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1Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
2Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4,
D-85747 Garching, Germany

(Received 10 November 2016; accepted 21 February 2017; published online 22 March 2017)

We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems
where the integrals are factorized into a contraction of six matrices of which only two are distinct. We
find that the Coulomb integrals can be well approximated in this form already with small matrices
compared to the number of real space grid points. The cost of computing the matrices scales as O(N4)
using a regularized form of the alternating least squares algorithm. The studied factorization of the
Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor
contractions appearing in the amplitude equations of coupled cluster methods with respect to system
size. We apply the developed methodologies to calculate the adsorption energy of a single water
molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary
conditions. ➞ 2017 Author(s). All article content, except where otherwise noted, is licensed under

a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[http://dx.doi.org/10.1063/1.4977994]

I. INTRODUCTION

The high dimensionality of the many electron wave func-
tion is one of the most limiting factors in applying highly
accurate electronic structure theories to the solution of the
many electron Schrödinger equation for real materials on an
ab initio level.1 Many of the most widely used wave func-
tion based theories have a good balance between accuracy,
computational cost, and the number of parameters used to
approximate the exact wave function. The efficiency is strongly
affected by the computational complexity required to evaluate
resultant expectation values.

Tensor rank decompositions (TRDs) and low rank ten-
sor approximations are ubiquitous in the field of electronic
structure theory calculations. These techniques are essential to
reduce the computational cost and memory footprints to calcu-
late and store the approximate many electron wave function.
Already the simplest level of approximation, Hartree–Fock
(HF) theory can be regarded as a low rank approximation,
employing an antisymmetrized outer product of one electron
orbitals to approximate the full wave function. This low rank
tensor approximation is identical to a single Slater determinant.
However, HF theory neglects electronic correlation effects.
Electronic correlation effects can be captured by extending
the wave function basis with additional determinants. For this
purpose, excited HF determinants can be employed. They are
constructed by replacing occupied orbitals with unoccupied
orbitals, forming a complete and orthogonal basis. Compu-
tationally, the basis of (excited) Slater determinants is very
convenient. It introduces a large degree of sparsity to the

a)Electronic mail: f.hummel@fkf.mpg.de
b)Electronic mail: a.grueneis@fkf.mpg.de

full many electron Hamiltonian and simplifies the solution of
the many electron problem. Most entries in the sparse many
electron Hamiltonian can be calculated directly from electron
repulsion integrals. The memory footprint for the storage of
these integrals in a canonical basis is very large and grows
rapidly with respect to the number of orbitals. Therefore it
is often necessary to calculate these integrals in a computa-
tionally efficient on-the-fly manner. The most widely used
schemes for the calculation of electron repulsion integrals
include the following:2–6 (i) prior calculation of the integrals
in the employed atomic orbital basis and its subsequent trans-
formation into a molecular orbital basis and (ii) employing the
resolution of identity approach. Computationally the resolu-
tion of identity approach is more efficient because it requires
the calculation and storage of intermediate quantities with at
most three indices. In passing we note that the expression of the
integrals in terms of these intermediate quantities allows for
rearranging nested summations in ring coupled cluster theories
such that the scaling of the computational cost with respect to
the system size can be reduced.7

Coupled cluster theory can also be viewed as a low rank
tensor approximation to the exact configuration interaction
wave function coefficients in the Slater determinant basis. The
exponential ansatz used in coupled cluster theories effectively
approximates the coefficients of highly excited determinants
by outer products of cluster amplitudes with a lower rank.
However, increasingly accurate levels of coupled cluster the-
ories lead to increasingly steep polynomial scalings of the
computational cost and memory with respect to the studied
system sizes. In this work, we seek to reduce the compu-
tational cost of coupled cluster theories without introducing
additional approximations on the level of the employed wave
function. This can be achieved by employing low rank tensor
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approximation techniques for the decomposition of the two
electron integrals and the corresponding intermediate quanti-
ties obtained from the resolution of identity approach. Using
the low rank decomposition, the nested summations in the
amplitude equations of distinguishable cluster doubles (DCD)
and distinguishable cluster singles and doubles (DCSD) the-
ories,8–10 as well as of linearized coupled cluster singles and
doubles (CCSD) theory can be rearranged such that the scal-
ing of the computational cost is reduced from O(N6) to O(N5)
without any further approximations. Additionally, we high-
light that the low rank factorization of the Coulomb integrals
also allows for reducing the scaling of the computationally
most expensive terms in coupled cluster doubles (CCD) and
coupled cluster singles and doubles (CCSD) theories using a
plane wave basis set.

We note that the methods outlined in this work share many
similarities with other approaches that aim at the reduction of
the computational cost in correlated wave function based theo-
ries. In particular we want to point out that the tensor hypercon-
traction (THC) technique introduced by Hohenstein et al. in
Refs. 11–13 also performs a low rank tensor decomposition
of the Coulomb integrals. Furthermore, a similar approach
to the tensor rank decomposition method introduced in this
work was discussed by Shenvi et al. in Ref. 14. In the work
of Benedikt et al., it was shown that tensor rank decomposi-
tion techniques can even be applied to the decomposition of
the coupled cluster amplitudes directly.15 The previous work
on THC in Ref. 11 forms the basis for the methodological
developments outlined in the present manuscript. We seek to
improve upon the efficiency and convergence of the employed
algorithm for obtaining the low rank tensor approximation.
Furthermore we aim at applying these methods to periodic
systems. We note in passing that the more recent work on
THC for molecular systems achieves highly efficient imple-
mentations of coupled cluster and other perturbation theories
by employing a real space quadrature grid to determine one of
the two factor matrices.

A. Structure of this work

The factorization of the Coulomb integrals tensor is
obtained in two steps. In Section II we first discuss how the
Coulomb integrals can be decomposed into a contraction of
two third order tensors: V

pq
sr ≈ Γ∗pF

s Γ
q

rF
, where we refer to Γq

rF

as the optimized Coulomb vertex. Subsequently, we perform a
Tensor Rank Decomposition (TRD) of the optimized Coulomb
vertex into a contraction of three matrices: Γq

rF
≈ ΛR

F
Π∗q

R
ΠR

r .
Section III describes the employed algorithms to compute this
factorization.

Section IV outlines how this factorization can be
employed by quantum chemistry methods and in Section V we
study the application of the discussed approximations to dif-
ferent systems. Subsection V A focuses on the convergence of
the TRD for total energies of the LiH solid, while we compute
coupled cluster adsorption energies of water on the surface of
a single BN sheet in Subsections V B and V C.

B. Notation

We imply a sum over all free indices occurring at least
twice within a product but nowhere else. We will use the letters

i, j, k, l to label occupied spin orbitals, a, b, c, d to label
virtual spin orbitals, and p, q, r, s to label general spin orbitals.
The letters R, S, T, U are used to denote elements of the rank
decomposition. The conjugate transpose of a tensor such as A

q
r

is denoted by A∗rq where lower and upper indices are swapped.
Sequence numbers in iterations are given in superscript within
parentheses, as in A(n). The Frobenius norm of a tensor A is
denoted by ‖A‖. Examples are as follows:

Vab
ij V ∗ij

ab
=

∑

a,b∈virt.,i,j∈occ.

Vab
ij V ∗ij

ab
(1)

Tijk − AiRBjRCkR = Tijk −
NR
∑

R=1

AiRBjRCkR, (2)

‖Γq

rF
‖2 =

∑

q,r,F

Γ∗rF
q Γ

q

rF
, (3)

II. OPTIMIZED AUXILIARY FIELD APPROXIMATION

In this section, we discuss how to approximate the
Coulomb integrals, a tensor of fourth order, by a contrac-
tion of two considerably smaller tensors of third order: V

pq
sr

≈ Γ∗pF
s Γ

q

rF
, without actually calculating the entire tensor V

pq
sr .

Given the spin orbitalsψq(x) from a Hartree–Fock (HF) or
density functional theory (DFT) calculation, the (nonantisym-
metrized) Coulomb integrals are defined by

V
pq
sr =

∫ ∫
dx dx

′ ψ∗p(x)ψ∗q(x′)
1

|r − r′ |ψr(x′)ψs(x), (4)

with x= (σ, r) and ∫ dx=
∑

σ ∫ dr. Owing to the transla-
tional invariance of the Coulomb kernel, we can separate the
Coulomb integrals as follows:

V
pq
sr =

∫
dG

(2π)3
Γ∗ps (G)Γq

r (G), (5)

where the Coulomb vertex Γ
q
r (G) is given by

Γ
q
r (G) :=

√

4π

G
2

∫
dx e−iG·r ψ∗q(x)ψr(x). (6)

The above equation can be derived directly from Eq. (4)
by using Fourier transforms and provides the physical jus-
tification for the factorization of the Coulomb vertex that
we will investigate in Section III. This factorization is also
referred to as tensor hypercontraction (THC) and employed in
a wide range of related studies that form the foundation for the
present work.11–13,16–18 We let the discretization of Eq. (6) be
Γ̃

q

rG
=

√
4G Γ

q
r (GG) with the momentum grid points GG and

the numerical integration weights 4G such that

∫
dG

(2π)3
Γ∗ps (G)Γq

r (G) ≈
NG
∑

G=1

Γ̃∗pG
s Γ̃

q

rG
. (7)

We note in passing that the above approximation is of the
same algebraic form as obtained by Cholesky decomposi-
tion19–21 or density fitting22–24 methods for the calculation of
the Coulomb integrals employing atom centered basis sets.
However, in the case of plane wave basis sets, Eq. (7) can be
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derived directly from Eq. (4) and a series of Fourier transforms.
The Coulomb vertex can be computed from the spin orbitals
in O(N2

p NG log Nr) time employing a Fast Fourier Transform
(FFT), where Np, NG, and N r denote the number of spin
orbitals, momentum grid points, and real space grid points,
respectively. We note that the orbital overlap charge density
ψ∗q(x)ψr(x) is approximated in the projector augmented wave
method using Eq. (2.87) of Ref. 25 as implemented in the
Vienna ab initio simulation package (VASP).26–28

In general, any two-body operator can be split into a
product of two single body operators coupled by an aux-
iliary field.29 In the case of the Coulomb interaction, the
auxiliary field has only one variable due to translational invari-
ance, which is the momentum G mediated by the interaction.
Although Γ̃q

rG
is in practice, already a third order tensor, the

number of momentum grid points NG of the HF or DFT cal-
culation is usually too large to continue with the tensor rank
decomposition of the Coulomb vertex directly. A large set of
momenta will have a small but nonnegligible contribution to
the correlation energy and we seek a more compact set of
auxiliary field variables with fewer relevant elements.

Let

(8)

be a singular value decomposition of the Coulomb vertex
Γ̃I

G
, written as a matrix with the compound index I = (q, r),

where the singular values in Σ are sorted in descending order.
Eq. (8) is also shown in the form of a tensor wiring diagram
of the involved tensor contractions on the right. Taking only
the largest NF <NG singular values of the unapproximated
Coulomb vertex Γ̃ into account, we can define the optimized

auxiliary field (OAF) Coulomb vertex

(9)

Note that we write Γ without a tilde for the approximated
Coulomb vertex, in contrast to usual convention, simply
because we will not use the unapproximated vertex in any
subsequent step.

We are only interested in the left singular vectors UF
G

asso-
ciated to the largest singular values so we contract Eq. (8) from

the right with Γ̃∗G
′

I ,

Γ̃I
GΓ̃
∗G′

I = UF
GΣ

2F

FU∗G
′

F =: EG′
G , (10)

transforming a singular value problem of a large NG ×N2
p

matrix into an eigenvalue problem of a comparatively small
NG×NG hermitian matrix. The eigenvalues of E are the squares
of the singular values of Γ̃I

G
, and the left eigenvectors of E

associated to the largest eigenvalues are also the left singular
vectors of Γ̃ we need in order to transform the Coulomb ver-
tex Γ̃I

G
into the optimized auxiliary field Coulomb vertex ΓI

F

according to Eq. (9). Note that this approach becomes numeri-
cally problematic for very small singular values since one only
has access to their squares. However, we find that all NF largest
singular values needed for an accurate approximation of the
Coulomb vertex are sufficiently large.

Inserting the singular value decomposition of the
Coulomb vertex with sorted singular values from Eq. (8) into
the discretized definition of the Coulomb integrals given in
Eq. (7) yields a singular value decomposition of the Coulomb
integrals, also with sorted singular values

(11)

where the Coulomb integrals V
pq
sr are now written in the matrix

form V I
J

with I = (q, r) and J = (s, p). Thus, using the opti-
mized auxiliary field Coulomb vertex ΓI

F
instead of the full

Coulomb vertex Γ̃I
G

best approximates the Coulomb integrals
with respect to the Frobenius norm of the difference

(12)

We stress that the method outlined above for obtaining the
optimized auxiliary field is expected to be less accurate than
the more widely used Cholesky decomposition method that
employs an upper bound of error to any integral. However,
we find that the achieved level of accuracy is sufficient for the
present purpose and the level of accuracy can be systematically
improved by including a larger number of singular values.

III. DECOMPOSITION OF THE COULOMB VERTEX

The form of the Coulomb vertex in real space on the right
hand side in Eq. (6) suggests that the optimized Coulomb ver-
tex Γq

rF
can be decomposed in an analogous manner into a

product of three tensors of second order, denoted and depicted
as follows:

(13)

We let NR denote the number of vertex indices R and refer to
it as the rank of the Coulomb vertex for a given quality of the
approximation. We call the matricesΠR

r andΛR
F

factor orbitals

and Coulomb factors of the Coulomb vertex, respectively.
The decomposition is invariant under scaling of the

Coulomb factors ΛR
F

with any real scalar aR > 0 while scal-
ing the factor orbitals ΠR

r with a complex scalar cR with
|cR | = 1/

√
aR for each value of R. One can also choose an

alternative ansatz to Eq. (13) for approximating the Coulomb
vertex Γq

rF
which does not involve the conjugation of the factor

orbitals on the outgoing index q. This ansatz reads

(14)

The above decomposition is invariant under scaling of the
Coulomb factors ΛR

F
with any complex scalar cR , 0 while
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scaling the factor orbitals ΠR
r with ±1/

√
cR for each value

of R. This is in contrast to the symmetries of the ansatz
according to Eq. (13). In the Alternating Least Squares (ALS)
approximation scheme, which we employ for fitting the factor
orbitals Π and the Coulomb factors Λ, it is preferable to have
the symmetries of Eq. (14) since fixing one of the two fac-
tors removes all continuous symmetries from the other. This
accelerates the convergence and allows a smaller rank NR in
practice. A downside of this ansatz is that one loses the simple
notion of particle and hole propagators as given in Eqs. (34)
and (35), respectively. The propagators can, for instance,
be employed to calculate second order Møller–Plesset the-
ory (MP2) correlation energies in O(N4), as outlined in
Subsection IV A. Unless otherwise stated we use the ansatz
of Eq. (14) for the applications presented in Section V but we
will continue to discuss the more widely applicable ansatz of
Eq. (13).

If one chooses NR = N r , where N r is the number of real
space grid points, the validity of the ansatz follows directly
from Eq. (6). We want to investigate how low NR can be cho-
sen compared to N r for a sufficiently faithful decomposition
having an error below 1% in the energies calculated from the
factor matrices. For reference we use the error in the MP2
energy assuming that other terms, occurring for instance in the
coupled cluster amplitude equations, exhibit a similar behav-
ior. This accuracy is assumed sufficient since in practice only
those terms will be calculated from the factor matrices that
pose either computational or memory bottlenecks. Further-
more, we want to show that the ratio NR/N r for a sufficiently
faithful decomposition is independent of the system size if the
system is not too small.

A. Canonical polyadic decomposition algorithms

A factorization of a tensor according to the ansatz of
Eq. (13) or (14) is referred to as canonical polyadic decompo-
sition30 (CPD). For a given rank NR, the factor orbitalsΠR

r and
the Coulomb factors ΛR

F
can be fit by minimizing the square

of the Frobenius norm of the difference

(Λ,Π) = argmin
Λ,Π

‖ΛR
FΠ
∗q

R
Π

R

r
− Γq

rF
‖2. (15)

The above optimization problem is high dimensional and
nonquadratic. Conjugate gradient algorithms or other local
algorithms may require thousands of steps until sufficiently
converged. Global optimization algorithms try to tackle
the problem by keeping a subset of the variables fixed
and optimizing only the remaining variables. In the case
of the ALS31 algorithm, the optimization is done in turn
over each matrix, while in the case of the cyclic coordi-
nate descent32 (CCD) algorithm, the optimization is done
in turn over each value of the index R. We have stud-
ied the performance of a regularized version of the ALS
here.

B. Alternating least squares

In the case of three distinct factors Tijk ≈ AiRBjRCkR, two
of them can be regarded fixed leaving a least squares problem
for finding the optimal third factor. Each matrix is optimized
in alternating order leading to the alternating least squares

(ALS) algorithm

A(n+1) := argmin
A

�
�
�
�

�
�
�
�

AiRB
(n)
jR

C
(n)
kR
− Tijk

�
�
�
�

�
�
�
�

2
, (16)

B(n+1) := argmin
B

�
�
�
�

�
�
�
�

A
(n+1)
iR

BjRC
(n)
kR
− Tijk

�
�
�
�

�
�
�
�

2
, (17)

C(n+1) := argmin
C

�
�
�
�

�
�
�
�

A
(n+1)
iR

B
(n+1)
jR

CkR − Tijk

�
�
�
�

�
�
�
�

2
, (18)

which has to be solved iteratively until it is sufficiently
converged, starting with random matrices A(0), B(0), and C(0).

Each least squares problem has a unique solution, which
can be written explicitly. For Eq. (16) it is for instance given
by

A
(n+1)
iR
= TijkB∗jSC∗kS

G+
SR, (19)

omitting the iteration specification on B and C for brevity. G+

denotes the Moore–Penrose pseudoinverse33,34 of the Gramian
matrix G. For Eq. (16) the Gramian matrix is given by

GRS = B∗jSC∗kS
BjRCkR . (20)

The expressions for the other matrices can be written in an
analogous manner. When applying the ALS algorithm to
decompose the Coulomb vertex, the computationally most
demanding steps are the calculation of the pseudoinverse G+

scaling as O(N3
R

), as well as the contraction of T ijk with either
factor B∗jS or C∗kS in Eq. (19), depending on which is larger,
scaling as O(N2

p NFNR).
We stress that the ALS algorithm and the employed CPD

of the Coulomb integrals has already been studied in Ref. 11
under the guise of the tensor hypercontraction (THC) method.
To overcome the slow convergence of the ALS algorithm, the
authors of the THC method have switched in Refs. 12, 13,
and 18 to determining the factor orbitals Π using a real space
quadrature grid, which was shown to have physical justifica-
tion. Having fixed the factor orbitals, the Coulomb factors Λ
can then be efficiently calculated by a single least squares fit.

C. Regularized alternating least squares

In this work, we apply a modification to the ALS algorithm
that can substantially improve the convergence which does not
require the choice of a real space quadrature grid. Although the
ALS algorithm guarantees an improvement of the fit quality
in each iteration, the convergence can be very slow, especially
when there are multiple local minima for a factor A in different
regions having all similar minimal values. In that case, the best
choice for A may vary strongly from iteration to iteration since
updating the other factors B and C can change the order of
the minima. This behavior is referred to as swamping35 and
it takes many iterations before the ALS algorithm converges
to one region for each factor that globally minimizes the fit
quality. Introducing a penalty on the distance to the previous
iteration limits swamping and leads to the regularized ALS36

(RALS) algorithm

A(n+1) := argmin
A

(

�
�
�
�

�
�
�
�

AiRB
(n)
jR

C
(n)
kR
− Tijk

�
�
�
�

�
�
�
�

2
+ λ(n)

A

�
�
�
�

�
�
�
�

AiR − A
(n)
iR

�
�
�
�

�
�
�
�

2)

,

(21)
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B(n+1) := argmin
B

(

�
�
�
�

�
�
�
�

A
(n+1)
iR

BjRC
(n)
kR
− Tijk

�
�
�
�

�
�
�
�

2
+ λ(n)

B

�
�
�
�

�
�
�
�

BjR − B
(n)
jR

�
�
�
�

�
�
�
�

2)

,

(22)

C(n+1) := argmin
C

(

�
�
�
�

�
�
�
�

A
(n+1)
iR

B
(n+1)
jR

CkR − Tijk

�
�
�
�

�
�
�
�

2

+ λ(n)
C

�
�
�
�

�
�
�
�

CkR − C
(n)
kR

�
�
�
�

�
�
�
�

2)

. (23)

The solution of each regularized least squares problem can
again be given explicitly, here, for instance, for Eq. (21), and
again omitting the iteration specification on B and C,

A
(n+1)
iR
=

(

TijkB∗jSC∗kS + λ(n)
A

A
(n)
iS

)

G+
SR . (24)

In the regularized case, the Gramian G depends on the
regularization parameter λ(n)

A
,

GRS = B∗jSC∗kS
BjRCkR + λ(n)

A
δRS (25)

where δRS denotes the Kronecker delta.
The regularization parameter λ(n)

A
for finding A(n+1) in

the nth iteration still remains to be determined. Too low
values allow swamping to occur while too large values unnec-
essarily slow down the convergence. To estimate an effi-
cient regularization parameter we assume that the fit quality
| |AB(n)C(n) − T | |2 in the term to minimize in Eq. (21) varies
little from one iteration to the next. We also assume this for
the local change of the fit quality with respect to each value in
A. This allows us to relate the minimized term in the previous
step n ☞1 to the minimized term in the step n for which we
want to determine the regularization parameter

λ(n−1) | |A(n) − A(n−1) | |2 ≈ λ(n) | |A(n+1) − A(n) | |2. (26)

If A(n) and A(n+1) have similar norm, we can also relate their
relative step sizes s

(n)
A

and s
(n+1)
A

, by λ(n−1)s2
A

(n) ≈ λ(n)s2
A

(n+1)
,

where the relative step size in the nth iteration is given by

s
(n)
A

:= | |A(n) − A(n−1) | |/| |A(n) | |. (27)

We want the relative iteration step size s
(n+1)
A

of the next iter-
ation to be approximately as large as a chosen maximum
value s0, which we refer to as swamping threshold. From
that we define the estimated regularization parameter for the
nth iteration

λ̂
(n)
A := λ(n−1)

A
s2

A

(n)
/s2

0. (28)

Directly using the above estimate results in a regularization
which we find alternately to be too strong and too weak. To
ameliorate this, we introduce a mixing of the estimated regu-
larization parameter λ̂(n)

A
for the nth iteration, as above, with

the regularization parameter λ(n−1)
A

of the previous iteration

to obtain the regularization parameter λ(n)
A

employed for the
nth iteration in the RALS

λ
(0)
A

:= 1, (29)

λ
(n)
A

:= αλ̂
(n)
A + (1 − α)λ(n−1)

A
. (30)

Regarding the choice of the swamping threshold s0 and the
mixing factor α, we find that s0 = 1.0 and α = 0.8 offer a good
compromise allowing quick convergence while still preventing
swamping for the systems studied so far.

D. Quadratically occurring factors

In the case of the Coulomb vertex, the factor orbitals ΠR
r

occur quadratically. For finding the next estimate Π(n+1) in the
alternating least squares algorithm, we use an iterative algo-
rithm similar to the Babylonian square root algorithm. Each
subiteration is given by

Π(n+1,m+1) := (1 − β)Π(n+1,m)

+ β argmin
Π

(

�
�
�
�

�
�
�
�

ΛR
F

(n+1)
Π∗q

R

(n+1,m)
ΠR

r − Γq

rF

�
�
�
�

�
�
�
�

2

+ λ(n+1,m)
Π

�
�
�
�

�
�
�
�

ΠR
r − ΠR

r

(n+1,m)�
�
�
�

�
�
�
�

2)

, (31)

with Π(n+1,0) := Π(n) and the mixing factor 0 < β < 1. Note
that Π∗ is a fixed parameter rather than a fitted one and that
the regularization parameter λ(n+1,m)

Π
needs to be determined

for the mth subiteration similar to Eq. (30), however with
λ

(n+1,0)
Π

= λ
(n)
Π

. The above iteration converges towards a solu-

tion of the quadratic problem. We useΠ(n+1,M) and λ(n+1,M)
Π

for

the next estimate of Π(n+1) and λ(n+1)
Π

in the RALS algorithm,
respectively. The number of subiterations M needs to be suffi-
ciently large, such that Π(n+1) is at least an improved solution
of the entire fit problem compared to Π(n). A large number
M of subiterations gives an estimate Π(n+1) that is close to
the optimal choice of Π for a given Λ(n+1). However, the cost
of each subiteration is similar to the cost of the fit of Λ in the
RALS algorithm and as a good choice for minimizing the over-
all computational cost, we find β = 0.8 and M ≥ 2, but only
as large such that the solution is an improvement. We point out
that there are alternative methods for solving the quadratically
occurring factors.37

IV. APPLICATION OF THE LOW
RANK FACTORIZATION

The algorithms described so far yield an approximate
factorization of the Coulomb integrals of the form

V
pq
sr ≈ Π∗pRΠ∗qSΛ∗FRΛS

FΠ
S
rΠ

R
s , (32)

where the factors Π and Λ are Np × NR and NF × NR matri-
ces, respectively. We find that the rank of the decomposition
NR is about an order of magnitude lower than the number of
real space grid points of the original factors of the Coulomb
integrals, being the orbitals ψq(x). In Section V we study the
convergence of the approximation in detail. In this section, we
discuss how this factorization can be applied to lower the scal-
ing of the computational cost of wave function based methods
such as second order Møller–Plesset (MP2) theory or coupled
cluster theory.

A. MP2 from imaginary time propagators

The factorization of the Coulomb integrals permits eval-
uating the terms in the perturbation expansion by summing
over all vertex indices R, S, T , . . . occurring in the term’s dia-
gram, contracting propagator matrices for each particle, hole,
and Coulomb line. For instance, the exchange term of sec-
ond order Møller–Plesset (MP2) theory can be evaluated as
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follows:

(33)

where the imaginary time dependent propagator matrices are
given in terms of the decomposed factor orbitals ΠR

r and the
Coulomb factors ΛR

F
,

GR
S (τ > 0) := +

∑

a

Π∗aSΠ
R
a e−(εa−µ)τ , (34)

GR
S (τ ≤ 0) := −

∑

i

Π∗iSΠ
R
i e−(εi−µ)τ , (35)

VS
R := Λ∗FRΛ

S
F , (36)

where µ is the Fermi level energy at zero temperature. The
imaginary time integration can be done numerically on a
small grid, for instance, the minimax grid,38 which allows
an evaluation of the MP2 correlation energy in O(N4) in
principle. In practice, however, this approach outperforms
canonical MP2 calculations only for very large systems. The
propagator matrices GR

S
(±τ) are analogous to the one-body

particle/hole Green’s functions in real space and imaginary
time G0(x, x

′;±τ). The time independent matrix propagator
VS

R
corresponds to the Coulomb kernel. The factorization of

the one-body energies εa,i in imaginary time is equivalent to
the Laplace transformed MP2 ansatz of Almlöf.39 Reducing
the scaling of MP2 theory to O(N4) has also been extensively
discussed in Refs. 11, 16, and 40.

Note that the imaginary time dependent matrices defined
above are actually not propagators in the sense that

GS
T (τ1)GR

S (τ2) = GR
T (τ1 + τ2), (37)

for all R, T and τ1, τ2 > 0 for particles as well as τ1, τ2 ≤ 0
for holes. They can only be used to directly connect vertices
of the Coulomb interaction. If propagators in the above sense
are required, one needs to employ a stricter ansatz for the
factorization of the Coulomb vertex, namely,

Γ
q

rF
≈ ΛR

FΠ
+q

R
ΠR

r , (38)

where Π+ denotes the Moore–Penrose pseudoinverse of Π.
The convergence behavior of this ansatz remains, however, to
be studied.

One can also evaluate the perturbation terms stochas-
tically, directly using the real space Green’s functions
G0(x, x

′;±τ) rather than using the low rank propagators
GR

S
(±τ). This has been done for one dimensional solids41,42

and for three dimensional solids.43

B. Reduced scaling coupled cluster theory

This section outlines how the obtained factorization can
be used to reduce the computational cost of coupled cluster
theory. We closely follow the work of Parrish et al. in Ref. 17.
A related acceleration scheme for coupled cluster theory is the
chain of spheres exchange (COSX) method as described in
Ref. 44.

The most demanding step in the canonical CCD (DCD)
method using a plane wave basis set is the calculation of the
particle/particle ladder contribution T cd

ij
Vab

cd
in the amplitude

equation, scaling as O(N2
o N4

v ) in time. Here, the factorized
form of the Coulomb integrals Vab

cd
can be exploited to break

down the simultaneous contraction over the indices c and d

into a sequence of contractions involving only at most one
index, as can be seen from the tensor wiring diagram of the
involved tensors

(39)

The most expensive term in this sequence of contractions leads
to a scaling of O(N2

o N2
v NR) in time, without exceeding the

memory complexity of the coupled cluster amplitudes. As will
be demonstrated in Section V, we find NR to be proportional
to the system size N, resulting in an O(N5) scaling behavior in
time of the particle/particle ladder contribution. Furthermore,
the DCD amplitude equations can be solely reformulated in an
O(N5) implementation with the use of the Coulomb vertex and
its decomposed approximation, due to the absence of exchange
terms between different clusters. Likewise, the most expen-
sive term in CCSD (DCSD) amplitude equations includes
the singles contribution to the ladder diagrams (T cd

ij
Ta

k
V kb

cd
,

T cd
ij

Tb
l

Val
cd

, T cd
ij

Ta
k

Tb
l

V kl
cd

). Similarly, these terms can be eval-
uated via the factor orbitals and the Coulomb factors in an
O(N5) scaling in time and in the DCSD approximation no
term exceeds this scaling behavior.

V. RESULTS EMPLOYING THE LOW
RANK FACTORIZATION

A. Total energies of the LiH solid

We first seek to discuss the convergence of the low rank
factorization with respect to the number of iterations, NR and
the system size. To this end we study different supercell sizes
constructed from two atomic LiH crystal unit cells including
2 × 2 × 2, 3 × 2 × 2, 3 × 3 × 2, 4 × 3 × 2, and 3 × 3 × 3,
corresponding to 16, 24, 36, 48, and 54 atoms, respectively.
In this subsection, we only employ MP2 theory to investi-
gate the behavior of the correlation energy calculated from
the factorized Coulomb integrals. This study focuses on the
decomposition of the Coulomb vertex, neither employing the
optimized auxiliary field nor the pseudized Gaussian type vir-
tual orbitals45 technique. The resulting Coulomb vertices that
need to be fit are large, such that only the particle/hole part
Γa

iF
is used for this study. The kinetic energy cutoff defining

NF was set to 200 eV. The Li 2s1 and H 1s1 states have been
treated as valence states.

Fig. 1 shows the relative error of the MP2 correlation
energy retrieved as a function of the number of iterations. The
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FIG. 1. On the left, the convergence of the relative error of the MP2 energy for NR = 2NF with respect to fit iterations for different system sizes is shown. The
inset plots the relative error of the Coulomb vertex approximation in comparison. The convergence with respect to the rank NR using 120 iterations is given on
the right. Both plots use the same colors denoting different system sizes.

relative error is computed from MP2 energies that employ inte-
grals that have been calculated with and without the low rank
tensor factorization. Fig. 1 reveals that the rate of convergence
for the relative error of the MP2 energy is very similar in all
different system sizes. We note that the smallest supercell con-
taining 16 atoms only exhibits a slightly faster convergence.
From these results, we conclude that the required number of
iterations in the tensor factorization algorithm is system size
independent for intensive properties. Furthermore we find that
100 iterations are sufficient to achieve a relative accuracy of
1% with a rank that corresponds to 2NF . Although the accuracy
of the fit is still improving when going beyond 100 iterations,
we find it more economic to increase the rank NR rather than
increasing the number of iterations if a higher accuracy is
required.

The right side of Fig. 1 explores the convergence of the
relative error in the MP2 correlation energy error retrieved as
a function of NR/NF . Note that NF corresponds to the number
of plane wave vectors and scales linearly with respect to the
system size. This plot shows that the required rank NR needed
to achieve a certain relative level of accuracy also scales lin-
early with respect to the system size. Furthermore we find
that systematically improvable exponential convergence can
be achieved for this system and property by increasing NR/NF .

The computational cost for obtaining the TRD of the
Coulomb vertex with No = 27, Nv = 8469, NF = NG = 1830,
and NR = 1830 is roughly 1000 CPU hours. Therefore the
computational cost of the TRD exceeds the computational cost
of a full MP2 calculation which is roughly 10 CPU hours in
the present case despite the fact that the TRD formally scales
more favorably with system size. However, we note that the
present TRD algorithm is sufficiently efficient to reduce the
total computational cost of coupled cluster theory calculations
as discussed in the following.

B. Molecular adsorption of water on hexagonal
boron nitride

We now turn to the application of the newly developed
methodologies to some more challenging problems. We calcu-
late the interaction between a water molecule and a hexagonal
boron nitride (hBN) monolayer. We employ periodic CCD the-
ory and examine to what extent the TRD and the optimized
auxiliary field approximations are accurate and efficient. We
used the structures obtained by Al-Hamdani et al.,46 whereby
the molecule is oriented on top of an N site and the geometry

has been optimized using the optB86b-vdW functional. The
water–N distance was set to 3.2 Å. The hBN monolayer is mod-
eled by 32 atoms in the periodic cell and the distance between
two BN sheets was set to 16 Å. After checking convergence,
we employed a 500 eV kinetic energy cutoff for the one parti-
cle orbitals along with Γ point sampling of the Brillouin zone.
The B 2s22p1, N 2s22p3, O 2s22p4, and H 1s1 states have been
treated as valence states. Occupied HF states were converged
within the full plane wave basis. The vast number of virtual
orbitals in a plane wave basis is circumvented by mapping a
virtual orbital manifold, expanded in plane waves, onto atom
centered basis functions. Dunning’s contracted aug-cc-pVDZ
(AVDZ) and aug-cc-pVTZ (AVTZ)47,48 pseudized Gaussians
were chosen to represent the atom centered functions. By
orthogonalizing these virtual states to the occupied space, we
mimic an AVDZ and AVTZ basis set via orbitals which are
expanded in plane waves. The underlying procedure is detailed
in Ref. 45. This allows the usage of well tested basis sets with
reliable extrapolation schemes. Counterpoise corrections to
the basis set superposition error (BSSE) were included in all
correlated calculations. The adsorption energy is defined as
the difference in energy between the noninteracting fragments
and the interacting system

Eads = EH2O + EBN − EH2O+BN. (40)

We note that in Ref. 46, the adsorption energy has been cal-
culated as the difference between the total energy of water
and hBN at the largest possible oxygen–surface distance of
8 Å and the total energy of water and hBN at the adsorption
oxygen–surface distance.

Initially, we investigate the convergence of the adsorption
energy with respect to the number of momentum grid points
NG, employed to evaluate the Coulomb vertex Γ̃q

rG
accord-

ing to Eq. (7). The selection of the plane waves vectors G is
determined by a kinetic energy cutoff Eχ such that

~
2
G

2

2me

< Eχ. (41)

For this purpose, we utilize the pseudized AVDZ basis set for
the virtual orbitals. The current system consists of No = 68 and
Nv = 780 occupied and virtual orbitals, respectively. Kinetic
energy cutoff values from 100 to 300 eV were employed
for the calculation of the adsorption energy. The results are
shown in the inset of Fig. 2. The adsorption energy behaves
as CE

−3/2
χ

49,50 up to 200 eV, however, at higher cutoffs one
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FIG. 2. Optimized auxiliary field (OAF) approximation error ǫOAF(NF )
= Eads(NF ) − Eads(NG) of the CCD adsorption energy as a function of the
number of field variables NF used to approximate the Coulomb vertex. The
number of G vectors NG of the unapproximated Coulomb vertex Γ̃q

rG
is indi-

cated by the shape of the markers. The inset shows which marker corresponds
to which NG and plots the convergence of the adsorption energy with respect
to NG, corresponding to kinetic energy cutoff values of 100, 150, 200, 250,
and 300 eV, respectively.

observes a plateau in the curve as a result of the truncation
of the virtual orbital space via the pseudized Gaussian basis
functions. We conclude that a cutoff energy of 200 eV is suf-
ficient to converge the adsorption energy to within 2–3 meV.
We then investigate how accurately can the optimized auxiliary
field approximate the Coulomb vertex Γ̃q

rG
for the current sys-

tem at the level of CCD theory. First we obtain the optimized
Coulomb vertex Γq

rF
= U∗GF Γ̃

q

rG
, where UF

G
consists of the left

singular values of Γ̃q

rG
associated to the NF largest singular

values, according to Eq. (8). The optimized Coulomb vertex is
expected to be efficient since most of the space in the simula-
tion cell is vacant, and the plane wave auxiliary basis contains
redundant information. Different numbers of field variables
NF were employed to approximate the plane wave vectors NG

for the various cutoff energies. The behavior of the adsorption
energy with respect to the number of field variables is shown
in Fig. 2. The rapid convergence of the energy with increasing
number of field variables owes to the locality of the molecular
orbitals in the supercell. The adsorption energy obtained with
a cutoff of 200 eV can be calculated within 0.5 meV accuracy
using NF = 1450 field variables to approximate NG = 4504
plane wave vectors.

Since we can conclude that the adsorption energy can be
computed within approximately 3 meV using a cutoff energy
of 200 eV for the auxiliary plane wave basis and NF = 1450
field variables to construct the optimized Coulomb vertex, we
chose these settings to assess the accuracy of the low rank fac-
torization of the Coulomb integrals. We used different numbers
of vertex indices R to compute the factor orbitals and Coulomb
factors of the Coulomb vertex, following Eq. (14). We approx-
imate the particle/particle ladder contribution T cd

ij
Vab

cd
in the

amplitude equation of CCD via the factor orbitals and the
Coulomb factors as shown in Eq. (39). The adsorption energy
versus the number of the vertex indices NR is shown in Fig. 3.
The energy does not converge monotonically as in the case
of the optimized auxiliary field approximation. This is due to

FIG. 3. Low rank approximation error ǫTRD
ads (NR) = Eads(NF , NR)−Eads(NF )

of the CCD adsorption energy as a function of the rank NR using the OAF
approximated Coulomb vertex with NF = 1450 field variables. The inset shows
the respective approximation error for surface + molecule fragment ǫTRD

H2O+BN
= EH2O+BN(NF , NR) − EH2O+BN(NF ) only, revealing an error cancellation of
one to two orders of magnitude in the adsorption energy.

the nonlinear nature of the canonical polyadic decomposition
of the Coulomb vertex and the random initial choice for its
factors. Nevertheless we observe a converged behavior with
increasing NR. Furthermore, a value of NR = 4350 = 3NF is
sufficient to yield an adsorption energy within 1 meV accu-
racy. This suggests that the TRD of the Coulomb vertex is a
controllable approximation that can yield increasingly accu-
rate results with increasing decomposition rank NR. In order to
further validate the accuracy of the TRD method, we show the
convergence of the absolute energy of the interacting system
with respect to the decomposition rank NR in the inset of Fig. 3.
We observe an exponential convergence of the total energy. An
accuracy better than 0.1% is achieved already with NR = 2NF .
Nevertheless we stress that the corresponding accuracy in the
adsorption energy is a result of an error cancellation of one to
two orders of magnitude.

Having assessed the accuracy of the TRD, we now cal-
culate the adsorption energy of the water molecule on hBN
using the AVTZ pseudized Gaussian basis set. The evaluation
involves the decomposition of a Coulomb vertex with No = 68,
Nv = 1564, NF = 0.33NG = 1450, and NR = 3NF = 4350. The
computational cost to obtain the decomposed matrices is
roughly 3000 CPU hours with 256 iterations. The results
of the adsorption energy are shown in Table I. In order
to grasp a physical insight of the system, we compare
the CCD results with RPA + SOSEX and MP2 calcula-
tions.51 MP2 theory usually overestimates dispersion driven

TABLE I. Adsorption energies of water on hBN obtained using the pseudized
Gaussian basis sets at different levels of theory. RPA + SOSEX calculations
were performed using DFT PBE orbitals as reference, whereas MP2 and CCD
using HF ones.

Basis set RPA + SOSEX MP2 CCD

AVDZ 62 83 54
AVTZ 72 92 62
AV(D,T)Z 76 95 65



124105-9 Hummel, Tsatsoulis, and Grüneis J. Chem. Phys. 146, 124105 (2017)

interactions although in the description of BN bilayer inter-
action it is fortuitously accurate.52 Consequently, one expects
MP2 theory to slightly overestimate the adsorption energy,
whereas RPA + SOSEX is likely to yield a very accurate
estimate. It is not surprising that CCD underbinds the water
molecule, since there exist findings that indicate the inability
of CCD for an accurate description. Higher levels of theories,
such as inclusion of the single excitations and the perturbative
triples, are required for a more appropriate treatment. Nev-
ertheless, the purpose of the current work is to examine the
accuracy and efficiency of the newly developed methodolo-
gies rather than the accuracy of the method itself. The CPU
hours required for the CCD calculations obtained with and
without the TRD technique are summarized in Table II. The
time for the evaluation of the particle/particle ladder term
per iteration is as much as 43 times faster using a decom-
position with NR = 2NF and 22 times faster with NR = 3NF .
This constitutes a significant gain in the computational effort
of coupled cluster methods with only slight compromise in
accuracy.

C. Potential energy surface smoothness

Finally, we examine the potential energy surface (PES)
obtained from the TRD method. In order to assess the smooth-
ness of the potential energy landscape, we examine the adsorp-
tion energy curve of a water molecule on a periodic hBN
monolayer. A supercell consisting of an 8 atom hBN substrate
was employed for the calculation of the CCD energy curve.
The orientation of the water molecule on top of the surface
was kept the same as in Sec. V B, while the atomic positions
of the monolayer were fixed to their pristine structure. The
energy curve was obtained by moving the molecule vertically
on top of the surface without altering its orientation. We follow
a similar computational procedure as in Sec. V B. HF oribtals
were obtained using a 600 eV kinetic energy cutoff along with
Γ point sampling of the first Brillouin zone. The virtual states
were expanded in plane waves and were chosen in a way to
resemble closely an AVDZ basis set orthogonalized to the HF
occupied orbitals, in the same manner as in Sec. V B. Since we
are solely interested in the smoothness of the PES and not the
absolute adsorption energies, this small basis set is sufficient.
The selection of the plane wave vectors G for the evaluation
of the Coulomb vertex Γ̃q

rG
according to Eq. (7) was deter-

mined by a kinetic energy cutoff Eχ = 300 eV. The resulting
number of momentum grid points is NG = 2066. The opti-
mized Coulomb vertex Γq

rF
= U∗GF Γ̃

q

rG
was obtained using the

NF = 826 largest singular values of Γ̃q

rG
according to Eq. (8).

The adsorption energy agrees to within 1 µeV using the
optimized Coulomb vertex.

TABLE II. CPU hours per iteration comparing CCD calculation with and
without the factorized Coulomb integrals. In parenthesis we denote the part
for evaluating the particle/particle ladder term.

Basis set NR = 2NF NR = 3NF No TRD

AVDZ 39 (13) 49 (24) 100 (75)
AVTZ 259 (28) 258 (55) 1443a (1212)

aEstimation based on the AVDZ basis set.

FIG. 4. Smoothness of the potential energy landscape employing the tensor
rank decomposition. Triangles (orange) represent the energy curve obtained
with NR = NF vertex indices, squares (green) the energy curve with NR = 2NF ,
and diamonds (blue) the energy curve with NR = 3NF . The potential energy
landscape of the optimized Coulomb vertex is represented by the mostly
occluded red triangles pointing downwards. The inset shows the nonparallelity
errors.

We approximate the particle/particle ladder contribution
T cd

ij
Vab

cd
in the amplitude equation of CCD via the factor orbitals

and the Coulomb factors as shown in Eq. (39). The adsorption
energy curve obtained using different numbers of decomposed
vertex indices NR and 128 iterations is shown in Fig. 4. On the
scale of the absolute adsorption energy, only the NR = NF

curve deviates from the optimized Coulomb vertex result. The
PES obtained using NR = 2NF and NR = 3NF does not exhibit a
deviation visible on the scale of the absolute adsorption energy.
In order to examine further the accuracy of the PES landscape
of the TRD method we show on the inset of Fig. 4 the rel-
ative error with respect to the energy curve of the optimized
Coulomb vertex. The error of the NR = NF energy curve is
of the order of 1 meV and oscillates rather randomly. The
NR = 2NF curve exhibits a much smaller error (of the order
of 0.1 meV) and the NR = 3NF an even smaller one. This
demonstrates that sub meV accuracy and very smooth poten-
tial energy surfaces can be achieved in a systematic manner
for increasing NR.

VI. CONCLUSIONS

In this work, we have outlined an algorithm to obtain a low
rank tensor approximation of the Coulomb integrals having the
same algebraic structure as its definition from the molecular
orbitals

V
pq
sr =

∫∫

dx dx′

ψ∗p(x) ψ∗q(x′) 1
|r− r′ | ψr(x′) ψs(x)

≈
∑

RS

Π∗p
R
Π∗q

S
Λ∗FRΛ

S
F
ΠS

r ΠR
s .

(42)

The developed methods for periodic systems are based on
previous work referred to as tensor hypercontraction (THC)
outlined in Refs. 11–13. The factorization is obtained by fit-
ting ΛS

F
Π∗q

S
ΠS

r to auxiliary three index quantities referred to
as Coulomb vertices that are calculated from a resolution
of identity approach using a plane wave basis set. In this



124105-10 Hummel, Tsatsoulis, and Grüneis J. Chem. Phys. 146, 124105 (2017)

manner, the scaling of the computational cost for obtaining
the low rank tensor approximation with respect to system size
does not exceed O(N4). To reduce the prefactor of the compu-
tational cost further we have outlined an approach to further
compactify the representation of the Coulomb vertices. We lin-
early transform the momentum index of the Coulomb vertices
into a (truncated) basis referred to as an optimized auxiliary
field. The accuracy of this truncation is systematically improv-
able using a single parameter that is used for the truncation of
a singular value decomposition. The tensor factorization of
the transformed Coulomb vertices is achieved using a reg-
ularized alternating least squares algorithm that converges
rapidly using about 102 iterations only. In contrast, the non-
regularized alternating least squares algorithm would require
105–106 iterations. We stress that we employ no prior assump-
tions for the real space grids used for expanding the low order
tensors.

Once obtained, the tensor factorization of the Coulomb
integrals can be employed to reduce the scaling of the compu-
tational cost of distinguishable coupled cluster theory toO(N5)
without further approximations. We demonstrate that the fac-
torization can also be used to reduce the computational cost
for evaluating the computationally most expensive term (par-
ticle/particle ladder diagram) in the CCD amplitude equations
for the case of water adsorption on the hBN monolayer system.
For system sizes containing 136 electrons in 1632 orbitals, we
achieve substantial reductions in the computational cost that
are on the order of a factor 10–20 without compromising the
accuracy and introducing any further approximation.

Future work will focus on combining the outlined tech-
niques with explicitly correlated methods and finite size cor-
rections in order to significantly expand the scope of periodic
coupled cluster theory calculations using plane wave basis sets
for solid state systems.53,54
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