅, and SR = WR is a closed set. This is the case when R = 4 and q = 3,
e.g., see (1.11). Since SR is closed, a best rank-R approximation to X exists almost
everywhere.

Next, suppose the maximal rank of R × q × 2 arrays is larger than their typical
rank R, i.e., VR+1 
= ∅. This is the case when R = 5 and q = 3, e.g., see (1.11). For
the arrays in VR+1, the array H has a nontypical rank value, i.e., larger than or equal
to R + 1. This implies that VR+1 has lower dimensionality than the set SR. From
(2.4) and (2.5) it then follows that any Y ∈ VR+1 can be approximated arbitrarily

closely by arrays in SR and it holds that U (1)
R = VR+1; see (2.7). Moreover, any array

in SR can be approximated arbitrarily well from Wc
R and, hence, U (2)

R = SR. This
implies that

∂SR = VR+1 ∪ SR = WR = SR .(2.15)

Since VR+1 has lower dimensionality than SR, we conjecture that an optimal solution

X̃ of problem (2.2) lies in SR almost everywhere. Hence, we conjecture that X has a
best rank-R approximation almost everywhere.

Case 8. We have p > q and R = q. As in case 7, there holds Y ∈ WR if and only
if a nonsingular S exists such that (2.12) holds. The sets SR and VR+1 are defined by
(2.13) and (2.14), respectively. The array H in (2.12) has order R × R × 2 and the
typical rank of R ×R × 2 arrays is equal to {R, R + 1}, where the sets of both rank
values have positive volume. As in case 2, this implies that the sets SR and VR+1

have equal dimensionality.
Let X∗ be an optimal solution of the following problem:

Minimize‖X − Y‖(2.16)

subject to Y ∈ WR .

Based on Lemma 2.1, we conjecture that, for generic X, the set where X∗ ∈ SR

and the set where X∗ ∈ VR+1 both have positive volume. If X∗ ∈ SR, then X∗ is an
optimal solution of the problem (2.1) and, hence, X has a best rank-R approximation.
If all optimal solutions of problem (2.16) lie in VR+1, then X may not have a best
rank-R approximation. This will be explained below.

The boundary of SR is partitioned into U (1)
R and U (2)

R , where U (2)
R ⊆ SR; see (2.7)

and Lemma 2.2. Analogous to case 2, we partition U (1)
R into the following sets:

(2.17)

U (11)
R = {Y ∈ U (1)

R with H1 in (2.12) nonsingular and H2H
−1
1 diagonalizable} ,
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U (12)
R = {Y ∈ U (1)

R with H1 in (2.12) nonsingular and H2H
−1
1 not diagonalizable} ,

(2.18)

U (13)
R = {Y ∈ U (1)

R with H1 in (2.12) singular} .(2.19)

Note that since rank(H1) = rank(SY1) = rank(Y1) and rank◦(Y) = rank◦(H),
combined with Proposition 1.2, it follows that the sets in (??)–(2.19) do not depend

on the choice of S in (2.12). Analogous to case 2, there holds Y ∈ U (11)
R ∪ U (12)

R

if and only if H2H
−1
1 has R real eigenvalues which are not all distinct. Also, we

have U (11)
R ⊂ SR and U (12)

R ⊂ Sc
R. Moreover, the sets U (11)

R and U (13)
R have lower

dimensionality than U (12)
R . Hence, if all optimal solutions of problem (2.2) lie in U (1)

R ,

then they have rank larger than R almost everywhere on U (1)
R , and X does not have

a best rank-R approximation.

Above, we conjectured that, for generic X, an optimal solution X∗ of problem
(2.16) lies in SR on a set of positive volume. Hence, we conjecture that X has a best
rank-R approximation on a set of positive volume. Next, we argue that the set on
which X has no best rank-R approximation also has positive volume. This can be
seen as follows. Let Y ∈ VR+1 be an interior point of VR+1 on WR, i.e., for a small
ε > 0 we have Bε(Y) = {Z ∈ WR : ‖Z − Y‖ < ε} ⊂ VR+1. This is the case if
H2(H1)

−1 has R distinct eigenvalues which are not all real, where Hi are as in (2.12);
see Stegeman [34]. For any interior point Y of VR+1, we can find a set D ⊂ Wc

R

close to Bε(Y) such that D has positive volume and for any X ∈ D problem (2.16)
will have all optimal solutions in Bε(Y). Moreover, for Y close enough to some point

on U (12)
R , i.e., the boundary between SR and VR+1, we conjecture that all optimal

solutions of problem (2.2) will lie on the boundary U (12)
R and have rank larger than

R. Hence, we conjecture that no X ∈ D has a best rank-R approximation, where D
has positive volume. Therefore, we conjecture that the set on which X has no best
rank-R approximation has positive volume.

Cases 3, 5, and 9. We have p ≥ q and R < q. Instead of WR, we define

W̃R =

{
Y ∈ R

p×q×2 : rank[Y1|Y2] ≤ R and rank

[
Y1

Y2

]
≤ R

}

= {Y ∈ R
p×q×2 : rank1(Y) ≤ R and rank2(Y) ≤ R } .(2.20)

Analogous to Lemma 2.1, the set W̃R is closed. It can be seen that Y ∈ W̃R if and
only if there exist nonsingular S and T such that

SY1 T =

[
G1 O
O O

]
and SY2 T =

[
G2 O
O O

]
,(2.21)

where G1 and G2 are R × R matrices. We denote the R × R × 2 array with slices
G1 and G2 by G. Note that the set of arrays G which can be obtained by (2.21) has
full dimensionality 2R2. Since the transformations S and T are rank preserving, we
have, analogous to (2.13), that

SR = {Y ∈ W̃R : rank◦(G) ≤ R for G in (2.21)} .(2.22)
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We define

ṼR+1 = {Y ∈ W̃R : rank◦(G) ≥ R + 1 for G in (2.21)} .(2.23)

Analogous to Lemma 2.1, there holds

W̃R = SR ∪ ṼR+1 and SR ∩ ṼR+1 = ∅ .(2.24)

The typical rank of R×R× 2 arrays is equal to {R, R + 1}, where both sets of rank

values have positive volume. As in case 2, this implies that the sets SR and ṼR+1

have equal dimensionality. We are in the same situation as in case 8, with W̃R playing
the role of WR, ṼR+1 playing the role of VR+1, and G playing the role of H. The
remaining part of the explanation for cases 3, 5, and 9 is completely analogous to case
8 and is therefore omitted.

3. Diverging CP components for p×q×2 arrays. In the previous section,
we showed that if X does not have a best rank-R approximation, this is due to the
fact that the optimal solutions of problem (2.2) do not lie in SR, i.e., they have rank

of at least R+1. From now on we assume there is one optimal solution X̃ of problem
(2.2). The general case is completely analogous. As a regularity condition, we assume

that X̃ ∈ ∂SR ∩Sc
R lies in a subset QR+1 ⊂ ∂SR ∩Sc

R such that the dimensionality of
(∂SR∩Sc

R)\QR+1 is lower than the dimensionality of QR+1 itself. In each of cases 2, 3,
5, 8, and 9 of Table 2.1, the set QR+1 will be specified, and we show that if a sequence

of CP updates Y(n) converges to X̃, then Y(n) will exhibit diverging CP components
as defined by (1.9) and (1.10). This implies that in these cases of Table 2.1, we
conjecture that diverging CP components occur almost everywhere (case 2) or on a
set of positive volume (cases 3, 5, 8, and 9). In Table 3.1 these conjectures are stated
explicitly.

Table 3.1

Conjectures on the occurrence of diverging CP components when calculating a best rank-R
approximation to generic p× q × 2 arrays. Here, p ≥ q ≥ 2 and R ≥ 2.

Case X ∈ R
p×q×2 rank◦(X) R Diverging CP components?

2 p = q p + 1 R = p almost everywhere

3 p = q p + 1 R < p positive volume

5 p = q p R < p positive volume

7 p > q min(p, 2q) min(p, 2q) > R > q zero volume

8 p > q min(p, 2q) R = q positive volume

9 p > q min(p, 2q) R < q positive volume

Case 2. We have p = q = R and rank◦(X) = p + 1. We assume that X̃ lies in

U (12)
R , which is the set QR+1 in this case. The set U (12)

R is defined by (2.10). This

implies that X̃2X̃
−1
1 has p real eigenvalues and is not diagonalizable; see Stegeman

[34]. From Proposition 1.2 it follows that rank◦(X̃) = p + k, where k is the number

of eigenvalues of X̃2X̃
−1
1 with algebraic multiplicity larger than the geometric multi-

plicity. Suppose the sequence of CP updates Y(n) converges to X̃. Since Y(n) ∈ SR

and a singular Y
(n)
1 does not occur in practice, it follows from Proposition 1.2 that
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Y
(n)
2 (Y

(n)
1 )−1 has p real eigenvalues and is diagonalizable. Let Y

(n)
2 (Y

(n)
1 )−1 have

the eigendecomposition

Y
(n)
2 (Y

(n)
1 )−1 = K(n)Λ(n)(K(n))−1 ,(3.1)

where K(n) has columns of length 1. A rank-p decomposition (1.6) of Y(n) is given
by

A(n) = K(n) , (B(n))T = Ω
(n)
b (K(n))−1Y

(n)
1 ,(3.2)

C(n) =

[
1 · · · 1

λ
(n)
1 . . . λ

(n)
p

]
Ω(n)

c , Ω(n) = (Ω
(n)
b Ω(n)

c )−1 ,(3.3)

where Ω
(n)
b and Ω

(n)
c are the p × p diagonal matrices such that the columns of B(n)

and C(n), respectively, have length 1. Hence, C
(n)
1 = Ω

(n)
c and C

(n)
2 = Λ(n)Ω

(n)
c in

(1.6). It is clear that kA(n) = p, kB(n) = p, and kC(n) = 2 if the eigenvalues in Λ(n) are
distinct. In this case, Kruskal’s condition (1.7) holds and the rank-p decomposition

(3.2)–(3.3) of Y(n) is unique. Since identical eigenvalues in Λ(n) do not occur in
practice, we assume they are all distinct (see Stegeman [34] for identical eigenvalues).

By continuity, the matrix Y
(n)
2 (Y

(n)
1 )−1 will converge to X̃2X̃

−1
1 . Since the latter

matrix does not have p linearly independent eigenvectors and the rank-p decomposi-
tion (3.2)–(3.3) is unique, it follows that A(n) in (3.2) converges to the singular matrix

of eigenvectors of X̃2X̃
−1
1 . Let I1, . . . , Im ⊂ {1, . . . , R} be the disjoint index sets of

linearly dependent columns of the latter matrix such that each Ij contains the lin-

early dependent eigenvectors associated with a different eigenvalue of X̃2X̃
−1
1 which

has algebraic multiplicity larger than the geometric multiplicity. Then the columns
I1, . . . , Im of the matrix (K(n))−1 will become arbitrarily large as Y(n) → X̃. The
columns Ij of C(n) will become identical, since these correspond to identical eigenval-

ues of X̃2X̃
−1
1 , j = 1, . . . ,m. It follows that in (3.2)–(3.3), we have |ω(n)

r | → ∞ for all
r ∈ Ij , j = 1, . . . ,m. Hence, (1.9) holds.

Next, we show that (1.10) also holds. For j ∈ {1, . . . ,m}, we consider the contri-

bution of components Ij to the rank-p decomposition (3.2)–(3.3) for slices Y
(n)
1 and

Y
(n)
2 separately. For Y

(n)
1 , the contribution of Ij equals

P
(n)
j = K

(n)
j (K(n))−1

j Y
(n)
1 ,(3.4)

where K
(n)
j denotes columns Ij of K(n) and (K(n))−1

j denotes rows Ij of (K(n))−1.

The limit point of K(n) has columns Ij linearly dependent, while they are linearly
independent of all its other columns. Hence, for n large enough, K(n) will have
columns Ij close to linear dependence but linearly independent of all its other columns.

This, together with ‖Y(n)
1 ‖ being bounded, yields that ‖P(n)

j ‖ in (3.4) is bounded.

For Y
(n)
2 , the contribution of Ij equals

Q
(n)
j = K

(n)
j Λ

(n)
j (K(n))−1

j Y
(n)
1 ,(3.5)

where Λ
(n)
j denotes the submatrix of Λ(n) containing rows Ij and columns Ij . The

diagonal matrix Λ
(n)
j converges to λ Iz, where λ is the eigenvalue of X̃2X̃

−1
1 associated
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with eigenvectors Ij and z = card(Ij). The matrix K
(n)
j contains the z eigenvectors

associated with the eigenvalues of Y
(n)
2 (Y

(n)
1 )−1 on the diagonal of Λ

(n)
j . As Y(n) →

X̃, the eigenvectors K
(n)
j converge to linear dependence but they remain linearly

independent of all other eigenvectors. This, together with ‖Y(n)
1 ‖ being bounded,

yields that ‖Q(n)
j ‖ in (3.5) is bounded. Since∥∥∥∥∥∥
∑
r∈Ij

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

∥∥∥∥∥∥ =

√
‖P(n)

j ‖2 + ‖Q(n)
j ‖2 ,(3.6)

it follows that the left-hand side of (3.6) is bounded. Hence, (1.10) holds and the

sequence of rank-p decompositions of Y(n) will exhibit diverging CP components as
Y(n) → X̃. Moreover, the groups I1, . . . , Im of diverging CP components and the
number of components in each group are related to the eigenvalues and eigenvectors
of X̃2X̃

−1
1 as we have seen above.

Case 8. We have p > q and R = q. We assume that the optimal solution X̃ of

problem (2.2) lies in U (12)
R , which is the set QR+1 in this case. The set U (12)

R is defined
by (2.18). This implies that for any nonsingular S such that

S X̃1 =

[
H1

O

]
and S X̃2 =

[
H2

O

]
,(3.7)

the R × R matrix H2H
−1
1 has R real eigenvalues (which are not all distinct) and is

not diagonalizable. By Proposition 1.2, rank◦(X̃) = rank◦(H) ≥ R + 1. Let Y(n) be

a sequence of CP updates converging to X̃. For a fixed S in (3.7), let S(n) be such
that it is nonsingular for all n, S(n) → S and

S(n) Y
(n)
1 =

[
H

(n)
1

O

]
and S(n) Y

(n)
2 =

[
H

(n)
2

O

]
.(3.8)

Then rank◦(H
(n)) ≤ R and H(n) → H as Y(n) → X̃. Since H(n), H ∈ R

R×R×2,

it follows from case 2 above that the sequence H(n) will exhibit diverging CP com-
ponents as it converges to H. Denote the unique rank-R decomposition of H(n) by
(A(n),B(n),C(n),Ω(n)). Then the rank-R decomposition of Y(n) is(

(S(n))−1

[
A(n)

O

]
, B(n),C(n),Ω(n)

)
.(3.9)

The k-rank of A(n) equals the k-rank of the first component matrix in (3.9). Hence,
by virtue of Kruskal’s condition (1.7) also the rank-R decomposition (3.9) is unique.
Moreover, the decomposition will exhibit the same pattern of diverging CP compo-
nents as (A(n),B(n),C(n),Ω(n)) when Y(n) → X̃. Note that rank◦(H) = rank◦(X̃)
and Proposition 1.2 imply that the number of groups of diverging CP components
does not depend on S.

Cases 3, 5, and 9. We have p ≥ q and R < q. We assume that the optimal
solution X̃ of problem (2.2) satisfies

S X̃1 T =

[
G1 O
O O

]
and S X̃2 T =

[
G2 O
O O

]
,(3.10)
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where S and T are nonsingular and the R×R matrix G2G
−1
1 has R real eigenvalues

(which are not all distinct) and is not diagonalizable. By Proposition 1.2, rank◦(X̃) =

rank◦(G) ≥ R+1. Let Y(n) be a sequence of CP updates converging to X̃. For fixed
S and T in (3.10), let S(n) and T(n) be such that they are nonsingular for all n,
S(n) → S, T(n) → T, and

S(n) Y
(n)
1 T(n) =

[
G

(n)
1 O
O O

]
and S(n) Y

(n)
2 T(n) =

[
G

(n)
2 O
O O

]
.(3.11)

Then rank◦(G
(n)) ≤ R and G(n) → G as Y(n) → X̃. Since G(n), G ∈ R

R×R×2,

it follows from case 2 that the sequence G(n) will exhibit diverging CP compo-
nents as it converges to G. Denote the unique rank-R decomposition of G(n) by
(A(n),B(n),C(n),Ω(n)). Then the rank-R decomposition of Y(n) is(

(S(n))−1

[
A(n)

O

]
, (T(n))−T

[
B(n)

O

]
, C(n),Ω(n)

)
.(3.12)

The k-ranks of A(n) and B(n) equal the k-ranks of the first two component matrices in
(3.12). Hence, by virtue of Kruskal’s condition (1.7) the rank-R decomposition (3.12)
is also unique. Moreover, the decomposition will exhibit the same pattern of diverging
CP components as (A(n),B(n),C(n),Ω(n)) when Y(n) → X̃. Note that rank◦(G) =

rank◦(X̃) and Proposition 1.2 imply that the number of groups of diverging CP com-
ponents does not depend on S and T.

4. Simulation results. Here, we illustrate the cases in Table 3.1 by trying to
calculate (using a CP algorithm) a best rank-R approximation of random p × q × 2
arrays, the elements of which are sampled independently from the uniform distribution
on [−1, 1]. We consider cases 3, 5, 8, and 9, in which we conjecture diverging CP
components to occur on a set of positive volume, and case 7, in which we conjecture
diverging CP components to occur on a set of zero volume. Simulation results in
Stegeman [34] show that for case 2 diverging CP components always occur, which is in
agreement with our conjecture in this case. Although different sampling distributions
will give different results on the percentages of cases of diverging CP components,
we feel that the outcomes presented below are useful to show that diverging CP
components are a serious problem indeed. As a CP algorithm, we use the multilinear
engine by Paatero [29].

The simulation results in Stegeman [34] have indicated that, for random p×p×2

arrays X, problem (2.2) has a unique optimal solution X̃. If X̃ ∈ SR, then problem
(2.1) has a unique optimal solution and diverging CP components do not occur. If

X̃ /∈ SR, then it is approximated arbitrarily close by arrays in SR. Notice that if the
component matrices A, B, and C have full k-rank (which they usually have), then

Kruskal’s condition (1.7) holds in cases 3, 5, 7, 8, and 9. Hence, if X̃ /∈ SR, then

the arrays in SR close to X̃ have a unique CP decomposition exhibiting diverging CP
components.

The reasoning above implies that it suffices to use only one run of the CP algo-
rithm for each array X (with random starting values for the component matrices).
For cases 3 and 5, we consider 100 random 4 × 4 × 2 arrays X and R = 3. The rank
of X depends on whether X2X

−1
1 has 4 real eigenvalues (rank 4) or some complex

eigenvalues (rank 5). In cases 8 and 9, we consider 100 random 5 × 3 × 2 arrays and
50 random 5 × 4 × 2 arrays, respectively, both with R = 3. For case 7, we consider
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100 random 6 × 3 × 2 arrays and R = 5. Table 4.1 gives the relative frequency of
the occurrence of diverging CP components we encountered in these cases. As can be
seen, diverging CP components occur quite often in cases 3, 5, 8, and 9, and they do
not occur at all in case 7. Hence, the results in Table 4.1 are in agreement with our
conjectures in Tabel 3.1 regarding the occurrence of diverging CP components.

Table 4.1

Results of calculating rank-R approximations to random p× q×2 arrays in cases 3, 5, 7, 8, and
9 of Table 3.1.

Case X : p× q × 2 rank(X) R Diverging CP components

3 4 × 4 × 2 5 3 44 out of 70 (63%)

5 4 × 4 × 2 4 3 6 out of 30 (20%)

7 6 × 3 × 2 6 5 0 out of 100

8 5 × 3 × 2 5 3 51 out of 100 (51%)

9 5 × 4 × 2 5 3 24 out of 50 (48%)

5. Discussion. We have considered low-rank approximations to generic p×q×2
arrays. For all combinations of p, q, and R, we presented conjectures on whether a
best rank-R approximation exists almost everywhere, on a set of positive volume or on
a set of zero volume. In the cases where no best rank-R approximation exists, this is
due to the fact that the optimal boundary points of SR (i.e., the optimal solutions of
problem (2.2)) do not lie in SR itself. We showed (under some regularity condition)
that if a sequence of CP updates converges to such an optimal boundary point, it
necessarily exhibits diverging CP components.

This explanation of diverging CP components confirms the statement of Kruskal,
Harshman, and Lundy [24] that these occur due to the fact that the CP objective
function does not attain its infimum, and that any sequence of CP updates of which
the objective value is approaching the infimum must fail to converge and exhibits
diverging CP components. Also, the concept of a sequence of CP updates converging
to a boundary point X̃ /∈ SR can be found in Kruskal, Harshman, and Lundy [24] for
the case p = q = R = 2. Whether diverging CP components always occur if there is
no best rank-R approximation is still an open problem.

As in Stegeman [34], the occurrence of diverging CP components in the cases
in Table 3.1 and their explanations are still valid when the Frobenius norm in the
CP objective function is replaced by any other norm (e.g., weighted least squares or
Gaussian maximum likelihood). This is because all norms on the finite-dimensional
vector space are equivalent and induce the same (i.e., the Euclidian) topology.

Note that, as in Stegeman [34], the occurrence of diverging CP components in
Table 3.1 does not depend on the algorithm used to minimize the CP objective func-
tion. Hence, modified CP algorithms designed to avoid diverging CP components are
of no use here.

The diverging CP components in case 2 of Table 3.1 occur due to the two-valued
typical rank of real-valued p×p×2 arrays and the uniqueness of their rank-p decompo-
sition; see the discussion in Stegeman [34]. Our results on diverging CP components
for p× q× 2 arrays are based upon this. The typical rank of p× p× 2 arrays over the
complex field is p. Therefore, the cases of diverging CP components described in this
paper do not occur in the complex-valued CP model. However, also for the complex
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field, a best low-rank approximation does not always exist. See the example in De
Silva and Lim [10, Proposition 4.6], which carries over to the complex field.

In cases 3, 5, 8, and 9 of Table 3.1, diverging CP components occur due to the fact
that we may transform the CP problem for p×q×2 arrays to the lower-dimensional CP
problem for R×R× 2 arrays, for which case 2 applies. This shows that a two-valued
typical rank of the target array X is not necessary for diverging CP components to
occur. However, the two-valued typical rank for R×R× 2 arrays is still necessary for
diverging CP components to occur.

Zijlstra and Kiers [43] observed that cases of two diverging CP components occur
not only in CP but also in other variants of factor analysis. They show that two-way
and three-way factor analysis models which yield diverging components necessarily
have rotationally unique components. For the cases we have examined, diverging CP
components always occur together with uniqueness of the CP solution. This raises the
question whether (partial) uniqueness of the CP solution is necessary for diverging
components to occur. Stegeman [35] has shown that this is not the case. Indeed, in
the cases of 3× 3× 5 arrays with symmetric slices and 8× 4× 3 arrays, diverging CP
components occur on a set of positive volume while the CP decompositions of the CP
updates are not unique.
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tion the algebraic complexity literature dealing with array rank and border rank.
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