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LOW-RANK MATRIX COMPLETION BY RIEMANNIAN
OPTIMIZATION∗
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Abstract. The matrix completion problem consists of finding or approximating a low-rank ma-
trix based on a few samples of this matrix. We propose a new algorithm for matrix completion that
minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank
matrices. The algorithm is an adaptation of classical nonlinear conjugate gradients, developed within
the framework of retraction-based optimization on manifolds. We describe all the necessary objects
from differential geometry necessary to perform optimization over this low-rank matrix manifold,
seen as a submanifold embedded in the space of matrices. In particular, we describe how metric
projection can be used as retraction and how vector transport lets us obtain the conjugate search
directions. Finally, we prove convergence of a regularized version of our algorithm under the assump-
tion that the restricted isometry property holds for incoherent matrices throughout the iterations.
The numerical experiments indicate that our approach scales very well for large-scale problems and
compares favorably with the state-of-the-art, while outperforming most existing solvers.
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1. Introduction. Let A ∈ R
m×n be an m × n matrix that is only known on a

subset Ω of the complete set of entries {1, . . . ,m} × {1, . . . , n}. The low-rank matrix
completion problem [16] consists of finding the matrix with lowest rank that agrees
with A on Ω:

(1.1)
minimize

X
rank(X),

subject to X ∈ R
m×n, PΩ(X) = PΩ(A),

where

(1.2) PΩ : Rm×n → R
m×n, Xi,j �→

{
Xi,j if (i, j) ∈ Ω,

0 if (i, j) �∈ Ω

denotes projection onto Ω. Without loss of generality, we assume m ≤ n.
Due to the presence of noise, it is advisable to relax the equality constraint in

(1.1) to allow for misfit. Then, given a tolerance ε ≥ 0, a more robust version of the
rank minimization problem becomes

(1.3)
minimize

X
rank(X),

subject to X ∈ R
m×n, ‖PΩ(X)− PΩ(A)‖F ≤ ε,

where ‖X‖F denotes the Frobenius norm of X .
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Matrix completion has a number of interesting applications such as collaborative
filtering, system identification, and global positioning, but unfortunately it is NP hard.
Recently, there has been a considerable body of work devoted to the identification of
large classes of matrices for which (1.1) has a unique solution that can be recovered
in polynomial time. In [15], for example, the authors show that when Ω is sampled
uniformly at random, the nuclear norm relaxation

(1.4)
minimize

X
‖X‖∗,

subject to X ∈ R
m×n, PΩ(X) = PΩ(A),

can recover with high probability any matrix A of rank k that has so-called low inco-
herence, provided that the number of samples is large enough, |Ω| > Cnk polylog(n).
Related work has been done by [14, 16, 27, 28], which in particular also establish
similar recovery results for the robust formulation (1.3).

Many of the potential applications for matrix completion involve very large data
sets; the Netflix matrix, for example, has more than 108 entries [6]. It is therefore
crucial to develop algorithms that can cope with such a large-scale setting, but, un-
fortunately, solving (1.4) by off-the-shelf methods for convex optimization scales very
badly in the matrix dimension. This has spurred a considerable amount of algorithms
that aim to solve the nuclear norm relaxation by specifically designed methods that try
to exploit the low-rank structure of the solution; see, e.g., [13, 21, 35, 36, 37, 38, 50].
Other approaches include optimization on the Grassmann manifold [5, 18, 27]; atomic
decompositions [33]; and nonlinear SOR [53].

1.1. The proposed method: Optimization on manifolds. We present a
new method for low-rank matrix completion based on a direct optimization over the
set of all fixed-rank matrices. By prescribing the rank of the global minimizer of (1.3),
say k, the robust matrix completion problem is equivalent to

(1.5)
minimize

X
f(X) := 1

2‖PΩ(X −A)‖2F,

subject to X ∈Mk := {X ∈ R
m×n : rank(X) = k}.

It is well known that Mk is a smooth (C∞) manifold; it can, for example, be
identified as the smooth part of the determinantal variety of matrices of rank at most
k [10, Proposition 1.1]. Since the objective function f is also smooth, problem (1.5)
is a smooth optimization problem that can be solved by methods from Riemannian
optimization as introduced, among others, by [2, 4, 20]. Simply put, Riemannian
optimization is the generalization of standard unconstrained optimization, where the
search space is Rn, to optimization of a smooth objective function on a Riemannian
manifold.

For solving the optimization problem (1.5), in principle any method from opti-
mization on Riemannian manifolds could be used. In this paper, we use a generaliza-
tion of classical nonlinear conjugate gradients (CGs) on Euclidean space to perform
optimization on manifolds; see, e.g., [2, 20, 49]. The reason for this choice compared
to, say, Newton’s method was that CG performed best in our numerical experiments.
The skeleton of the proposed method, LRGeomCG, is listed in Algorithm 1.

Algorithm 1 is derived using concepts from differential geometry, yet it closely
resembles a typical nonlinear CG algorithm with Armijo line-search for unconstrained
optimization. It is schematically visualized in Figure 1.1 for iteration number i and
relies on the following crucial ingredients, which will be explained in more detail for
(1.5) in section 2.
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Algorithm 1. LRGeomCG: geometric CG for (1.5).

Require: initial iterate X1 ∈ Mk, tolerance τ > 0, tangent vector η0 = 0
1: for i = 1, 2, . . . do
2: Compute the gradient

ξi := gradf(Xi) # see Algorithm 2
3: Check convergence

if ‖ξi‖ ≤ τ , then break
4: Compute a conjugate direction by PR+

ηi := −ξi + βi TXi−1→Xi (ηi−1) # see Algorithm 4
5: Compute an initial step ti in closed-form from a straight-line search

ti = arg mint f(Xi + t ηi) # see Algorithm 5
6: Perform Armijo backtracking to find the smallest integer m ≥ 0 such that

f(Xi)− f(RXi(0.5
m ti ηi)) ≥ −0.0001× 0.5m ti 〈 ξi, ηi 〉

and obtain the new iterate
Xi+1 := RXi(0.5

m ti ηi) # see Algorithm 6
7: end for

.

Fig. 1.1. Visualization of Algorithm 1: nonlinear CG on a Riemannian manifold.

1. The Riemannian gradient, denoted gradf(Xi), is a specific tangent vector ξi
which corresponds to the direction of steepest ascent of f(Xi) but is restricted
to only directions in the tangent space TXiMk.

2. The search direction ηi ∈ TXiMk is conjugate to the gradient and is computed
by a variant of the classical Polak–Ribière updating rule in nonlinear CG.
This requires taking a linear combination of the Riemannian gradient with
the previous search direction ηi−1. Since ηi−1 does not lie in TXiMk, it
needs to be transported to TXiMk. This is done by a mapping TXi−1→Xi :
TXi−1Mk → TXiMk, the so-called vector transport.

3. As a tangent vector only gives a direction but not the line search itself on the
manifold, a smooth mapping RXi : TXiMk → Mk, called the retraction, is
needed to map tangent vectors to the manifold. Using the conjugate direction
ηi, a line search can then be performed along the curve t �→ RXi(t ηi). Step
6 uses a standard backtracking procedure where we have chosen to fix the
constants. More judiciously chosen constants can sometimes improve the line
search, but our numerical experiments indicate that this is not necessary in
the setting under consideration.
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1.2. Relation to existing manifold-related methods. At the time of sub-
mitting the present work, a large number of other matrix completion solvers based
on Riemannian optimization have been proposed in [8, 9, 19, 27, 28, 40, 41, 43, 48].
Like the current paper, all of these algorithms use the concept of retraction-based
optimization on the manifold of fixed-rank matrices, but they differ in their specific
choice of Riemannian manifold structure and metric. It remains a topic of further
investigation to assess the performance of these different geometries with respect to
each other and to nonmanifold based solvers.

A first attempt at such a comparison has been very recently done in [44], where
the previous geometries were tested to complete one large matrix. The authors reach
the conclusion that for gradient-based algorithms there exists a set of geometries—
including ours—that perform remarkably more or less the same with respect to the
total computational time, and that overall most geometries outperformed the state-
of-the art. In addition, Newton-based algorithms performed well when high precision
was required and now the algorithm based on our embedded submanifold geometry
was clearly faster.

1.3. Outline of the paper. The plan of the paper is as follows. In the next sec-
tion, the necessary concepts of differential geometry are explained to turn Algorithm 1
into a concrete method. The implementation of each step is explained in section 3.
We also prove convergence of a slightly modified version of this method in section 4
under some assumptions which are reasonable for matrix completion. Numerical ex-
periments and comparisons to the state-of-the art are carried out in section 5. The
last section is devoted to conclusions.

2. Differential geometry for low-rank matrix manifolds. In this section,
we explain the differential geometry concepts used in Algorithm 1 applied to our
particular matrix completion problem (1.5).

2.1. The Riemannian manifold. Let

Mk = {X ∈ R
m×n : rank(X) = k}

denote the manifold of fixed-rank matrices. Using the SVD, one has the equivalent
characterization

(2.1) Mk = {UΣV T : U ∈ Stmk , V ∈ Stnk , Σ = diag(σi), σ1 ≥ · · · ≥ σk > 0},

where Stmk is the Stiefel manifold of m × k real, orthonormal matrices, and diag(σi)
denotes a diagonal matrix with σi on the diagonal. Whenever we use the notation
UΣV T in the rest of the paper, we mean matrices that satisfy (2.1). Furthermore, the
constants k,m, n are always used to denote dimensions of matrices, and, for simplicity,
we assume 1 ≤ k < m ≤ n.

The following proposition shows that Mk is indeed a smooth manifold. While
the existence of such a smooth manifold structure, together with its tangent space,
is well known (see, e.g., [25, 29] for applications of gradient flows on Mk), more
advanced concepts like retraction-based optimization onMk have only very recently
been investigated; see [47, 48]. In contrast, the case of optimization on symmetric
fixed-rank matrices has been studied in more detail in [26, 39, 45, 51].
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Proposition 2.1. The setMk is a smooth submanifold of dimension (m+n−k)k
embedded in R

m×n. Its tangent space TXMk at X = UΣV T ∈Mk is given by

TXMk =

{[
U U⊥

] [ R
k×k

R
k×(n−k)

R
(m−k)×k 0(m−k)×(n−k)

] [
V V⊥

]T}
(2.2)

= {UMV T + UpV
T + UV T

p : M ∈ R
k×k,(2.3)

Up ∈ R
m×k, UT

p U = 0, Vp ∈ R
n×k, V T

p V = 0}.

Proof. See [32, Example 8.14] for a proof that uses only elementary differential
geometry based on local submersions. The tangent space is obtained by the first-order
perturbation of the SVD and counting dimensions.

The tangent bundle is defined as the disjoint union of all tangent spaces,

TMk :=
⋃

X∈Mk

{X} × TXMk = {(X, ξ) ∈ R
m×n × R

m×n : X ∈ Mk, ξ ∈ TXMk}.

By restricting the Euclidean inner product on R
m×n,

〈A, B〉 = tr(ATB) with A,B ∈ R
m×n,

to the tangent bundle, we turn Mk into a Riemannian manifold with Riemannian
metric

(2.4) gX(ξ, η) := 〈ξ, η〉 = tr(ξT η) with X ∈Mk and ξ, η ∈ TXMk,

where the tangent vectors ξ, η are seen as matrices in R
m×n.

Once the metric is fixed, the notion of the gradient of an objective function can
be introduced. For a Riemannian manifold, the Riemannian gradient of a smooth
function f :Mk → R at X ∈ Mk is defined as the unique tangent vector grad f(X)
in TXMk such that

〈 grad f(X), ξ 〉 = D f(X)[ξ] for all ξ ∈ TXMk,

where we denoted directional derivatives by D f . SinceMk is embedded in R
m×n, the

Riemannian gradient is given as the orthogonal projection onto the tangent space of
the gradient of f seen as a function on R

m×n; see, e.g., [2, equation (3.37)]. Defining
PU := UUT and P⊥

U := I −PU for any U ∈ Stmk , we denote the orthogonal projection
onto the tangent space at X as

(2.5) PTXMk
: Rm×n → TXMk, Z �→ PU Z PV +P⊥

U Z PV +PU Z P⊥
V .

Then, using PΩ(X −A) as the (Euclidean) gradient of f(X) = ‖PΩ(X −A)‖2F/2, we
obtain

(2.6) gradf(X) := PTXMk
(PΩ(X −A)).

2.2. Metric projection as retraction. As explained in section 1.1, we need a
so-called retraction mapping to go back from an element in the tangent space to the
manifold. Retractions are essentially first-order approximations of the exponential
map of the manifold; see, e.g., [3, Definition 1]. In our setting, we have chosen metric
projection as a retraction:

(2.7) RX : UX →Mk, ξ �→ PMk
(X + ξ) := arg min

Z∈Mk

‖X + ξ − Z‖F,
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where UX ⊂ TXMk is a suitable neighborhood around zero and PMk
is the orthogonal

projection ontoMk. Based on [34, Lemma 2.1], it can be easily shown that RX indeed
satisfies the conditions of a retraction, which allows us to invoke the convergence proofs
of [2].

Mapping RX can be computed in closed-form by the SVD: Let X ∈Mk be given,
and then for sufficiently small ξ ∈ UX ⊂ TXMk, we have

(2.8) RX(ξ) = PMk
(X + ξ) =

k∑
i=1

σiuiv
T
i ,

where σi, ui, vi are the (ordered) singular values and vectors of the SVD of X+ξ. It is
obvious that when σk = 0, there is no best rank-k solution for (2.7), and additionally,
when σk−1 = σk the minimization in (2.7) does not have a unique solution. In fact,
since the manifold is nonconvex, metric projections can never be well defined on the
whole tangent bundle. Fortunately a retraction has to be defined only locally because
this is sufficient to establish convergence of the Riemannian algorithms.

2.3. Riemannian Newton on Mk. Although we do not exploit second-order
information in Algorithm 1, Newton or its variants may be preferable for some ap-
plications. In [44], for example, it was shown that the second-order Riemannian
trust-region algorithm of [1] performs very well in combination with our embedded
submanifold geometry. We will therefore give the following theorem with an explicit
expression of the Riemannian Hessian of f . Its proof is a straightforward but tech-
nical analogue of that in [51] for symmetric fixed-rank matrices. It can be found in
Appendix A of the extended technical report [52] of this paper.

Proposition 2.2. For any X = UΣV T ∈ Mk satisfying (2.1) and ξ ∈ TXMk

satisfying (2.3), the Riemannian Hessian of f at X in the direction of ξ satisfies

Hess f(X)[ξ] = PU PΩ(ξ) PV +P⊥
U

[
PΩ(ξ) + PΩ(X −A)VpΣ

−1V T
]
PV

+ PU (PΩ(ξ) + UΣ−1UT
p PΩ(X −A)) P⊥

V .

2.4. Vector transport. Vector transport was introduced in [2] and [46] as a
means to transport tangent vectors from one tangent space to another. In a similar
way as retractions are approximations of the exponential mapping, vector transport
is the first-order approximation of parallel transport, another important concept in
differential geometry. See Figure 2.1 for an illustration of the retraction TX→Y :
TXMk → TYMk, and we refer to [46, Definition 2] for an exact definition.

Fig. 2.1. Vector transport TX→Y on a Riemannian manifold.
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Since Mk is an embedded submanifold of R
m×n, orthogonally projecting the

translated tangent vector in R
m×n onto the new tangent space constitutes a vector

transport; see [2, section 8.1.2]. In other words, we define

(2.9) TX→Y : TXMk → TYMk, ξ �→ PTY Mk
(ξ)

with PTY Mk
as defined in (2.5).

As explained in section 1.1, the conjugate search direction ηi in Algorithm 1 is
computed as a linear combination of the gradient and the previous direction:

ηi = − gradf(Xi) + βi TXi−1→Xi(ηi−1),

where we transported ηi−1. For βi, we have chosen the geometrical variant of Polak–
Ribière (PR+), as introduced in [2, Chapter 8.2]. Again using vector transport, this
becomes

(2.10) βi =
〈 grad f(Xi), grad f(Xi)− TXi−1→Xi(grad f(Xi−1)) 〉

〈 grad f(Xi−1), gradf(Xi−1) 〉
.

In order to prove convergence, we also enforce that the search direction ηi is sufficiently
gradient-related in the sense that its angle with the gradient is never too small; see,
e.g., [7, Chapter 1.2].

3. Implementation details. This section is devoted to the implementation of
Algorithm 1. For most operations, we will also provide a flop count for the low-rank
regime, i.e., k � m ≤ n.

Low-rank matrices. Since every element X ∈ Mk is a rank k matrix, we store it
as the result of a compact SVD:

X = UΣV T

with orthonormal matrices U ∈ Stmk and V ∈ Stnk and a diagonal matrix Σ ∈ R
k×k

with decreasing positive entries on the diagonal. For the computation of the objective
function and the gradient, we also precompute the sparse matrix XΩ := PΩ(X). As
explained in the next paragraph, computing XΩ costs (m+ 2|Ω|)k flops.

Projection operator PΩ. During the course of Algorithm 1, we require the ap-
plication of PΩ, as defined in (1.2), to certain low-rank matrices. By exploiting the
low-rank form, this can be done efficiently as follows: Let Z be a rank-kZ matrix with
factorization Z := Y1Y

T
2 . (kZ is possibly different from k, the rank of the matrices in

Mk.) Define ZΩ := PΩ(Z). Then element (i, j) of ZΩ is given by

(3.1) (ZΩ)i,j =

{∑kZ

l=1 Y1(i, l)Y2(j, l) if (i, j) ∈ Ω,

0 if (i, j) �∈ Ω.

The cost for computing ZΩ is 2|Ω|kZ flops.
Tangent vectors. A tangent vector η ∈ TXMk at X = UΣV T ∈ Mk will be

represented as

(3.2) η = UMV T + UpV
T + UV T

p ,

where M ∈ R
k×k, Up ∈ R

m×k with UTUp = 0, and Vp ∈ R
n×k with V TVp = 0.

After vectorizing this representation, the inner product 〈 η, ν 〉 can be computed in
2(m+ n)k + 2k2 flops.
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Since X is available as an SVD, the orthogonal projection onto the tangent space
TXMk becomes

PTXMk
(Z) := PU Z PV +(Z − PU Z) PV +PU (Z

T − PV ZT )T ,

where PU := UUT and PV := V V T . If Z can be efficiently applied to a vector,
evaluating and storing the result of PTXMk

(Z) as a tangent vector in the format (3.2)
can also be performed efficiently.

Riemannian gradient. From (2.6), the Riemannian gradient at X = UΣV T is the
orthogonal projection of PΩ(X − A) onto the tangent space at X . Since the sparse
matrix AΩ = PΩ(A) is given and XΩ = PΩ(X) was already precomputed, the gradient
can be computed by Algorithm 2. The total cost is 2(n+ 2m)k2 + 4|Ω|k flops.

Algorithm 2. Calculate gradient grad f(X).

Require: matrix X = UΣV T ∈ Mk, sparse matrix R = XΩ −AΩ ∈ R
m×n

Ensure: gradf(X) = UMV T + UpV
T + UV T

p ∈ TXMk

1: Ru ← RTU , Rv ← RV # 4|Ω|k flops
2: M ← UTRv # 2mk2 flops
3: Up ← Rv − UM , Vp ← Ru − VMT # 2(m+ n)k2 flops

Vector transport. Let ν = UMV T + UpV
T + UV T

p be a tangent vector at X =

UΣV T ∈Mk. By (2.9), the vector

ν+ := TX→X+(ν) = PTX+
Mk

(ν)

is the transport of ν to the tangent space at some X+ = U+Σ+V
T
+ . It is computed

by Algorithm 3 with a total cost of approximately 14(m+ n)k2 + 10k3 flops.

Algorithm 3. Calculate vector transport TX→X+(ν).

Require: matrices X = UΣV T ∈ Mk and X+ = U+Σ+V
T
+ ∈Mk,

tangent vector ν = UMV T + UpV
T + UV T

p

Ensure: TX→X+(ν) = U+M+V
T
+ + Up+V

T
+ + U+V

T
p+
∈ TX+Mk

1: Av ← V TV+, Au ← UTU+ # 2(m+ n)k2

2: Bv ← V T
p V+, Bu ← UT

p U+ # 2(m+ n)k2

3: M
(1)
+ ← AT

uMAv, U
(1)
+ ← U(MAv), V

(1)
+ ← V (MTAu) # 6k3 + 2(m+ n)k2

4: M
(2)
+ ← BT

uAv, U
(2)
+ ← UpAv, V

(2)
+ ← V Bu # 2k3 + 2(m+ n)k2

5: M
(3)
+ ← AT

uBv, U
(3)
+ ← UBv, V

(3)
+ ← VpAu # 2k3 + 2(m+ n)k2

6: M+ ←M
(1)
+ +M

(2)
+ +M

(3)
+ # 2k2

7: Up+ ← U
(1)
+ + U

(2)
+ + U

(3)
+ , Up+ ← Up+ − U+(U

T
+Up+) # 4mk2

8: Vp+ ← V
(1)
+ + V

(2)
+ + V

(3)
+ , Vp+ ← Vp+ − V+(V

T
+ Vp+) # 4nk2

Nonlinear CG. The geometric variant of Polak–Ribière is implemented as Algo-
rithm 4 costing about 28(m+ n)k2 + 20k3 flops. In order to improve robustness, we
use the PR+ variant and restart when the conjugate direction is almost orthogonal
to the gradient.

Initial guess for line search. Although Algorithm 1 uses line search, a good initial
guess can greatly enhance performance. We observed in our numerical experiments
that an exact minimization on the tangent space alone (so, neglecting the retraction),

(3.3) min
t

f(X + t η) =
1

2
min
t
‖PΩ(X) + tPΩ(η)− PΩ(A)‖2F,
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Algorithm 4. Compute the conjugate direction by PR+.
Require: previous iterate Xi−1, previous gradient ξi−1, previous direction ηi−1

current iterate Xi, current gradient ξi
Ensure: conjugate direction ηi ∈ TXiMk

1: Transport previous gradient and direction to current tangent space:
ξi ← TXi−1→Xi(ξi−1) # apply Algorithm 3
ηi ← TXi−1→Xi(ηi−1) # apply Algorithm 3

2: Compute conjugate direction:
δi ← ξi − ξi
β ← max(0, 〈δi, ξi〉/〈ξi−1, ξi−1〉)
ηi ← −ξi + β ηi

3: Compute angle between conjugate direction and gradient:
α← 〈ηi, ξi〉/

√
〈ηi, ηi〉 〈ξi, ξi〉

4: Reset to gradient if desired:
if α ≤ 0.1, then ηi ← ξi

performed extremely well as an initial guess in the sense that backtracking is almost
never necessary.

Equation (3.3) is a one-dimensional least-square fit for t on Ω. The closed-form
solution of the minimizer t∗ satisfies

t∗ = 〈PΩ(η),PΩ(A−X) 〉 / 〈PΩ(η),PΩ(η) 〉

and is unique when η �= 0. As long as Algorithm 1 has not converged, η will always
be nonzero since it is the direction of search. The solution to (3.3) is performed by
Algorithm 5. In the actual implementation, the sparse matrices N and B are stored
as the nonzero entries on Ω. Hence, the total cost is about 2mk2 + 4|Ω|(k + 1) flops.

Algorithm 5. Compute the initial guess for line search t∗ = arg mint f(X+
t η).

Require: iterate X = UΣV T and projection XΩ, tangent vector η = UMV T +
UpV

T + UV T
p , sparse matrix R = AΩ −XΩ ∈ R

m×n

Ensure: step length t∗
1: N ← PΩ(

[
UM + Up U

] [
V Vp

]T
) # 2mk2 + 4|Ω|k flops

2: t∗ ← tr(NTR)/ tr(NTN) # 4|Ω| flops

Retraction. As shown in (2.8), the retraction (2.7) can be directly computed by
the SVD of X + ξ. A full SVD of X + ξ is, however, prohibitively expensive since it
costs O(n3) flops. Fortunately, the matrix to retract has the particular form

X + ξ =
[
U Up

] [Σ+M Ik

Ik 0

] [
V Vp

]T
with X = UΣV T ∈Mk and ξ = UMV T +UpV

T +UV T
p ∈ TXMk. Algorithm 6 now

performs a compact QR and an SVD of a small 2k-by-2k matrix to reduce the flop
count to 14(m+ n)k2 + CSVDk

3 when k � min(m,n).
Observe that the listing of Algorithm 6 uses MATLAB notation to denote common

matrix operations. In addition, the flop count of computing the SVD in step 3 is
given as CSVDk

3 since it is difficult to estimate beforehand in general. In practice,
the constant CSVD is modest, say, less than 200. Furthermore, in step 4, we have
added εmach to Σs so that in the unlucky event of zero singular values, the retracted
matrix is perturbed to a rank-k matrix inMk.
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Algorithm 6. Compute the retraction by metric projection.

Require: iterate X = UΣV T , tangent vector ξ = UMV T + UpV
T + UV T

p

Ensure: retraction RX(ξ) = PMk
(X + ξ) = U+Σ+V

T
+

1: (Qu, Ru)← qr(Up, 0), (Qv, Rv)← qr(Vp, 0) # 10(m+ n)k2 flops

2: S ←
[
Σ +M RT

v

Ru 0

]
3: (Us,Σs, Vs)← svd(S) # CSVDk

3 flops
4: Σ+ ← Σs(1 : k, 1 : k) + εmach

5: U+ ←
[
U Qu

]
Us( : , 1 : k), V+ ←

[
V Qv

]
Vs( : , 1 : k) # 4(m+ n)k2 flops

Computational cost. Summing all the flop counts for Algorithm 1, we arrive at a
cost per iteration of approximately

(48m+ 44n)k2 + 10|Ω|k + nbArmijo (8(m+ n)k2 + 2|Ω|k),

where nbArmijo denotes the average number of Armijo backtracking steps. It is re-
markable that in all experiments below we have observed that nbArmijo = 0, that is,
backtracking was never needed.

For our typical problems in section 5, the size of the sampling set satisfies |Ω| =
OS (m + n − k)k with OS > 2 the oversampling factor (OS). When m = n and
nbArmijo = 0, this brings the total flops per iteration to

(3.4) ttheoretical = (92 + 20OS)nk2.

Comparing this theoretical flop count with experimental results, we observe that
sparse matrix vector multiplications and applying PΩ require significantly more time
than predicted by (3.4). This can be explained due to the lack of data locality for
these sparse matrix operations, whereas the majority of the remaining time is spent
by dense linear algebra, rich in BLAS3. After some experimentation, we estimated
that for our MATLAB environment these sparse operations are penalized by a factor
of about Csparse � 5. For this reason, we normalize the theoretical estimate (3.4) to
obtain the following practical estimate:

(3.5) tLRGeomCG
practical = (92 + Csparse 20OS)nk2, Csparse � 5.

For a sensible value of OS = 3, we can expect that about 75% of the computational
time will be spent on operations with sparse matrices.

Comparison to existing methods. The vast majority of specialized solvers for ma-
trix completion require computing the dominant singular vectors of a sparse matrix
in each step of the algorithm. This is, for example, the case for approaches using
soft- and hard-thresholding, like in [8, 13, 21, 35, 36, 37, 38, 43, 50]. Typically,
PROPACK from [31] is used for computing such a truncated SVD. The use of sparse
matrix-vector products and the potential convergence issues frequently make this the
computationally most expensive part of all these algorithms.

On the other hand, our algorithm first projects any sparse matrix onto the tangent
space and then computes the dominant singular vectors for a small 2k-by-2k matrix.
Apart from the application of PΩ and a few sparse matrix-vector products, the rest of
the algorithm consists solely of dense linear algebra operations. This is more robust
and significantly faster than computing the SVD of a sparse matrix in each step.
To the best of our knowledge, LMAFit [53] and other manifold-related algorithms
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like [5, 18, 27, 28, 39] are the only competitive solvers where mostly dense linear
algebra together with a few sparse matrix-vector products are sufficient.

Due to the difficulty of estimating practical flop counts for algorithms based on
computing a sparse SVD, we will only compare the computational complexity of our
method with that of LMAFit. An estimate similar to the one of above reveals that
LMAFit has a computational cost of

(3.6) tLMAFit
practical = (18 + Csparse 12OS)nk2, Csparse � 5,

where the sparse manipulations involve 2k sparse matrix vector multiplications and
one application of PΩ to a rank k matrix. Comparing this estimate to (3.5), LMAFit
should be about two times faster per iteration when OS = 3. As we will see later
(Tables 5.1 and 5.2) this is almost exactly what we observe experimentally. Since
LRGeomCG is more costly per iteration, it will have to converge much faster in order
to compete with LMAFit. This is studied in detail in section 5.

4. Convergence for a modified cost function. In this section, we show the
convergence of Algorithm 1 applied to a modified cost function.

4.1. Reconstruction on the tangent space. As the first step, we apply the
general convergence theory for Riemannian optimization from [2].

Proposition 4.1. Let {Xi} be an infinite sequence of iterates generated by
Algorithm 1. Then, every accumulation point X∗ of {Xi} satisfies PTX∗Mk

PΩ(X∗) =
PTX∗Mk

PΩ(A).
Proof. Since RX is a smooth retraction, the Armijo-type line search together with

the gradient-related search directions, allows us to conclude that any limit point of
Algorithm 1 is a critical point by Theorem 4.3.1 in [2]. These critical points X∗ are
determined by grad f(X) = 0. By (2.6) this gives PTX∗Mk

PΩ(X∗ −A) = 0.
The next step is establishing that there exist limit points. However, since the

closure ofMk are the matrices of rank bounded by k, a sequence inMk may have a
limit point that is a matrix of rank lower than k, which is not in Mk. In addition,
the objective function f(X) is not coercive because PΩ has a nontrivial kernel.

These two observations, motivate our choice to prove convergence when Algo-
rithm 1 is applied not to f but a regularized version, namely,

g :M→ R, X �→ f(X) + μ2(‖X†‖2F + ‖X‖2F), μ > 0.

In g, the term ‖X†‖2F will act as barrier to lower-rank matrices, while ‖X‖2F makes
it coercive. We will show below that as a consequence, all iterates {Xi} stay in a
compact subset of Mk. In addition, grad g(X) can be computed very cheaply after
modifying step 2 in Algorithm 2: Since every X ∈Mk is of rank k, the pseudoinverse
is smooth on Mk and hence g(X) is also smooth. Using [23, Theorem 4.3], one
can then show that the gradient of X �→ ‖X†‖2F + ‖X‖2F equals 2U(Σ− Σ−3)V T for
X = UΣV T .

Before continuing, we hasten to point out that although optimizing g using Al-
gorithm 1 can be done at virtually no extra cost, there is actually no need for g in a
practical algorithm for matrix completion; see Remark 4.3. As such our convergence
result is artificial, but it suits our need without formally proving convergence of this
more practical scheme, which would be quite technical.

Proposition 4.2. Let {Xi} be an infinite sequence of iterates generated by
Algorithm 1 but with the objective function g(X) = f(X) + μ2(‖X†‖2F + ‖X‖2F) for

some 0 < μ < 1. Then, limi→∞ PTXi
Mk

PΩ(Xi −A) = limi→∞ 2μ2(X†
i +Xi).
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Proof. We will first show that the iterates stay in a closed and bounded subset of
Mk. Let L = {X ∈ Mk : g(X) ≤ g(X0)} be the level set at X0. By construction of
the line search, all elements of {Xi} stay inside L and we get

1

2
‖PΩ(Xi −A)‖2F + μ2‖X†

i ‖2F + μ2‖Xi‖2F ≤ C2
0 , i > 0,

where C2
0 := g(X0). This implies

μ2‖Xi‖2F ≤ C2
0 −

1

2
‖PΩ(Xi −A)‖2F − μ2‖X†

i ‖2F ≤ C2
0 ,

and we obtain an upper bound on the largest singular value:

σ1(Xi) ≤ ‖Xi‖F ≤ C0/μ =: Cσ, i > 0.

Similarly, we get a lower bound on the smallest singular value:

μ2‖X†
i ‖2F =

k∑
j=1

μ2

σ2
j (Xi)

≤ C2
0 −

1

2
‖PΩ(Xi −A)‖2F − μ2‖Xi‖2F ≤ C2

0 , i > 0,

which implies that

σk(Xi) ≥ μ/C0 =: Cσ, i > 0.

It is clear that all elements of {Xi} stay inside the set

B = {X ∈Mk : σ1(X) ≤ Cσ, σk(X) ≥ Cσ}.

This set is closed and bounded, hence compact.
Next, suppose that limi→∞ ‖ grad g(Xi)‖F �= 0. Then there is a subsequence in

{Xi}i∈K such that ‖ grad g(X)‖F ≥ ε > 0 for all i ∈ K. Since Xi ∈ B, this subse-
quence {Xi}i∈K has a limit point X∗ in B. By continuity of grad g, this implies that
‖ grad g(X∗)‖F ≥ ε which contradicts Theorem 4.3.1 in [2] that every accumulation
point is a critical point of g. Hence, limi→∞ ‖ grad g(Xi)‖F = 0.

Remark 4.3. Proposition 4.2 is theoretical and μ2 can be chosen arbitrarily small,
for example, as small as εmach � 10−16. This means that as long as σ1(Xi) = O(1)
and σk(Xi)� εmach, the regularization terms in g are negligible and one might as well
have optimized the original objective function f , that is, g with μ = 0. This is what
we observed in all numerical experiments when rank(A) ≥ k. In case rank(A) < k,
it is obvious that now σk(Xi) → 0 as i → ∞. Theoretically one can still optimize
g, thereby forcing the optimization problem to stay onMk, but in practice it makes
more sense to transfer the original optimization problem to the manifold of rank k−1
matrices. This can be accomplished by monitoring σk(Xi) throughout the iteration.
Since these rank drops do not occur in our experiments, proving convergence of such
a method is beyond the scope of this paper.

A similar argument appears in the analysis of other methods for rank-constrained
optimization too. For example, the proof of convergence in [12] for SDPLR [11] uses
a regularization by μ det(Σ) with Σ containing the nonzero singular values of X ; yet
in practice, ones optimizes without this regularization using the observation that μ
can be made arbitrarily small, and in practice one always observes convergence when
μ = 0. Analogous modifications also appear in [8, 9, 28].
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4.2. Reconstruction on the whole space. Based on Proposition 4.2, we have
that for a suitable choice of μ, any limit point satisfies

‖PTX∗Mk
PΩ(X∗ −A)‖F ≤ ε, ε > 0.

In other words, we will have approximately fitted X to the data A on the image of
PTX∗Mk

PΩ, and, hopefully, this is sufficient to have X∗ = A on the whole space
R

m×n. Without further assumptions on X∗ and A, however, it is not reasonable to
expect that X∗ equals A since PΩ usually has a very large null space.

Let us split the error E := X −A into the three quantities,

E1 = PTXMk
PΩ(X −A), E2 = PNXMk

PΩ(X −A), and E3 = P⊥
Ω(X −A),

where NXMk is the normal space of X , i.e., the subspace of all matrices Z ∈ R
m×n

orthogonal to TXMk.
Upon convergence of Algorithm 1, ‖E1‖F → ε, but how big can E2 be? In

general, E2 can be arbitrarily large since it is the Lagrange multiplier of the fixed-
rank constraint of X . In fact, when the rank of X is smaller than the exact rank
of A, E2 typically never vanishes, even though E1 can converge to zero. On the
other hand, when the ranks of X and A are the same, one typically observes that
‖E1‖F → 0 implies ‖E1‖F → 0. This can also be easily checked during the course of
the algorithm, since PΩ(X−A) = E1+E2 is computed explicitly for the computation
of the gradient in Algorithm 2.

Suppose now that ‖E1‖F ≤ ε and ‖E2‖F ≤ τ , which means that X is in good
agreement with A on Ω. The hope is that X and A agree on the complement of Ω too.
This is of course not always the case, but it is exactly the crucial assumption of low-
rank matrix completion that the observations on Ω are sufficient to complete A. To
quantify this assumption, one can make use of standard theory in matrix completion
literature; see, e.g., [15, 16, 27]. Since it is not the purpose of this paper to analyze the
convergence properties of Algorithm 1 for various, rather theoretical random models,
and we do not rely on this theory in the numerical experiments later on, we omit this
discussion.

5. Numerical experiments. The implementation of LRGeomCG, i.e., Algo-
rithm 1, was done in MATLAB R2012a on a desktop computer with a 3.10 GHz CPU
and 8 GB of memory. All reported times are wall-clock time that include the setup
phase of the solvers (if needed) but exclude setting up the (random) problem.

As is mostly done in the literature, we focus only on square matrices. Note how-
ever that the performance of most matrix completion solvers behaves very differently
for highly nonsquare matrices, as observed in [8]. In our numerical experiments be-
low we only compare with LMAFit of [53]. Extensive comparison with the other
approaches from [13, 21, 35, 36, 37, 38, 50] revealed that LMAFit is overall the fastest
method for square matrices. We refer to [42] for these results.

The implementation of LMAFit was the one provided by the authors.1 All options
were kept the same, except rank adaptivity was turned off. In sections 5.4 and 5.5
we also changed the stopping criteria as explained there. In order to have a fair
comparison between LMAFit and LRGeomCG, the operation PΩ was performed by
the same MATLAB function part_XY.m in both solvers. In addition, the initial
guesses were taken as random rank k matrices (more on this below).

1The version used was downloaded August 14, 2012 from http://lmafit.blogs.rice.edu/.
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In all experiments, we will complete random low-rank matrices which are gen-
erated as proposed in [13]. First, construct two random matrices AL, AR ∈ R

n×k

with i.i.d. standard Gaussian entries; then, assemble A := ALA
T
R; finally, the set of

observations Ω is sampled uniformly at random among all sets of cardinality |Ω|. The
resulting observed matrix to complete is now AΩ := PΩ(A). Standard random matrix
theory asserts that ‖A‖F � n

√
k and ‖AΩ‖F �

√
|Ω|k. In the later experiments, the

test matrices are different and their construction will be explained there.
When we report on the relative error of an approximation X , we mean the error

(5.1) relative error = ‖X −A‖F/‖A‖F

computed on all the entries of A. On the other hand, the algorithms will compute a
relative residual on Ω only:

(5.2) relative residual = ‖PΩ(X −A)‖F/‖PΩ(A)‖F.

Unless stated otherwise, we set as tolerance for the solvers a relative residual of 10−12.
Such a high precision is necessary to study the asymptotic convergence rate of the
solvers, but where appropriate we will draw conclusions for moderate precisions too.

As initial guess X1 for Algorithm 1, we construct a random rank-k matrix follow-
ing the same procedure as above for M . The OS for a rank-k matrix is defined as the
ratio of the number of samples to the degrees of freedom in a nonsymmetric matrix
of rank k,

(5.3) OS = |Ω|/(k(2n− k)).

Obviously one needs at least OS ≥ 1 to uniquely complete any rank-k matrix. In the
experiments below, we observe that regardless of the method, OS > 2 is needed to
reliably recover an incoherent matrix of rank k after uniform sampling. In addition,
each row and each column needs to be sampled at least once. By the coupon collector’s
problem, this requires that |Ω| > Cn log(n), but in all experiments below, Ω is always
sufficiently large such that each row and column is sampled at least once. Hence, we
will only focus on the quantity OS.

5.1. Influence of size and rank for fixed oversampling. As the first test,
we complete random matrices A of exact rank k with LRGeomCG and LMAFit and
we explicitly exploit the knowledge of the rank in the algorithms. The purpose of
this test is to investigate the dependence of the algorithms on the size and the rank
of the matrices. In section 5.3, we will study the influence of OS, but for now we fix
the oversampling to OS = 3. In Table 5.1, we report on the mean run time and the
number of iterations taking over 10 random instances. The run time and the iteration
count of all these instances are visualized in Figures 5.1 and 5.2, respectively.

Overall, LRGeomCG needs less iterations than LMAFit for all problems. In
Figure 5.1, we see that this is because LRGeomCG converges faster asymptotically
although the convergence of LRGeomCG exhibits a slower transient behavior in the
beginning. This phase is, however, only limited to the first 20 iterations. Since the
cost per iteration for LMAFit is cheaper than for LRGeomCG (see the estimates (3.5)
and (3.6)), this transient phase leads to a trade-off between runtime and precision.
This is clearly visible in the timings of Figure 5.2: When sufficiently high accuracy is
requested, LRGeomCG is always faster, whereas for low precision, LMAFit is faster.

Let us now check in more detail the dependence on the size n. It is clear from
the left sides of Table 5.1 and Figure 5.1 that the iteration counts of LMAFit and
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Table 5.1

The mean of the computational results for Figures 5.1–5.2 for solving with a tolerance of 10−12.

Fixed rank k = 40 Fixed size n = 8000

n
LMAFit LRGeomCG LMAFit LRGeomCG

Time(s.) #its. Time(s.) #its. k Time(s.) #its. Time(s.) #its.

1000 3.11 133 2.74 54.5 10 17.6 518 8.81 121

2000 9.13 175 6.43 61.3 20 23.9 297 14.6 86.5

4000 21.2 191 14.8 66.7 30 40.9 232 25.8 76.1

8000 53.3 211 36.5 71.7 40 52.7 211 35.8 71.7

16000 150 222 99.1 75.4 50 76.1 194 51.2 67.7

32000 383 233 254 79.1 60 96.6 186 67.0 66.1

Fig. 5.1. Convergence curves for LMAFit (dashed line) and LRGeomCG (full line) for fixed
oversampling of OS = 3. Left: variable size n and fixed rank k = 40; right: variable ranks k and
fixed size n = 8000.

Fig. 5.2. Timing curves for LMAFit (dashed line) and LRGeomCG (full line) for fixed over-
sampling of OS = 3. Left: variable size n and fixed rank k = 40; right: variable ranks k and fixed
size n = 8000.

LRGeomCG grow with n but seem to stagnate as n → ∞. In addition, LMAFit
needs about three times more iterations than LRGeomCG. Hence, even though each
iteration of LRGeomCG is about two times more expensive than one iteration of
LMAFit, LRGeomCG will eventually always be faster than LMAFit for sufficiently
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Fig. 5.3. Timing curve and β coefficient of the hybrid strategy for different values of I.

high precision. In Figure 5.2 on the left, one can, for example, see that this trade-off
point happens at a precision of about 10−5. For growing rank k, the conclusion of the
same analysis is very much the same.

The previous conclusion depends critically on the convergence factor and, as we
will see later on, this factor is determined by the amount of oversampling (OS). But
for difficult problems (OS = 3 is near the lower limit of 2), we can already observe
that LRGeomCG is about 50% faster than LMAFit.

5.2. Hybrid strategy. The experimental results from above clearly show that
the transient behavior of LRGeomCG’s convergence is detrimental if only modest
accuracy is required. The reason for this slow phase is the lack of nonlinear CG accel-
eration (β in Algorithm 4 is almost always zero) which essentially reduces LRGeomCG
to a steepest descent algorithm. On the other hand, LMAFit is much less affected by
slow convergence during the initial phase.

A simple heuristic to overcome this bad phase is a hybrid solver: For the first I
iterations, we use LMAFit; after that, we hope that the nonlinear CG acceleration
kicks in immediately and we can efficiently solve with LRGeomCG. In Figure 5.3, we
have tested this strategy for different values of I on a problem of the previous section
with n = 16000 and k = 40.

From the left panel of Figure 5.3, we get that the run time to solve for a tolerance
of 10−12 is reduced from 97 sec (LRGeomCG) and 147 sec (LMAFit) to about 80
sec for the choices I = 10, 20, 30, 40. Performing only one iteration of LMAFit is less
effective. For I = 20, the hybrid strategy has almost no transient behavior anymore
and it is always faster than LRGeomCG or LMAFit alone. Furthermore, the choice
of I is not very sensitive to the performance as long as it is between 10 and 40, and
already for I = 10, there is a significant speedup of LRGeomCG noticeable for all
tolerances.

The quantity β of PR+ in Algorithm 4 is plotted in the right panel of Figure 5.3.
Until the 20th iteration, plain LRGeomCG shows no meaningful CG acceleration.
For the hybrid strategies with I > 10, the acceleration kicks in almost immediately.
Observe that all approaches converge to β � 0.4.

While this experiment shows that there is potential to speed up LRGeomCG in
the early phase, we do not wish to claim that the present strategy is very robust or
directly applicable. The main point that we wish to make, however, is that the slow
phase can be avoided in a relatively straightforward way and that LRGeomCG can be
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Fig. 5.4. Asymptotic convergence factor ρ (left) and mean time to decrease the error by a
factor of 10 (right) for LMAFit (dashed line) and LRGeomCG (full line) in function of the OS.

warm started by any other method. In particular, this shows that LRGeomCG can
be efficiently employed once the correct rank of the solution X is identified by some
other method. As explained in the introduction, there are numerous other methods
for low-rank matrix completion that can reliably identify this rank but have a slow
asymptotic convergence. Combining them with LRGeomCG seems like a promising
way forward.

5.3. Influence of oversampling. Next, we investigate the influence of over-
sampling on the convergence speed. We take 10 random problems with fixed rank
and size, but vary the OS using 50 values between 1, . . . , 15. In Figure 5.4, on the
left, the asymptotic convergence factor ρ is visible for LMAFit and LRGeomCG for
three different combinations of the size and rank. Since the convergence is linear and
we want to filter out any transient behavior, this factor was computed as

ρ =

(
‖PΩ(Xiend −A)‖F
‖PΩ(X10 −A)‖F

)1/(iend−10)

,

where iend indicates the last iteration. A factor of one indicates failure to converge
within 4000 steps. One can observe that all methods become slower as OS → 2.
Further, the convergence factor of LMAFit seems to stagnate for large values of OS
while LRGeomCG’s actually becomes better. Since for growing OS the completion
problems become easier as more entries are available, only LRGeomCG shows the
expected behavior. In contrast to our parameter-free choice of nonlinear CG, LMAFit
needs to determine and adjust a certain acceleration factor dynamically based on the
performance of the iteration. We believe the stagnation in Figure 5.4 on the left is
due to a suboptimal choice of this factor in LMAFit.

In the right panel of Figure 5.4, the mean time to decrease the relative residual by
a factor of 10 is displayed. These timings were again determined by neglecting the first
10 iterations and then interpolating the time needed for a reduction of the residual
by 10. Similarly as before, we can observe that since the cost per iteration is cheaper
for LMAFit, there is a range for OS around 7, . . . , 9 where LMAFit is only slightly
slower than LRGeomCG. However, for smaller and larger values of OS, LRGeomCG
is always faster by a significant margin (observe the logarithmic scale).

5.4. Influence of noise. Next, we investigate the influence of noise by adding
random perturbations to the rank-k matrix A. We define the noisy matrix A(ε) with
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noise level ε as

A(ε) := A+ ε
‖AΩ‖F
‖NΩ‖F

N,

where N is a standard Gaussian matrix and Ω is the usual random sampling set. (See
also [50, 53] for a similar setup.) The reason for defining A(ε) in this way is that we
have

‖PΩ(A−A(ε))‖F = ε
‖AΩ‖F
‖NΩ‖F

‖PΩ(N)‖F � ε
√
|Ω|k.

So, the best relative residual we may expect from an approximation Xopt � A is

(5.4) ‖PΩ(X
opt −A(ε))‖F/‖PΩ(A)‖F � ‖PΩ(A−A(ε))‖F/‖PΩ(A)‖F � ε.

Similarly, the best relative error of Xopt should be on the order of the noise ratio too
since

(5.5) ‖A−A(ε)‖F/‖A‖F � ε.

Due to the presence of noise, the relative residual (5.1) cannot go to zero but
the Riemannian gradient of our optimization problem can. In principle, this suffices
to detect convergence of LRGeomCG. In practice, however, we have noticed that
this wastes a lot of iterations in case the iteration stagnates. A simply remedy is to
monitor

(5.6) relative change at step i =
∣∣∣1−√

f(Xi)/f(Xi−1)
∣∣∣

and stop the iteration when this value drops below a certain threshold. After some
experimentation, we fixed this threshold to 10−3. Such a stagnation detection is
applied by most other low-rank completion solvers [50, 53], although its specific form
varies. Our choice coincides with the one from [53], but we have lowered the threshold.

After equipping LMAFit and LRGeomCG with this stagnation detection, we can
display the experimental results in Figure 5.5 and Table 5.2. We have only reported
on one choice for the rank, size, and oversampling since the same conclusions can be
reached for any other choice. Based on Figure 5.5, it is clear that the stagnation is
effectively detected by both methods, except for the very noisy case of ε = 1. (Recall
that we changed the original stagnation detection procedure in LMAFit to ours of
(5.6) to be able to draw a fair comparison.)

Comparing the results with those of the previous section, the only difference is
that the iteration stagnates when the error reaches the noise level. In particular, the
iterations are undisturbed by the presence of the noise up until the very last iterations.
In Table 5.2, one can observe that both methods solve all problems up to the noise
level, which is the best that can be expected from (5.4) and (5.5). Again, LRGeomCG
is faster when a higher accuracy is required, which, in this case, corresponds to small
noise levels. Since the iteration is unaffected by the noise until the very end, the
hybrid strategy of the previous section should be effective here too.

5.5. Exponentially decaying singular values. In the previous problems, the
rank of the matrices could be unambiguously defined. Even in the noisy case, there
was still a sufficiently large gap between the original nonzero singular values and the
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Fig. 5.5. Timing curves for LMAFit (crosses) and LRGeomCG (circles) for different noise
levels with size n = 8000, rank k = 20, and fixed oversampling of OS = 3. The noise levels ε are
indicated by dashed lines in different color.

Table 5.2

Computational results for Figure 5.5.

ε
LMAFit LRGeomCG

Time(s.) #its. Error Residual Time(s.) #its. Error Residual

10−0 2.6 31 1.04 ε 0.59 ε 6.8 42 1.52 ε 0.63 ε

10−2 3.4 42 0.77 ε 0.83 ε 5.6 36 0.72 ε 0.82 ε

10−4 6.4 79 0.83 ε 0.83 ε 7.5 46 0.72 ε 0.82 ε

10−6 11 133 0.74 ε 0.82 ε 9.2 58 0.72 ε 0.82 ε

10−8 15 179 0.96 ε 0.85 ε 11 70 0.72 ε 0.82 ε

10−10 19 235 1.09 ε 0.87 ε 13 81 0.72 ε 0.82 ε

ones affected by noise. In this section, we will complete a matrix for which the singular
values decay but do not become exactly zero.

Although a different setting than the previous problems, this type of matrix occurs
frequently in the context of approximation of discretized functions or solutions of
PDEs on tensorized domains; see, e.g., [30]. In this case, the problem of approximating
discretized functions by low-rank matrices is primarily motivated by reducing the
amount of data to store. On a continuous level, low-rank approximation corresponds
in this setting to approximation by sums of separable functions. As such, one is
typically interested in approximating the matrix up to a certain tolerance using the
lowest rank possible.

The (exact) rank of a matrix is now better replaced by the numerical rank, or
ε-rank [22, Chapter 2.5.5]. Depending on the required accuracy ε, the ε-rank is the
quantity

(5.7) kε(A) = min
‖A−B‖2≤ε

rank(B).

Obviously, when ε = 0, one recovers the (exact) rank of a matrix. It is well known
that the ε-rank of A ∈ R

m×n can be determined from the singular values σi of A as
follows

σ1 ≥ σkε > ε ≥ σkε+1 ≥ · · · ≥ σp, p = min(m,n).
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Fig. 5.6. Relative error of LMAFit and LRGeomCG after completion of a discretization of
(5.8) for OS = 8 with and without a homotopy strategy.

In the context of the approximation of bivariate functions, the relation (5.7) is
very useful in the following way. Let f(x, y) be a function defined on a tensorized
domain (x, y) ∈ X × Y. After discretization of x and y, we arrive at a matrix A. If
we allow for an absolute error in the spectral norm of the size ε, then (5.7) tells us
that we can approximate M by a rank kε matrix. For example, we take the following
simple bivariate function to complete:

(5.8) f(x, y) =
1

1 + ‖x− y‖22
, (x, y) ∈ [0, 1]2.

Such functions occur as two-point correlations related to second-order elliptic prob-
lems with stochastic source terms; see [24].

We ran LRGeomCG and LMAFit after uniformly discretizing x and y in (5.8)
resulting in a matrix of size n = 8000 and then sampling this matrix with OS = 8
(calculated for rank 20). Since a stopping condition on the residual has no meaning
for this example, we only used a tolerance of 10−3 on the relative change (5.6) or a
maximum of 500 iterations. In Figure 5.6, the final accuracy for different choices of
the rank is visible for these two problem sets.

The results labeled “no hom” use the standard strategy of starting with random
initial guesses for each value of the rank k. Clearly, this results in a very unsatisfactory
performance of LRGeomCG and LMAFit since the error of the completion does not
decrease with increasing rank. Remark that we have measured the relative error as

‖PΓ(X∗ −A)‖F/‖PΓ(A)‖F,

where Γ is a random sampling set different from Ω but equally large.
The previous behavior is a clear example that the local optimizers of LMAFit and

LRGeomCG are very far away from the global ones. However, there is a straightfor-
ward solution to this problem: Instead of taking a random initial guess for each k, we
only take a random initial guess for k = 1. For all other k > 1, we use X = UΣV T ,
where

U =
[
Ũ u

]
, Σ =

[
Σ̃ 0

0 Σ̃k−1,k−1

]
, V =

[
Ṽ v

]
,
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X̃ = Ũ Σ̃Ṽ T is the local optimizer for rank k − 1, and u and v are random unit-norm
vectors orthogonal to U and V , respectively. We call this the homotopy strategy which
is also used in one of LMAFit’s rank adaptivity strategies (but with zero vectors u
and v). The error using this homotopy strategy is labeled “hom” in Figure 5.6 and
it clearly performs much more favorably. In addition, LRGeomCG is able to obtain a
smaller error.

6. Conclusions. The matrix completion consists of recovering a low-rank matrix
based on a very sparse set of entries of this matrix. In this paper, we have presented a
new method based on optimization on manifolds to solve large-scale matrix completion
problems. Compared to most other existing methods in the literature, our approach
consists of directly minimizing the least-square error of the fit directly overMk, the
set of matrices of rank k.

The main contribution of this paper is to show that the lack of vector space struc-
ture ofMk does not need be an issue when optimizing over this set and to illustrate
this for low-rank matrix completion. Using the framework of retraction-based opti-
mization, the necessary expressions were derived in order to minimize any smooth
objective function over the Riemannian manifoldMk. The geometry chosen forMk,
namely, a submanifold embedded in the space of matrices, allowed for an efficient
implementation of nonlinear CG for matrix completion. Indeed, the numerical exper-
iments illustrated that this approach outperforms state-of-the-art solvers for matrix
completion. In particular, the method achieved very fast asymptotic convergence fac-
tors without any tuning of parameters thanks to a simple computation of the initial
guess for the line search.

A drawback of the proposed approach is, however, that the rank of the manifold is
fixed. Although there are several problems where choosing the rank is straightforward,
an integrated manifold-based solution, like in [17, 43], is desirable. In addition, our
convergence proof relied on several safeguards and modifications in the algorithm that
seem completely unnecessary in practice. Closing these gaps are currently topics of
further research.
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