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Abstract

The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring

problem in science and engineering. The problem becomes especially difficult when the original data matrix has

some missing entries and contains an unknown additive noise term in the remaining elements. The former problem

can be solved by concatenating a set of r-column matrices which share a common, single r-dimensional solution

space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained

with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we

would like to find that solution which is least affected by noise. This requires that we determine which of the

r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This

paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the

more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is

then combined with the use of a noise model to derive an upper-bound for the effect that noise and occlusions

have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the

noise-free matrix of rank r. Finally, we derive affine and projective structure from motion (SFM) algorithms using

the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed

approach over the state of the art.

Index Terms

Low-rank matrix, noise, missing data, random matrix, matrix perturbation, subspace analysis, structure from

motion, computer vision, pattern recognition.

I. INTRODUCTION

M
ANY computer vision problems, as well as several others in computer graphics, pattern recognition

and bioinformatics reduce to finding an appropriate low-rank matrix that successfully approximates

the original data matrix [37], [28]. This problem becomes especially challenging when the original matrix

contains noise and has several missing elements. One classical example is in the estimation of optical

flow from video sequences, where several of the tracked fiducials can become occluded or be imprecisely

detected (i.e., noisy measurements) [1], [14]. Other classical applications are in the recognition of faces

using the so-called appearance-based approach [24], and in the classification of patients using microarray

technology in medicine and bioinformatics [35], [9].

In this paper, we will focus on yet another classical problem – that of structure from motion (SFM).

SFM is one of the fundamental problems in computer vision, with a large variety of applications [20],

[12]. The SFM problem requires that we compute the 3D structure of an arbitrary scene from a set of 2D

image point correspondences. These point correspondences are drawn from a set of images obtained by

(usually) uncalibrated cameras. As above, the SFM problem becomes especially difficult when the feature

points used to solve the correspondence problem cannot be precisely detected or become occluded for

the duration of some frames. The former of these two problems is known as data noise, while the latter

is usually referred to as missing data.
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Fig. 1. The effects of noise on SVD. (a) The original data matrix is obtained by adding uniformally distributed Gaussian noise (with

a standard deviation of 5). An additional error in one of the rows (with an extra 50% noise term) is then included. The dashed shape

specifies the ground-truth; the solid shape the recovered result. (b) The recovered result obtained when the row containing most of the noise

is eliminated before applying SVD.

The data noise problem can be stated as follows. Let the measurement matrix Ŵ ∈ R
m×n be the noisy

version of an unknown matrix W of rank r ≪ min(m,n). Here, m is a multiple of the number of frames

through which each of the image feature points is being tracked (e.g., in affine SFM m = 2q, q the

number of frames, whereas in projective SFM m = 3q), and n is the number of feature points. The noisy

data matrix can be formally defined as

Ŵ = W + E, (1)

where E is the matrix containing the unknown noise terms. In general, the addition of the noise matrix

E will enforce Ŵ to be of full-rank, while the original data matrix is known to be of a lower rank r.

Hence, our objective is to find that rank-r matrix Wr that best approximates the noise-free data matrix

W, i.e, we wish to minimize the difference between W and Wr. Unfortunately, W is not known and,

hence, one is generally left to estimate Wr from Ŵ by means of an appropriate metric.

A typical solution to this problem is to employ the classical Singular Value Decomposition (SVD) [10].

The popularity of SVD is due to it providing the least squares error solution. Among other problems, this

has been applied to affine SFM [34], [26], appearance-based recognition of faces [30] and objects [24],

optical flow [1], [14], and microarray analysis [35], [9].

However, SVD does not generally work under the conditions of large noise. This is because the least-

squares solution for factorization favors those feature vectors associated to the largest variances (i.e., the

outliers). In many practical cases, the points carrying most of the variance are actually those associated

with noise, since it is the noise which makes the variance increase. If one fails to eliminate the subset of

column vectors of the measurement matrix carrying a large noise term, the SVD result (which is otherwise

optimal in the least-squares sense) cannot guarantee a precise recovery of the 3D structure. Fig. 1 shows an

example with one of the rows of Ŵ containing a large amount of noise. In this example the ground-truth

(a 3D shape in the form of a letter L) is shown in (a) using dashed lines. The 3D shape recovered with

SVD is delineated with solid lines, making it clear that the noisy row (i.e., the outlier) biases the whole

result. In Fig. 1(b) we show the 3D shape recovered by SVD when the noisy row is deleted from Ŵ.

Here, we see that the recovered result is almost perfect. Note that this would in fact apply to any other

method based on least-squares not just SVD.

Unfortunately, the amount of noise in each feature point is a priori unknown. Had the same amount of

noise been uniformly distributed over all the points (i.e., following a Gaussian distribution), least-squares

would have been optimal. However, in practice, for each given sequence, noise is attached to a particular
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set of points, and no prior information on these or their structure is known. Even when the noise is i.i.d.,

all we know is that, on average, all points will be equally affected. This, however, does not provide much

knowledge of the noise term in each image or video sequence. Hence, our main goal is to provide a good

and useful estimate of which set of column vectors is (on average) less affected by the same noise term.

This is key to enhancing the accuracy of the final result, because if we had such information, we would

know which columns of the data matrix to use to reconstruct our object. Note that this approach does not

require that we know the actual noise term in each column, but rather how the noise affects the recovery.

In this paper, we demonstrate that the same amount of noise does not affect every data matrix (or

submatrix) equally. When a data matrix includes columns or rows defining very distinct vectors, the

effect of noise is minimal. When the matrix rows or columns define very similar vectors though, the same

amount of noise has a very large effect. We will prove this result formally and derive an upper-bound

estimate of the effect of the noise term. This does not provide an optimal mechanism to reduce noise.

Without any knowledge of the noise term, one can only hope to optimize a criterion. Our result shows

that when no a priori information on the noise term is given, it is convenient to select those submatrices

that are less swayed by the noise term.

Thus far, we have dealt with the problem caused by noise. The other typical problem addressed by

researchers working in SFM is that of missing data caused by self-occlusions or by the incapacity of the

tracking algorithm to successfully locate one or several of the feature points in some of the frames of our

image sequence. In these cases, the measurement matrix becomes incomplete. To make this worse, and as

already stated above, this incomplete data matrix will generally contain noise. Hence, we should extend

the definition given in (1) to include the missing data case. To formally state this, we will define a set Γ
representing all those cells in the data matrix Ŵ that correspond to the feature points which are visible

and properly detected (tracked) in each of the frames of the image sequence. This set is thus defined as

Γ = {(i, j)|(i, j)successfully detected 2D visible points}. (2)

Here, the j component specifies the column of Ŵ, corresponding to one of the coordinates of the feature

point visible in frame i. The non-missing elements in the measurement matrix Ŵ = [ŵij] can now be

formally defined as

ŵij = wij + eij,∀(i, j) ∈ Γ,

where E = [eij] is the noise matrix, and [(·)ij] denotes a m × n matrix with the (i, j)th
entry as (·)ij .

Recall that in projective SFM, the third coordinate of the feature points is the homogenous coordinate.

We note that these do not carry a noise term. In our formulation given above, this means that the eij

representing a homogenous coordinate will always need to be zero.

To resolve the problem caused by missing data, Jacobs [16] proposes to construct a set of submatrices

by randomly selecting three columns from the data matrix Ŵ. If there was no missing data, any three

columns would define the solution space. However, if some of the cells of the three randomly selected

columns are missing, several solutions will be possible. By combining the solutions observed with a

sufficient number of different triple-column submatrices, we can obtain a full reconstruction. This process

can also be used to initialize global approaches, generally resulting in more accurate global fits. The main

problem with this approach is that, due to the randomness of the triple-column selection process, the

algorithm does not always produce a consistent and accurate recovery. Also, since the selection of the

three columns is random, there is no mechanism to know whether the selected columns carry most of the

noise or not. It is our contention that the selection of the columns constituting the submatrix should be

carried out on the basis of how noise affects them and on the number of missing entries. In this paper, we

propose to first sort the r-column submatrices based on an estimate of the effect that noise and occlusion

have on them. Then, we select a sufficient number of submatrices to reconstruct the entire object.

After a more formal, in-depth presentation of the problem in Section II, we provide detailed derivations

of our approach in Section III. This is an extension of our preliminary work presented in [17]. In Section

IV, we show how the derived algorithm can be efficiently used to resolve the problems of noise and
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missing data in affine and projective SFM. We show that our SFM algorithm can recover the position

of the 2D image points and corresponding 3D feature points with high accuracy. This is so even when

the point has a large noise term or when it has been temporarily occluded. Experimental results are in

Section V. We conclude in Section VI.

II. FITTING A LOW-RANK MATRIX WITH MISSING DATA

As summarized in the preceding section, missing matrix entries require that we redefine approaches such

as SVD. Several solutions to this problem have been proposed over the years. We start by summarizing

two of the main approaches defined to date and state the necessary techniques we need to use to formulate

the proposed solution.

A. The direct fitting method

In SFM we need to find an appropriate low-rank matrix which contains the information of the structure

and motion of the object being tracked. This suggests a direct approach where we search for those missing

entries that maintain a low rank measurement matrix. This low-rank constraint means that only the first r
singular values of W can be non-zero. Since r is usually known (e.g., four in the general SFM problem),

one can derive approaches for filling in the missing elements [6]. Two such solutions are proposed by

Friedland et al. [9] and Troyanskaya et al. [35]. In these algorithms, the authors first fill in the missing

elements with zeros, and then utilize SVD to find that r-dimensional subspace that best fits the data. This

allows the authors to project the data matrix onto the subspace, resulting in a new low-rank representation.

The measurement matrix can now be reconstructed using the basis vectors selected by this process. This

algorithm can be iterated, yielding better least-squares estimates of the missing elements. In a related

paper, Shum et al. [29] propose to first carry the classical decomposition of the measurement matrix Ŵ

into two matrices, one describing the camera motion P and the other the object’s shape Q, using standard

SVD but with zeros or average or random values in place of the missing elements. This decomposition

allows for the definition of two optimization approaches. One is to optimize P by keeping Q fixed. The

second optimization requires to fix P and solve for Q. This trick reduces the original bilinear problem

to two linear ones where the goal is to minimize the norm of the difference between the measurement

matrix and its SVD reconstruction when only using the non-missing elements of the data matrix. This

solutions reduces to a weighted least-squares problem, which can be iterated until convergence.

The methods described in this section are related to earlier extensions of SVD with missing elements.

One particular case is defined by Wiberg [39], whose derivations also provide the minimum number of

observations needed to get a unique solution. More recently, EM-based extensions of SVD and PCA have

been proposed to address the problem of missing elements [27], [33], [36], [11]. In [5], this is further

improved with robust statistics. And, it has been shown that projection pursuit could also be employed,

since this compares favorably with other robust estimators [19]. Unfortunately, in general, the approaches

defined in this section can only guarantee convergence to a local minimum.

Random Sample Consensus (RANSAC) [7] is a well-known, robust method to deal with outliers. In

RANSAC-like procedures, a fixed number of data units are randomly selected to fit a model which will

be measured over all the data. If there are no missing components, any r-column submatrix will span

a r-dimensional subspace. However, in the case with missing data, the fixed number of columns which

can fit a complete r-dimensional subspace is no longer available. In such a case, we would need to first

eliminate the rows with missing elements.

B. The subspace constraint

To resolve the issues that arise from the methods described in the preceding section, one can use

additional constraints. For example, the factorization of the low-rank matrix, W = P ·Q, implies another

possible solution by defining a subspace constraint: the spanning space of the column vectors of W and
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P should be identical. However, this constraint only makes sense when we have noise-free entries. To

deal with noise, Jacobs [15], [16] proposes an approach where the subspace constraint can be derived

from several submatrices. Jacob’s approach is to then combine these local solutions to find the global one.

To achieve this, each column of the measurement matrix is regarded as the coordinates of a point in a m-

dimensional space. SVD can then be used to find the best 3D subspace, W , fitting the n available points.

When there is neither noise nor missing data, W is the space spanned by any three linearly independent

columns. If there are some missing elements in the measurement matrix, each column spans an affine

subspace that accounts for all the possible missing elements. In this case, W lies in the space spanned

by three such affine subspaces. By following this argument and letting Bk be the space spanned by the

kth column triplet, we have W ⊆ Bk. Then, W should be a subset of the intersection of all possible Bk,

W ⊆ G = ∩Bk, k = 1, 2, · · · , l,

where l is the number of all possible Bk.

If noise is introduced into the equation and we follow our previous notation, which uses the symbol

̂ to specify the corresponding noisy versions (e.g., Ĝ and Ŵ), then, Ĝ will become empty because our

target Ŵ cannot accurately lie in any B̂k. A null-space based method is used to solve this problem. All

the matrix representations of the orthogonal complementary space of B̂k are packed together to form a

matrix representation of Ĝ⊥. This can now be decomposed using standard SVD, providing the least-squares

solution. The three singular vectors corresponding to the three smallest singular values are selected to

form a 3D linear space Ŵ to be orthogonal to the matrix which is considered to be closest to W . The

affine shape of the original structure is thus recovered from Ŵ [15], [16]. This approach falls within the

area of “subset selection,” where a set of columns is selected to generate a solution. A review and variants

of this approach can be found in [23].

Jacobs’ solution is an elegant way to deal with missing data. However, in practice, we see that the

recovered results vary extensively when measured by the Mean Square Error (MSE). The reason for this

is simple. When the triple-columns carrying the least amount of noise are selected, the recovered shape

will generally be very close to the ground-truth and the MSE will be small. Unfortunately, if one or

more of the triple-columns carrying large amounts of noise are used, the result will be far from optimal,

leading to a large MSE. Therefore, the remaining problem to be addressed within this framework is to

find a criterion that determines which triple-columns are associated to less noise and thus are the best

candidates for the algorithm. Chen and Suter propose one such criterion in [4], where the fitness of

each column is inversely proportional to the number of missing elements. This means that those columns

with less missing elements are better candidates for reconstruction. This works well when the noise is

evenly distributed. However, in many instances the columns with more missing entries are precisely those

carrying the least amount of noise or, equivalently, those less affected by it. In these cases, Chen and

Suter’s approach would result in large MSEs. Our experimental results will show that indeed, many times,

the recovery obtained from those columns with more missing elements carry a lower MSE. This is not

to cast any aspersions of Jacobs and Chen and Suter approaches. These are very general and may be

used in a large variety of problems. Our goal in the remaining of the paper is to propose an alternate

approach and show that it generally provides better fits in SFM problems. The proposed criterion is based

on the subset selection approach [23] as it was done in [16], and does not necessarily extend to the other

methods described above. Also, the derivations provided below are for the singular value decomposition

of the submatrices. As detailed in [40], several of these results should extend to the eigen-decomposition

as well.

III. DEVIATION PARAMETER CRITERION

A new method of determining which subset of the data is most suitable for fitting the low-rank matrix

is introduced. This method only depends on the subset itself and does not require of a precalculation of

the result as it would be the case in robust statistics [41].
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A. Selecting the appropriate submatrices

The problem we need to address is that of determining which of the (triple-column) submatrices are

less affected by the noise term. We first note that each of these submatrices defines a subspace. If the 3D

subspace given by the complete (in the sense of not having any missing entries), noise-free data matrix

W were known, then our task would simplify to finding those submatrices spanning subspaces similar

to that of W. In such an idealistic case, we would still need to define a mechanism that can compute

the distance between two spaces – that of the ground-truth W and that of the ith submatrix B̂i (with

i = 1, . . . , l). Since the dimensionality of these subspaces is identical, we can compute the actual distance

between them, dist(W , B̂i), by looking at the largest principal angle. More formally, if the dimensionality

of our subspaces is r, then the principal angles 0 ≤ θi,1 ≤ · · · ≤ θi,r ≤ π/2 between W and B̂i can be

obtained recursively from

cos(θi,k) = max
u∈W

max
v∈B̂i

uTv = uT
i,kvi,k,

with the added constraints ‖u‖ = ‖v‖ = 1, uTui,h = 0, vTvi,h = 0, h = 1, . . . , k − 1, 1 ≤ k ≤ r. Then,

the distance between subspaces is dist(W , B̂i) = sin(θi,r) [10]. For simplicity of notation, we will use

θ(X,Y) to specify the largest principal angle between the spaces defined by the matrices X and Y. Also,

we will refer to the space spanned by X as X , and the largest principal angle between two spaces as

θ(X ,Y).
In actuality, the space W defining the ground-truth is not known. Therefore, we need to find another

mechanism to determine how noise influences each subspace B̂i. To this end, we first note that the same

amount of noise does not affect every submatrix defining a given subspace B̂i equally. In fact, when the

vectors given by the columns of our submatrix are separated by a large angle (e.g., close to 90◦), additive

noise will have a limited effect. However, when the same noise is added to a submatrix with similar

column vectors, the new resulting (noisy) subspace will be more different from the original noise-free

version than the effect observed in submatrices with very distinct column vectors.

To clarify this point, one can think of the effect that noise has in a stereo vision system. When using

two images describing a similar view of the same scene, noise will have a greater sway than that observed

when the views are far apart. In other words, the 3D reconstruction will be generally less affected by

noise when the vectors describing the scene correspond to sufficiently different views. This is so because a

small amount of noise will correspond to a large percentage of the difference between two similar vectors

but a small percentage in those that are far apart. This result will be formally proven next.

B. Subspace perturbation analysis

Since our approach is that of determining which submatrices are best to be employed based on their

robustness to noise, our criterion needs to be related to the matrix sensitivity to noise. Subspace perturbation

analysis [31] provides a way to formally derive a solution.

To this end, let the matrix Ŵ be a perturbed version of the noise-free matrix W ∈ R
m×n with some

missing elements, and let the rank of W be r ≪ min(m,n). The perturbing matrix E is considered to

be the additive noise in the observation of W in (1). As stated above, a classical approach to recover W

is to find that matrix Wr of rank r which minimizes the difference between itself and W. A convenient

norm to calculate this difference is the Frobenius norm calculated over all non-missing elements of the

matrix, ‖W − Wr‖F nonmissing.

If we select a r-column submatrix B̂i (i = 1, 2, · · · , l) from Ŵ and follow the steps of Jacobs

algorithm [16] presented in Section II-B, we get the null space of B̂i which, if correct, should be orthogonal

to the desired low-dimensional space Ŵ . After selecting a sufficient number of such submatrices, we build

a large matrix which is composed of all these null-spaces. SVD can then be used to select the r singular

vectors corresponding to the r smallest singular values. This generates a r-dimensional linear subspace
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Fig. 2. Shown here is the relation between each pair of matrices in the process followed by the subspace constraint approach. The top part

illustrates the relation between the noisy matrices, while the bottom part illustrates the noise-free case. In this figure, the empty squares in

the matrix correspond to missing elements. Note that M̂
T
i Âi = 0 and N̂

T
i B̂i = 0.

Ŵ . This linear subspace can be utilized to recover the missing data and reconstruct a rank-r matrix, as

we will see shortly.

For each B̂i, let Âi ∈ R
p×r (p ≤ m) be the corresponding reduced form of B̂i with no missing entries.

This, we accomplish by removing all the rows having at least one missing entry. The spanning space of

Âi is Âi, with M̂i its null space and M̂i the p × (p − r) matrix defining it. We can then expand M̂i

by simply adding zeros in all the rows which were removed from B̂i. This provides us with an original

size matrix, N̂i ∈ R
m×(p−r), representing the null space. This process is illustrated in Fig. 2. All such N̂i

will then be packed together to form the matrix N̂ = [N̂1N̂2 · · · N̂l]. Our low-dimensional linear space

Ŵ will be orthogonal to the rank-(n− r) matrix closest to N̂ as given by the Frobenius norm. Note that

the subspace will be correctly recovered only when all the rows are considered at least in one of the Âi

matrices.

Had we applied the process just defined to the noise-free condition, we would have obtained the

matrices Bi, Ai, Mi, Ni, and their corresponding space (e.g., Ai and Mi), Fig. 2. Since N̂ is the final

matrix to be decomposed by SVD, the difference between N̂ and N should be small. Similarly, we also

require the difference between each N̂i and Ni to be as small as possible. Since Ni and Mi and N̂i

and M̂i are the same except for added zeros, the principal angles between Ni and N̂i are the same as

that between Mi and M̂i. Also, since Ai and Mi and Âi and M̂i are both orthogonal to each other, the

principal angle between Mi and M̂i will be the same as that between Ai and Âi. Therefore, we have

θ(Ni, N̂i) = θ(Mi, M̂i) = θ(Ai, Âi) and we can calculate the distance between subspaces directly from

Ai and Âi, i.e., dist(Ni, N̂i) = dist(Ai, Âi) = sin θ(Ai, Âi).
The process defined in the preceding paragraph allows us to calculate the distance between the noise-

free and noisy versions of the original data matrix with missing elements, by concentrating on spaces

spanned by the matrices Ai and Âi as

pb(Bi, B̂i) = sin θ(R(Âi),R(Ai)) = sin θ(Ai, Âi), (3)

where R(X) denotes the range space X spanned by the column vectors in X, and pb stands for pertur-

bation.

We note that, in the process described above, the farther the space of N̂ is from that of N, the farther

apart the recovered low-dimensional subspace Ŵ will be from the ground-truth W . Hence, we want
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to choose those N̂i that defines the smallest of all possible largest principal angles θ(Ni, N̂i). This is

equivalent to selecting those r-column submatrices B̂i ∈ R
m×r with the smallest pb(Bi, B̂i) values.

Since the ground-truth is not known, we need to resort to some other type of comparison. As argued

in the previous section, those submatrices B̂i with most dissimilar column vectors will be generally less

affected by additive noise. The framework derived in this section enables us to prove this result formally.

Moreover, note the deleted rows do not directly relate to the calculated pb value. In fact, this is not

necessary because these rows will not enter in the computation of N̂i and, hence, have no effect in the

final result.

C. Upper-bound for the subspace distance

Let B̂ ∈ R
m×r represent one of the r-column submatrices from Ŵ, and let Â ∈ R

p×r (p ≤ m) denote

its complete part, which, as above, we construct by deleting all rows with at least one missing element.

Further, let EA ∈ R
p×r be the noise matrix defining the noise term on Â. The matrix EA can be obtained

directly from E by deleting the same rows and columns that were eliminated to convert Ŵ into Â.

We begin by determining a bound on the distance between R(Â) and R(A), where A denotes the

corresponding noise-free version of Â, in terms of some f(Â) and ‖EA‖2, where ‖ · ‖2 denotes the

2-norm.

To do this, we extend on a perturbation theorem provided by Wedin [38] to determine a bound on the

pb value between B̂ and B, which is equal to the sine of the largest principal angle between the spanning

spaces of A and Â. Before the theorem is presented, we need to introduce some definitions. Let

Â = A + EA,

with SVDs A = UΣVT and Â = ÛΣ̂V̂T . A and Â can be decomposed as

A =
[
U1 U2

]



Σ1 0

0 Σ2

0 0



 [
V1 V2

]T

Â =
[
Û1 Û2

]



Σ̂1 0

0 Σ̂2

0 0



 [
V̂1 V̂2

]T
,

(4)

where U1, Û1 ∈ R
p×s, U2, Û2 ∈ R

p×(p−s), V1, V̂1 ∈ R
r×s, V2, V̂2 ∈ R

r×(r−s), s ≤ r, Σ1 = diag(σ1, · · · , σs),
Σ2 = diag(σs+1, · · · , σr), Σ̂1 = diag(σ̂1, · · · , σ̂s) and Σ̂2 = diag(σ̂s+1, · · · , σ̂r).

In the theorem that follows, the representation of EA in the orthonormal subspace V̂1 and Û1 is used,

rather than EA directly, since we are defining bounds for subspaces. As such, define

R = AV̂1 − Û1Σ̂1 = −EAV̂1

D = AT Û1 − V̂1Σ̂1 = −ET
A
Û1.

From these definitions we note that

‖R‖ = ‖EAV̂1‖ ≤ ‖EA‖
‖D‖ = ‖ET

A
Û1‖ ≤ ‖EA‖,

(5)

where ‖ · ‖ represents an appropriate norm, such as the 2-norm or the Frobenius norm. We can now state

Wedin’s theorem [38] as follows.

Theorem 1: If ∃α, δ > 0 such that

min σ(Σ̂1) ≥ α + δ and max σ(Σ2) ≤ α,

then

max{‖ sinΦ‖, ‖ sinΘ‖} ≤ max{‖R‖, ‖D‖}
δ

,
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where Φ is a matrix of angles between R(U1) and R(Û1), Θ is a matrix of angles between R(V1)
and R(V̂1), and the operator σ(·) denotes the singular value spectrum. Here, sinΦ = UT

2 Û1 and

sinΘ = VT
2 V̂1.

Returning to the original problem, to determine a bound on the distance between the spanning spaces

R(Â) and R(A), we use the sine of the largest principal angle between R(Â) and R(A) to measure the

distance between two submatrices, defined as sin θ(R(Â),R(A)). Using the inequality in (5), we have

sin θ(R(Â),R(A)) ≤ max{‖ sinΦ‖, ‖ sinΘ‖}

≤ max{‖R‖, ‖D‖}
gap

≤ ‖EA‖
gap

, (6)

where Φ now represents the matrix of angles between R(A) and R(Â), and Θ is a matrix of angles

between R(AT ) and R(ÂT ). From the conditions in Theorem 1, it follows gap = min σ(Σ̂1)−max σ(Σ2),
with Σ2 and Σ̂1 the diagonal matrices of the singular values of A and Â as shown in (4).

Finally, for the case where p > r, the first r left singular vectors of Û will span R(Â) and the remaining

singular vectors will have corresponding singular values equal to 0. To illustrate, consider the following

SVD for p > r, rewritten with a square matrix of singular values

A =
[
U′

1 U′
2

] [
Σ′

1 0

0 Σ′
2

] [
V′

1 V′
2

]T
, (7)

where U′
1 ∈ R

p×r, U′
2 ∈ R

p×(p−r), V′
1 ∈ R

r×r, V′
2 ∈ R

r×(p−r), Σ′
1 = diag(σ1, · · · , σr), and Σ′

2 =
diag(σr+1, · · · , σp). Similarly the decomposition of Â is

Â =
[
Û′

1 Û′
2

] [
Σ̂′

1 0

0 Σ̂′
2

] [
V̂′

1 V̂′
2

]T
, (8)

where Û′
1 ∈ R

p×r, Û′
2 ∈ R

p×(p−r), V̂′
1 ∈ R

r×r, V̂′
2 ∈ R

r×(p−r), Σ̂′
1 = diag(σ̂1, · · · , σ̂r) and Σ̂′

2 =
diag(σ̂r+1, · · · , σ̂p).

Comparing (7) and (8) to (4) with s = r, yields U′
1 = U1, U′

2 = U2, Σ′
1 = Σ1, Σ′

2 = 0, V′
1 = V1

and V′
2 = I. From this result, we see that the condition in Wedin’s theorem is max σ(Σ′

2) = 0 and

min σ(Σ̂′
1) = min σ(Â). And, hence, gap = min σ(Σ̂′

1) − max σ(Σ′
2) = min σ(Â). Finally, from (6) we

get our expression for the bound on the distance between R(A) and R(Â) as

sin θ(R(Â),R(A)) ≤ ‖EA‖
min σ(Â)

. (9)

D. The deviation parameter criterion

In order to use the perturbation bound derived in (9), we must have some knowledge of the nature of the

noise matrix E. Since this cannot be measured directly, we will resort to a statistical model. Specifically,

we assume that the elements of the noise matrix are Gaussian distributed according to N(0, σ2) and

are independent of each other. This is a reasonable characterization of noise that arises from inaccurate

measurements, i.e., it is most probable that the measurement will be close to the actual value.

Let X be a p × r Gaussian random matrix with entries distributed according to N(0, 1). As shown by

Johnstone [18], the mean and variance of the largest eigenvalue λ1 of the covariance matrix XTX can be

approximated by

µλ1
= (

√
p − 1 +

√
r)2

σλ1
= (

√
p − 1 +

√
r)

(
1√

p − 1
+

1√
r

) 1

3

. (10)
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Given the fact that λ1 is the square of the largest singular value of X and the largest singular value of

a matrix is its 2-norm, the expected value of the 2-norm of our error matrix EA ∈ R
p×r with elements

distributed as N(0, σ2) is

µ‖EA‖ ≈ (
√

p − 1 +
√

r)σ. (11)

It is important to note from (10) that while the estimate of the mean increases almost linearly with the

dimensionality of the matrix, the standard deviation increases at a lower rate. This means that the ratio

of standard deviation over mean, which indicates the percentage of error in the estimate of the mean,

decreases as the size of the matrix increases. This is relevant because, in most applications, the size of

our matrices is quite large. And, in such cases, it becomes appropriate to substitute the 2-norm of our

matrix by the mean derived in (10) as was done in (11).

Now considering the results in (3), (9) and (11) together, we obtain the expectation of the upper-bound

of pb(B, B̂). We refer to this value as the Deviation Parameter (DP) of submatrix B̂ ∈ R
m×r with b rows

of missing data (b = m − p), and define it as

DP (B̂) =
(
√

m − b − 1 +
√

r)σ

min(σ(Â))
. (12)

In this result, σ represents the variance of the noise given by the 2-norm of the noise matrix EA. As

mentioned earlier, it is common to assume that the norm of the noise in each submatrix is identical –

although the distribution of the noise in each column/row can vary considerably from matrix to matrix.

Under this condition, all σ’s are the same and can thus be eliminated from the computation of the DP

criterion presented above.

Given a measurement of a low-rank matrix with noise and missing data, the difference between it and

the ground-truth can be estimated with (12). This DP value gives a measure of the sensitivity of the

low-rank matrix to perturbation due to i.i.d. additive Gaussian noise. If a matrix has a larger DP value,

the corrupted matrix will generally be farther from the original one under the same noise situation than

that with a smaller DP value. Note that this result is based on an upper-bound and may thus not lead

to optimal solutions. Nonetheless, the Deviation Parameter provides an appropriate mechanism to select

the candidate submatrices in the problem of finding a low-dimensional linear space representation of the

data matrix.

E. Analysis of the DP criterion

In the preceding sections, we have given an estimate of the possible noise carried on an incomplete,

noisy matrix based on results borrowed from matrix perturbation [31] and random matrix theory. In our

derivations provided thus far, we use the expectation of the upper-bound to measure the distance between

R(A) and R(Â) instead of the actual distance because this cannot be calculated. Although in our previous

section we provided grounded arguments for such a definition, we now turn to a study of the behavior of

this newly defined criterion to demonstrate its effectiveness.

We start with a m×n matrix W of rank r and with every entry in the matrix in [0, 100]. This matrix is

then contaminated with additive Gaussian noise, N(0, σ2), followed by a random occlusion mask with d%

of missing entries. Let the resulting matrix be Ŵ. The deviation parameter DP i for each of the possible

submatrices B̂i (each constructed with r columns) is computed. Now, the resulting DPi values need to be

compared to the actual distance θi between the submatrix Âi and its corresponding noise-free submatrix

Ai.

Our first study will test how many times the deviation parameter criterion correctly selects that submatrix

leading to a closer estimate of the ground-truth. For this to happen, the DP i and DP j computed from

two submatrices B̂i and B̂j should be in the same order as θi and θj . That is, if DP i > DP j , then

θi > θj , and vice-versa. This can be readily computed as the percentage (ρ%) of times that B̂i and B̂j

yield (DP i − DP j)(θi − θj) > 0. This is shown in Table I. These results are calculated from a total of
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m n r σ d% ρ%

10 8 2 1 10% 91.80%

20 10 4 2 20% 87.14%

20 20 6 2 20% 85.98%

30 20 4 2 10% 93.31%

30 20 4 2 40% 84.16%

30 20 4 5 40% 82.78%

TABLE I

PERCENTAGE OF TIMES THE DEVIATION PARAMETER CRITERION CORRECTLY PREDICTS THE ORDERING OF THE EFFECTS OF NOISE.

PERCENTAGES ARE GIVEN FOR A VARIETY OF NOISE TERMS AND OCCLUSIONS.
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Fig. 3. The effect of noise over each possible submatrix. (a) Actual distance between subspaces when the submatrices are sorted according

to the number of deleted rows or DP value. In (b), the submatrices are ordered from having less to more missing elements. The abscissa

corresponds to the index of the submatrices sorted by the numbers of missing entries, and the ordinate is the corresponding pb value. In

(c) the submatrices are sorted by the actual distance between subspaces (dashed curve). The solid curve specifies the value of the deviation

parameter derived in this paper.

30 trials with the matrix size, noise and missing data as specified in the table. From these results, we

see that even for reasonably large amounts of missing elements and noise, the ordering provided by our

deviation parameter criterion is almost always consistent with that of the ground-truth.

The DP criterion thus provides a convenient estimate of how useful each submatrix is. This is further

illustrated in Fig. 3(a). In this case, we first generate a 50×10 rank 4 matrix A and its corresponding noisy

version Â (with zero-mean Gaussian noise). Then, we obtained the 210 possible 4-column submatrices.

Now, for each of these 210 submatrices, we generate another subset of 46 submatrices by deleting

0, 1, 2, . . . , 45 rows. Each resulting set of 46 submatrices is sorted from smallest to largest DPi. A plot of

the actual distance as given by (3) is shown in Fig. 3(a) as a solid curve. This plot is the average over all

possible 210 sets of 46 submatrices. As seen in the figure, the DP criterion results in the monotonically

increasing function we need. This result is further compared to the one obtained when the submatrices are

sorted from less to more missing rows (dashed curve in the figure). Adding rows is equivalent to adding

samples to the least-squares fitting, generally resulting in better estimates. This result is however not as

accurate as that of the DP criterion. Therefore, it is expected to provide better recoveries in practice, a

point we will demonstrate in Section V.

The problem with the above result is that it uses the same submatrices to generate the results with

different percentages of missing entries. In actuality, the r-column submatrix with more missing entries

will be generally constructed with different columns than those used to build a submatrix with less missing

entries. Therefore, our criterion should also work under this condition. To test this, a 50 × 10 random

matrix of rank 4 with 10% missing elements (also randomly selected) and 1% random Gaussian noise

is divided into all possible 210 submatrices B̂i. First, the submatrices B̂i are sorted from those with the

smallest to those with the largest number of missing elements. This means that B̂1 corresponds to the
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matrix with the least number of missing elements, while B̂210 is that with the most. This index corresponds

to the x-axis in Fig. 3(b). Then, we use Eq. (3) to calculate the actual distance between the ground-truth

and each of the perturbed submatrices, which is shown in the y-axis in Fig. 3(b). We see that the selection

of those matrices with less missing entries does not always help choose an appropriate set.

We now order the submatrices according to the actual distance between them and the ground-truth,

dashed curve in Fig. 3(c). Here, we also plot the DPi values for each of the submatrices. As it can be

seen in this figure, the DPi values follow the plot of the true distance very closely and thus result in a very

convenient and efficient way to order the submatrices according to their sensitivity to noise. This result

is contrasted against the previous one shown in Fig. 3(b) where the submatrices were sorted according

to the missing elements. Clearly, the estimate provided by the DP criterion is much preferred. This is

because the deviation parameter provides information about both, the sensitivity to noise and the amount

of missing elements. If the number of the non-complete rows (b) increases, both (
√

m − b − 1 +
√

r)
and min(σ(Â)) will decrease. In the Supplementary Documentation we provide the proof for this result

and show that although both the numerator and denominator decrease as the number of missing elements

increases, the value of DP increases with it. This means that we favor matrices with less missing entries

in general.

As a final note, it is important to understand the complexity of the algorithm defined in this section.

Recall that for a m× n matrix, there is a total of Cr
n r-column submatrices. If the percentage of missing

elements in this matrix is p, each r-column submatrix has m(1 − p)r full rows on average (that is,

assuming the occlusions are uniformly distributed). This mean that SVD needs to be performed on the

resulting m(1− p)r × r submatrix. The computational complexity of SVD is O(m(1− p)rr2 + r3), which

is polynomial (of degree 3) in each iteration. The computational complexity of our criterion is thus given

by Cr
nO(m(1 − p)rr2 + r3). For large matrices this is a cost to be considered. In these cases, we can

divide the large data matrix into more tractable submatrices. We will address this issue in the section to

follow.

F. Low-rank matrix fitting with DP

Before the data selection criterion described above can be employed in an actual low-rank matrix fitting

approach, we have to mention two points which are essential to its successful implementation. The first

practical issue to attend to is given by the process we have selected to eliminate the missing entries from

the original data matrix. In our approach, we eliminate all rows that have at least one missing element.

The problem is that we need to guarantee that there is at least one submatrix in N̂ which contains the

information of each row. In our algorithm, we first sort the submatrices according to their DPi value

– from smallest to largest. Then, as to how many submatrices to select, we will choose the minimum

number of submatrices needed to include the information of every row.

The second problem is that of determining the appropriate number of columns for the final matrix

N̂. Since the number of possible r-column submatrices is Cr
n and this is much larger than n, it is not

necessary to include all these submatrices to construct N̂. In [16], the width of the matrix N̂ is set to

a fixed size, e.g. 10m or 100m. Here, we go one step further and propose a method which is based on

the performance of the algorithm in recovering the matrix defining the null-space. To illustrate this, let

us look at a couple of examples.

Let a m× n matrix of rank r have d% of its elements missing, and contain additive Gaussian noise at

level σ. Also, as above, let the value of each entry be bounded by zero and 100. In our first case study,

we generate a matrix with the parameters m = 10, n = 16, r = 4, σ = 1, and d = 20. This provides us

with the ground-truth matrix W and its noisy version Ŵ. We can use our algorithm (as described above)

to find the best, minimum number of submatrices needed to recover Wr. This allows us to analyze how

good the recovery is when the minimum number of submatrices B̂i is used and how much improvement

one gets when we keep adding additional submatrices. This is illustrated in Fig. 4, where the x axis

specifies the number of submatrices used to compute Wr and the y axis indicates the Root Mean Square
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Fig. 4. Two example curves of the RMSE with (a) [m, n, r, σ, d%] = [10, 16, 4, 1.00, 20%] and (b) [m, n, r, σ, d%] = [15, 20, 3, 4.00, 30%].
The dashed curve is the true error (i.e., the difference between W and Wr), while the solid curve corresponds to that we can calculate

(i.e., Ŵ to Wr). The dashed lines indicate the number of submatrices used in each case and their corresponding RMSE. We can see that

the RMSEs obtained with the true measure and with our estimate are practically identical.

Error (RMSE). The dashed curve in the figure corresponds to the RMSE between W and Wr obtained

by using all the matrix elements, even those that were occluded to the algorithm and had to be recovered

by it. Hence, this first measure provides the holy grail of measures, because it will show how our estimate

relates to it. The solid curve in the figure corresponds to the actual estimate, given by the RMSE between

Ŵ and Wr over the non-missing elements of the matrices. The global minima of these two curves are

shown in the figure as the lines travelling from those minima to the x and y axes. These specify the

optimal number of submatrices needed to achieve the minimum RMSE.

We see in Fig. 4(a) that the true RMSE (dashed curve) and the one we can calculate (solid curve) have

a similar behavior. They both decrease at first and then start increasing (indicating the noisy submatrices

have started to overcome the recovery). This is also the case in the other example provided in Fig. 4(b),

where m = 15, n = 20, r = 3, σ = 4, and d = 30. Most importantly, we see that the global minima

in these two curves are located at a very proximal x value, i.e., a very similar number of submatrices is

needed to minimize our computed measure (i.e., the difference between Ŵ and Wr) and that provided by

the ground-truth. We have further observed this pattern in a large number of simulations we have carried

out. Therefore, the number of submatrices needed to carry out the recovery of Wr is conveniently given

by the global minima of our estimate (solid line).

A final point needs to be made about large data matrices too. When Ŵ is very large, the number

of possible r-column submatrices grows very fast. While this may be computationally demanding, in

actuality, there is no need for creating all the possible submatrices. Here, we propose a three-step iterative

DP method, which can improve the performance of the DP method in the case of a large measurement

matrix. First, the large measurement matrix is divided into several overlapping submatrices (e.g., in the

“dinosaur” sequence to be used in Section V, we employed three overlapping submatrices). Second, the

original DP method is applied to each of these (overlapping) submatrices, and the rows with the largest

reconstruction error are iteratively removed. This process continues until the average reprojection error

over all the visible data begins to increase. This process is similar to that in [22]. The difference is that

in [22] a threshold representing the highest tolerable reprojection error has to be pre-determined by the

user. In our approach, this is automatically determined by the algorithm. In the third and final step, the

whole recovery will be obtained by combining all these sub-recoveries. To do this, we work as follow. The

data matrix Ŵ is partitioned into two overlapping submatrices, Ŵ1 and Ŵ2. This process is done to ensure

that the number of overlapping columns in these two submatrices is at least r. Hence, Ŵ1 = [Ŵ11,Ŵ12]

and Ŵ2 = [Ŵ21,Ŵ22], where Ŵ12 and Ŵ21 come from the same part of the measurement matrix of rank
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r. The matrix representations of the recovered r-dimensional (row) spaces, F̂1 and F̂2, can be written as

F̂1 = [F̂11, F̂12] and F̂2 = [F̂21, F̂22]. Then, to find the r× r matrix K which minimizes ‖F̂12 − KF̂21‖F ,

we can follow a simple linear least-squares method where K = F̂12F̂
T
21(F̂21F̂

T
21)

−1. For the case with

overlapping rows, a similar process can be followed.

Note that the division process described in this section works best when the occlusion follows a

continuous pattern – meaning that the points occluded in a first set of images are visible in another

set and vice-versa. This is the case, for example, when one moves the face left to right or up and down

or when an object is placed on a turntable.

IV. APPLICATION TO SFM

The approach described thus far can be directly applied to the problem of affine SFM. In projective

SFM, the measurement matrix needs to be scaled by a set of proper projective depths. The projective

depth can be recovered either using the fundamental matrix in epipolar geometry [32] or using the iterative

estimation approach [13], [21]. The iterative estimation method has many advantages but requires a good

low-rank matrix fitting solution to ensure the convergence of the projective depths. The DP approach

described in this paper provides such a solution.

A. Projective SFM with missing data

Assume that we have q views of a scene, each with n 3D points generated from different projective

projections. We want to recover the projective structure of the scene as well as the camera motion (or

projection) for all q views. Denote the 3 × 4 projection matrix of view i by Pi, i = 1, 2, · · · , q, and

the 3D point j by Qj; in homogeneous coordinates Qj = [xj, yj, zj, 1]T , j = 1, 2, · · · , n. Then, the

projection equation for point j in view i can be written as λijqij = PiQj , where qij = [xij, yij, 1]T is the

homogeneous coordinate of point j in image i, and λij is the corresponding projective depth. Further, let

pij = [xij, yij]
T be the inhomogeneous 2D coordinate of point j in image i.

If we write all the projective matrices and all the 3D point coordinates in a single matrix, we have

P = [PT
1 ,PT

2 , ...,PT
q ]T and Q = [Q1,Q2, ...,Qn]. Then the sequence of all q × n tracked 2D points with

the scaling factors λij can be represented as a scaled measurement matrix,

S = [λijqij] = P · Q.

The size of the scaled measurement matrix S is m × n, where m = 3q. If there is no noise and all the

3D points are visible in all views, it is clear that the scaled matrix S is of rank 4 [32].

In general, however, we only have the non-scaled measurement matrix W or its homogeneous version

H obtained from the actual 2D tracked points,

W =
[
pij

]
and H =

[
qij

]
.

Had we known the correct projective depths λij , the low-rank matrix fitting method could have recovered

P and Q up to a 4 × 4 homography.

The other major problem is that the (non-scaled) measurement matrix usually comes with some asso-

ciated noise and missing elements, resulting in

Ŵ =
[
p̂ij

]
and Ĥ =

[
q̂ij

]
,

where for all (i, j) ∈ Γ, p̂ij = [x̂ij, ŷij]
T and q̂ij = [x̂ij, ŷij, 1]T are the inhomogeneous and homogeneous

coordinates with unknown additive noise. The goal is to recover the full, noise-free matrices P and Q

from the incomplete and inaccurate measurement matrix.
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B. DP-based projective SFM

The proposed DP-based approach will be used iteratively to recover the projective depths, which will

allow us to fit a rank 4 matrix to our current result. To facilitate convergence, the minimization criteria

used in these two steps should have a similar form. Mahamud and Hebert [21] introduce a projective depth

update where they propose to minimize the angle between each column vector and the low dimensional

linear space. This method is based on a complete measurement matrix. The convergence of this algorithm

has been proven under the case without missing data. We now extend this method to work in the missing

data case.

For all those points that are occluded, we set q̂ij = [0, 0, 0]T , i.e., if (i, j) /∈ Γ. In the kth iterative step,

we have the current projective depth Λ(k) as

Λ(k) = [λ
(k)
ij ] and λ

(k)
j = [λ

(k)
1j , λ

(k)
2j , · · · , λ

(k)
mj]

T ,

where j = 1, 2, · · · , n. The scaled measurement matrix Ŝ(k) satisfies

Ŝ(k) = Ĥ ⊙ Λ(k),

where ⊙ indicates the Hadamard product ([aij] ⊙ [bij] = [aij · bij]). The proposed method is used on the

current scaled measurement matrix Ŝ(k) to find its best rank-4 fitting and factorize it into a product,

Ŝ(k) → P̂(k) · Q̂(k),

where P̂(k) is a matrix composed by 4 orthonormal vectors.

The second part of this step is to update the current projective depths. First, we need to fill in the

missing data based on the current projective depths, and then we have the fill-in version of Ĥ, denoted

as Ĥ(k). We want to find Λ(k+1), such that the range space of Ŝ(k+1) = Ĥ(k) ⊙Λ(k+1) is closest to that of

P̂(k), which is given by the sine of the largest principal angle. Here we use P̂(k) to update each column

of Λ(k) and Q̂(k) to update the rows of Λ(k). Each column vector in Ŝ(k+1) should be as close as possible

to the space R(P̂(k)). The jth column of Ŝ(k+1) is given by

sj ≡ [λ1j · q̂T
1j, λ2j · q̂T

2j, · · · , λmj · q̂T
mj]

T ,

where [λ1j, λ2j, · · · , λmj]
T = λj is a column vector with some projective depths. Now, let θj be the angle

between sj and R(P̂(k)). We then have

λ
(k+1)
j = arg min

λj

θj = arg max
λj

cos2 θj = arg max
λj

‖P̂(k)P̂(k)T sj‖2

‖sj‖2

= arg max
λj

sT
j P̂(k)P̂(k)T sj

sT
j sj

.

This result can be rewritten as

λ
(k+1)
j = arg max

λj

λT
j CjC

T
j λj

λT
j Tjλj

, (13)

where the ith row of the m × 4 matrix Cj is given by q̂T
ijP̂

(k)
i , P̂

(k)
i is a 3 × 4 matrix constructed with

the ith triplet of rows of P̂(k), and Tj is a diagonal matrix with the ith diagonal entry equal to q̂T
ijq̂ij .

Eq. (13) is in fact a generalized eigenvalue-decomposition problem, where the correct projective depth

λ
(k+1)
j correspond to the eigenvector associated with the largest eigenvalue. This result directly provides a

solution for the scale matrix Λ(k+1) at each iteration. While iterative methods such as [21] have recently

been found to lead to trivial solutions in some cases [25], the DP-based algorithm just presented is shown

to converge to the correct solution in a large number of experiments detailed in the section to follow.
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σ, d%
diff 1 diff 2 diff 3

RMSE MAE RMSE MAE RMSE MAE

0.5, 10% 0.417 1.413 0.308 1.096 0.332 1.147

0.5, 30% 0.435 1.569 0.387 1.466 0.559 2.396

1.0, 10% 0.836 2.773 0.606 2.195 0.665 2.580

1.0, 20% 0.823 2.762 0.676 2.528 0.825 3.356

1.0, 30% 0.843 2.841 0.763 2.740 1.054 4.082

2.0, 20% 1.661 5.910 1.361 5.114 1.665 6.549

4.0, 20% 2.693 5.874 2.559 5.663 3.151 8.545

5.0, 40% 6.900 10.26 6.756 10.08 8.125 26.36

TABLE II

DENOISING ABILITY OF THE PROPOSED FACTORIZATION METHOD.

V. EXPERIMENTAL RESULTS

We now provide extensive experimental validation for the proposed approach. A statistical analysis is

first presented using synthetic data. We then conclude with the application of the proposed approach on

four real datasets.

A. Fitting low-rank matrices

We begin by testing the denoising ability of the proposed method. For this, we generate a 30 × 20
matrix W of rank 4 with the absolute values of its entries set to no more than 100, and then add Gaussian

noise with variance σ and randomly occlude d% of the matrix entries, Ŵ. We recover the low-rank matrix

Wr and then provide several measures of performance: i) the difference over the non-occluded entries

between Wr and Ŵ (which we denote as diff 1), ii) the difference over the visible data between Wr and

W (diff 2), and iii) the difference between Wr and W over all entries (diff 3). All these measures are

given in RMSE and MAE (Maximum Absolute Error). The averages over a total of 30 trials are listed

in Table II for each of the specified values of noise and missing elements. In this table we have added a

result with a very large noise term (σ = 5) and extreme occlusion (40%), which results in a large diff 3.

In this case, we see that the deletion of the rows with missing entries is problematic because it may

eliminate other useful (visible) information. This was not a problem when the noise and occlusion were

smaller, because these columns were included in other submatrices. However, in this extreme conditions,

it is common to have missing elements in many rows and too much noise in the remaining ones. These

are thus the limits of the algorithm.

As we can see from this table, the recovered low-rank matrix Wr is closer to the noise-free version,

W, than to its noisy version Ŵ. This is indeed a most desirable property, since it shows the algorithm

is capable of denoising the data matrix. Furthermore, we see that the missing elements recovered by our

algorithm do not include much additional error; demonstrating that the proposed approach does a good

job in recovering the missing information too. (This point will also be shown to hold true for real data.)

By plotting these results as a function of the noise parameter and the RMSE, Fig. 5, we see that the error

increases linearly with the amount of noise that is added to the data matrix. This is also a very desirable

property.

The comparison to other data selection criteria is provided in Table III. In this table, we compare the

RMSE, as given by diff 1, diff 2, diff 3, of the proposed algorithm and those obtained with a random

selection of the submatrices [16] (indicated in the table as RAND) and the selection of the columns with

less missing elements (MME, Minimal Missing Elements). In Table III, we tabulate the RMSE results of

random selection for RAND, MME and DP, averaging over 30 trials. We generate 30×20 rank-3 matrices

with additive Gaussian noise (σ) and missing data (d%). As expected, the larger the noise and the amount

of missing elements, the more sense it makes to use the criterion presented in this paper.
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Fig. 5. The average recovered error with 30% missing data and different noise level, σ = 0.5, 1, 2, 4.

σ, d%
RAND MME DP

diff 1 diff 2 diff 3 diff 1 diff 2 diff 3 diff 1 diff 2 diff 3

0.5, 10% 0.5032 0.3623 0.3770 0.4712 0.3189 0.3311 0.4370 0.2658 0.2731

1.0, 20% 1.1491 0.9312 1.1117 1.0133 0.7682 0.8419 0.8692 0.5706 0.6032

2.0, 20% 2.2586 1.8609 2.9495 1.9885 1.5264 1.7351 1.7337 1.2012 1.3550

2.0, 40% 3.1655 2.9333 34.068 2.5910 2.3620 9.1349 1.9260 1.6840 2.6918

4.0, 40% 5.0738 4.4706 33.697 4.6420 4.0388 13.695 4.4141 3.8565 7.2933

5.0, 50% 5.9846 5.3507 76.851 5.5914 5.1408 31.121 5.4652 5.0143 16.321

TABLE III

COMPARISON BETWEEN RAND, MME AND DP.

B. Affine SFM

In our first experimental result with real data, we employed a publicly available sequence1 of 8 frames

where a box with a calibration grid drawn onto it is shown, Fig. 6(a). This dataset comes with a total of

40 points tracked over each of the 8 frames with no occlusions.

In Fig. 7, we compare the results of the DP affine SFM algorithm and that of Jacobs’ [16] using the

diff 2 measure given above. To generate these results we randomly occluded a percentage of the image

points. This is specified by the index in the x axis, while the y axis represents the RMSE in (a) and the

MAE in (b). In these results, Jacobs algorithm has been labelled Jacobstrans because it includes a row

of all ones. This is based on the observation that when the translation is included in the formulation of

the affine model, a row with all entries equal to one should always be present in the solution space [16].

Hence, in general, using this approach results in better estimates. We have also extended our method to

include this step. This extension is labelled DPtrans in the figure.

Fig. 8 illustrates how the RMSE increases as the amount of occlusion and noise increase. In (a) and (b)

we show the RMSE as a function of both, noise and occlusion, for each of the two algorithms. From this

result, we see that the sway noise performs over the DP-based approach is minimal. Most importantly,

this effect is constant regardless of the occlusion term. The two algorithms are further compared in Fig.

8(c) for the particular case of 40% occlusion. Since the algorithm precision is consistently equated with

the additive noise term, this could be further used as an initialization of a linear iterative optimization

algorithm, such as, the bi-linear method defined in [29] or the iteration-refining step given in [4]. These

results can now be contrasted to a global method such as RANSAC [7]. In RANSAC one could randomly

choose r columns, eliminate the rows with missing entries, and then obtain the subspace directly (without

the need to compute the null space). We can then calculate how each of the unused columns fits to this

1http://www.cs.umd.edu/˜djacobs/missing-data.tar
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(a) (b)

Fig. 6. Shown here is (a) a frame of the box sequence, and (b) a frame of the dinosaur sequence.
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Fig. 7. Plotted here are the reprojection errors obtained with Jacobs algorithm and the DP-based affine SFM. In (a) we show the RMSE

over a total of 30 runs for each of the occluding percentages. In (b) we plot the MAE of each algorithm for each of the occlusions.
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Fig. 8. Shown here are the reprojection errors for the proposed approach and Jacobs algorithm as functions of the noise term and the

amount of occlusion. RMSE on (a) Jacobs algorithm [16] and (b) DP affine SFM. In (c) we show a slice of the plots in (a) and (b) at 40%
occlusion but with varying noise. This last plot allows for a one to one comparison.
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TABLE IV

RMSE RESULTS AS GIVEN BY diff
3

AND AVERAGE COMPUTATION TIME.

σ, d% DP RAND MME RANSAC CF RPCA

0.5, 30% 0.9738 2.8692 2.1526 2.1666 3.3184 35.667

1.0, 30% 2.3501 5.6598 3.9688 6.6115 2.3672 34.098

2.0, 30% 3.6384 16.963 8.6395 9.8347 3.8571 35.816

4.0, 30% 6.4969 36.960 13.369 11.686 15.040 37.602

0.5, 40% 1.9068 10.256 3.2569 3.6903 14.561 39.539

1.0, 40% 3.1088 11.261 7.5623 8.4500 18.077 46.470

2.0, 40% 6.3400 23.653 15.320 13.009 22.906 45.234

4.0, 40% 8.5015 36.523 18.965 17.528 46.200 45.469

time (s) 100 0.1 100 100 30 0.3

The comparison is given between the following approaches: DP, RAND (i.e., Random Selection) [16], MME (Minimal Missing Elements) [4], the variant of
RANSAC described in the text, CF (the Closed-Form solution of [2]), RPCA (Robust PCA) [5].

subspace result and sort the r-column submatrices according to the fitting error. This approach results in

higher RMSE than DP. Comparisons between the proposed approach and this variant of RANSAC are in

Table IV. This table also includes comparative results with the robust approach presented in [5] and the

closed-form solution of [2]. Additional details are in the Supplementary Documentation.

The other real dataset used in this section is the Dinosaur sequence [8]. This sequence has 36 frames

and 4, 983 tracked feature points which become occluded for the duration of several frames. One of

these frames is shown in Fig. 6(b). What makes this sequence of interest is the large amount of missing

(occluded) elements. Overall, the matrix has 90.84% of its entries missing (occluded). In fact, 2, 300 of

the feature points appear in only two frames. To facilitate convergence, at the end of each iteration of

our algorithm, we will employ the optimization of [29] described in Section II-A. To provide a direct

comparison with the results given in [4], we provide the results of the DP-based affine SFM with: all the

data points, a subset of 2, 683, and a yet smaller set of 336. These results are shown in Fig. 9(a-c). The

3D reconstruction of the Dinosaur’s shape when using all the data points is shown in Fig. 9(d). In [4],

the authors provide a reprojection error by first computing the reconstruction on the smallest set and then

extending this result to the two other (larger) sets. Their average reprojection errors and their maximum

errors are (represented here as average/maximum): 1.8438/72.4467 for the set with 4, 983 (i.e., all the

data), and 2.4017/72.4467 when using the subset of 2, 683 feature points. By repeating this procedure

with the approach presented in this paper, we obtain the following lower errors: 1.6419/39.9988, and

1.9340/39.9988, respectively.

C. Projective SFM

To test the DP-based projective SFM algorithm, we will use a synthetic data-set to provide quantitative

results and two sets of real data to show actual applications of the method.

The synthetic data-set consists of fifty randomly selected 3D points in the range of a sphere of radius

100 centered at the origin. Eight views of the resulting structure are generated. The cameras are located at

random positions outside that sphere within the range of 200 to 500. The relatively large size of the scene

produces large perspective distortions that could not be correctly recovered by affine SFM algorithms.

Next, we add Gaussian noise with different variances σ and randomly occlude d% of the data points. The

average distance between the recovered 2D coordinates (obtained with the proposed algorithm) and the

(2D) ground-truth of each of the images is given in Fig. 10. Similar to our results in affine SFM, here

too the average recovered errors remain almost unchanged for different quantities of noise.

The RMSE between the recovered 3D structure obtained with our algorithm and the ground-truth is

in Table V. Since this is a 3D matching problem, the table illustrates the percentage of error added to

our reconstruction. In this table, we also provide the RMSE obtained using the MME criterion in the

projective SFM approach defined above. Since Jacbos’ random selection cannot guarantee a consistent
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Fig. 9. The recovered tracks of the Dinosaur sequence: (a) on 4, 983 points, (b) on 2, 683 points and (c) on 336 points. (d) The 3D

reconstruction of the dinosaur.

(σ, d%) (0.5, 20%) (1.0, 20%) (2.0, 20%) (2.0, 40%)

MME 0.32% 0.85% 1.70% 3.85%

DP 0.12% 0.31% 0.53% 0.61%

TABLE V

COMPARISON BETWEEN THE MME AND DP CRITERIA IN PROJECTIVE SFM

recovery result at each iteration, it is not an appropriate candidate to be embedded in an iterative framework

and was excluded from this comparison. In the table, the results are averaged over 30 trials.

We now apply the DP-based projective SFM algorithm to two real image sequences. The first example

has 7 real images of a small wooden object shown in Fig. 11(a). Here, we manually select 32 feature points

and track them for the duration of the video sequence with 25% of the points missing (see Supplementary

Documentation). The other sequence we will use is the Model House sequence, which includes 10 images

and 672 3D feature points. The percentage of missing points in this second sequence is 57.65%. One

of the frames is shown in Fig. 12(a). The projective effect on this second sequence is larger than in the

first one. This is because the distance between the camera and the turntable used to take the images is

comparable to the size of the object.

The 3D reconstructions obtained with the proposed algorithm are in Figs. 11(b) and 12(b). In the first
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Fig. 10. The average 2D reconstruction error after 25 iterations with the noise term as specified in the plot.
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Fig. 11. (a) One image in the wooden toy sequence. (b) The 3D structure of the object recovered by the DP-based projective SFM algorithm.

sequence (wooden object), the 2D locations of all feature points are recovered at pixel accuracy. The

precision of the projective recovery is clear in this case from the figure too. In the second sequence, the

RMSE and the MAE between the recovered and the given data is 0.6479/11.9946.

VI. CONCLUSIONS

Many problems in computer vision, pattern recognition and related areas reduce to finding that low-rank

matrix that best fits an original data matrix with noisy and missing entries. A classical example is the

SFM problem, where the 3D shape and motion of the object need to be recovered from a sequence of 2D

images. In SFM, many of the points are generally imprecisely detected (noisy), while others are occluded

in some of the frames.

In this paper, we have shown that the missing and noise problems can be simultaneously addressed by

first dividing the data matrix into an appropriate set of submatrices with no missing elements and, then,

using a criterion that determines which of these submatrices are less affected by the noise term. Our key

result was to provide a formal proof for the relation between the effect of noise in a submatrix and the

similarity of its column vectors. That is, when the vectors given by the columns of one of our submatrices

are separated by a large angle (say, close to 90◦), additive noise has a limited influence. However, when

the same noise is added to a submatrix with similar column vectors, the resulting subspace will be more

different from its original noise-free version than the sway observed in submatrices with very distinct

column vectors. The reason for this is grounded in the fact that dissimilar measurements do not get
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(a) (b)

Fig. 12. (a) One of the images in the model house sequence. (b) The recovered 3D structure of the scene.

affected as much by a relatively small error term as do very similar ones. Note that in the latter case the

dimensions of the subspace of the noisy matrix that correspond to the error term have a deviation from

the original basis vectors similar to that seen in the original bases. In this case, it is unclear which small

variations (between vectors) correspond to the noise term and which define the underlying subspace.

We have then shown how we can employ this formulation and a noise model to derive an upper-bound

for the effects of noise in each of the submatrices. The derived criterion, referred to as DP (for Deviation

Parameter), has been shown to be a very consistent and reliable criterion for estimating low-rank matrices

from synthetic and real data. In particular, we have shown how the criterion can be successfully applied

to the problems of affine and projective SFM. In these cases, our criterion was able to work under large

occlusions (about 40%) and noise terms (with variances around 5).

The criterion presented in this article is however very general and can be employed in any other problem

where a low-rank fitting step is required. This is the case, for example, in the problem of face and object

recognition, in optical flow, and in the modeling and classification of microarray data in bioinformatics.

Further research will determine how the proposed criterion compares to previously defined approaches in

these other domains. Extensions of this approach should also include other estimates of the upper-bound

and extensions to other types of noise.
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