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Abstract

We address the problem of robust face recognition, in

which both training and test image data might be corrupted

due to occlusion and disguise. From standard face recog-

nition algorithms such as Eigenfaces to recently proposed

sparse representation-based classification (SRC) methods,

most prior works did not consider possible contamination of

data during training, and thus the associated performance

might be degraded. Based on the recent success of low-rank

matrix recovery, we propose a novel low-rank matrix ap-

proximation algorithm with structural incoherence for ro-

bust face recognition. Our method not only decomposes raw

training data into a set of representative basis with corre-

sponding sparse errors for better modeling the face images,

we further advocate the structural incoherence between the

basis learned from different classes. These basis are en-

couraged to be as independent as possible due to the regu-

larization on structural incoherence. We show that this pro-

vides additional discriminating ability to the original low-

rank models for improved performance. Experimental re-

sults on public face databases verify the effectiveness and

robustness of our method, which is also shown to outper-

form state-of-the-art SRC based approaches.

1. Introduction

Face recognition is among the most popular biometric

approaches due to its low intrusiveness and high unique-

ness. Unlike other physiological and behavioral biometric

techniques like fingerprint or gait recognition which typi-

cally require cooperative subjects, face images can be ac-

quired both actively or passively by surveillance cameras.

With the increasing need for security-related applications,

face recognition has been an active topic for researchers in

the areas of computer vision and image processing.

To design a face recognition system, given training face

image data, one typically focuses on the extraction of facial

features and the learning of classification models. Unseen
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Figure 1. Comparison between the standard SRC and our method.

Note that the standard SRC classifies the test input as the class with

most similar training images even if they are corrupted (e.g. due

to sunglasses), while our approach alleviates this problem and is

robust to such occlusions presented in both training and test data.

test data from the same subjects will be used to evaluate

the associated identification or verification performance. To

further assess the robustness of the designed face recogni-

tion algorithm, occlusion and disguise might be presented

in the test image data. We note that while the test data

might be corrupted, the training data is often assumed to be

taken under a well controlled setting (i.e., under reasonable

illumination, pose, etc. variations without occlusion or dis-

guise). As a result, when applying existing face recognition

methods for practical scenarios, we will need to discard cor-

rupted training images, and we might thus encounter small

sample size and over-fitting problems. Moreover, the disre-

gard of corrupted training face images might give up some

valuable information for recognition.

For face recognition, it is common to apply existing tech-

niques such as Eigenfaces [16], Fisherfaces [1], or Lapla-

cianfaces [9] to reduce the dimension of the face images.

As a result, the derived subspace is expected to achieve

improved recognition performance. However, these tech-

niques are not robust to outliers or sparse/extreme noise

such as occlusion and disguise [5]. Some recent works on

robust PCA have been proposed to alleviate the aforemen-

tioned problems [6, 11, 3]. Among them, low-rank matrix

recovery can be solved in polynomial-time and has been



shown to provide promising results [3]. While this type

of approach is able to identify a set of representative ba-

sis given corrupted training data, there is no guarantee that

such a basis set would serve for classification purposes.

Recently, sparse representation-based classification

(SRC) [19] has shown very promising results on face recog-

nition. It considers each test image as a sparse linear

combination of the training samples by solving an ℓ1-

minimization problem. If the test image is corrupted, SRC

exhibits excellent robustness to face occlusion and corrup-

tion. Since SRC requires the training images to be well

aligned for reconstruction purposes, Wagner et al. [17] fur-

ther extends it to deal with face misalignment and illumina-

tion variations. Yang et al. [20, 21] also propose modified

SRC-based framework to handle outliers such as occlusions

in face images. However, the above methods might not gen-

eralize well if both training and test images are corrupted.

In this paper, we address the problem of robust face

recognition, in which both training and test image data are

corrupted, and we do not have the prior knowledge on the

type of corruptions. We will show that the direct use of di-

mension reduction techniques such as Eigenfaces for train-

ing and testing would degenerate the performance with the

presence of corrupted data (see the left half of Figure 1 for

example). To overcome this problem, we propose a novel

low-rank matrix approximation with structural incoherence.

While our method decomposes the raw face image data into

a set of representative basis and a sparse error matrix, we

regularize the structural incoherence of the derived repre-

sentative basis. The introduction of such incoherence be-

tween the basis extracted from different classes would pro-

vide additional discriminating ability to our framework. It is

worth noting that, we are among the first applying low-rank

techniques for face recognition problems, and our proposed

method is able to further improve the recognition perfor-

mance, as illustrated in the right half of Figure 1.

The remaining of this paper is organized as follows. Sec-

tion 2 reviews related works on low-rank matrix recovery

and SRC for face recognition. In Section 3, we present our

face recognition algorithm based on low-rank matrix de-

composition and structural incoherence. Experimental re-

sults on real-world face image data are presented in Section

4. Finally, Section 5 concludes this paper.

2. Related Work

2.1. Robust PCA and Low­Rank Matrix Recovery

Principal component analysis (PCA) has been widely

used for data analysis and dimension reduction. In spite

of its effectiveness, PCA is known to be sensitive to sparse

errors with large magnitudes [5]. Aim at designing a ro-

bust PCA model while suppressing the effect of such sparse

noise, a number of approaches have been proposed in the

literatures, including the introduction of influence functions

[6], alternating minimization techniques [11], and low-rank

matrix recovery [3] (noted as LR in the remaining for this

paper for conciseness). Among these methods, LR has been

observed to be solved in polynomial time with performance

guarantees [3]. Since our proposed algorithm is based on

low-rank decomposition techniques, it is necessary for us to

briefly review its formulation.

Low-rank matrix recovery seeks to decompose a data

matrix D into A + E, where A is a low-rank matrix and

E is the associated sparse error. More precisely, given the

input data matrix D, LR minimizes the rank of matrix A

while reducing ‖E‖
0

to derive the low-rank approximation

of D. Since the aforementioned optimization problem is

NP-hard, Candès et al. [3] solve the following formulation

to make the original LR tractable:

min
A,E

‖A‖∗ + λ ‖E‖
1

s.t. D = A+E. (1)

In (1), the nuclear norm ‖A‖∗ (i.e., the sum of the singular

values) approximates the rank of A, and the ℓ0-norm ‖E‖
0

is replaced by the ℓ1-norm ‖E‖
1
, which sums up the abso-

lute values of entries in E. It is shown in [3] that, solving

this convex relaxation version is equivalent to solving the

original low-rank matrix approximation problem, as long as

the rank of A to be recovered is not too large and the num-

ber of errors in E is small (sparse). To solve the optimiza-

tion problem of (1), the technique of inexact augmented La-

grange multipliers (ALM) [3, 13] has been applied due to its

computational efficiency.

2.2. Sparse Representation­based Classification

Recently, Wright et al. [19] proposed a sparse

representation-based classification (SRC) algorithm for face

recognition. SRC considers each test image as a sparse lin-

ear combination of training image data by solving an ℓ1-

minimization problem, and very promising results were re-

ported in [19]. Several works have been proposed to fur-

ther extend SRC for improved performance. For example,

Yuan and Yan [22] utilized an ℓ1,2 mixed-norm regulariza-

tion for computing the joint sparse representation of differ-

ent features for visual signals. Jenatton et al. [10] utilized a

tree-structured sparse regularization for hierarchical sparse

coding. Chao et al. [4] integrated the ℓ1,2 norm with a data

locality constraint for improved face recognition.

Since our classification rule is based on SRC, we now

briefly review this algorithm for the sake of clarity. Sup-

pose that there exist NT training images from N ob-

ject classes, and each class j has Nj images. Let D =
[D1,D2, . . . ,DN ] ∈ R

d×NT be the training set, where

Dj ∈ R
d×Nj contains training images of the jth class as

its columns, and d is the dimension of each image. Given

a test image y ∈ R
d×1, the SRC algorithm calculates the

sparse representation α of y, which is computed via the
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ℓ1 minimization process over the entire training image set.

More precisely, SRC solves

min
α

‖y −Dα‖22 + λ‖α‖1. (2)

Once (2) is solved, let αj ∈ R
Nj×1 be the entries of α

associated with class j, i.e., α = [α1;α2; . . . ;αN ], the test

input y will be recognized as class j if it satisfies

j∗ = argmin
j

‖y −Djαj‖
2
2. (3)

In other words, the test image y will be assigned to the

class with the lowest reconstruction error. This is because

that, the test image y should lie in the space spanned by the

columns Dj of class j. As a result, most non-zero elements

of α will mainly be presented in αj , which results in the

minimum reconstruction error. The framework of SRC is

depicted by the red arrows in Figure 3.

Although impressive face recognition results were re-

ported by SRC [19], and it has been shown to be able to

recognize occluded test images, SRC still requires clean

(i.e., un-occluded) face images for training and thus might

not be preferable for real-world scenarios. As later verified

by our experiments, if corrupted training data is presented,

SRC tends to recognize test images with the same type of

corruption and thus results in poorer performance. In the

following section, we will introduce our proposed method

for robust face recognition, in which both training and test

image data can be corrupted.

3. Low-Rank Matrix Recovery with Structural

Incoherence

3.1. Face recognition by low­rank matrix recovery

For real-world face recognition problems, we cannot ex-

pect that the training image data can be always collected

under a well-controlled setting. Besides illumination, pose,

and expression variations, it is possible that one can be tak-

ing a scarf, gauze mask, or sunglasses when his/her face

image is taken by the camera. When using such images for

training, the learned face recognition algorithm might over-

fit the extreme noise of occlusion instead of modeling the

face of the subject, and thus the performance will be de-

graded.

As discussed in Section 2.1, low-rank matrix recovery

(LR) can be applied to alleviate the aforementioned prob-

lem by decomposing the collected data matrix into two dif-

ferent parts, one is a representative basis matrix of low rank

and the other is the associated sparse error. It is worth not-

ing that the data needs to be registered prior to the pro-

cedure of low-rank matrix decomposition, so that the ex-

tracted low-rank matrix would preserve the structure of the

data (i.e., texture) and thus the corresponding error ma-

trix will be sparse. When applying LR for face recog-

(a) Original images D

(b) Low-rank and approximated images A of (a)

(c) Sparse error images E of (a)

Figure 2. Example results of low-rank matrix recovery.

nition with N subjects of interest, one can collect train-

ing data D = [D1,D2, . . . ,DN ], where Di is the train-

ing data matrix (with the presence of occlusion or dis-

guise) for subject i, as shown in Figure 2(a). By per-

forming low-rank matrix recovery, the data matrix data

D = [D1,D2, . . . ,DN ] will be decomposed into a low-

rank matrix A = [A1,A2, . . . ,AN ] and the sparse error

matrix E = [E1,E2, . . . ,EN ]. As shown in Figure 2(b),

the error images in A can be considered as preprocessed

data with sparse noise removed (see the corresponding im-

ages in Figure 2(c)). As a result, the low-rank matrix A has

a better representative ability than the original data D does

in describing the face images of the subject of interest.

Since the face images are typically with high dimension-

ality, standard dimension reduction techniques such as PCA

can be performed on the derived low-rank matrix A. As a

result, instead of using the Eigenfaces calculated by from

the original data matrix D, one can apply PCA on the low-

rank matrix A (as shown in Step 2 of Figure 3), and the

resulting subspace can be applied as the dictionary for train-

ing and testing purposes (see Step 3 in Figure 3). Finally,

one can apply SRC and the derived dictionary to classify

test inputs, which performs classification based on class-

wise minimum reconstruction error (as depicted by Step 4

in Figure 3). We will verify later that, compared with the

direct use of raw data D for subspace and dictionary learn-

ing (as standard SRC does), LR better handles the problem

in which the input training data is under severe illumination

variations or is corrupted by occlusion or disguise. Algo-

rithm 1 and Figure 3 sumamrize the procedure of integrat-

ing low-rank matrix recovery and SRC for face recognition.

3.2. Low­rank and structurally incoherent matrix
decomposition

Although LR processes the original data D and produces

a low-rank matrix A for better representation ability (with

sparse noise removed), the face images from different sub-

jects typically share common (correlated) features (e.g., the

3



Algorithm 1 LR for Face Recognition

Input: Training data D = [D1,D2, . . . ,DN ] from N sub-

jects and the test input y

Step 1 : Perform LR on D

( to be replaced by Algorithm 2 in Section 3.2)

for i = 1 : N do

minAi,Ei
‖Ai‖∗ + λ ‖Ei‖1 s.t. Di = Ai +Ei

end for

Step 2: Calculate principal components W of A

W← PCA(A)
Step 3: Project D and y onto W

Dp = W(D) , and yp = W(y)
Step 4: Perform SRC to classify yp

minα ‖yp −Dpα‖
2

2
+ λ ‖α‖

1
.

for i = 1 : N do

e(i) = ‖y −Dpiαi‖
2

2

end for

Output: y ← argmini e(i)

locations of eyes, nose, etc.), and thus the derived matrix

A might not contain sufficient discriminating information.

Inspired by [15], we propose to promote the incoherence

between different low-rank matrices. The introduction of

such incoherence would prefer the resulting low-rank ma-

trices to be as independent as possible. As a result, com-

monly shared features across difference classes will be sup-

pressed while the independent/discriminating ones will be

preserved. As illustrated in Step 1 of Figure 3, our meth-

ods aims at providing additional discriminating ability to

the original LR models by promoting their structural inco-

herence, and the recognition performance is expected to be

improved.

Based on the LR formulation in (1), we add a regular-

ization term to this objective function to enforce the inco-

herence between the low-rank matrices. We now solve the

following optimization problem:

min
A,E

N
∑

i=1

{‖Ai‖∗ + λ ‖Ei‖1}+ η
∑

j 6=i

∥

∥

∥
A

T
j Ai

∥

∥

∥

2

F

s.t. Di = Ai +Ei.

(4)

In (4), the first term performs the standard low-rank decom-

position of the data matrix D. The second term sums up the

Frobenius norms between each pair of the low-rank matri-

ces Ai and Aj , which is penalized by the parameter η bal-

ancing the low-rank matrix approximation and matrix inco-

herence. We refer to (4) as low-rank matrix recovery with

structural incoherence, aiming at providing improved dis-

crimination ability to the original LR model. Since the er-

ror matrix E in (4) is sparse (the same as (1)) and represents

extreme noise such as occlusion and disguise presented in

face images, we do not enforce extra regularization on E.
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Figure 3. Illustration of our proposed method. Note that we pro-

mote the structural incoherence between low-rank matrices for

better modeling and recognizing face images.

Instead of solving (4) directly, we solve the following

class-wise optimization problem across different classes:

min
Ai,Ei

‖Ai‖∗ + λ ‖Ei‖1 + η
∑

j 6=i

∥

∥

∥
A

T
j Ai

∥

∥

∥

2

F

s.t. Di = Ai +Ei.

(5)

In other words, we iteratively solve the above formulation

for each class until the derived low-rank matrices converge.

We note that, however, the above optimization problem is

involved with Frobenius norms of different matrix pairs. To

make the above problem more tractable, we advance the

property that
∥

∥

∥
A

T
j Ai

∥

∥

∥

2

F
≤ ‖Aj‖

2

F
‖Ai‖

2

F
and relax (5) into

the following formulation:

min
Ai,Ei

‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖
2

F

s.t. Di = Ai +Ei.
(6)

where η′ = η
∑

j 6=i ‖Aj‖
2

F
is a constant when deriving Ai

and Ei. We note that, from the above derivation, solving (6)

will address low-rank matrix approximation with implica-

tion of structural incoherence between the derived low-rank

matrices. In our proposed method, we choose to iteratively

solve (6) for each class, as we discuss later in the following

subsection and Algorithm 2.

3.3. Optimization via ALM

Augmented Lagrange multipliers (ALM) have been ap-

plied to solve the standard LR problem [3, 13]. In this sub-
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section, we will detail how we extend ALM to solve our

proposed LR formulation with regularization on structural

incoherence.

For an optimization problem in which f(X) is to be min-

imized with the constraint h(X) = 0, its ALM function can

be formulated as follows:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+
µ

2
‖h(X)‖2

F
, (7)

where each element of Y indicates a Lagrange multiplier.

Let X = (Ai,Ei) in (7), we redefine f(X) and h(X) as

f(X) = ‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖
2

F and

h(X) = Di −Ai −Ei.

As a result, our proposed LR problem in (6) can be refor-

mulated as follows:

L(Ai,Ei,Yi, µ, η
′) = ‖Ai‖∗ + λ ‖Ei‖1 + η′ ‖Ai‖

2

F

+〈Yi,Di −Ai −Ei〉 (8)

+
µ

2
‖Di −Ai −Ei‖

2

F

To solve (8), we search for the optimal Ai, Ei, and Y

iteratively. The pseudo code of our proposed algorithm

is shown in Algorithm 2. We now discuss how we up-

date/solve the above variables in each iteration.

Algorithm 2 Solving LR with Structural Incoherence

Input: Data matrix D and parameters η and ρ (ρ > 1)

Use Step1 in Alg. 1 to initialize A0, E0, Y0, µ0 > 0
for i = 1 to N do

η′ ← η
∑

j 6=i ‖Aj‖
2

F

while not converged do

Ak+1

i = argminAi
L(Ai,E

k
i ,Y

k
i , µ

k, η′)
Ek+1

i = argminEi
L(Ak+1

i ,Ei,Y
k
i , µ

k, η′)
Yk+1

i = Yk
i + µk(Di −Ak+1

i −Ek+1

i )
µk+1 = ρµk

end while

end for

Output: A and E

3.3.1 Updating Ai

To update Ak+1

i for class i at the (k + 1)th iteration in Al-

gorithm 2, we have fixed Ei and Yi and solve the following

problem accordingly:

A
k+1

i = argmin
Ai

L(Ai,E
k
i ,Y

k
i , µ

k, η′)

= argmin
Ai

‖Ai‖∗ + η′ ‖Ai‖
2

F
+ 〈Yk

i ,Di −Ai −E
k
i 〉

+
µk

2

∥

∥

∥
Di −Ai −E

k
i

∥

∥

∥

2

F

= argmin
Ai

‖Ai‖∗ + (η′ +
µk

2
)〈Ai,Ai〉

− µk〈Di −E
k
i + (1/µ)kYk

i ,Ai〉

= argmin
Ai

ǫ ‖Ai‖∗ +
1

2
‖Xa −Ai‖

2

F
,

where ǫ = (2η′ + µk)−1 and Xa = µkǫ(Di − Ei +
(1/µk)Yi). As suggested by [2], the solution to the above

problem can be solved as

A
k+1

i = USǫV
T = UTǫ[S]V

T

where (U,S,VT ) = SVD(Xa).
(9)

Note that S is the singular value matrix of Xa. The operator

Tǫ[S] in (9) is defined by element-wise ǫ thresholding of S,

i.e., diag(Tǫ[S]) = [tǫ[s1], tǫ[s2], . . . , tǫ[sr]] for rank(S) =

r, and each tǫ[s] is determined as

tǫ[s] =







s− ǫ, if s > ǫ,
s+ ǫ, if s < −ǫ,
0, otherwise.

(10)

3.3.2 Updating Ei

To update the error matrix Ei for class i, we derive (8) with

fixed Ai and Yi and obtain the following form:

E
k+1

i = argmin
Ei

L(Ak+1

i ,Ei,Y
k
i , µ

k, η′)

= argmin
Ei

‖Ei‖1 + 〈Yk
i ,A

k+1

i +Ei −Di〉

+
µk

2

∥

∥

∥
A

k+1

i +Ei −Di

∥

∥

∥

2

F

= argmin
Ei

ǫ′ ‖Ei‖1 +
1

2
‖Xe −Ei‖

2

F
.

where ǫ′ = (1/µk) and Xe = Di − Ak+1

i + (1/µk)Yk
i .

The above optimization problem can be solved by ℓ1-

minimization techniques such as [8].

Once both Ai and Ei are obtained, the matrix Yi can

be simply updated by the last equation in Algorithm 2. The

convergence of the three matrices indicates the termination

of the optimization process for our proposed LR algorithm.

4. Experiments

4.1. Extended Yale B Database

The extended Yale B database [7] consists of 2,414

frontal-face images of 38 subjects (around 59-64 images for
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(a) Extended Yale B

(b) AR face databases

Figure 4. Example training and test images for our experiments.

each person). The cropped and normalized face images are

of size 192×168 = 32,256 pixels, while each image is taken

under various laboratory-controlled lighting conditions (see

Figure 4(a) for example) [12]. Besides the standard LR

(without structural incoherence) and our proposed method,

we also consider nearest neighbor (NN), SRC [19], and

LLC [18] for comparisons. Note that LLC is an extended

version of SRC exploiting data locality for improved sparse

coding, and the classification rule is also based on (3). To

evaluate our recognition performance using data with dif-

ferent dimensions, we project the data onto the eigenspace

derived PCA using our LR models (as shown in Figure 3).

For the standard LR approach, the eigenspace spanned by

LR matrices without structural incoherence is considered,

while those of other SRC-based methods are derived by

the data matrix D directly. We vary the dimension of the

eigenspace and compare the results in this section.

We first visualize the effect of our proposed LR method

with structural incoherence on the projected data. Figure

5(a) shows the distributions of training and test data from

two classes, which are projected onto the first two eigen-

vectors determined by the data matrix D (as NN and SRC-

based approaches do). On the other hand, we project the

same data onto the subspace derived by our low-rank ma-

trices, as shown in Figure 5(b). It is clear that the sepa-

ration between the two classes (in red and blue colors) is

significantly improved. More importantly, we see that the

training data points (denoted as (∗)) within the same class

become closer to each other, while the separation between

those from different classes becomes larger. This observa-

tion is consistent with our expectation that promoting struc-

tural incoherence on low-rank matrices will result in im-

proved classification.

We first randomly select eight images for training and

the remaining for test (per person). We vary the dimen-

sion of the eigenspace as 25, 50, 75, 100, 200, and 300

to compare the recognition performance between different

methods. Since the total number of training image is 8 ×
38 = 304, we do not consider higher dimensional space for

evaluation. All experiments run ten times and the average

results are shown in Figure 6(a). It is clear that, while the
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Figure 5. Data distributions for 2 classes (in blue and red col-

ors)ones). The 2D subspace is spanned by the first two eigen-

vectors derived by (a) the original data matrix D and (b) the LR

matrices A with structural incoherence. Note that training and test

instances are denoted as (∗) and (•), respectively.

two LR methods consistently produced higher recognition

rates than other NN and SRC-based approaches did, our

proposed LR method was the best among all. For example,

at dimension = 50, our method achieved a high recognition

rate at 82.1%, and those for LR, SRC, LLC, and NN were

73.6%, 68.2%, 59.5%, and 32.5%, respectively (see Fig-

ure 6(a)). We repeat the above experiments using thirty-two

training images per person. We compare the performance

of different approaches in Figure 6(b) and observe the same

advantages using our proposed method. From these empir-

ical results, we confirm the use of our LR method alleviates

the problem of severe illumination variations even when

such noise is presented in both training and test data. And,

due to the enforcement of structural incoherence between

our LR matrices, our method exhibits additional classifica-

tion capability and thus outperforms the standard LR algo-

rithm. In the following subsection, in which sparse noise

such as occlusion is presented in face images, we expect the

improvement using our method will be more significant.
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Figure 6. Performance comparisons on the Extended Yale B

database with different numbers N of training images per person.

4.2. AR Database

The AR database [14] contains over 4,000 frontal images

for 126 individuals. There are 26 face images available for

each person, and the images are taken under different vari-

ations, including illumination, expression, and facial occlu-

sion/disguise in two separate sessions. More specifically,
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Figure 7. Performance comparisons on AR database for different scenarios.

there are thirteen images for each session, in which three

images with sunglasses, another three with scarfs, and the

remaining seven are simply with illumination and expres-

sions variations (and thus are considered as clean/neutral

images). All images are with 165×120 = 19800 pixels and

converted to gray scale (see Figure 4(b) for example). We

note that, most prior works using this database only consid-

ered the use of neutral images for training. In our experi-

ments, we choose a subset of the AR database consisting of

50 men and 50 women (as [19] did), and both neutral and

corrupted images taken at session 1 (of a portion of it) are

used for training. We consider the following scenarios:

Sunglasses: We consider corrupted training images due

to the occlusion of sunglasses. We use seven neutral im-

ages plus one image with sunglasses (randomly chosen) at

session 1 for training, and the remaining neutral images (all

from session 2) plus the rest of the images with sunglasses

(two taken at session 1 and three at session 2) for testing.

In other words, we have a total of eight training images and

twelve test images per person. Note that the presence of

sunglasses occludes about 20% of the face image.

Scarf: We consider the training images are corrupted by

disguise due to scarf, which occludes about 40% of the face

image. We apply a similar training/test set choice, and have

a total of eight training images (seven neutral plus one ran-

domly selected image with scarf at session 1) and twelve

test images (seven neutral images plus five images with

scarfs) per person for this scenario.

Sunglasses+Scarf: Finally, we consider the case where

images with sunglasses and scarfs are presented during

training. We choose all seven neutral images at session

1 and two corrupted images (one with sunglasses and the

other with scarf) for training. A total of nineteen test im-

ages (seven neutral images at session 2 plus the remaining

ten occluded images) are available for this case.

Since there are at most three occluded images for each

type of corruption available in session 1, we repeat our ex-

periment for each scenario three times (i.e., randomly se-

lect one corrupted image with the remaining neural ones for

training), and we report the averaged performance. Sim-

ilar to the experiments on the Extended Yale B database,

we vary the dimension of the face data from 25 up to

500, and we compare our method with the approaches of

LR, NN, Fisherface, SRC, and LLC. Figures 7(a) and 7(b)

show recognition results of scenarios Sunglasses and Scarf.

From these two figures, we see that our method outperforms

all other approaches across different dimensions. It is worth

noting that, although Fisherfaces [1] also promote the sep-

aration between classes during its learning process, it did

not achieve comparable performance as we did. For exam-

ple, the recognition rates of Fisherfaces for Sunglasses and

Scarf were only 72.5% and 57.7% at dimension d = 99, re-

spectively. With the increase of occlusion (from sunglasses

to scarf), it is observed that the recognition rate of Fisher-

faces is severely degraded. This is because its direct use

of corrupted training image data, and thus the associated

performance is remarkably degraded due to the presence of

occlusion and disguise. We achieved over 80% recognition

rates at a comparable dimension at 100 for both cases. As

for the last scenario in which the training data are corrupted

by sunglasses and scarfs, we again confirm the robustness of

our proposed method by performance comparisons shown

in Figure 7(c).

Table 1 summarizes the performance comparisons with

different approaches under three different scenarios. At

lower dimensions, our approach significantly outperforms

other baseline and state-of-the-art methods, especially when

the percentage of occlusion increases. For example, when

the data dimension is equal to 50, we achieve recognition

rates at 77.41% and 80.27% for the scenarios of Scarf (40%

occlusion) and Sunglasses (20% occlusion), respectively.

Using LR, which is among the state-of-the-art and the most

relevant method to ours, it obtains 70.81% and 77.41% for

the above two cases. In other words, we improve the method

of LR by about 3 to 7%, depending on the percentage of

occlusion. We observe the same conclusion when larger di-

mensionality is of interest, and we still obtain comparable

improvements over different scenarios. From both Figure

7 and Table 1, we successfully verify the effectiveness and

robustness of our proposed method.
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Table 1. Comparisons of recognition rates between our and other face recognition methods. (* : the dimension of Fisherfases is fixed at

N − 1 = 100− 1 = 99, where N is the number of subjects in AR database).

Methods

Dimension = 500 Dimension = 100 Dimension = 50

Sunglasses Scarf
Sunglasses

Sunglasses Scarf
Sunglasses

Sunglasses Scarf
Sunglasses

+Scarf +Scarf +Scarf

Fisherfaces [1]* −− −− −− 72.50 57.67 61.80 −− −− −−
NN 66.47 56.53 57.55 65.06 54.56 55.41 60.89 51.25 51.15

LLC+SRC [18] 84.47 76.61 79.03 79.14 70.08 72.04 74.06 63.25 65.10
SRC [19] 84.22 76.25 78.00 79.92 71.70 71.59 73.68 64.05 64.51

LR 84.58 77.00 78.92 82.61 76.39 77.23 77.41 70.81 71.10

Ours 85.42 84.36 81.62 85.27 81.67 81.37 80.27 77.41 74.96

5. Conclusions

We presented a low-rank matrix approximation algo-

rithm with structural incoherence for robust face recogni-

tion. The introduction of structural incoherence between

low-rank matrices promotes the discrimination between dif-

ferent classes, and thus the associated models exhibit excel-

lent discriminating ability. We showed that the proposed

optimization problem can be easily solved by advancing

augmented Lagrange multipliers. Our experiments con-

firmed that our proposed LR approach is robust to severe

illumination variations or corruptions such as occlusion and

disguise, while our method has been shown to outperform

state-of-the-art face recognition algorithms.
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