
Low-Rank Semidefinite

Programming:

Theory and Applications

Alex Lemon

Stanford University

adlemon@stanford.edu

Anthony Man-Cho

The Chinese University of Hong Kong

manchoso@se.cuhk.edu.hk

Yinyu Ye

Stanford University

yyye@stanford.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000009



Foundations and Trends R© in Optimization

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Lemon, A. M.-C. So, Y. Ye. Low-Rank Semidefinite Programming:

Theory and Applications. Foundations and Trends R© in Optimization, vol. 2,
no. 1-2, pp. 1–156, 2015.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-137-5

c© 2016 A. Lemon, A. M.-C. So, Y. Ye

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2400000009



Foundations and Trends R© in Optimization

Volume 2, Issue 1-2, 2015

Editorial Board

Editors-in-Chief

Stephen Boyd

Stanford University
United States

Yinyu Ye

Stanford University
United States

Editors

Dimitris Bertsimas
Massachusetts Institute of Technology

Dimitri P. Bertsekas
Massachusetts Institute of Technology

John R. Birge
University of Chicago

Robert E. Bixby
Rice University

Emmanuel Candès
Stanford University

David Donoho
Stanford University

Laurent El Ghaoui
University of California, Berkeley

Donald Goldfarb
Columbia University

Michael I. Jordan
University of California, Berkeley

Zhi-Quan (Tom) Luo
University of Minnesota, Twin Cites

George L. Nemhauser
Georgia Institute of Technology

Arkadi Nemirovski

Georgia Institute of Technology

Yurii Nesterov
UC Louvain

Jorge Nocedal
Northwestern University

Pablo A. Parrilo
Massachusetts Institute of Technology

Boris T. Polyak
Institute for Control Science, Moscow

Tamás Terlaky
Lehigh University

Michael J. Todd
Cornell University

Kim-Chuan Toh
National University of Singapore

John N. Tsitsiklis
Massachusetts Institute of Technology

Lieven Vandenberghe
University of California, Los Angeles

Robert J. Vanderbei
Princeton University

Stephen J. Wright
University of Wisconsin

Full text available at: http://dx.doi.org/10.1561/2400000009



Editorial Scope

Topics

Foundations and Trends R© in Optimization publishes survey and tuto-

rial articles on methods for and applications of mathematical optimiza-

tion, including the following topics:

• Algorithm design, analysis, and implementation (especially on modern

computing platforms)

• Models and modeling systems

• New optimization formulations for practical problems

• Applications of optimization in:

– Machine learning

– Statistics

– Data analysis

– Signal and image processing

– Computational economics and finance

– Engineering design

– Scheduling and resource allocation

– and other areas

Information for Librarians

Foundations and Trends R© in Optimization, 2015, Volume 2, 4 issues. ISSN

paper version 2167-3888. ISSN online version 2167-3918. Also available as a

combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2400000009



Foundations and Trends R© in Optimization
Vol. 2, No. 1-2 (2015) 1–156
c© 2016 A. Lemon, A. M.-C. So, Y. Ye

DOI: 10.1561/2400000009

Low-Rank Semidefinite Programming:

Theory and Applications

Alex Lemon 
Stanford University

adlemon@stanford.edu

Anthony Man-Cho So  
The Chinese University of Hong Kong

manchoso@se.cuhk.edu.hk

Yinyu Ye

Stanford University

yyye@stanford.edu

Full text available at: http://dx.doi.org/10.1561/2400000009



Contents

1 Introduction 2

1.1 Low-rank semidefinite programming . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Theory 5

2 Exact Solutions and Theorems about Rank 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Rank reduction for semidefinite programs . . . . . . . . . 6

2.3 Rank and uniqueness . . . . . . . . . . . . . . . . . . . . 18

2.4 Rank and sparsity . . . . . . . . . . . . . . . . . . . . . . 23

3 Heuristics and Approximate Solutions 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Nonlinear-programming algorithms . . . . . . . . . . . . . 31

3.3 The nuclear-norm heuristic . . . . . . . . . . . . . . . . . 32

3.4 Rounding methods . . . . . . . . . . . . . . . . . . . . . . 39

ii

Full text available at: http://dx.doi.org/10.1561/2400000009



II Applications 53

4 Trust-Region Problems 54

4.1 SDP relaxation of a trust-region problem . . . . . . . . . . 55

4.2 The simple trust-region problem . . . . . . . . . . . . . . 58

4.3 Linear equality constraints . . . . . . . . . . . . . . . . . . 58

4.4 Linear inequality constraints . . . . . . . . . . . . . . . . . 60

4.5 Ellipsoidal quadratic inequality constraints . . . . . . . . . 81

5 QCQPs with Complex Variables 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Rank of SDP solutions . . . . . . . . . . . . . . . . . . . 85

5.3 Connection to the S-procedure . . . . . . . . . . . . . . . 91

5.4 Applications to signal processing . . . . . . . . . . . . . . 98

Acknowledgments 108

Appendices 109

A Background 110

A.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Linear Programs and Cardinality 131

B.1 Sparsification for linear programs . . . . . . . . . . . . . . 132

B.2 Cardinality and uniqueness for linear programs . . . . . . . 137

C Technical Probability Lemmas 140

C.1 Convex combinations of chi-squared random variables . . . 140

C.2 The bivariate normal distribution . . . . . . . . . . . . . . 144

References 149

Full text available at: http://dx.doi.org/10.1561/2400000009



ii

Abstract

Finding low-rank solutions of semidefinite programs is important in
many applications. For example, semidefinite programs that arise as
relaxations of polynomial optimization problems are exact relaxations
when the semidefinite program has a rank-1 solution. Unfortunately,
computing a minimum-rank solution of a semidefinite program is an
NP-hard problem. In this paper we review the theory of low-rank
semidefinite programming, presenting theorems that guarantee the ex-
istence of a low-rank solution, heuristics for computing low-rank solu-
tions, and algorithms for finding low-rank approximate solutions. Then
we present applications of the theory to trust-region problems and sig-
nal processing.

A. Lemon, A. M.-C. So, Y. Ye. Low-Rank Semidefinite Programming:

Theory and Applications. Foundations and Trends R© in Optimization, vol. 2,
no. 1-2, pp. 1–156, 2015.
DOI: 10.1561/2400000009.
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1

Introduction

1.1 Low-rank semidefinite programming

A semidefinite program (SDP) is an optimization problem of the form

minimize C • X

subject to Ai • X = bi, i = 1, . . . , m

X � 0.

(SDP)

The optimization variable is X ∈ S
n, where S

n is the set of all n × n

symmetric matrices, and the problem data are A1, . . . , Am, C ∈ S
n and

b ∈ R
m. The trace inner product of A, B ∈ R

m×n is

A • B = tr(ATB) =
m

∑

i=1

n
∑

j=1

AijBij .

The constraint X � 0 denotes a generalized inequality with respect to
the cone of positive-semidefinite matrices, and means that X is positive
semidefinite: that is, zTXz ≥ 0 for all z ∈ R

n. We can write (SDP)
more compactly by defining the operator A : S

n → R
m such that

A(X) =









A1 • X
...

Am • X









.

2
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1.1. Low-rank semidefinite programming 3

Using this notation we can express (SDP) as

minimize C • X

subject to A(X) = b

X � 0.

The dual problem of (SDP) is

maximize bTy

subject to
∑m

i=1
yiAi + S = C

S � 0,

(SDD)

where the optimization variables are y ∈ R
m and S ∈ S

n. We can write
(SDD) more succinctly as

maximize bTy

subject to A∗(y) + S = C

S � 0,

where the adjoint operator A∗ : R
m → S

n is given by

A∗(y) =
m

∑

i=1

yiAi.

We do not attempt to give a general exposition of the theory of semidef-
inite programming in this paper – an excellent survey is provided by
Vandenberghe and Boyd [96]. The preceding remarks are only meant
to establish our particular conventions for talking about SDPs. Addi-
tional results about SDPs are given in Appendix A, which presents
those aspects of the theory that are most relevant for our purposes.

Semidefinite programs can be solved efficiently using interior-
point algorithms. However, such algorithms typically converge to a
maximum-rank solution [45], and in many cases we are interested in
finding a low-rank solution. For example, it is well known that every
polynomial optimization problem has a natural SDP relaxation, and
this relaxation is exact when it has a rank-1 solution. (We include the
derivation of this important result in Appendix A for completeness.)
Unfortunately, finding a minimum-rank solution of an SDP is NP-hard:
a special case of this problem is finding a minimum-cardinality solution

Full text available at: http://dx.doi.org/10.1561/2400000009



4 Introduction

of a system of linear equations, which is known to be NP-hard [36]. In
this paper we review approaches to finding low-rank solutions and ap-
proximate solutions of SDPs, and present some applications in which
low-rank solutions are important.

1.2 Outline

Chapter 2 discusses reduced-rank exact solutions of SDPs and theo-
rems about rank. We give an efficient algorithm for reducing the rank
of a solution. Although the algorithm may not find a minimum-rank so-
lution, it often works well in practice, and we can prove a bound on the
rank of the solution returned by the algorithm. Then we give a theorem
relating the uniqueness of the rank of a solution to the uniqueness of
the solution itself, and show how to use this theorem for sensor-network
localization. The chapter concludes with a theorem that allows us to
deduce the existence of a low-rank solution from the sparsity structure
of the coefficients.

Because finding a minimum-rank solution of an SDP is NP-hard,
we do not expect to arrive at an algorithm that accomplishes this task
in general. However, there are many heuristics for finding low-rank
solutions that often perform well in practice; we discuss these methods
in Chapter 3. We also present rounding methods, in which we find a
low-rank approximate solution that is close to a given exact solution in
some sense. One of the rounding methods that we discuss is the famous
Goemans-Williamson algorithm [39]; if the unique-games conjecture is
true, then this algorithm achieves the best possible approximation ratio
for the maximum-cut problem [57, 58].

The paper concludes with two chapters covering applications of
the theoretical results to trust-region problems and signal processing.
There are three appendices: the first gives background information, and
establishes our notation; the second reviews some classical results about
linear programming that we generalize to semidefinite programming in
Chapter 2; and the last contains technical probability lemmas that are
used in our analysis of rounding methods.

Full text available at: http://dx.doi.org/10.1561/2400000009
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