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ABSTRACT As a paradigm to recover unknown entries of a matrix from partial observations, low-rank

matrix completion (LRMC) has generated a great deal of interest. Over the years, there have been lots of

works on this topic, but it might not be easy to grasp the essential knowledge from these studies. This is

mainly because many of these works are highly theoretical or a proposal of new LRMC technique. In this

paper, we give a contemporary survey on LRMC. In order to provide a better view, insight, and understanding

of potentials and limitations of the LRMC, we present early scattered results in a structured and accessible

way. Specifically, we classify the state-of-the-art LRMC techniques into two main categories and then

explain each category in detail. We next discuss the issues to be considered when one considers using the

LRMC techniques. These include intrinsic properties required for the matrix recovery and how to exploit

a special structure in the LRMC design. We also discuss the convolutional neural network (CNN)-based

LRMC algorithms exploiting the graph structure of a low-rank matrix. Furthermore, we present the recovery

performance and the computational complexity of state-of-the-art LRMC techniques. Our hope is that this

paper will serve as a useful guide for practitioners and non-experts to catch the gist of the LRMC.

INDEX TERMS Low-rank matrices, matrix completion, recommendation system, nuclear norm minimiza-

tion, graph model.

I. INTRODUCTION

In the era of big data, the low-rankmatrix has become a useful

and popular tool to express two-dimensional information.

One well-known example is the rating matrix in the recom-

mendation systems representing users’ tastes on products [1].

Since users expressing similar ratings on multiple products

tend to have the same interest for the new product, columns

associated with users sharing the same interest are highly

likely to be the same, resulting in the low rank structure of the

rating matrix (see Fig. 1). Another example is the Euclidean

distance matrix formed by the pairwise distances of a large

number of sensor nodes. Since the rank of a Euclidean dis-

tance matrix in the k-dimensional Euclidean space is at most

k + 2 (if k = 2, then the rank is 4), this matrix can be readily

modeled as a low-rank matrix [2]–[4].

A holy grail of the low-rank matrix is that the essential

information, expressed in terms of degree of freedom, in a

The associate editor coordinating the review of this manuscript and
approving it for publication was Congduan Li.

matrix is much smaller than the total number of entries.

Therefore, even though the number of observed entries is

small, we still have a good chance to recover the whole

matrix. There are a variety of scenarios where the number

of observed entries of a matrix is tiny. In the recommenda-

tion systems, for example, users are recommended to submit

the feedback in a form of rating number, e.g., 1 to 5 for

the purchased product. However, users often do not want

to leave a feedback and thus the rating matrix will have

many missing entries. Also, in the internet of things (IoT)

network, sensor nodes have a limitation on the radio com-

munication range or under the power outage so that only

small portion of entries in the Euclidean distance matrix is

available.

When there is no restriction on the rank of a matrix,

the problem to recover unknown entries of a matrix from

partial observed entries is ill-posed. This is because any value

can be assigned to unknown entries, which in turn means

that there are infinite number of matrices that agree with the

observed entries. As a simple example, consider the following
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FIGURE 1. Recommendation system application of LRMC. Entries of M̂ are then simply rounded to integers, achieving 97.2%
accuracy.

2 × 2 matrix with one unknown entry marked ?

M =
[
1 5

2 ?

]
. (1)

If M is a full rank, i.e., the rank of M is two, then any value

except 10 can be assigned to ?. Whereas, if M is a low-rank

matrix (the rank is one in this trivial example), two columns

differ by only a constant and hence unknown element ? can

be easily determined using a linear relationship between two

columns (? = 10). This example is obviously simple, but the

fundamental principle to recover a large dimensional matrix

is not much different from this and the low-rank constraint

plays a pivotal role in recovering unknown entries of the

matrix.

Before we proceed, we discuss a few notable applications

where the underlying matrix is modeled as a low-rank matrix.

1) Recommendation system: In 2006, the online DVD

rental company Netflix announced a contest to improve

the quality of the company’s movie recommendation

system. The company released a training set of half

million customers. Training set contains ratings on

more than ten thousands movies, each movie being

rated on a scale from 1 to 5 [1]. The training data can

be represented in a large dimensional matrix in which

each column represents the rating of a customer for the

movies. The primary goal of the recommendation sys-

tem is to estimate the users’ interests on products using

the sparsely sampled1 rating matrix.2 Often, users shar-

ing the same interests in key factors such as the type,

the price, and the appearance of the product tend to

provide the same rating on the movies. The ratings

of those users might form a low-rank column space,

1Netflix dataset consists of ratings of more than 17,000 movies by more
than 2.5 million users. The number of known entries is only about 1% [1].

2Customers might not necessarily rate all of the movies.
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FIGURE 2. Localization via LRMC [4]. The Euclidean distance matrix can be recovered with 92% of distance error below
0.5m using 30% of observed distances.

resulting in the low-rankmodel of the ratingmatrix (see

Fig. 1).

2) Phase retrieval: The problem to recover a signal

not necessarily sparse from the magnitude obser-

vation is referred to as the phase retrieval. Phase

retrieval is an important problem in X-ray crys-

tallography and quantum mechanics since only the

magnitude of the Fourier transform ismeasured in these

applications [5]. Suppose the unknown time-domain

signal m = [m0 · · · mn−1] is acquired in a form of

the measured magnitude of the Fourier transform. That

is,

|zω| =
1

√
n

∣∣∣∣∣

n−1∑

t=0

mte
−j2πωt/n

∣∣∣∣∣ , ω ∈ �, (2)

where � is the set of sampled frequencies. Further, let

fω =
1

√
n
[1 e−j2πω/n · · · e−j2πω(n−1)/n]H , (3)

M = mmH wheremH is the conjugate transpose ofm.

Then, (2) can be rewritten as

|zω|2 = |〈fω,m〉|2 (4)

= tr(fHωmmH fω) (5)

= tr(mmH fωf
H
ω ) (6)

= 〈M,Fω〉, (7)

where Fw = fwf
H
w is the rank-1 matrix of the waveform

fω. Using this simple transform, we can express the

quadratic magnitude |zω|2 as linear measurement ofM.

In essence, the phase retrieval problem can be con-

verted to the problem to reconstruct the rank-1 matrix

M in the positive semi-definite (PSD) cone3 [5]:

min
X

rank(X)

subject to 〈M,Fω〉 = |zω|2, ω ∈ �

X � 0. (8)

3If M is recovered, then the time-domain vector m can be computed by
the eigenvalue decomposition of M.
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FIGURE 3. Image reconstruction via LRMC. Recovered images achieve peak SNR ≥ 32dB.

3) Localization in IoT networks: In recent years, inter-

net of things (IoT) has received much attention for

its plethora of applications such as healthcare, auto-

matic metering, environmental monitoring (tempera-

ture, pressure, moisture), and surveillance [2], [6], [7].

Since the action in IoT networks, such as fire alarm,

command broadcasting, or emergency request, is made

primarily on the data center, data center should fig-

ure out the location information of whole devices in

the networks. Also, in the wireless energy harvesting

systems, accurate location information is crucial to

improve the efficiency of wireless power transfer. In

this scheme, called network localization (a.k.a. coop-

erative localization), each sensor node measures the

distance information of adjacent nodes and then sends

it to the data center. Then the data center constructs

a map of sensor nodes using the collected distance

information [8]. Due to various reasons, such as the

power outage of a sensor node or the limitation of

radio communication range (see Fig. 2), only small

number of distance information is available at the data

center. Also, in the vehicular networks, it is not easy

to measure the distance of all adjacent vehicles when a

vehicle is located at the dead zone. An example of the

observed Euclidean distance matrix is

Mo =




0 d212 d213 ? ?

d221 0 ? ? ?

d231 ? 0 d234 d235
? ? d243 0 d245
? ? d253 d254 0




,

where dij is the pairwise distance between two sen-

sor nodes i and j. Since the rank of Euclidean dis-

tance matrix M is at most k + 2 in the k-dimensional

Euclidean space (k = 2 or k = 3) [3], [4], the problem

to reconstruct M can be well-modeled as the LRMC

problem.

4) Image compression and restoration: When there is

dirt or scribble in a two-dimensional image (see Fig. 3),

one simple solution is to replace the contaminated

pixels with the interpolated version of adjacent pixels.

A better way is to exploit intrinsic domination of a few

singular values in an image. In fact, one can readily

approximate an image to the low-rank matrix without

perceptible loss of quality. By using clean (uncontami-

nated) pixels as observed entries, an original image can

be recovered via the low-rank matrix completion.

5) Massive multiple-input multiple-output (MIMO):

By exploiting hundreds of antennas at the basestation

(BS), massive MIMO can offer a large gain in capac-

ity. In order to maximize the performance gain of the

massive MIMO systems, the channel state information

at the transmitter (CSIT) is required [9]. One way to

acquire the CSIT is to let each user directly feed back its

own pilot observation to BS for the joint CSIT estima-

tion of all users [12]. In this setup, the MIMO channel

matrix H can be reconstructed in two steps: 1) finding

the pilot matrix Y using the least squares (LS) estima-

tion or linear minimum mean square error (LMMSE)

estimation and 2) reconstructing H using the model

Y = H8 where each column of 8 is the pilot signal

from one antenna at BS [10], [11]. Since the number
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of resolvable paths P is limited in most cases, one can

readily assume that rank(H) ≤ P [12]. In the mas-

sive MIMO systems, P is often much smaller than the

dimension of H due to the limited number of clusters

around BS. Thus, the problem to recover H at BS can

be solved via the rank minimization problem subject to

the linear constraint Y = H8 [11].

Other than these, there are a bewildering variety of

applications of LRMC in wireless communication, such as

millimeter wave (mmWave) channel estimation [13], [14],

topological interference management (TIM) [15]–[18] and

mobile edge caching in fog radio access networks (Fog-

RAN) [19], [20].

The paradigm of LRMC has received much attention ever

since the works of Fazel [21], Candes and Recht [22], and

Candes and Tao [23]. Over the years, there have been lots of

works on this topic [5], [48], [49], [57], but it might not be

easy to grasp the essentials of LRMC from these studies. One

reason is because many of these works are highly theoretical

and based on random matrix theory, graph theory, manifold

analysis, and convex optimization so that it is not easy to

grasp the essential knowledge from these studies. Another

reason is because most of these works are proposals of new

LRMC technique so that it is difficult to catch a general idea

and big picture of LRMC from these.

The primary goal of this paper is to provide a contempo-

rary survey on LRMC, a new paradigm to recover unknown

entries of a low-rankmatrix from partial observations. To pro-

vide better view, insight, and understanding of the potentials

and limitations of LRMC to researchers and practitioners

in a friendly way, we present early scattered results in a

structured and accessible way. Firstly, we classify the state-

of-the-art LRMC techniques into two main categories and

then explain each category in detail. Secondly, we present

issues to be considered when using LRMC techniques.

Specifically, we discuss the intrinsic properties required

for low-rank matrix recovery and explain how to exploit a

special structure, such as positive semidefinite-based struc-

ture, Euclidean distance-based structure, and graph struc-

ture, in LRMC design. Thirdly, we compare the recovery

performance and the computational complexity of LRMC

techniques via numerical simulations. We conclude the paper

by commenting on the choice of LRMC techniques and pro-

viding future research directions.

Recently, there have been a few overview papers on

LRMC. An overview of LRMC algorithms and their perfor-

mance guarantees can be found in [73]. A survey with an

emphasis on first-order LRMC techniques together with their

computational efficiency is presented in [74]. Our work is

clearly distinct from the previous studies in several aspects.

Firstly, we categorize the state-of-the-art LRMC techniques

into two classes and then explain details of each class, which

can help researchers to easily catch technique useful for the

given problem setup. Secondly, we provide a comprehen-

sive survey of LRMC techniques and also provide extensive

simulation results on the recovery quality and the running

time complexity from which one can easily see the pros and

cons of each LRMC technique and also gain a better insight

into the choice of LRMC algorithms. Finally, we discuss

how to exploit a special structure of a low-rank matrix in

the LRMC algorithm design. In particular, we introduce the

CNN-based LRMC algorithm that exploits the graph struc-

ture of a low-rank matrix.

We briefly summarize notations used in this paper.

• For a vector a ∈ R
n, diag(a) ∈ R

n×n is the diagonal

matrix formed by a.

• For a matrix A ∈ R
n1×n2 , ai ∈ R

n1 is the i-th column of

A.

• rank(A) is the rank of A.

• AT ∈ R
n2×n1 is the transpose of A.

• For A,B ∈ R
n1×n2 , 〈A,B〉 = tr(ATB) and A ⊙ B

are the inner product and the Hadamard product (or

element-wise multiplication) of two matrices A and B,

respectively, where tr(·) denotes the trace operator.
• ‖A‖, ‖A‖∗, and ‖A‖F stand for the spectral norm

(i.e., the largest singular value), the nuclear norm (i.e.,

the sum of singular values), and the Frobenius norm of

A, respectively.

• σi(A) is the i-th largest singular value of A.

• 0d1×d2 and 1d1×d2 are (d1 × d2)-dimensional matrices

with entries being zero and one, respectively.

• Id is the d-dimensional identity matrix.

• IfA is a square matrix (i.e., n1 = n2 = n), diag(A) ∈ R
n

is the vector formed by the diagonal entries of A.

• vec(X) is the vectorization of X.

II. BASICS OF LOW-RANK MATRIX COMPLETION

In this section, we discuss the basic principle to recover

a low-rank matrix from partial observations. Basically,

the desired low-rank matrix M can be recovered by solving

the rank minimization problem

min
X

rank(X)

subject to xij = mij, (i, j) ∈ �, (9)

where � is the index set of observed entries (e.g., � =
{(1, 1), (1, 2), (2, 1)} in the example in (1)). One can alterna-

tively express the problem using the sampling operator P�.

The sampling operation P�(A) of a matrix A is defined as

[P�(A)]ij =

{
aij if (i, j) ∈ �

0 otherwise.

Using this operator, the problem (9) can be equivalently

formulated as

min
X

rank(X)

subject to P�(X) = P�(M). (10)

A naive way to solve the rank minimization problem (10) is

the combinatorial search. Specifically, we first assume that

rank(M) = 1. Then, any two columns of M are linearly
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FIGURE 4. Outline of LRMC algorithms.

dependent and thus we have the system of expressions mi =
αi,jmj for some αi,j ∈ R. If the system has no solution for the

rank-one assumption, then we move to the next assumption

of rank(M) = 2. In this case, we solve the new system

of expressions mi = αi,jmj + αi,kmk . This procedure is

repeated until the solution is found. Clearly, the combinatorial

search strategy would not be feasible for most practical sce-

narios since it has an exponential complexity in the problem

size [76]. For example, when M is an n× n matrix, it can be

shown that the number of the system expressions to be solved

is O(n2n).

As a cost-effective alternative, various low-rank matrix

completion (LRMC) algorithms have been proposed over the

years. Roughly speaking, depending on the way of using the

rank information, the LRMC algorithms can be classified into

two main categories: 1) those without the rank information

and 2) those exploiting the rank information. In this section,

we provide an in depth discussion of two categories (see the

outline of LRMC algorithms in Fig. 4).

A. LRMC ALGORITHMS WITHOUT THE RANK

INFORMATION

In this subsection, we explain the LRMC algorithms that

do not require the rank information of the original low-rank

matrix.

1) NUCLEAR NORM MINIMIZATION (NNM)

Since the rank minimization problem (10) is NP-hard [21],

it is computationally intractable when the dimension of a

matrix is large. One common trick to avoid computational

issue is to replace the non-convex objective function with its

convex surrogate, meaning that to convert the combinatorial

search problem into a convex optimization problem. There

are two clear advantages in solving the convex optimization

problem: 1) a local optimum solution is globally optimal and

2) there are many efficient polynomial-time convex optimiza-

tion solvers (e.g., interior pointmethod [77] and semi-definite

programming (SDP) solver).

In the LRMC problem, the nuclear norm ‖X‖∗, the sum of

the singular values of X, has been widely used as a convex

surrogate of rank(X) [22]:

min
X

‖X‖∗

subject to P�(X) = P�(M) (11)

Indeed, it has been shown that the nuclear norm is the con-

vex envelope (the ‘‘best’’ convex approximation) of the rank

function on the set {X ∈ R
n1×n2 : ‖X‖ ≤ 1} [21].4 Note

that the relaxation from the rank function to the nuclear norm

is conceptually analogous to the relaxation from ℓ0-norm to

ℓ1-norm in compressed sensing (CS) [39]–[41].

Now, a natural question one might ask is whether the NNM

problem in (11) would offer a solution comparable to the

solution of the rank minimization problem in (10). In [22],

4For any function f : C → R, where C is a convex set, the convex envelope
of f is the largest convex function g such that f (x) ≥ g(x) for all x ∈ C. Note
that the convex envelope of rank(X) on the set {X ∈ R

n1×n2 : ‖X‖ ≤ 1} is
the nuclear norm ‖X‖∗ [21].
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it has been shown that if the observed entries of a rank r

matrix M(∈ R
n×n) are suitably random and the number of

observed entries satisfies

|�| ≥ Cµ0n
1.2r log n, (12)

where µ0 is the largest coherence of M (see the definition

in Subsection III-A.2), then M is the unique solution of

the NNM problem (11) with overwhelming probability (see

Appendix B).

It is worth mentioning that the NNM problem in (11)

can also be recast as a semidefinite program (SDP) as (see

Appendix A)

min
Y

tr(Y)

subject to 〈Y,Ak 〉 = bk , k = 1, · · · , |�|
Y � 0, (13)

where Y =
[
W1 X

XT W2

]
∈ R

(n1+n2)×(n1+n2), {Ak}|�|
k=1 is the

sequence of linear sampling matrices, and {bk}|�|
k=1 are the

observed entries. The problem (13) can be solved by the off-

the-shelf SDP solvers such as SDPT3 [24] and SeDuMi [25]

using interior-point methods [26]–[31]. It has been shown

that the computational complexity of SDP techniques is

O(n3) where n = max(n1, n2) [30]. Also, it has been shown

that under suitable conditions, the output M̂ of SDP satisfies

‖M̂−M‖F ≤ ǫ in at mostO(nω log( 1
ǫ
)) iterations where ω is

a positive constant [29]. Alternatively, one can reconstructM

by solving the equivalent nonconvex quadratic optimization

form of the NNM problem [32]. Note that this approach has

computational benefit since the number of primal variables of

NNM is reduced from n1n2 to r(n1 + n2) (r ≤ min(n1, n2)).

Interested readers may refer to [32] for more details.

2) SINGULAR VALUE THRESHOLDING (SVT)

While the solution of the NNM problem in (11) can be

obtained by solving (13), this procedure is computationally

burdensome when the size of the matrix is large.

As an effort to mitigate the computational burden,

the singular value thresholding (SVT) algorithm has been

proposed [33]. The key idea of this approach is to put the

regularization term into the objective function of the NNM

problem:

min
X

τ‖X‖∗ +
1

2
‖X‖2F

subject to P�(X) = P�(M), (14)

where τ is the regularization parameter. In [33, Theorem 3.1],

it has been shown that the solution to the problem (14)

converges to the solution of the NNM problem as τ → ∞.5

5In practice, a large value of τ has been suggested (e.g., τ = 5n for an
n× n low rank matrix) for the fast convergence of SVT. For example, when
τ = 5000, it requires 177 iterations to reconstruct a 1000×1000 matrix of
rank 10 [33].

Let L(X,Y) be the Lagrangian function associated

with (14), i.e.,

L(X,Y) = τ‖X‖∗+
1

2
‖X‖2F+〈Y,P�(M)−P�(X)〉 (15)

where Y is the dual variable. Let X̂ and Ŷ be the primal

and dual optimal solutions. Then, by the strong duality [77],

we have

max
Y

min
X

L(X,Y) = L(X̂, Ŷ) = min
X

max
Y

L(X,Y). (16)

The SVT algorithm finds X̂ and Ŷ in an iterative fashion.

Specifically, starting with Y0 = 0n1×n2 , SVT updates Xk and

Yk as

Xk = argmin
X

L(X,Yk−1), (17a)

Yk = Yk−1 + δk
∂L(Xk ,Y)

∂Y
, (17b)

where {δk}k≥1 is a sequence of positive step sizes. Note that

Xk can be expressed as

Xk = argmin
X

τ‖X‖∗ +
1

2
‖X‖2F − 〈Yk−1,P�(X)〉

(a)= argmin
X

τ‖X‖∗ +
1

2
‖X‖2F − 〈P�(Yk−1),X〉

(b)= argmin
X

τ‖X‖∗ +
1

2
‖X‖2F − 〈Yk−1,X〉

= argmin
X

τ‖X‖∗ +
1

2
‖X − Yk−1‖2F , (18)

where (a) is because 〈P�(A),B〉 = 〈A,P�(B)〉 and (b) is

becauseYk−1 vanishes outside of� (i.e., P�(Yk−1) = Yk−1)

by (17b). Due to the inclusion of the nuclear norm, finding out

the solutionXk of (18) seems to be difficult. However, thanks

to the intriguing result of Cai et al., we can easily obtain the

solution.

Theorem 1 ([33, Theorem 2.1]): Let Z be a matrix whose

singular value decomposition (SVD) is Z = U6VT . Define

t+ = max{t, 0} for t ∈ R. Then,

Dτ (Z) = argmin
X

τ‖X‖∗ +
1

2
‖X − Z‖2F , (19)

whereDτ is the singular value thresholding operator defined

as

Dτ (Z) = U diag({(σi(6) − τ )+}i})VT . (20)

By Theorem 1, the right-hand side of (18) is Dτ (Yk−1).

To conclude, the update equations for Xk and Yk are given

by

Xk = Dτ (Yk−1), (21a)

Yk = Yk−1 + δk (P�(M) − P�(Xk )). (21b)

One can notice from (21a) and (21b) that the SVT algorithm

is computationally efficient since we only need the truncated

SVD and elementary matrix operations in each iteration.

Indeed, let rk be the number of singular values of Yk−1 being

greater than the threshold τ . Also, we suppose {rk} converges
to the rank of the original matrix, i.e., limk→∞ rk = r .
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TABLE 1. The SVT Algorithm.

Then the computational complexity of SVT isO(rn1n2). Note

also that the iteration number to achieve the ǫ-approximation6

is O( 1√
ǫ
) [33]. In Table 1, we summarize the SVT algo-

rithm. For the details of the stopping criterion of SVT,

see [33, Section 5].

Over the years, various SVT-based techniques have been

proposed [35], [78], [79]. In [78], an iterative matrix comple-

tion algorithm using the SVT-based operator called proximal

operator has been proposed. Similar algorithms inspired by

the iterative hard thresholding (IHT) algorithm in CS have

also been proposed [35], [79].

3) ITERATIVELY REWEIGHTED LEAST SQUARES (IRLS)

MINIMIZATION

Yet another simple and computationally efficient way

to solve the NNM problem is the IRLS minimization

technique [36], [37]. In essence, the NNM problem can be

recast using the least squares minimization as

min
X,W

‖W
1
2X‖2F

subject to P�(X) = P�(M), (22)

whereW = (XXT )−
1
2 . It can be shown that (22) is equivalent

to the NNM problem (11) since we have [36]

‖X‖∗ = tr((XXT )
1
2 ) = ‖W

1
2X‖2F . (23)

The key idea of the IRLS technique is to find X and W in an

iterative fashion. The update expressions are

Xk = arg min
P�(X)=P�(M)

‖W
1
2

k−1X‖2F , (24a)

Wk = (XkX
T
k )

− 1
2 . (24b)

Note that the weighted least squares subproblem (24a) can

be easily solved by updating each and every column of

Xk [36]. In order to compute Wk , we need a matrix inver-

sion (24b). To avoid the ill-behavior (i.e., some of the sin-

gular values of Xk approach to zero), an approach to use the

perturbation of singular values has been proposed [36], [37].

6By ǫ-approximation, we mean ‖M̂ − M∗‖F ≤ ǫ where M̂ is the
reconstructed matrix and M∗ is the optimal solution of SVT.

TABLE 2. The IRLS Algorithm.

Similar to SVT, the computational complexity per itera-

tion of the IRLS-based technique is O(rn1n2). Also, IRLS

requires O(log( 1
ǫ
)) iterations to achieve the ǫ-approximation

solution. We summarize the IRLS minimization technique

in Table 2.

B. LRMC ALGORITHMS USING RANK INFORMATION

In many applications such as localization in IoT net-

works, recommendation system, and image restoration,

we encounter the situation where the rank of a desired matrix

is known in advance. As mentioned, the rank of a Euclidean

distance matrix in a localization problem is at most k + 2

(k is the dimension of the Euclidean space). In this situation,

the LRMC problem can be formulated as a Frobenius norm

minimization (FNM) problem:

min
X

1

2
‖P�(M) − P�(X)‖2F

subject to rank(X) ≤ r . (25)

Due to the inequality of the rank constraint, an approach

to use an approximate rank information (e.g., upper bound

of the rank) has been proposed [43]. The FNM problem

has two main advantages: 1) the problem is well-posed

in the noisy scenario and 2) the cost function is differen-

tiable so that various gradient-based optimization techniques

(e.g., gradient descent, conjugate gradient, Newton meth-

ods, and manifold optimization) can be used to solve the

problem.

Over the years, various techniques to solve the FNM

problem in (25) have been proposed [43]–[51], [57]. The

performance guarantee of the FNM-based techniques has

also been provided [59]–[61]. It has been shown that

under suitable conditions of the sampling ratio p =
|�|/(n1n2) and the largest coherence µ0 of M (see the

definition in Subsection III-A.2), the gradient-based algo-

rithms globally converges to M with high probability [60].

Well-known FNM-based LRMC techniques include greedy

techniques [43], alternating projection techniques [45], and

optimization over Riemannian manifold [50]. In this subsec-

tion, we explain these techniques in detail.
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1) GREEDY TECHNIQUES

In recent years, greedy algorithms have been popularly used

for LRMC due to the computational simplicity. In a nutshell,

they solve the LRMC problem by making a heuristic decision

at each iteration with a hope to find the right solution in the

end.

Let r be the rank of a desired low-rank matrix M ∈ R
n×n

and M = U6VT be the singular value decomposition of M

where U,V ∈ R
n×r . By noting that

M =
r∑

i=1

σi(M)uiv
T
i , (26)

M can be expressed as a linear combination of r rank-one

matrices. The main task of greedy techniques is to investigate

the atom set AM = {ϕi = uiv
T
i }ri=1 of rank-one matrices

representingM. Once the atom setAM is found, the singular

values σi(M) = σi can be computed easily by solving the

following problem

(σ1, · · · , σr ) = argmin
αi

‖P�(M) − P�(

r∑

i=1

αiϕi)‖F . (27)

To be specific, let A = [vec(P�(ϕ1)) · · · vec(P�(ϕr ))],

α = [α1 · · · αr ]
T and b = vec(P�(M)). Then, we have

(σ1, · · · , σr ) = argmin
α

‖b − Aα‖2 = A†b.

One popular greedy technique is atomic decomposition for

minimum rank approximation (ADMiRA) [43], which can be

viewed as an extension of the compressive sampling match-

ing pursuit (CoSaMP) algorithm in CS [38]–[41]. ADMiRA

employs a strategy of adding as well as pruning to identify the

atom set AM. In the addition stage, ADMiRA identifies 2r

rank-one matrices representing a residual best and then adds

the matrices to the pre-chosen atom set. Specifically, if Xi−1

is the output matrix generated in the (i − 1)-th iteration and

Ai−1 is its atom set, then ADMiRA computes the residual

Ri = P�(M) − P�(Xi−1) and then adds 2r leading principal

components of Ri toAi−1. In other words, the enlarged atom

set 9i is given by

9i = Ai−1 ∪ {uRi,jvTRi,j : 1 ≤ j ≤ 2r}, (28)

where uRi,j and vRi,j are the j-th principal left and right

singular vectors of Ri, respectively. Note that 9i contains at

most 3r elements. In the pruning stage, ADMiRA refines 9i

into a set of r atoms. To be specific, if X̃i is the best rank-3r

approximation ofM, i.e.,7

X̃i = arg min
X∈span(9i)

‖P�(M) − P�(X)‖F , (29)

then the refined atom set Ai is expressed as

Ai = {uX̃i,jv
T
X̃i,j

: 1 ≤ j ≤ r}, (30)

where uX̃i,j and vX̃i,j are the j-th principal left and right

singular vectors of X̃i, respectively. The computational com-

plexity of ADMiRA is mainly due to two operations: the least

7Note that the solution to (29) can be computed in a similar way as in (27).

TABLE 3. The ADMiRA Algorithm.

squares operation in (27) and the SVD-based operation to

find out the leading atoms of the required matrix (e.g., Rk

and X̃k+1). First, since (27) involves the pseudo-inverse of

A (size of |�| × O(r)), its computational cost is O(r|�|).
Second, the computational cost of performing a truncated

SVD ofO(r) atoms isO(rn1n2). Since |�| < n1n2, the com-

putational complexity of ADMiRA per iteration isO(rn1n2).

Also, the iteration number of ADMiRA to achieve the

ǫ-approximation isO(log( 1
ǫ
)) [43]. In Table 3, we summarize

the ADMiRA algorithm.

Yet another well-known greedy method is the rank-one

matrix pursuit algorithm [44], an extension of the orthogo-

nal matching pursuit algorithm in CS [42]. In this approach,

instead of choosing multiple atoms of a matrix, an atom

corresponding to the largest singular value of the residual

matrix Rk is chosen.

2) ALTERNATING MINIMIZATION TECHNIQUES

Many of LRMC algorithms [33], [43] require the compu-

tation of (partial) SVD to obtain the singular values and

vectors (expressed as O(rn2)). As an effort to further reduce

the computational burden of SVD, alternating minimization

techniques have been proposed [45]–[47]. The basic premise

behind this approach is that a low-rank matrixM ∈ R
n1×n2 of

rank r can be factorized into tall and fat matrices, i.e., M =
XY where X ∈ R

n1×r and Y ∈ R
r×n2 (r ≪ n1, n2). The key

idea of this approach is to find out X and Y minimizing the

residual (the difference between the original matrix and the

estimate of it) on the sampling space. In other words, X and

Y are recovered by solving

min
X,Y

1

2
‖P�(M) − P�(XY)‖2F . (31)

Power factorization, a simple alternating minimization algo-

rithm, finds out the solution to (31) by updating X and Y
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alternately as [45]

Xi+1 = argmin
X

‖P�(M) − P�(XYi)‖2F , (32a)

Yi+1 = argmin
Y

‖P�(M) − P�(Xi+1Y)‖2F . (32b)

Alternating steepest descent (ASD) is another alternating

method to find out the solution [46]. The key idea of ASD is

to update X and Y by applying the steepest gradient descent

method to the objective function f (X,Y) = 1
2
‖P�(M) −

P�(XY)‖2F in (31). Specifically, ASD first computes the

gradient of f (X,Y) with respect to X and then updates X

along the steepest gradient descent direction:

Xi+1 = Xi − txi
`
fYi (Xi), (33)

where the gradient descent direction
`
fYi (Xi) and stepsize

txi are given by
h

fYi (Xi) = −(P�(M) − P�(XiYi))Y
T
i , (34a)

txi =
‖
`
fYi (Xi)‖2F

‖P�(
`
fYi (Xi)Yi)‖2F

. (34b)

After updating X, ASD updates Y in a similar way:

Yi+1 = Yi − tyi

h
fXi+1

(Yi), (35)

where
h

fXi+1
(Yi) = −XT

i+1(P�(M) − P�(Xi+1Yi)), (36a)

tyi =
‖
`
fXi+1

(Yi)‖2F
‖P�(Xi+1

`
fXi+1

(Yi))‖2F
. (36b)

The low-rank matrix fitting (LMaFit) algorithm finds out

the solution in a different way by solving [47]

arg min
X,Y,Z

{‖XY − Z‖2F : P�(Z) = P�(M)}. (37)

With the arbitrary input of X0 ∈ R
n1×r and Y0 ∈ R

r×n2 and
Z0 = P�(M), the variables X, Y, and Z are updated in the

i-th iteration as

Xi+1 = argmin
X

‖XYi − Zi‖2F = ZiY
†, (38a)

Yi+1 = argmin
Y

‖XiY − Zi‖2F = X
†
i+1Zi, (38b)

Zi+1 = Xi+1Yi+1 + P�(M − Xi+1Yi+1), (38c)

where X† is Moore-Penrose pseudoinverse of matrix X.

Running time of the alternating minimization algorithms

is very short due to the following reasons: 1) the SVD com-

putation is unnecessary and 2) the size of matrices to be

inverted is smaller than the size of matrices for the greedy

algorithms. While the inversion of huge size matrices (size

of |�| × O(1)) is required in a greedy algorithms (see (27)),

alternating minimization only requires the pseudo inversion

of X and Y (size of n1 × r and r × n2, respectively).

Indeed, the computational complexity of this approach is

O(r|�| + r2n1 + r2n2), which is much smaller than that of

SVT andADMiRAwhen r ≪ min(n1, n2). Also, the iteration

number of ASD and LMaFit to achieve the ǫ-approximation

is O(log( 1
ǫ
)) [46], [47]. It has been shown that alternating

minimization techniques are simple to implement and also

require small sized memory [84]. Major drawback of these

approaches is that it might converge to the local optimum.

3) OPTIMIZATION OVER SMOOTH RIEMANNIAN MANIFOLD

In many applications where the rank of a matrix is known in

a priori (i.e., rank(M) = r), one can strengthen the constraint

of (25) by defining the feasible set, denoted by F , as

F = {X ∈ R
n1×n2 : rank(X) = r}.

Note that F is not a vector space8 and thus conventional

optimization techniques cannot be used to solve the problem

defined over F . While this is bad news, a remedy for this is

that F is a smooth Riemannian manifold [48], [53]. Roughly

speaking, smooth manifold is a generalization of Rn1×n2 on

which a notion of differentiability exists. For more rigorous

definition, see, e.g., [55], [56]. A smooth manifold equipped

with an inner product, often called a Riemannian metric,

forms a smooth Riemannian manifold. Since the smooth

Riemannian manifold is a differentiable structure equipped

with an inner product, one can use all necessary ingredients to

solve the optimization problem with quadratic cost function,

such as Riemannian gradient, Hessian matrix, exponential

map, and parallel translation [55]. Therefore, optimization

techniques inRn1×n2 (e.g., steepest descent, Newton method,

conjugate gradient method) can be used to solve (25) in the

smooth Riemannian manifold F .

In recent years, many efforts have been made to solve

the matrix completion over smooth Riemannian manifolds.

These works are classified by their specific choice of Rie-

mannian manifold structure. One well-known approach is to

solve (25) over the Grassmann manifold of orthogonal matri-

ces9 [49]. In this approach, a feasible set can be expressed

as F = {QRT : QTQ = I,Q ∈ R
n1×r ,R ∈ R

n2×r } and
thus solving (25) is to find an n1 × r orthonormal matrix Q

satisfying

f (Q) = min
R∈Rn2×r

‖P�(M) − P�(QRT )‖2F = 0. (39)

In [49], an approach to solve (39) over the Grassmann mani-

fold has been proposed.

Recently, it has been shown that the original matrix can

be reconstructed by the unconstrained optimization over the

smooth Riemannian manifold F [50]. Often, F is expressed

using the singular value decomposition as

F = {U6VT : U ∈ R
n1×r ,V ∈ R

n2×r , 6 � 0,

UTU = VTV = I, 6 = diag([σ1 · · · σr ])}. (40)

The FNMproblem (25) can then be reformulated as an uncon-

strained optimization over F :

min
X∈F

1

2
‖P�(M) − P�(X)‖2F . (41)

8This is because if rank(X) = r and rank(Y) = r , then rank(X + Y) = r
is not necessarily true (and thus X + Y does not need to belong F ).

9The Grassmann manifold is defined as the set of the linear subspaces in
a vector space [55].
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One can easily obtain the closed-form expression of the

ingredients such as tangent spaces, Riemannian metric, Rie-

mannian gradient, and Hessian matrix in the unconstrained

optimization [53], [55], [56]. In fact, major benefits of the

Riemannian optimization-based LRMC techniques are the

simplicity in implementation and the fast convergence. Sim-

ilar to ASD, the computational complexity per iteration

of these techniques is O(r|�| + r2n1 + r2n2), and they

require O(log( 1
ǫ
)) iterations to achieve the ǫ-approximation

solution [50].

4) TRUNCATED NNM

Truncated NNM is a variation of the NNM-based technique

requiring the rank information r .10 While the NNM technique

takes into account all the singular values of a desired matrix,

truncated NNM considers only the n − r smallest singular

values [57]. Specifically, truncated NNM finds a solution to

min
X

‖X‖r
subject to P�(X) = P�(M), (42)

where ‖X‖r =
n∑

i=r+1

σi(X). We recall that σi(X) is the i-th

largest singular value of X. Using [57]

r∑

i=1

σi = max
UTU=VTV=Ir

tr(UTXV), (43)

we have

‖X‖r = ‖X‖∗ − max
UTU=VTV=Ir

tr(UTXV), (44)

and thus the problem (42) can be reformulated to

min
X

‖X‖∗ − max
UTU=VTV=Ir

tr(UTXV)

subject to P�(X) = P�(M), (45)

This problem can be solved in an iterative way. Specifically,

starting from X0 = P�(M), truncated NNM updates Xi by

solving [57]

min
X

‖X‖∗ − tr(UT
i−1XVi−1)

subject to P�(X) = P�(M), (46)

where Ui−1,Vi−1 ∈ R
n×r are the matrices of left and

right-singular vectors of Xi−1, respectively. We note that an

approach in (46) has two main advantages: 1) the rank infor-

mation of the desired matrix can be incorporated and 2) vari-

ous gradient-based techniques including alternating direction

method of multipliers (ADMM) [80], [81], ADMM with an

adaptive penalty (ADMMAP) [82], and accelerated proximal

gradient line search method (APGL) [83] can be employed.

Note also that the dominant operation is the truncated SVD

operation and its complexity is O(rn1n2), which is much

smaller than that of the NNM technique (see Table 5) as long

10Although truncated NNM is a variant of NNM, we put it into the second
category since it exploits the rank information of a low-rank matrix.

TABLE 4. Truncated NNM.

as r ≪ min(n1, n2). Similar to SVT, the iteration complexity

of the truncated NNM to achieve the ǫ-approximation is

O( 1√
ǫ
) [57]. Alternatively, the difference of two convex func-

tions (DC) based algorithm can be used to solve (45) [58].

In Table 4, we summarize the truncated NNM algorithm.

III. ISSUES TO BE CONSIDERED WHEN USING

LRMC TECHNIQUES

In this section, we go over the main principles that make

the recovery of a low-rank matrix possible and discuss how

to exploit a special structure of a low-rank matrix in an

algorithm design.

A. INTRINSIC PROPERTIES

There are two key properties characterizing the LRMC prob-

lem: 1) sparsity of the observed entries and 2) incoherence

of the matrix. Sparsity indicates that an accurate recovery of

the undersampled matrix is possible even when the number

of observed entries is very small. Incoherence indicates that

nonzero entries of the matrix should be spread out widely for

the efficient recovery of a low-rank matrix. In this subsection,

we go over these issues in detail.

1) SPARSITY OF OBSERVED ENTRIES

Sparsity expresses an idea that when a matrix has a low rank

property, then it can be recovered using only a small number

of observed entries. Natural question arising from this is how

many elements do we need to observe for the accurate recov-

ery of the matrix. In order to answer this question, we need

to know a notion of a degree of freedom (DOF). The DOF

of a matrix is the number of freely chosen variables in the

matrix. One can easily see that the DOF of the rank onematrix

in (1) is 3 since one entry can be determined after observing

three. As an another example, consider the following rank one

matrix

M =




1 3 5 7

2 6 10 14

3 9 15 21

4 12 20 28


 . (47)

One can easily see that if we observe all entries of one column

and one row, then the rest can be determined by a simple
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FIGURE 5. LRMC with colored entries being observed. The dotted boxes are used to compute: (a) linear coefficients and
(b) unknown entries.

linear relationship between these since M is the rank-one

matrix. Specifically, if we observe the first row and the first

column, then the first and the second columns differ by the

factor of three so that as long as we know one entry in

the second column, rest will be recovered. Thus, the DOF

of M is 4 + 4 − 1 = 7. Following lemma generalizes our

observations.

Lemma 1: The DOF of a square n×n matrix with rank r is

2nr − r2. Also, the DOF of n1 ×n2-matrix is (n1 +n2)r − r2.

Proof: Since the rank of a matrix is r , we can freely

choose values for all entries of the r columns, resulting in nr

degrees of freedom for the first r column. Once r independent

columns, say m1, · · ·mr , are constructed, then each of the

rest n − r columns is expressed as a linear combinations of

the first r columns (e.g.,mr+1 = α1m1+· · ·+αrmr ) so that

r linear coefficients (α1, · · · αr ) can be freely chosen in these
columns. By adding nr and (n − r)r , we obtain the desired

result. Generalization to n1×n2 matrix is straightforward. �

This lemma says that if n is large and r is small enough

(e.g., r = O(1)), essential information in a matrix is just in

the order of n, DOF = O(n), which is clearly much smaller

than the total number of entries of the matrix. Interestingly,

the DOF is the minimum number of observed entries required

for the recovery of a matrix. If this condition is violated, that

is, if the number of observed entries is less than the DOF (i.e.,

m < 2nr − r2), no algorithm whatsoever can recover the

matrix. In Fig. 5, we illustrate how to recover the matrix when

the number of observed entries equals the DOF. In this figure,

we assume that blue colored entries are observed.11 In a

nutshell, unknown entries of the matrix are found in two-step

process. First, we identify the linear relationship between the

11Since we observe the first r rows and columns, we have 2nr − r2

observations in total.

first r columns and the rest. For example, the (r + 1)-th

column can be expressed as a linear combination of the first

r columns. That is,

mr+1 = α1m1 + · · · + αrmr . (48)

Since the first r entries of m1, · · ·mr+1 are observed (see

Fig. 5(a)), we have r unknowns (α1, · · · , αr ) and r equations

so that we can identify the linear coefficients α1, · · · αr with
the computational cost O(r3) of an r × r matrix inversion.

Once these coefficients are identified, we can recover the

unknown entriesmr+1,r+1 · · ·mr+1,n ofmr+1 using the linear

relationship in (48) (see Fig. 5(b)). By repeating this step for

the rest of columns, we can identify all unknown entries with

O(rn2) computational complexity.12

Now, an astute reader might notice that this strategy will

not work if one entry of the column (or row) is unobserved.

As illustrated in Fig. 6, if only one entry in the r-th row,

say (r, l)-th entry, is unobserved, then one cannot recover the

l-th column simply because the matrix in Fig. 6 cannot be

converted to the matrix form in Fig. 5(b). It is clear from

this discussion that the measurement size being equal to

the DOF is not enough for the most cases and in fact it is

just a necessary condition for the accurate recovery of the

rank-r matrix. This seems like a depressing news. However,

DOF is in any case important since it is a fundamental limit

(lower bound) of the number of observed entries to ensure

the exact recovery of the matrix. Recent results show that the

12For each unknown entry, it needs r multiplication and r − 1 addition

operations. Since the number of unknown entries is (n − r)2, the computa-

tional cost is (2r − 1)(n − r)2. Recall that O(r3) is the cost of computing

(α1, · · · , αr ) in (48). Thus, the total cost is O(r3 + (2r − 1)(n − r)2) =
O(rn2).
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FIGURE 6. An illustration of the worst case of LRMC.

DOF is not much different from the number of measurements

ensuring the recovery of the matrix [22], [75].13

2) COHERENCE

If nonzero elements of a matrix are concentrated in a certain

region, we generally need a large number of observations to

recover the matrix. On the other hand, if the matrix is spread

out widely, then the matrix can be recovered with a relatively

small number of entries. For example, consider the following

two rank-one matrices in Rn×n

M1 =




1 1 0 · · · 0

1 1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




,

M2 =




1 1 1 · · · 1

1 1 1 · · · 1

1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1




..

The matrix M1 has only four nonzero entries at the top-left

corner. Suppose n is large, say n = 1000, and all entries but

the four elements in the top-left corner are observed (99.99%

of entries are known). In this case, even though the rank of

a matrix is just one, there is no way to recover this matrix

since the information bearing entries is missing. This tells us

that although the rank of a matrix is very small, one might not

recover it if nonzero entries of the matrix are concentrated in

a certain area.

In contrast to the matrixM1, one can accurately recover the

matrixM2 with only 2n−1 (= DOF) known entries. In other

words, one row and one column are enough to recover M2).

13In [75], it has been shown that the required number of entries to recover

the matrix using the nuclear-norm minimization is in the order of n1.2 when
the rank is O(1).

One can deduce from this example that the spread of observed

entries is important for the identification of unknown entries.

In order to quantify this, we need to measure the concen-

tration of a matrix. Since the matrix has two-dimensional

structure, we need to check the concentration in both row

and column directions. This can be done by checking the

concentration in the left and right singular vectors. Recall that

the SVD of a matrix is

M = U6VT =
r∑

i=1

σiuiv
T
i (49)

where U = [u1 · · · ur ] and V = [v1 · · · vr ] are the matrices

constructed by the left and right singular vectors, respectively,

and 6 is the diagonal matrix whose diagonal entries are

σi. From (49), we see that the concentration on the vertical

direction (concentration in the row) is determined by ui and

that on the horizontal direction (concentration in the column)

is determined by vi. For example, if one of the standard basis

vector ei, say e1 = [1 0 · · · 0]T , lies on the space spanned

by u1, · · · ur while others (e2, e3, · · · ) are orthogonal to this

space, then it is clear that nonzero entries of the matrix are

only on the first row. In this case, clearly one cannot infer

the entries of the first row from the sampling of the other

row. That is, it is not possible to recover the matrix without

observing the entire entries of the first row.

The coherence, a measure of concentration in a matrix,

is formally defined as [75]

µ(U) =
n

r
max
1≤i≤n

‖PUei‖2 (50)

where ei is standard basis and PU is the projection onto the

range space of U. Since the columns of U = [u1 · · · ur ] are
orthonormal, we have

PU = UU† = U(UTU)−1UT = UUT .

Note that both µ(U) and µ(V) should be computed to check

the concentration on the vertical and horizontal directions.

Lemma 2: (Maximum and minimum value of µ(U)) µ(U)

satisfies

1 ≤ µ(U) ≤
n

r
(51)

Proof: The upper bound is established by noting that

ℓ2-norm of the projection is not greater than the original

vector (‖PUei‖22 ≤ ‖ei‖22). The lower bound is because

max
i

‖PUei‖22 ≥
1

n

n∑

i=1

‖PUei‖22

=
1

n

n∑

i=1

eTi PUei

=
1

n

n∑

i=1

eTi UU
T ei

=
1

n

n∑

i=1

r∑

j=1

|uij|2

=
r

n
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FIGURE 7. Coherence of matrices in (52) and (53): (a) maximum and (b) minimum.

where the first equality is due to the idempotency of PU
(i.e., PTUPU = PU) and the last equality is because∑n

i=1 |uij|2 = 1. �

Coherence is maximized when the nonzero entries of a

matrix are concentrated in a row (or column). For example,

consider the matrix whose nonzero entries are concentrated

on the first row

M =



3 2 1

0 0 0

0 0 0


 . (52)

Note that the SVD ofM is

M = σ1u1v
T
1 = 3.8417



1

0

0


 [0.8018 0.5345 0.2673].

Then, U = [1 0 0]T , and thus ‖PUe1‖2 = 1 and ‖PUe2‖2 =
‖PUe3‖2 = 0. As shown in Fig. 7(a), the standard basis e1
lies on the space spanned by U while others are orthogonal

to this space so that the maximum coherence is achieved

(maxi ‖PUei‖22 = 1 and µ(U) = 3).

In contrast, coherence is minimized when the nonzero

entries of a matrix are spread out widely. Consider the matrix

M =



2 1 0

2 1 0

2 1 0


 . (53)

In this case, the SVD ofM is

M = 3.8730




−0.5774

−0.5774

−0.5774


 [−0.8944 − 0.4472 0].

Then, we have

PU = UUT =
1

3



1 1 1

1 1 1

1 1 1


 ,

and thus ‖PUe1‖22 = ‖PUe2‖2 = ‖PUe3‖2 = 1
3
. In this

case, as illustrated in Fig. 7(b), ‖PUei‖2 is the same for all

standard basis vector ei, achieving lower bound in (51) and

the minimum coherence (maxi ‖PUei‖22 = 1
3
and µ(U) = 1).

As discussed in (12), the number of measurements to recover

the low-rank matrix is proportional to the coherence of the

matrix [22], [23], [75].

B. WORKING WITH DIFFERENT TYPES OF LOW-RANK

MATRICES

In many practical situations where the matrix has a certain

structure, we want to make the most of the given structure

to maximize profits in terms of performance and computa-

tional complexity. In this subsection, we discuss several cases

including LRMC of the PSD matrix [54], Euclidean distance

matrix [4], and recommendation matrix [67] and describe

how the special structure can be exploited in the algorithm

design.

1) LOW-RANK PSD MATRIX COMPLETION

In some applications, a desired matrix M ∈ R
n×n not only

has a low-rank structure but also is positive semidefinite (i.e.,

M = MT and zTMz ≥ 0 for any vector z). In this case,

the problem to recoverM can be formulated as

min
X

rank(X)

subject to P�(X) = P�(M),

X = XT , X � 0. (54)

Similar to the rank minimization problem (10), the prob-

lem (54) can be relaxed using the nuclear norm, and the

relaxed problem can be solved via SDP solvers.

The problem (54) can be simplified if the rank of a desired

matrix is known in advance. Let rank(M) = k . Then, sinceM

is positive semidefinite, there exists a matrix Z ∈ R
n×k such
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thatM = ZZT . Using this, the problem (54) can be concisely

expressed as

min
Z∈Rn×k

1

2
‖P�(M) − P�(ZZ

T )‖2F . (55)

Since (55) is an unconstrained optimization problem with a

differentiable cost function, many gradient-based techniques

such as steepest descent, conjugate gradient, and Newton

methods can be applied. It has been shown that under suitable

conditions of the coherence property of M and the num-

ber of the observed entries |�|, the global convergence of

gradient-based algorithms is guaranteed [59].

2) EUCLIDEAN DISTANCE MATRIX COMPLETION

Low-rank Euclidean distance matrix completion arises in

the localization problem (e.g., sensor node localization

in IoT networks). Let {zi}ni=1 be sensor locations in the

k-dimensional Euclidean space (k = 2 or k = 3). Then,

the Euclidean distance matrix M = (mij) ∈ R
n×n of sensor

nodes is defined as mij = ‖zi − zj‖22. It is obvious that M is

symmetric with diagonal elements being zero (i.e., mii = 0).

As mentioned, the rank of the Euclidean distance matrix M

is at most k + 2 (i.e., rank(M) ≤ k + 2). Also, one can show

that a matrix D ∈ R
n×n is a Euclidean distance matrix if and

only if D = DT and [52]

(In −
1

n
hhT )D(In −

1

n
hhT ) � 0, (56)

where h = [1 1 · · · 1]T ∈ R
n. Using these, the problem to

recover the Euclidean distance matrix M can be formulated

as

min
D

‖P�(D) − P�(M)‖2F
subject to rank(D) ≤ k + 2,

D = DT ,

− (In −
1

n
hhT )D(In −

1

n
hhT ) � 0. (57)

Let Y = ZZT where Z = [z1 · · · zn]T ∈ R
n×k is the matrix

of sensor locations. Then, one can easily check that

M = diag(Y)hT + hdiag(Y)T − 2Y. (58)

Thus, by letting g(Y) = diag(Y)hT + hdiag(Y)T − 2Y,

the problem in (57) can be equivalently formulated as

min
Y

‖P�(g(Y)) − P�(M)‖2F
subject to rank(Y) ≤ k,

Y = YT , Y � 0. (59)

Since the feasible set associated with the problem

in (59) is a smooth Riemannian manifold [53], [54],

an extension of the Euclidean space on which a notion

of differentiation exists [55], [56], various gradient-based

optimization techniques such as steepest descent, Newton

method, and conjugate gradient algorithms can be applied to

solve (59) [3], [4], [55].

3) CONVOLUTIONAL NEURAL NETWORK BASED MATRIX

COMPLETION

In recent years, approaches to use CNN to solve the LRMC

problem have been proposed. These approaches are partic-

ular useful when a desired low-rank matrix is expressed in

a graph structure (e.g., the recommendation matrix with a

user graph to express the similarity between users’ rating

results) [64]–[70]. Themain idea of CNN-based LRMC algo-

rithms is to express the low-rank matrix as a graph structure

and then apply CNN to the constructed graph to recover the

desired matrix.

Graphical Model of a Low-Rank Matrix: Suppose

M ∈ R
n1×n2 is the rating matrix in which the columns and

rows are indexed by users and products, respectively. The

first step of the CNN-based LRMC algorithm is to model the

column and row graphs of M using the correlations between

its columns and rows. Specifically, in the column graph Gc
of M, users are represented as vertices, and two vertices i

and j are connected by an undirected edge if the correlation

ρij = |〈mi,mj〉|
‖mi‖2‖mj‖2 between the i and j-th columns ofM is larger

than the pre-determined threshold ǫ. Similarly, we construct

the row graph Gr of M by denoting each row (product) of M

as a vertex and then connecting strongly correlated vertices.

To express the connection, we define the adjacency matrix of

each graph. The adjacency matrix Wc = (wcij) ∈ R
n2×n2 of

the column graph Gc is defined as

wcij =

{
1 if the vertices (users) i and j are connected

0 otherwise
(60)

The adjacency matrix Wr ∈ R
n1×n2 of the row graph Gr is

defined in a similar way.

CNN-based LRMC: Let U ∈ R
n1×r and V ∈ R

n2×r

be matrices such that M = UVT . The primary task of the

CNN-based approach is to find functions fr and fc mapping

the vertex sets of the row and column graphsGr andGc ofM to

U andV, respectively. Here, each vertex of Gr (respective Gc)

is mapped to each row of U (respective V) by fr (respective

fc). Since it is difficult to express fr and fc explicitly, we can

learn these nonlinear mappings using CNN-based models. In

the CNN-based LRMC approach, U and V are initialized at

random and updated in each iteration. Specifically, U and V

are updated to minimize the following loss function [67]:

l(U,V) =
∑

(i,j):wrij=1

‖ui − uj‖22 +
∑

(i,j):wcij=1

‖vi − vj‖22

+
τ

2
‖P�(

r∑

i=1

uiv
T
i ) − P�(M)‖2F , (61)

where τ is a regularization parameter. In other words, we find

U and V such that the Euclidean distance between the

connected vertices is minimized (see ‖ui − uj‖2 (wrij = 1)

and ‖vi − vj‖2 (wcij = 1) in (61)). The update procedures of

U and V are [67]:
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1) Initialize U and V at random and assign each row of

U and V to each vertex of the row graph Gr and the

column graph Gc, respectively.

2) Extract the feature matrices1U and1V by performing

a graph-based convolution operation on Gr and Gc,

respectively.

3) UpdateU andV using the featurematrices1U and1V,

respectively.

4) Compute the loss function in (61) using updated U and

V and perform the back propagation to update the filter

parameters.

5) Repeat the above procedures until the value of the loss

function is smaller than a pre-chosen threshold.

One important issue in the CNN-based LRMC approach

is to define a graph-based convolution operation to extract

the feature matrices 1U and 1V (see the second step).

Note that the input data Gr and Gc do not lie on regular

lattices like images and thus classical CNN cannot be directly

applied to Gr and Gc. One possible option is to define the

convolution operation in the Fourier domain of the graph. In

recent years, CNN models based on the Fourier transforma-

tion of graph-structure data have been proposed [68]–[72].

In [68], an approach to use the eigendecomposition of the

Laplacian has been proposed. To further reduce the model

complexity, CNN models using the polynomial filters have

been proposed [69]–[71]. In essence, the Fourier transform

of a graph can be computed using the (normalized) graph

Laplacian. Let Rr be the graph Laplacian of Gr (i.e., Rr =
I−D

−1/2
r WrD

−1/2
r whereDr = diag(Wr1n2×1)) [63]. Then,

the graph Fourier transform Fr (u) of a vertex assigned with

the vector u is defined as

Fr (u) = QT
r u, (62)

whereRr = Qr3rQ
T
r is an eigen-decomposition of the graph

Laplacian Rr [63]. Also, the inverse graph Fourier transform

F−1
r (u′) of u′ is defined as14

F−1
r (u′) = Qru

′. (63)

Let z be the filter used in the convolution, then the output 1u

of the graph-based convolution on a vertex assigned with the

vector u is defined as [63], [70]

1u = z ∗ u = F−1
r (Fr (z) ⊙ Fr (u)) (64)

From (62) and (63), (64) can be expressed as

1u = Qr (Fr (z) ⊙ QT
r u)

= Qrdiag(Fr (z))Q
T
r u

= QrGQT
r u, (65)

where G = diag(Fr (z)) is the matrix of filter parameters

defined in the graph Fourier domain.

We next update U and V using the feature matrices 1U

and 1V. In [67], a cascade of multi-graph CNN followed by

long short-term memory (LSTM) recurrent neural network

14One can easily check that F−1
r (Fr (u)) = u and Fr (F

−1
r (u′)) = u′.

has been proposed. The computational cost of this approach

is O(r|�| + r2n1 + r2n2) which is much lower than the

SVD-based LRMC techniques (i.e., O(rn1n2)) as long as

r ≪ min(n1, n2). Finally, we compute the loss function

l(Ui,Vi) in (61) and then update the filter parameters using

the backpropagation. Suppose {Ui}i and {Vi}i converge to Û

and V̂, respectively, then the estimate of M obtained by the

CNN-based LRMC is M̂ = ÛV̂T .

4) ATOMIC NORM MINIMIZATION

In ADMiRA, a low-rank matrix can be represented using a

small number of rank-one matrices. Atomic norm minimiza-

tion (ANM) generalizes this idea for arbitrary data in which

the data is represented using a small number of basis elements

called atom. Example of ANM include sound navigation

ranging systems [85] and line spectral estimation [86]. To be

specific, letX =
r∑
i=1

αiHi be a signal with k distinct frequency

components Hi ∈ C
n1×n2 . Then the atom is defined as Hi =

hib
∗ where

hi = [1 ej2π fi ej2π fi2 · · · ej2π fi(n1−1)]T (66)

is the steering vector and bi ∈ C
n2 is the vector of normalized

coefficients (i.e., ‖bi‖2 = 1). We denote the set of such atoms

Hi asH. UsingH, the atomic norm of X is defined as

‖X‖H = inf{
∑

i

αi : X =
∑

i

αiHi, αi>0, Hi ∈ H}. (67)

Note that the atomic norm ‖X‖H is a generalization of the

ℓ1-norm and also the nuclear norm to the space of sinusoidal

signals [39], [86].

Let Xo be the observation of X, then the problem to recon-

struct X can be modeled as the ANM problem:

min
Z

1
2
‖Z − Xo‖F + τ‖Z‖H, (68)

where τ > 0 is a regularization parameter. By using [87,

Theorem 1], we have

‖Z‖H = inf

{
1

2
(tr(W) + tr(Toep(u))) :

[
W Z∗

Z Toep(u)

]
� 0

}
, (69)

and the equivalent expression of the problem (68) is

min
Z,W,u

‖Z − Xo‖2F + τ (tr(W) + tr(Toep(u)))

s.t.

[
W Z∗

Z Toep(u)

]
� 0. (70)

Note that the problem (70) can be solved via the SDP solver

(e.g., SDPT3 [24]) or greedy algorithms [88], [89].

IV. NUMERICAL EVALUATION

In this section, we study the performance of the LRMC

algorithms. In our experiments, we focus on the algorithm

listed in Table 5. The original matrix is generated by the

product of two random matrices A ∈ R
n1×r and B ∈ R

n2×r ,
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TABLE 5. Summary of the LRMC algorithms. The rank of a desired low-rank matrix is r and n = max(n1, n2).

i.e., M = ABT . Entries of these two matrices, aij and bpq
are identically and independently distributed random vari-

ables sampled from the normal distributionN (0, 1). Sampled

elements are also chosen at random. The sampling ratio p is

defined as

p =
|�|
n1n2

,

where |�| is the cardinality (number of elements) of�. In the

noisy scenario, we use the additive noise model where the

observed matrix Mo is expressed as Mo = M + N where

the noise matrix N is formed by the i.i.d. random entries

sampled from the Gaussian distribution N (0, σ 2). For given

SNR, σ 2 = 1
n1n2

‖M‖2F10
− SNR

10 . Note that the parameters of

the LRMC algorithm are chosen from the reference paper.

For each point of the algorithm, we run 1, 000 independent

trials and then plot the average value.

In the performance evaluation of the LRMC algorithms,

we use the mean square error (MSE) and the exact recovery

ratio, which are defined, respectively, as

MSE =
1

n1n2
‖M̂ − M‖2F ,

R =
number of successful trials

total trials
,
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TABLE 6. MSE results for different problem sizes where rank(M) = 5, and p = 2 × DOF.

FIGURE 8. Phase transition of LRMC algorithms.

where M̂ is the reconstructed low-rank matrix. We say the

trial is successful if the MSE performance is less than the

threshold ǫ. In our experiments, we set ǫ = 10−6. Here, R can

be used to represent the probability of successful recovery.

We first examine the exact recovery ratio of the LRMC

algorithms in terms of the sampling ratio and the rank of M.

In our experiments, we set n1 = n2 = 100 and compute

the phase transition [90] of the LRMC algorithms. Note that

the phase transition is a contour plot of the success proba-

bility P (we set P = 0.5) where the sampling ratio (x-axis)

and the rank (y-axis) form a regular grid of the x-y plane.

The contour plot separates the plane into two areas: the area

above the curve is one satisfying P < 0.5 and the area below

the curve is a region achieving P > 0.5 [90] (see Fig. 8). The

higher the curve, therefore, the better the algorithm would

be. In general, the LRMC algorithms perform poor when the

matrix has a small number of observed entries and the rank

is large. Overall, NNM-based algorithms perform better than

FIGURE 9. Running times of LRMC algorithms in noiseless scenario (40%
of entries are observed).

FNM-based algorithms. In particular, the NNM technique

using SDPT3 solver outperforms the rest because the convex

optimization technique always finds a global optimum while

other techniques often converge to local optimum.

In order to investigate the computational efficiency of

LRMC algorithms, we measure the running time of each

algorithm as a function of rank (see Fig. 9). The running

time is measured in second, using a 64-bit PC with an Intel

i5-4670 CPU running at 3.4 GHz.We observe that the convex

algorithms have a relatively high running time complexity.

We next examine the efficiency of the LRMC algorithms

for the different problem size (see Table 6). For iterative

LRMC algorithms, we set the maximum number of itera-

tion to 300. We see that LRMC algorithms such as SVT,

IRLS-M, ASD, ADMiRA, and LRGeomCG run fast. For

example, it takes less than a minute for these algorithms

to reconstruct 1000 × 1000 matrix, while the running time
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TABLE 7. Image recovery via LRMC for different noise levels ρ.

FIGURE 10. MSE performance of LRMC algorithms in noisy scenario with
SNR = 20 dB (70% of entries are observed).

of SDPT3 solver is more than 5 minutes. Further reduction

of the running time can be achieved using the alternating

projection-based algorithms such as LMaFit. For example,

it takes about one second to reconstruct an (1000 × 1000)-

dimensional matrix with rank 5 using LMaFit. Therefore,

when the exact recovery of the original matrix is unnecessary,

the FNM-based technique would be a good choice.

In the noisy scenario, we also observe that FNM-based

algorithms perform well (see Fig. 10 and Fig. 11). In this

experiment, we compute the MSE of LRMC algorithms

against the rank of the original low-rank matrix for dif-

ferent setting of SNR (i.e., SNR = 20 and 50 dB).

We observe that in the low and mid SNR regime (e.g.,

SNR = 20 dB), TNNR-ADMM performs comparable to

the NNM-based algorithms since the FNM-based cost func-

tion is robust to the noise. In the high SNR regime

FIGURE 11. MSE performance of LRMC algorithms in noisy scenario with
SNR = 50 dB (70% of entries are observed).

(e.g., SNR = 50 dB), the convex algorithm (NNM with

SDPT3) exhibits the best performance in term of the MSE.

The performance of TNNR-ADMM is notably better than

that of the rest of LRMC algorithms. For example, given

rank(M) = 20, the MSE of TNNR-ADMM is around 0.04,

while the MSE of the rest is higher than 1.

Finally, we apply LRMC techniques to recover images

corrupted by impulse noise. In this experiment, we use 256×
256 standard grayscale images (e.g., boat, cameraman, lena,

and pepper images) and the salt-and-pepper noise model

with different noise density ρ = 0.3, 0.5, and 0.7. For the

FNM-based LRMC techniques, the rank is given by the num-

ber of the singular values σi being greater than a relative

threshold ǫ > 0, i.e., σi > ǫ max
i

σi. From the simulation

results, we observe that peak SNR (pSNR), defined as the

ratio of the maximum pixel value of the image to noise
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variance, of all LRMC techniques is at least 52dB when ρ =
0.3 (see Table 7). In particular, NNM using SDPT3, SVT, and

IRLS-M outperform the rest, achieving pSNR≥ 57 dB even

with high noise level ρ = 0.7.

V. CONCLUDING REMARKS

In this paper, we presented a contemporary survey of LRMC

techniques. Firstly, we classified state-of-the-art LRMC tech-

niques into two main categories based on the availability

of the rank information. Specifically, when the rank of a

desired matrix is unknown, we formulated the LRMC prob-

lem as the NNM problem and discussed several NNM-based

LRMC techniques such as SDP-based NNM, SVT, and trun-

cated NNM. When the rank of an original matrix is known

a priori, the LRMC problem can be modeled as the FNM

problem. We discussed various FNM-based LRMC tech-

niques (e.g., greedy algorithms, alternating projection meth-

ods, and optimization over Riemannian manifold). Secondly,

we discussed fundamental issues and principles that one

needs to be aware of when solving the LRMC problem.

Specifically, we discussed two key properties, sparsity of

observed entries and the incoherence of an original matrix,

characterizing the LRMC problem. We also explained how

to exploit the special structure of the desired matrix (e.g.,

PSD, Euclidean distance, and graph structures) in the LRMC

algorithm design. Finally, we compared the performance of

LRMC techniques via numerical simulations and provided

the running time and computational complexity of each

technique.

When one tries to use the LRMC techniques, a natural

question one might ask is what algorithm should one choose?

While this question is in general difficult to answer, one

might consider the SDP-based NNM technique when the

accuracy of a recovered matrix is critical (see Fig. 8, 10,

and 11). Another important point that one should consider

in the choice of the LRMC algorithm is the computational

complexity. In many practical applications, dimension of a

matrix to be recovered is large, and in fact in the order of hun-

dred or thousand. In such large-scale problems, algorithms

such as LMaFit and LRGeomCG might be a good option

since their computational complexity scales linearly with the

number of observed entries O(r|�|) while the complexity

of SDP-based NNM is expressed as O(n3) (see Table 5).

In general, there is a trade-off between the running time and

the recovery performance. In fact, FNM-based LRMC algo-

rithms such as LMaFit and ADMiRA converge much faster

than the convex optimization based algorithms (see Table 6),

but the NNM-based LRMC algorithms are more reliable than

FNM-based LRMC algorithms (see Fig. 8 and 11). So, one

should consider the given setup and operating condition to

obtain the best trade-off between the complexity and the

performance.

We conclude the paper by providing some of future

research directions.

• When the dimension of a low-rank matrix increases and

thus computational complexity increases significantly,

we want an algorithm with good recovery guarantee

yet its complexity scales linearly with the problem size.

Without doubt, in the real-time applications such as IoT

localization and massive MIMO, low-complexity and

short running time are of great importance. Develop-

ment of implementation-friendly algorithm and archi-

tecture would accelerate the dissemination of LRMC

techniques.

• Most of the LRMC techniques assume that the origi-

nal low-rank matrix is a random matrix whose entries

are randomly generated. In many practical situations,

however, entries of the matrix are not purely random

but chosen from a finite set of integer numbers. In the

recommendation system, for example, each entry (rat-

ing for a product) is chosen from integer value (e.g.,

1 ∼ 5 scale). Unfortunately, there is no well-known

practical guideline and efficient algorithm when entries

of a matrix are chosen from the discrete set. It would be

useful to come up with a simple and effective LRMC

technique suited for such applications.

• As mentioned, CNN-based LRMC technique is a use-

ful tool to reconstruct a low-rank matrix. In essence,

unknown entries of a low-rank matrix are recovered

based on the graph model of the matrix. Since observed

entries can be considered as labeled training data, this

approach can be classified as a supervised learning.

In many practical scenarios, however, it might not be

easy to precisely express the graph model of the matrix

since there are various criteria to define the graph edge.

In addressing this problem, new deep learning technique

such as the generative adversarial networks (GAN) [91]

consisting of the generator and discriminator would be

useful.

APPENDIX A

PROOF OF THE SDP FORM OF NNM

Proof: We recall that the standard form of an SDP is

expressed as

min
Y

〈C,Y〉

subject to 〈Ak ,Y〉 ≤ bk , k = 1, · · · , l

Y � 0 (71)

whereC is a given matrix, and {Ak}lk=1 and {bk}lk=1 are given

sequences of matrices and constants, respectively. To convert

the NNM problem in (11) into the standard SDP form in (71),

we need a few steps. First, we convert the NNM problem

in (11) into the epigraph form:15

min
X,t

t

subject to ‖X‖∗ ≤ t,

P�(X) = P�(M). (72)

15Note that min
X

‖X‖∗ = min
X

{
min

t:‖X‖∗≤t
t

}
= min

(X,t):‖X‖∗≤t
t .
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Next, we transform the constraints in (72) to generate

the standard form in (71). We first consider the inequality

constraint (‖X‖∗ ≤ t). Note that ‖X‖∗ ≤ t if and only if there

are symmetric matricesW1 ∈ R
n1×n1 andW2 ∈ R

n2×n2 such
that [21, Lemma 2]

tr(W1) + tr(W2) ≤ 2t and

[
W1 X

XT W2

]
� 0. (73)

Then, by denoting Y =
[
W1 X

XT W2

]
∈ R

(n1+n2)×(n1+n2) and

M̃ =
[
0n1×n1 M

MT 0n2×n2

]
where 0s×t is the (s× t)-dimensional

zero matrix, the problem in (72) can be reformulated as

min
Y,t

2t

subject to tr(Y) ≤ 2t,

Y � 0,

P�̃(Y) = P�̃(M̃), (74)

where P�̃(Y) =
[

0n1×n1 P�(X)

(P�(X))
T 0n2×n2

]
is the extended sam-

pling operator. We now consider the equality constraint

(P�̃(Y) = P�̃(M̃)) in (74). One can easily see that this

condition is equivalent to

〈Y, eie
T
j+n1〉 = 〈M̃, eie

T
j+n1〉, (i, j) ∈ �, (75)

where {e1, · · · , en1+n2} be the standard ordered basis of

R
n1+n2 . Let Ak = eie

T
j+n1 and 〈M̃, eie

T
j+n1〉 = bk for each

of (i, j) ∈ �. Then,

〈Y,Ak 〉 = bk , k = 1, · · · , |�|, (76)

and thus (74) can be reformulated as

min
Y,t

2t

subject to tr(Y) ≤ 2t

Y � 0

〈Y,Ak 〉 = bk , k = 1, · · · , |�|. (77)

For example, we consider the case where the desired matrix

M is given by M =
[
1 2

2 4

]
and the index set of observed

entries is � = {(2, 1), (2, 2)}. In this case,

A1 = e2e
T
3 , A2 = e2e

T
4 , b1 = 2, and b2 = 4. (78)

One can express (77) in a concise form as (13), which is the

desired result. �

APPENDIX B

PERFORMANCE GUARANTEE OF NNM

Sketch of proof: Exact recovery of the desired low-rank

matrix M can be guaranteed under the uniqueness condition

of the NNM problem [22], [23], [75]. To be specific, letM =
U6VT be the SVD of M where U ∈ R

n1×r , 6 ∈ R
r×r , and

V ∈ R
n2×r . Also, let Rn1×n2 = T

⊕
T⊥ be the orthogonal

decomposition in which T⊥ is defined as the subspace of

matrices whose row and column spaces are orthogonal to the

row and column spaces of M, respectively. Here, T is the

orthogonal complement of T⊥. It has been shown that M

is the unique solution of the NNM problem if the following

conditions hold true [22, Lemma 3.1]:

1) there exists a matrix Y = UVT +W such that P�(Y) =
Y,W ∈ T⊥, and ‖W‖ < 1,

2) the restriction of the sampling operation P� to T is an

injective (one-to-one) mapping.

The establishment of Y obeying 1) and 2) are in turn con-

ditioned on the observation model of M and its intrinsic

coherence property.

Under a uniform sampling model ofM, suppose the coher-

ence property ofM satisfies

max(µ(U), µ(V)) ≤ µ0, (79a)

max
ij

|eij| ≤ µ1

√
r

n1n2
, (79b)

where µ0 and µ1 are some constants, eij is the entry of E =
UVT , and µ(U) and µ(V) are the coherences of the column

and row spaces ofM, respectively.

Theorem 2 ( [22, Theorem 1.3]): There exists constants α

and β such that if the number of observed entries m = |�|
satisfies

m ≥ αmax(µ2
1, µ

1
2

0 µ1, µ0n
1
4 )γ nr log n (80)

where γ > 2 is some constant and n1 = n2 = n, thenM is the

unique solution of the NNM problem with probability at least

1 − βn−γ . Further, if r ≤ µ−1
0 n1/5, (80) can be improved to

m ≥ Cµ0γ n
1.2r log n with the same success probability.

One direct interpretation of this theorem is that the desired

low-rank matrix can be reconstructed exactly using NNM

with overwhelming probability even when m is much less

than n1n2. �
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