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Abstract. This paper presents the Cholesky factor–alternating direction implicit (CF–ADI) algo-
rithm, which generates a low-rank approximation to the solution X of the Lyapunov
equation AX + XAT = −BBT . The coefficient matrix A is assumed to be large, and
the rank of the right-hand side −BBT is assumed to be much smaller than the size of A.
The CF–ADI algorithm requires only matrix-vector products and matrix-vector solves by
shifts of A. Hence, it enables one to take advantage of any sparsity or structure in A.

This paper also discusses the approximation of the dominant invariant subspace of the
solution X. We characterize a group of spanning sets for the range of X. A connection is
made between the approximation of the dominant invariant subspace of X and the gener-
ation of various low-order Krylov and rational Krylov subspaces. It is shown by numerical
examples that the rational Krylov subspace generated by the CF–ADI algorithm, where
the shifts are obtained as the solution of a rational minimax problem, often gives the best
approximation to the dominant invariant subspace of X.
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1. Introduction. In this paper we present the Cholesky factor–alternating direc-
tion implicit (CF–ADI) algorithm, which is well suited to solving large-scale Lyapunov
equations whose right-hand sides have low rank. A Lyapunov equation has the form

(1.1) AX + XAT = −BBT , A ∈ R
n×n, X ∈ R

n×n.

The unknown is the matrix X. We assume that the coefficient matrix A is large and
stable, λi(A) < 0 ∀i. Furthermore, we assume that the rank of the right-hand side
−BBT is much smaller than n, or simply, rank(B) = rb $ n. When A is stable, the
matrix X is symmetric from the uniqueness of the solution to (1.1), and it is positive
semidefinite [18]. Such Lyapunov equations occur in the analysis and model reduction
of large, linear, time-invariant systems, where the number of inputs and the number
of outputs are small compared to the system size.
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The first contribution of this paper is the CF–ADI algorithm, which is a reformu-
lation of the alternating direction implicit (ADI) algorithm for Lyapunov equations
[5, 8, 23, 38, 39, 40] and gives exactly the same approximation. However, CF–ADI
requires only matrix-vector products and matrix-vector solves by shifts of A. Hence,
it enables one to take advantage of any sparsity or structure in the coefficient matrix
A. The CF–ADI algorithm is intended to be used as a low-rank algorithm to pro-
vide a low-rank approximation to the exact solution matrix X. Frequently, the exact
solution X itself has low numerical rank [1, 28].

For some applications, it is sufficient to find the dominant invariant subspace of
X. Complete knowledge of X is not necessary. For example, in the linear systems
setting, the dominant invariant subspace of X may have physical meaning either as the
span of the directions most sensitive to input or as the span of the directions to which
the output is the most sensitive (see [6, 9, 33]). In fact, knowledge of the dominant
invariant subspace of X is enough to produce the balanced truncation reduced model
[26, 29] for symmetric systems [20, 21]. Hence, for some applications, approximating
the dominant invariant subspace of X is as relevant as approximating X itself. In
light of this, the second half of this paper is devoted to the approximation of the
dominant invariant subspace of X.

The second contribution of this paper is making the connection between the ap-
proximation of the dominant invariant subspace of X and the generation of various
low-order Krylov and rational Krylov subspaces. It is shown that various methods of
generating low-rank approximations to X, including the CF–ADI algorithm, involve
finding a low-order Krylov or rational Krylov subspace to approximate the dominant
invariant subspace of X. All these subspaces, when taken to order n, yield the full
range of X. We compare the CF–ADI choice of a rational Krylov subspace, where the
shifts are obtained by solving a rational minimax problem, with several other natural
choices. We show by numerical examples that the subspace generated by CF–ADI
often provides the best approximation to the dominant invariant subspace of X.

A preliminary form of the CF–ADI algorithm as applied to the model reduction
problem can be found in [20, 21, 22]. In this paper we give details of the CF–ADI
algorithm as relevant to the solution of (1.1). We also include complexity analysis,
a parameter selection procedure, stopping criteria, the use of real arithmetic, and
numerical results on convergence, all of which are appearing for the first time in
the literature. Some early numerical results on using CF–ADI to approximate the
dominant invariant subspace of X can be found in [22].

It has come to the authors’ attention that another low-rank reformulation of the
ADI algorithm was independently proposed in [27]. However, in that version, the
work required to produce a rank k approximation to X increases as O(k2), whereas
for the CF–ADI algorithm presented in this paper, the work increases as O(k). In fact,
the algorithm in [27] appears as an intermediate step in deriving the final CF–ADI
algorithm.

This paper is organized in the following way. Section 2 motivates the solution
of the Lyapunov equation and the approximation of the dominant invariant subspace
of the solution in the context of linear, time-invariant systems. Section 3 provides
background on existing approaches to the solution of (1.1), including the ADI algo-
rithm in some detail. Section 4 develops the CF–ADI algorithm. Section 5 contains
a collection of definitions and useful results concerning Krylov and rational Krylov
subspaces. Section 6 characterizes spanning sets for a subspace based on A and B.
Section 7 shows that these spanning sets also span the range of X and uses that re-
sult to prove several properties of CF–ADI. Section 8 makes the connection between
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the approximation of the dominant invariant subspace of X and the generation of
various low-order Krylov and rational Krylov subspaces. We also make numerical
comparisons of several different Krylov and rational Krylov subspace approximations.
Section 9 contains the conclusions.

2. Motivation. Lyapunov equations with a low-rank right-hand side occur in
the analysis and model reduction of large, linear, time-invariant systems, where the
system size is much larger than the number of inputs and the number of outputs. In
this paper we focus on systems whose coefficient matrices are large and sparse. Such
systems occur in interconnect modeling, solutions of PDEs, and other applications.

A linear, time-invariant system with realization (A, B, C) is characterized by the
equations

dx(t)
dt

= Ax(t) + Bu(t),(2.1)

y(t) = Cx(t).(2.2)

The vector-valued function x(t) : R %→ Rn gives the state at time t and has n com-
ponents. The input u(t) : R %→ Rrb and the output y(t) : R %→ Rrc have rb and rc

components, respectively. The matrices A ∈ Rn×n, B ∈ Rn×rb , and C ∈ Rrc×n are
the system matrix, the input coefficient matrix, and the output coefficient matrix,
respectively. For single-input, single-output (SISO) systems, rb = 1, rc = 1. Even
for multiple-input, multiple-output (MIMO) systems, rb and rc are usually both very
small compared to n.

If the system matrix A is stable, i.e., all the eigenvalues of A are in the open left
half plane, then the controllability Gramian P ∈ Rn×n and the observability Gramian
Q ∈ Rn×n associated with the system in (2.1)–(2.2) are the unique, symmetric, and
positive semidefinite solutions to the following two Lyapunov equations (see, e.g.,
[6, 9, 18, 33]):

AP + PAT = −BBT ,(2.3)

AT Q + QA = −CT C.(2.4)

If the number of inputs rb is much smaller than the number of state components n,
then rank(BBT ) = rank(B) ≤ rb $ n, and the right-hand side of (2.3) has low rank.
Similarly, if the number of outputs rc is much smaller than n, then the right-hand
side of (2.4) has low rank.

The physical importance of the dominant eigenvectors of the Gramians P and
Q is that they are the directions most sensitive to the input and the directions to
which the output is the most sensitive, respectively (see [6, 9, 33]). In addition, for
symmetric systems, where A = AT and C = BT in (2.1)–(2.2) and (2.3) and (2.4)
are the same, knowledge of the dominant invariant subspace of P = Q is sufficient
to produce the balanced truncation reduced model [26, 29] for the system [20, 21].
Therefore, for some applications, approximating the dominant invariant subspace of
the solution to (1.1) is as relevant as approximating the solution itself.

3. Previous Methods. This section describes several existing methods for finding
or approximating the solution X to the Lyapunov equation (1.1). Several of the
algorithms described in this paper utilize the Cholesky factors of square matrices,
and we give the definition of the Cholesky factor below.
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Definition 3.1. A matrix Z is a Cholesky factor of X ∈ Rn×n if it satisfies

(3.1) X = ZZT .

In this paper, the Cholesky factor Z is not required to be a square matrix nor to
have lower triangular structure.

The Bartels–Stewart method [2] first transforms A to real Schur form and then
back-solves for the solution of the transformed Lyapunov equation. The solution X
is then obtained by a congruence transformation. Reducing a general, possibly sparse
matrix to real Schur form requires O(n3) work, as does the congruence transformation
to produce X.

The Hammarling method [12] also first transforms A to Schur form and has O(n3)
complexity. It computes the lower triangular matrix Cholesky factor of the solution
X rather than X itself.

The matrix sign function method [3, 30] exploits a simple connection between X

and the matrix sign function of the 2n × 2n matrix [ AT 0
BBT −A ]. The latter is found

by Newton iteration. The complexity of this approach depends on the speed of the
convergence of the Newton iteration but is at best O(n3). Low-rank versions of the
matrix sign function method can be found in [4, 19].

An approximate power iteration algorithm to determine the dominant invariant
subspace of X is contained in [13], where approximations to the matrix-vector prod-
ucts Xv are computed. At each iteration, a Sylvester equation with a large left
coefficient matrix and a small right coefficient matrix must be solved.

The low-rank Smith(l) method in [27] gives the same approximation as the ADI
method with cyclic parameters and exploits the low rank of the right-hand side of the
Lyapunov equation, but it is not as efficient as the CF–ADI algorithm to be derived
in section 4. The main reason is that it is dependent on a low-rank implementation
of the ADI algorithm which is given in this paper in (4.6)–(4.7) and which is only an
intermediate step in deriving the final CF–ADI algorithm.

3.1. Alternating Direction Implicit Iteration. The ADI method [5, 39, 40, 41]
is an iterative method and is given as Algorithm 1. The parameters {p1, p2, . . . , pJ},
Re{pj} < 0, are called the ADI parameters. To keep the final ADI approximation
Xadi

J real, it is assumed that in the parameter list {p1, p2, . . . , pJ}, each parameter is
either real or comes as a part of a complex conjugate pair.

A general matrix A must be first reduced to tridiagonal form before proceeding
with the ADI iteration in (3.3)–(3.4), to avoid the two full matrix-matrix products
and two full matrix-matrix solves. However, it is well known that tridiagonalization
of a general nonsymmetric matrix can be unstable (see, e.g., [10]).

The complexity of the ADI algorithm is O(n3) + O(Jn2), where J is the total
number of ADI iterations [23]. The O(n3) term comes from the tridiagonalization of a
general matrix A and the transformation in (3.5) to obtain the final ADI approxima-
tion. If A is already sparse or structured, there is no need to reduce A to tridiagonal
form. In either case, the O(Jn2) term comes from J iterations of (3.3)–(3.4). In terms
of complexity, the ADI method is competitive with the Bartels–Stewart and Hammar-
ling methods, which are also O(n3) methods. However, the need in the ADI algorithm
for the tridiagonalization of a general matrix A can pose a potentially serious problem.

If A is diagonalizable, then the ADI approximation Xadi
J has the following error

bound [39]:
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Algorithm 1. Alternating direction implicit algorithm.

INPUT: A, B.
1. If v %→ Av, v ∈ Rn, is not O(n) work, tridiagonalize A.

a. Find Ã tridiagonal, such that Ã = SAS−1.
b. Set B̃ := SB.

Otherwise, set Ã := A, B̃ := B.
2. Choose ADI parameters, {p1, . . . , pJ}, Re{pi} < 0 (real or complex conjugate

pairs), according to section 3.1.1 and references, using spectral bounds on Ã.
3. Initial guess,

(3.2) X̃0 = 0n×n.

4. FOR j = 1, 2, . . . , J , DO
(Ã + pjI)X̃j− 1

2
= −BBT − X̃j−1(ÃT − pjI),(3.3)

(Ã + pjI)X̃j = −BBT − X̃T
j− 1

2
(ÃT − pjI).(3.4)

END
5. If A was tridiagonalized, recover solution,

(3.5) Xadi
J := S−1X̃JS−T .

Otherwise, Xadi
J = X̃J .

OUTPUT: Xadi
J ∈ Rn×n, Xadi

J ≈ X.

‖Xadi
J − X‖F ≤ ‖T‖2

2‖T−1‖2
2k(p)2‖Xadi

0 − X‖F ,

k(p) = max
x∈spec(A)

∣

∣

∣

∣

∣

∣

J
∏

j=1

(pj − x)
(pj + x)

∣

∣

∣

∣

∣

∣

,
(3.6)

where T is a matrix whose columns are eigenvectors of A and p = {p1, p2, . . . , pJ} are
the ADI parameters.

3.1.1. ADI Parameter Selection. The selection of good parameters is vitally
important to the successful application of the ADI algorithm. Optimal ADI param-
eters {p1, p2, . . . , pJ} are a function of J and solve the following rational minimax
problem [40]:

(3.7) min
p1,p2,...,pJ

max
x∈R

∣

∣

∣

∣

∣

∣

J
∏

j=1

(pj − x)
(pj + x)

∣

∣

∣

∣

∣

∣

,

where R is a region in the open left half plane, and

λ1(A), . . . ,λn(A) ∈ R ⊂ C
−.

If the eigenvalues of A are strictly real, then the solution to (3.7) is known (see
[40]). The solution to (3.7) is not known when R is an arbitrary region in the open
left half plane. The problem of finding optimal and near-optimal parameters was
investigated in several papers [8, 15, 34, 35, 37, 40].

Here we summarize a parameter selection procedure given in [40]. Define the
spectral bounds a, b, and α for the matrix A as

(3.8) a = min
i

(Re{λi}), b = max
i

(Re{λi}), α = tan−1 max
i

∣

∣

∣

∣

Im{λi}
Re{λi}

∣

∣

∣

∣

,
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where λ1, . . . ,λn are the eigenvalues of −A. It is assumed that the spectrum of −A
lies entirely inside the “elliptic function domain” determined by a, b,α, as defined
in [40]. If this assumption does not hold, one should try to apply a more general
parameter selection algorithm. Let

cos2 β =
2

1 + 1
2 (a

b + b
a )

,

m =
2 cos2 α

cos2 β
− 1.

If m < 1, the parameters are complex and are given in [8, 40]. If m ≥ 1, the parameters
are real, and we define

k′ =
1

m +
√

m2 − 1
, k =

√

1 − k′2.

Note that k′ = a
b if all the eigenvalues of A are real. Define the elliptic integrals K

and v as

F [ψ, k] =
∫ ψ

0

dx
√

1 − k2 sin2 x
,

K = K(k) = F
[π

2
, k
]

, v = F

[

sin−1
√

a

bk′ , k
′
]

.

The number of ADI iterations required to achieve k(p)2 ≤ ε1 is J = . K
2vπ log 4

ε1
/, and

the ADI parameters are given by

(3.9) pj = −
√

ab

k′ dn

[

(2j − 1)K
2J

, k

]

, j = 1, 2, . . . , J,

where dn(u, k) is the elliptic function. It was noted in [23] that for many practical
problems ADI converges in a few iterations with these parameters.

3.2. Low-Rank Methods. In [14, 16], low-rank approximations to X were pro-
posed which have the form

(3.10) X ≈ X lr
J := UJXJ×JUT

J ,

where the columns of UJ ∈ Rn×rJ , rJ ≤ Jrb, form an orthonormal basis for the block
Krylov subspace

KJ (A, B) := span{B, AB, A2B, . . . , AJ−1B}.

The columns of UJ , as well as the quantities BJ := (UJ)T B and AJ×J := UT
J AUJ ,

are obtained via the block Arnoldi process [7, 42].
If λi(AJ×J)+ λ̄j(AJ×J) 0= 0 ∀i, j, ensuring that a unique solution to (3.11) exists,

then the residual of (1.1),

RJ(XJ×J) := A(UJXJ×JUT
J ) + (UJXJ×JUT

J )AT + BBT ,

satisfies the Galerkin condition

UT
J RJ(XJ×J)UJ = 0
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if and only if XJ×J satisfies

(3.11) AJ×JXJ×J + XJ×JAT
J×J + BJBT

J = 0

[14, 16]. The more complicated linear matrix equation that XJ×J must satisfy in
order to minimize the Frobenius norm of RJ(XJ×J) was also given in [16].

4. CF–ADI. A major contribution of this paper is the development of the CF–
ADI algorithm, which is presented in this section. For the low-rank right-hand-side
Lyapunov equation (1.1), CF–ADI produces the same approximation as the ADI
method described in section 3 but is much more efficient because it iterates on the
Cholesky factor of the ADI approximation rather than on the ADI approximation
itself.

For simplicity, all quantities in Algorithm 1 with tildes will be written in this
section without the tildes. It is assumed that B has full column rank. Otherwise, we
replace B with B̃, where B̃ has full column rank, and B̃B̃T = BBT .

There are two matrix-matrix products and two matrix-matrix solves in (3.3)–(3.4)
of Algorithm 1. The need for matrix-matrix operations rather than simply matrix-
vector operations at each ADI step makes Algorithm 1 extremely expensive. The first
step in developing CF–ADI is to combine (3.3) and (3.4) to obtain

Xj = −2pj(A + pjI)−1BBT (A + pjI)−T

+ (A + pjI)−1(A − pjI)Xj−1(A − pjI)T (A + pjI)−T .
(4.1)

From (4.1) and the fact that X0 = 0n×n, it can be seen that Xj is symmetric
∀j ∈ Z and that rank(Xj) ≤ rank(Xj−1) + rank(B). Since the iteration begins
with the zero matrix initial guess, rank(Xj) ≤ jrb, where rb is the number of columns
in B. Therefore, Xj can be represented as an outer product,

(4.2) Xj = ZjZ
T
j ,

where Zj has jrb columns. The matrix Zj is a Cholesky factor of Xj ∈ Rn×n.
Replacing Xj with ZjZj

T in (4.1) results in

Z0 = 0n×p,(4.3)

ZjZ
T
j = −2pj

{

(A + pjI)−1B
}{

(A + pjI)−1B
}T

+
{

(A + pjI)−1(A − pjI)Zj−1
}{

(A + pjI)−1(A − pjI)Zj−1
}T

.
(4.4)

The left-hand side of (4.4) is an outer product, and the right-hand side is the sum of
two outer products. Thus, Zj on the left-hand side of (4.4) can be obtained simply
by combining the two factors in the two outer products on the right:

(4.5) Zj =
[√

−2pj

{

(A + pjI)−1B
}

,
{

(A + pjI)−1(A − pjI)Zj−1
}]

.

Thus, the ADI algorithm can be reformulated in terms of the Cholesky factor Zj of
Xj . There is no need to calculate or store Xj at each iteration—only Zj is needed.

The preliminary form of CF–ADI which iterates on the Cholesky factor Zj of Xj

is

Z1 =
√

−2p1(A + p1I)−1B, Z1 ∈ Rn×rb ,(4.6)

Zj =
[√

−2pj(A + pjI)−1B, (A + pjI)−1(A − pjI)Zj−1
]

, Zj ∈ Rn×jrb .(4.7)
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In this formulation, at each iteration, the previous Cholesky factor Zj−1 ∈ Rn×(j−1)rb

needs to be modified by multiplication on the left by (A + pjI)−1(A − pjI). Thus,
the number of columns which need to be modified at each iteration increases by rb.
The implementation in (4.6)–(4.7) was independently developed in [27].

In this paper, a further step is taken to keep constant the number of columns
modified at each iteration.

The Jrb columns of ZJ , the Cholesky factor of the Jth ADI approximation, can
be written out explicitly:

ZJ =
[

SJ

√

−2pJB, SJ (TJSJ−1)
√

−2pJ−1B, . . . , SJTJ · · ·S2 (T2S1)
√

−2p1B
]

,

where

(4.8) Si = (A + piI)−1, Ti = (A − piI).

Note that the Si’s and the Ti’s commute:

SiSj = SjSi, TiTj = TjTi, SiTj = TjSi ∀i, j.

The Cholesky factor ZJ then becomes

(4.9) ZJ = [zJ , PJ−1(zJ), PJ−2(PJ−1zJ), . . . , P1(P2 · · ·PJ−1zJ)] ,

where

zJ :=
(

√

−2pJ

)

SJB =
√

−2pJ(A + pJI)−1B,(4.10)

Pl :=
( √

−2pl√
−2pl+1

)

SlTl+1 =
√

−2pl√
−2pl+1

(A + plI)−1(A − pl+1I)

=
( √

−2pl√
−2pl+1

)

[I − (pl+1 + pl) (A + plI)−1].

(4.11)

Since there is no significance to the order in which the ADI parameters appear,
the index 1, . . . , J in (4.9) can be reversed. The CF–ADI algorithm which comprises
(4.9)–(4.11) with the index reversed is given as Algorithm 2.

We now show that CF–ADI produces the same approximation as the ADI method.
Theorem 4.1. If Xadi

J is obtained by running J steps of Algorithm 1 with the ADI
parameters {p1, p2, . . . , pJ} and Zcfadi

J is obtained by running J steps of Algorithm 2
with the same parameters in any order, then

(4.12) Xadi
J = Zcfadi

J (Zcfadi
J )T .

Proof. From the derivation of CF–ADI, it is clear that (4.12) is true when the
order of the parameters is reversed. The fact that parameter order does not matter
in either algorithm is shown by

Xj = (A + pjI)−1(A + pj−1I)−1
(

(A − pjI)(A − pj−1I)Xj−2(A − pjI)T (A − pj−1I)T

− 2(pj + pj−1)(ABBT AT + pjpj−1BBT )
)

(A + pjI)−T (A + pj−1I)−T .

Clearly, this expression does not depend on the order of pj and pj−1. Any ordering
of {p1, . . . , pJ} can be obtained by exchanging neighboring parameters.
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Algorithm 2. The CF–ADI algorithm.

INPUT: A, B.
1. Choose CF–ADI parameters, {p1, . . . , pJmax}, Re{pi} < 0 (real or complex

conjugate pairs).

2. Define: Pi =
(√

−2pi+1√
−2pi

)

[I − (pi+1 + pi)(A + pi+1I)−1].

a. z1 =
(

√

−2p1

)

(A + p1I)−1B,(4.13)

b. Zcfadi
1 =

[

z1
]

.(4.14)
3. FOR j = 2, 3, . . . , Jmax

(4.15) a. zj = Pj−1zj−1,

b. If (‖zj‖2 > tol1 or ‖zj‖2
‖Zj−1‖2

> tol2) and (j ≤ Jmax)

(4.16) Zcfadi
j =

[

Zcfadi
j−1 zj

]

.

Otherwise, J = j − 1, stop.
END

OUTPUT: Zcfadi
J ∈ Cn×Jrb , X ≈ Xcfadi

J := Zcfadi
J (Zcfadi

J )T ∈ Rn×n.

As a matter of notation, define

(4.17) Xcfadi
J := Zcfadi

J (Zcfadi
J )T .

Both Xcfadi
J and Zcfadi

J will be referred to as the Jth CF–ADI approximation; which
one is meant will be clear from the context. The full matrix Xcfadi

J is usually not
explicitly calculated. It will be used in subsequent sections for analysis purposes only.

4.1. Stopping Criteria and Parameter Selection. The stopping criterion
‖Xcfadi

j − Xcfadi
j−1 ‖2 ≤ tol2 can be implemented as ‖zj‖2 ≤ tol, since

‖ZjZ
T
j − Zj−1Z

T
j−1‖2 = ‖zjz

T
j ‖2 = ‖zj‖2

2.

It is not necessarily true that a small zj implies that all further zj+k will be small,
but this has been observed in practice. Relative error can also be used, in which
case the stopping criterion is ‖zj‖2

‖Zj−1‖2
≤ tol. The 2-norm of Zj−1, which is also its

largest singular value, can be estimated by performing power iterations to estimate
the largest eigenvalue of Zj−1ZT

j−1, taking advantage of the fact that j $ n. This
cost is still high, and this estimate should be used only after each segment of several
iterations.

The criterion for picking CF–ADI parameters, {p1, . . . , pJmax}, is exactly the same
as for ADI parameters; namely, they should solve the rational minimax problem (3.7).
Section 3.1.1 gives a parameter selection procedure based on three spectral bounds
of A in (3.8). These three bounds for A may be estimated using the power and
inverse power iterations, or Gershgorin’s circles (see [10]). Power and inverse power
iterations can be done at the cost of a few matrix-vector products and solves. A
numerical comparison of different choices of parameters is given in section 8.1.
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Table 4.1 ADI and CF–ADI complexity comparison when A is sparse.

CF–ADI ADI
Sparse A O(Jrbn) O(Jn2)
Full A O(Jrbn2) O(n3) + O(Jn2)

4.2. Complexity. The following definition is helpful when B has more than one
column.

Definition 4.2. An rb-vector v ∈ Rn×rb is a matrix that has rb columns.
The final CF–ADI approximation Zcfadi

J can be obtained from the starting rb-
vector z1 after J − 1 products of the form Pizi. The cost of applying Pi to a vector
is that of a matrix-vector solve. The starting rb-vector z1 is obtained after rb matrix-
vector solves with the columns of B ∈ Rn×rb as the right-hand sides. Each succeeding
rb-vector in Zcfadi

J is obtained from the previous rb-vector at the cost of rb matrix-
vector solves. Thus, the work per iteration has been reduced from two matrix-matrix
products and two matrix-matrix solves in (3.2)–(3.3) in the original ADI method to
rb matrix-vector solves in (4.15) in the CF–ADI algorithm.

The Cholesky factor of the Lyapunov solution is precisely what is needed in the
model reduction of linear, time-invariant systems [26, 32, 36]. In general, if Zcfadi

J

is available, it is not necessary to calculate Xcfadi
J = Zcfadi

J (Zcfadi
J )T , whereas if the

ADI approximation Xadi
J is available, it is often necessary to calculate its Cholesky

factor in the subsequent model reduction procedure.
If the matrix A is sparse enough so that v %→ Av as well as v %→ (A + piI)−1v

have O(n) complexity, where v is a vector, then Table 4.1 gives the complexity com-
parison between ADI and CF–ADI. Since rb, the number of inputs, is by assumption
much smaller than n, CF–ADI always results in substantial savings when A is sparse,
reducing the work from O(n2) to O(n).

4.3. Real CF–ADI for Complex Parameters. Algorithm 2 will result in a com-
plex Cholesky factor ZJ ∈ Cn×Jrb if there are complex ADI parameters, although
ZJZT

J ∈ Rn×n is guaranteed to be real if the parameters come in complex conjugate
pairs.

A version of CF–ADI which uses only operations with real numbers can be im-
plemented by noting that, analogous to the matrices associated with a real parameter
pi, given in (4.8), the matrices associated with a complex conjugate pair {pi, p̄i} are

Qi := (A2 − σiA + τiI)−1, Ri := (A2 + σiA + τiI),(4.18)
σi = 2Re{−pi}, τi = |pi|2,(4.19)

which involve only real quantities.

4.4. Numerical Results. This section gives numerical results on the CF–ADI
approximation to the solution to (1.1).

The example in Figure 4.1(b) comes from the inductance extraction of an on-chip
planar square spiral inductor suspended over a copper plane [17], shown in Figure
4.1(a). The original order-500 system has been symmetrized according to [25]. The
matrix A is a symmetric 500 × 500 matrix, and the input coefficient matrix B ∈ Rn

has one column.
Because A is symmetric, the eigenvalues of A are real, and good CF–ADI param-

eters are easy to find. The procedure given in section 3.1.1 was followed. CF–ADI
was run to convergence in this example, which took 20 iterations.
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Fig. 4.1 Spiral inductor, a symmetric system.

Figure 4.1(b) shows the relative 2-norm error of the CF–ADI approximation,
‖X−Xcfadi

j ‖2

‖X‖2
, for j = 1, . . . , 20. At j = 20, the relative error has reached 10−8, which

is about the same size as the error of the optimal [10] rank-11 approximation. The
error estimate ‖zcfadi

j+1 ‖2
2 approximates the actual error ‖X − Xcfadi

j ‖ closely ∀j.

5. Krylov and Rational Krylov Subspace Results. This section contains a col-
lection of definitions and results concerning Krylov and rational Krylov subspaces
which will be used in subsequent sections.

We begin by giving definitions of Krylov and rational Krylov subspaces.
Definition 5.1. An order-m Krylov subspace Km(A, z1), A ∈ Rn×n, z1 ∈ Rn,

is the subspace

(5.1) Km(A, z1) := span
{

z1, Az1, A2z1, . . . , Am−1z1
}

.

Definition 5.2. An order-m rational Krylov subspace Krat
m (A, z1,pm−1), A ∈

Rn×n, z1 ∈ Rn, pm−1 = {p1, . . . , pm−1}, pi ∈ R, is the subspace

Krat
m (A, z1,pm−1)

:= span

{

z1, (A + p1I)−1z1, (A + p2I)−1(A + p1I)−1z1, . . . ,
m−1
∏

i=1

(A + piI)−1z1

}

.

(5.2)

Note that for both Krylov and rational Krylov subspaces, the dimension of the
subspace may be strictly smaller than the order m. The sets {z1, . . . , Am−1z1}
and {z1, (A + p1I)−1z1, . . . ,

∏m−1
i=1 (A + pi)−1z1} are spanning sets for Km(A, z1) and

Krat
m (A, z1,pm−1), respectively.

The following well-known result can be found in many standard textbooks, in-
cluding [10].
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Proposition 5.3. If m > n, then Km(A, B) = Kn(A, B).
Theorem 5.4 characterizes the rational Krylov subspace Krat

m (A, (A + p1I)−1B,
{p2, . . . , pm}) as the direct sum of l rational Krylov subspaces, where l is the number
of distinct parameters in the list {p1, . . . , pm}.

Theorem 5.4. Let Krat
m (A, (A+p1I)−1B, {p2, . . . , pm}) be such that no (A+piI)

is singular. Then

Krat
m

(

A, (A + p1I)−1B, {p2, . . . , pm}
)

= span

{

(A + p1I)−1B, . . . ,
j
∏

i=1

(A + piI)−1B, . . . ,
m
∏

i=1

(A + piI)−1B

}

=
l
∑

i=1

span{(A + piI)−1B, . . . , (A + piI)−siB}

=
l
∑

i=1

Krat
si

(

(A + piI), (A + piI)−1B, 0si−1
)

,

where s1 + · · · + sl = m, each pi appears in {p1, . . . , pm} a total of si times, and the
summation sign denotes a direct sum of subspaces.

Proof. If the parameters are distinct, the proof follows from the partial fractions
expansion

j
∏

i=1

(A + piI)−1 =
j
∑

i=1





∏

k (=i

(

1
pk − pi

)



 (A + piI)−1, p1 0= p2 0= · · · 0= pJ .

A slightly different expansion taking into account repeated parameters can be calcu-
lated to give the general statement of the theorem.

6. Spanning Sets of L(A, B). In this section we prove Theorem 6.1, which shows
the equivalence of an infinite number of order-n Krylov and rational Krylov subspaces
based on A and B. For simplicity we assume that B has only one column. Most of
the results in this section can be easily generalized to the case when B has more than
one column.

Theorem 6.1. Let A ∈ Rn×n be invertible, B ∈ Rn, B 0= 0, p = {. . . , p−2,
p−1, p0, p1, p2, . . . }, pi ∈ R, and define the subspace L(A, B,p) as

L(A, B,p)

:= span

{

. . . ,
−1
∏

i=−j

(A + piI)−1B, . . . , (A + p−2I)−1(A + p−1I)−1B,

(A + p−1I)−1B, B, (A + p0I)B,

(A + p1I)(A + p0I)B, . . . ,
j−1
∏

i=0

(A + piI)B, . . .

}

= span
{

. . . , v−j(A, B,p), . . . , v−2(A, B,p), v−1(A, B,p), v0(A, B,p),

v1(A, B,p), v2(A, B,p), . . . , vj(A, B,p), . . .
}

,

(6.1)
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where

(6.2) vj(A, B,p) =















B, j = 0,
∏j−1

i=0 (A + piI)B, j > 0,
∏−1

i=j(A + piI)−1B, j < 0,

and where all matrix inverses in (6.1) are well defined. Then ∀s ∈ Z, ∀p, ∀r =
{. . . , r−1, r0, r1, . . . }, ∀q = {. . . , q−1, q0, q1, . . . }, ri, qi ∈ R,

L(A, B,p) = span{vs(A, B,p), vs+1(A, B,p), . . . , vs+(n−1)(A, B,p)}(6.3)

= span{B, AB, . . . , An−1B}(6.4)
= L(A, vs(A, B, r),q)(6.5)

if all matrix inverses in (6.5) are well defined.
Remark 1. We refer to B in L(A, B,p) as the base vector. Because of (6.5),

L(A, B) := L(A, vs(A, B, r),q) may be written without referring to the base vector
vs(A, B, r) or the shifts q.

The proof of Theorem 6.1 needs the following lemmas. The dependence of the
vi’s on A, B,p will be suppressed in the proofs unless needed.

Lemma 6.2. Let the vj’s be defined as in (6.2). Then

(6.6) vl ∈ span{vs, vs+1, vs+2, . . . , vs+(n−1)}

whenever l > s + (n − 1).
Proof. From (6.2), it can be seen that vj = (A + pj−1I)vj−1 ∀j; hence,

span{vj−1, vj} = span{vj−1, Avj−1}

and

(6.7) span{vs, vs+1, vs+2, . . . , vl} = span{vs, Avs, . . . , A
l−svs} = Kl−s+1(A, vs).

From Proposition 5.3,

span{vs, vs+1, vs+2, . . . , vl} = Kl−s+1(A, vs)
= Kn(A, vs) = span{vs, vs+1, vs+2, . . . , vs+(n−1)}.

The result follows.
Lemma 6.3. Let the vj’s be defined as in (6.2); then

(6.8) vl ∈ span{vs, vs+1, vs+2, . . . , vs+(n−1)}

whenever l < s.
Proof. First we show that the lemma is true for l = s − 1. Equivalently, because

of (6.7), show that

(6.9) (A + ps−1I)−1vs ∈ span{vs, Avs, . . . , A
n−1vs}.

Shifts can be added in the right-hand side of (6.9),

span{vs, Avs, . . . , A
n−1vs} = span{vs, (A + ps−1I)vs, . . . , (A + ps−1I)n−1vs},
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without affecting its column span. Because {vs−1, vs, . . . , vs+(n−1)} are n + 1 vectors
in Rn, there exist coefficients, c0, . . . , cn, not all zero, such that

(6.10) c0vs +c1(A+ps−1I)vs + · · ·+cn−1(A+ps−1I)n−1vs +cn(A+ps−1I)−1vs = 0.

If cn 0= 0, (6.9) is proven. Otherwise, since B 0= 0, we can choose 0 ≤ j < n − 1 such
that cj 0= 0 and ci = 0 ∀i < j. Then multiply (6.10) by (A + ps−1I)−(j+1) to obtain

cj(A + ps−1I)−1vs + cj+1vs + · · · + cn−1(A + ps−1I)n−2−jvs = 0

=⇒ cj(A + ps−1I)−1vs = −cj+1vs − · · · − cn−1(A + ps−1I)n−2−jvs.

Thus, (6.9) is proven, and (6.8) holds for l = s − 1. If l < s − 1,

vl ∈ span{vl+1, vl+2, . . . , vl+n}(6.11)
⊆ span{vl+2, . . . , vl+n+1}(6.12)
...(6.13)
⊆ span{vs, . . . , vs+n−1}.(6.14)

Relation (6.12) follows because each vector vl+1, . . . , vl+n is in span{vl+2, . . . ,
vl+n+1}.

Proof of Theorem 6.1. Lemmas 6.2 and 6.3 show that for any p,

L(A, B,p) = span{vs(A, B,p), vs+1(A, B,p), . . . , vs+(n−1)(A, B,p)}

holds for any s. Equation (6.4) follows from the fact that for any p, with the choice
of s = 0,

span{v0(A, B,p), v1(A, B,p), . . . , vn−1(A, B,p)} = span{B, AB, . . . , An−1B}.

Equation (6.5) follows from

L(A, B,p) = span{B, AB, . . . , An−1B} = L(A, B, r)
= span{vs(A, B, r), vs+1(A, B, r), . . . , vs+(n−1)(A, B, r)}
= span{vs(A, B, r), Avs(A, B, r), . . . , An−1vs(A, B, r)}
= L(A, vs(A, B, r),q) ∀p, ∀r, ∀q.

Remark 2. Special cases of Theorem 6.1 can be found in many references, in-
cluding [11, 31].

7. Lyapunov Solution and Rational Krylov Subspaces. In this section we char-
acterize the range of the Lyapunov solution as order-n Krylov and rational Krylov
subspaces with different starting vectors and different sets of shifts. We also state
several properties of the CF–ADI approximation.

Proposition 7.1 is a well-known result which makes the connection between the
range of the Lyapunov solution X and the Krylov subspace Kn(A, B) (see [6, 33]).

Proposition 7.1. Let X be the solution to (1.1). Then

(7.1) range(X) = span{B, AB, . . . , An−1B} = Kn(A, B).

The following corollary of Theorem 6.1 gives a more complete characterization of
the range of X as Krylov and rational Krylov subspaces.
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Corollary 7.2. With the same notation as in Theorem 6.1,

(7.2) range(X) = L(A, vt(A, B, r),q) ∀t ∈ Z, ∀r, ∀q.

Theorem 6.1 and Corollary 7.2 together imply that any n consecutive vectors
{ws, . . . , ws+n−1}, s ∈ Z, in the infinite spanning set for L(A, vt(A, B, r),q) are a
spanning set for range(X).

We now state some properties of the CF–ADI approximation and omit the proofs.
Proposition 7.3. Let Zcfadi

j be the jth CF–ADI approximation. Then its col-
umn span has the following characterization:

(7.3) colsp(Zcfadi
j ) = Krat

j (A, (A + p1I)−1B, {p2, . . . , pj}).

Proposition 7.4. Let Zcfadi
j = [z1, . . . , zj ] be the jth CF–ADI approximation,

and let B ∈ Rn. If zj+1 is a linear combination of {z1, . . . , zj}, then zl is a linear
combination of {z1, . . . , zj} whenever l ≥ j + 1.

Proposition 7.5. Let Zcfadi
n = [z1, . . . , zn] be the nth CF–ADI approximation.

Then

colsp(Zcfadi
n ) = Krat

n (A, (A − p1I)−1B, {p2, . . . , pn})
= range(X).

Remark 3. Proposition 7.5 states that if CF–ADI is run in n steps, the range
of X emerges.

Proposition 7.6. If zj+1 at the (j+1)st step of the CF–ADI iteration is a linear
combination of the previous iterates, z1, . . . , zj, and B ∈ Rn, then

span{z1, . . . , zj} = range(X).

Remark 4. If the goal is to find the range of the exact solution X, then iteration
can stop when zj+1 is a linear combination of the previous columns. If, however, the
goal is to approximate X by Zcfadi

j (Zcfadi
j )T , then iteration may have to continue,

since even if Zcfadi
j (Zcfadi

j )T has the same range as X, they may not be close as
matrices.

8. Rational Krylov Subspace Approximation to the Dominant Invariant
Subspace. In this section we are concerned with the approximation of the dominant
invariant subspace of the Lyapunov solution. In particular, we make the connection
between approximating the dominant invariant subspace of the solution X and the
generation of various low-order Krylov and rational Krylov subspaces. As described
in section 2, for some important applications it is sufficient to find the dominant
invariant subspace of X. The complete knowledge of X is not necessary.

Corollary 7.2 in section 7 shows that range(X) = L(A, vt(A, B, r),q) ∀t, ∀r, ∀q.
The range of X can also be characterized in terms of its eigenvectors. Let

X = [u1, . . . , un]







σ1 · · · 0
...

. . .
...

0 · · · σn






[u1, . . . , un]T

be the eigenvalue (singular value) decomposition of X, with the eigenvalues ordered
so that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.



708 JING-REBECCA LI AND JACOB WHITE

Then the eigenvectors of X associated with the nonzero eigenvalues, u1, . . . , ur, span
the range of X,

(8.1) range(X) = span {u1, . . . , ur} .

Combining Corollary 7.2 and (8.1) gives spanning sets for the invariant subspace,
span {u1, . . . , ur}, of X,

(8.2) span{u1, . . . , ur} = span{ws, . . . , ws+n−1},

where wi, i = s, . . . , s + n − 1, are n consecutive vectors in the infinite spanning set
for L(A, vt(A, B, r),q).

It is then natural to approximate the J-dimensional dominant invariant subspace
of X, span{u1, . . . , uJ}, J ≤ r ≤ n, by span{v1, . . . , vJ},

(8.3) span{u1, . . . , uJ} ≈ span{v1, . . . , vJ},

where {v1, . . . , vJ} is a subset of the order-n spanning set {ws, . . . , ws+n−1} for some
choice of s, t, r, q. Since only the matrix A and the vector B are given, from
practical concerns the subset {v1, . . . , vJ} should contain consecutive components of
{ws, . . . , ws+n−1}. Without loss of generality, we choose

(8.4) {v1, . . . , vJ} = {ws, . . . , ws+J−1}.

The set {v1, . . . , vJ} may be generated as for an order-J Krylov subspace based on
the matrix A and the vector v1 or may be generated in reverse order as for a rational
Krylov subspace based on A and vJ .

A basis for any Krylov or rational Krylov subspace choice in (8.4) may be gen-
erated stably via the Arnoldi algorithm [7, 42]. The subspace span{u1, . . . , ur} will
emerge in the same number of Arnoldi steps, which is at most n, for any subspace
choice in (8.4). Because it is not practical to run any of these Krylov subspace–based
approaches to n Arnoldi steps, we focus on the case when J $ n.

A few examples of the approximation that we consider in section 8.1 are
span{v1, . . . , vJ} =

KJ(A, B) = span{B, AB, . . . , AJ−1B},(8.5)

Krat
J (A, A−1B, 0J−1) = span{A−1B, A−2B, . . . , A−JB},(8.6)

Krat
J

(

A, (A + p1I)−1B, {p2, . . . , pJ}
)

for any {p1, . . . , pJ}.(8.7)

The choice in (8.5) was utilized in [14, 16]. If we choose the shifts {p1, . . . , pJ} to be
CF–ADI parameters in (8.7), we obtain the CF–ADI approximation to the dominant
invariant subspace of X. Clearly, the shifts in (8.7) may be chosen in other ways. It is
also possible to realize the choice in (8.7) as the direct sum of shifted rational Krylov
subspaces due to Theorem 5.4.

The answer to the question of which choice among (8.5)–(8.7) best satisfies (8.3)
depends on A, B, J , and the shift parameters {p1, . . . , pJ}. However, since there is
more freedom in the choice in (8.7) than in (8.5) or (8.6), in general, one expects (8.7)
to be a better choice if the shift parameters are chosen well. One answer to how to
choose the shifts in (8.7) is to use the CF–ADI parameters, which are the solution
of the rational minimax problem (3.7). The justification is that these parameters
minimize the norm of the error ‖X − Xcfadi

J ‖.
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8.1. Numerical Results. In this section we give numerical examples of approx-
imating the dominant invariant subspace of X by the Krylov and rational Krylov
subspace choices in (8.5)–(8.7), including several natural choices of shifts in (8.7).
Some preliminary numerical results on using CF–ADI to approximate the dominant
invariant subspace of X can be found in [22], but the subspace comparisons have not
appeared before in the literature.

The measure of the closeness of two subspaces is provided by the concept of
principal angles between subspaces (see [10]).

Definition 8.1. Let S1 and S2 be two subspaces of dimension d1 and d2, re-
spectively, and assume d1 ≥ d2. Then the d2 principal angles between S1 and S2 are
θ1, . . . , θd2 such that

cos(θj) = max
u1∈S1,‖u1‖=1

max
u2∈S2,‖u2‖=1

(u1)T u2 = (u1
j )

T u2
j

under the constraints that

(u1)T u1
i = 0, (u2)T u2

i = 0, i = 1 : j − 1.

Remark 5. If the columns of U1 are an orthonormal basis for S1, the columns of
U2 are an orthonormal basis for S2, and (U1)T U2 has singular value decomposition
(U1)T U2 = UΣV T , then

cos(θj) = Σ(j, j), u1
j = U1U(:, j), u2

j = U2V (:, j).

It can be seen that if S1 = S2, then cos(θj) = 1, j = 1, . . . , d1 = d2, and if S1 ⊥ S2,
then cos(θj) = 0, j = 1, . . . , d2.

The two bases {u1
1, . . . , u

1
d2

} and {u2
1, . . . , u

2
d2

} are mutually orthogonal, (u1
i )T u2

j =
0, if i 0= j. And (u1

i )T u2
i = cos(θi) indicates the closeness of u1

i and u2
i . A basis for the

intersection of S1 and S2 is given by those basis vectors whose principal angle is 0.
Thus, the closeness of two subspaces can be measured by how many of their principal
angles are close to 0.

The example in Figure 8.1 comes from the spiral inductor problem considered in
section 4.4. The matrix A is symmetric, 500 × 500, and B has one column. CF–ADI
was run for 20 iterations and the results are shown in Figure 8.1(a). The relative

error after 20 iterations is ‖X−Xcfadi
j ‖2

‖X‖2
= 10−8. The cosines of 18 of the principal

angles between the exact invariant subspace and the approximate subspace are 1,
and the cosines of the last 2 are above 0.8, indicating close matches of all dominant
eigenvectors. In contrast, Figure 8.1(b) shows the results after CF–ADI was run for
only 7 iterations. The relative error ‖X−Xcfadi

7 ‖2
‖X‖2

is 4.0×10−3. However, it can be seen
that the cosines of 6 principal angles are 1. Thus, dominant eigenspace information
about X can emerge, even when CF–ADI has not converged.

Figure 8.2 shows another example of running CF–ADI only a small number of
steps, before convergence occurs. It comes from a discretized transmission line ex-
ample [24]. The system matrix A is nonsymmetric, 256 × 256, and the input matrix
B has one column. The parameter selection procedure in [40] was followed and the
resulting CF–ADI parameters were complex.

Figure 8.2(a) shows that the CF–ADI error was not decreasing at all during the
15 iterations. The relative error stagnates at 1. However, Figure 8.2(b) shows that
the intersection of the 15-dimensional exact dominant invariant subspace and the
15-dimensional CF–ADI approximation has dimension 10 (almost 11).
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Fig. 8.1 Symmetric matrix, n = 500. Principal angles.
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Fig. 8.2 Nonsymmetric matrix, n = 256, 15 CF–ADI iterations, not converged.

In Figure 8.3 we compare the Krylov and rational Krylov subspace choices in
(8.5)–(8.7). In Figure 8.3(a) we compare different rank-7 approximations to the ex-
act dominant invariant subspace for the symmetric spiral inductor example. The
shifted rational Krylov subspace is compared with the unshifted Krylov subspace,
KJ(A, B), and the unshifted rational Krylov subspace, KJ(A−1, A−1B), for J = 7.
Three choices of shift parameters for the rational Krylov subspace, Krat

J (A, (A +
p1I)−1B, {p2, . . . , pJ}), are compared. They are linearly and logarithmically spaced
points on the eigenvalue interval of A and CF–ADI parameters from the solution
of rational minimax problem (3.7). Figure 8.3(a) shows that K7(A, B) provides the
worst approximation. A better approximation is Krat

7 (A, (A+p1I)−1B, {p2, . . . , p7}),
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Fig. 8.3 Comparison of various low-rank approximations to the exact dominant invariant subspace.

with {p1, . . . , p7} linearly spaced points on the eigenvalue interval of A. A better
approximation than that is the unshifted rational Krylov subspace, K7(A−1, A−1B).
Finally, for this example, using the CF–ADI parameters and using logarithmically
spaced points in Krat

7 (A, (A + p1I)−1B, {p2, . . . , p7}) both provide the best
approximation.

In Figure 8.3(b) comparison is made for the nonsymmetric transmission line ex-
ample. Order-15 and -30 unshifted Krylov and rational Krylov subspaces, KJ(A, B),
KJ(A−1, A−1B), J = 15, 30, are compared with the order-15 shifted rational
Krylov subspace, Krat

Jcfadi
(A, (A + p1I)−1B, {p2, . . . , pJcfadi}), Jcfadi = 15, where

{p1, . . . , pJcfadi} are an approximate solution to the complex region rational minimax
problem (3.7), obtained by the procedure described in [40].

Figure 8.3(b) shows that K15(A, B) gives the worst approximation, followed by
K15(A−1, A−1B). Finding order-30 unshifted subspaces, K30(A, B) and K30(A−1,
A−1B), to match the 15-dimensional exact dominant invariant subspace offers im-
provement. But clearly the order-15 subspace, Krat

15 (A, (A + p1I)−1B, {p2, . . . , p15}),
using the CF–ADI parameters, gives the best approximation.

9. Conclusions. In this paper we developed the CF–ADI algorithm to generate a
low-rank approximation to the solution to the Lyapunov equation. CF–ADI requires
only matrix-vector products and linear solves. Hence, it enables one to take advantage
of any sparsity or structure in the coefficient matrix. The range of the CF–ADI
approximation is a low-order shifted rational Krylov subspace, where the shifts are
the solution of a rational minimax problem.

We characterized the range of the solution to the Lyapunov equation as order
n Krylov and rational Krylov subspaces with various starting vectors and various
sets of shifts. A connection was made between the approximation of the dominant
invariant subspace of the Lyapunov solution and the generation of low-order Krylov
and rational Krylov subspaces.
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It was shown that the rational Krylov subspace generated by the CF–ADI algo-
rithm frequently gives the most accurate approximation to the dominant invariant
subspace of the exact solution to the Lyapunov equation, which is needed in many
engineering applications.
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